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Supplementary Text 

Section S1: c-axis dielectric function and optical conductivity of ZrSiS and ZrSiSe 

The ab-plane complex optical conductivity (𝜎(𝜔) = 𝜎1 + 𝑖𝜎2) of bulk ZrSiSe is obtained using

broadband reflectance spectra combined with spectroscopic ellipsometry (5). To study the 

hyperbolicity the c-axis dielectric response is also important. While an optically flat ac-surface is 

not attainable in ZrSiSe, measurements on the large and flat ac-surface of a closely related ZrSiS 

compound indeed reveal a much lower plasma frequency along the c-axis (Fig. S1, black dashed 

line), consistent with recent report (25). In order to obtain the c-axis dielectric function of 

ZrSiSe, we utilized the gold antenna launchers and performed near-field imaging experiments as 

discussed in the main text. Given the knowledge of ab-plane dielectric function, the antenna 

launching experiment allow us to extract the c-axis dielectric function based on the double-ring 

spacing (see Section S3). The extracted c-axis screened plasma frequency of ZrSiSe is around 

3000 cm−1 (Fig. S5), similar to the screened plasma frequency of ZrSiS (Fig. S1).

As mentioned in the main text, the unique nodal-square structure of ZrSiSe offers an effective 

approach to reducing the electronic loss associated with interband optical transitions. We remark 

that although van Hove singularities (VHS) appear in many electronic systems (e.g., Weyl 

semimetals), the impact on the optical conductivity of 3D systems rarely leads to a minimum, 

due to the large joint density of states (JDOS). For a pair of Weyl nodes, the JDOS scales with 

frequency as 𝜔2 and correspondingly, 𝜎1(𝜔) ∝
JDOS

𝜔
= 𝜔. As a result, the van Hove singularity

only changes the slope of the linear scaling of 𝜎1 in a Weyl semimetal (49, 50), in contrast to the 

minimum observed in ZrSiSe (5–7). In both ZrSiS and ZrSiSe, ab-initio calculations of the band 

structure have clearly identified the saddle point structures at finite 𝑘𝑧 in both ZrSiS (6) and 

ZrSiSe (5) to be around 0.4 eV. The similarities of the VHS energy scales in ZrSiS and ZrSiSe 

can be verified directly with bulk optical conductivity spectra, which sums the contribution of all 

𝑘𝑧 planes. By comparing experimental optical conductivity with ab-initio calculations for ZrSiS 

(6, 7) and ZrSiSe (5), the step minimum of 𝜎1(𝜔) (and therefore the enhancement of 𝜎2/𝜎1) in

both compounds are found to be originated from the VHS. 

Section S2: Transport measurements and carrier density of ZrSiSe 

Magnetoresistivity and Hall resistivity of ZrSiSe were performed using a standard four-probe 

technique in a physical properties measurement system (PPMS, Quantum Design), as shown in 

Fig. S2. Given the coexistence of both electron and hole-like carriers in ZrSiSe, we adopt a two-

band model to estimate the carrier densities and mobilities by simultaneously fitting the 

measured magnetoresistivity and Hall resistivity data. If the contributions of both electron and 

hole bands to conductivity are assumed to be additive, the longitudinal resistivity (ρxx) and 

transverse resistivity (ρxy) can be described by: 
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∙
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where ne (nh) and μe (μh) are the density and mobility of these electron and hole bands shown in 

equation (S1) and (S2), respectively. B = μoH and e are the magnetic field strength and 

elementary charge. In Fig. S2, we present the two-band model fit to the ρxx and ρxy at T = 100 K 

at a low-field range since no satisfactory fit can be obtained for the low temperature data. We 

also note the ρxx and ρxy data in the high-field range cannot be fitted with the two-band model, 

probably due to the quantum effects and high order effect as described in (2). The best fits yield 

the carrier densities of ne ~ 4.1 × 1020 cm-3 and nh  ~ 1.2 × 1020 cm-3 and the mobilities of μe  ~ 

1030 cm2/Vs and μh  ~ 4522 cm2/Vs, which is consistent with previous reports (2). 

Section S3: Antenna launching near-field imaging data and fitting 

In Fig. S3 we show the full frequency dependence of the antenna launching experimental data in 

the hyperbolic regime. Since the diameter of the Au disk antenna (2 μm) is comparable to the 

laser wavelength (1.3 − 1.8 μm), the near-field signal exhibits diffraction patterns inside the Au 

antenna, as shown in the main text. On the other hand, the ZrSiSe region covering the Au 

antenna shows an enhancement in near-field amplitude and a gradual increase in the “double-

ring” separation. This separation reaches a maximum at ω = 5556 cm−1 and the length scale

(≈190 nm) is an order of magnitude smaller than the laser wavelength (λ = 1.8 μm). 

To quantify the double-ring separations, we fitted the line profiles of 𝑆3 with two Gaussian 

functions and a linear background, as shown in Fig. S4. Together with the slope correction 

discussed in the Materials and Methods section, we extracted the frequency-dependent peak 

separation 𝛿(𝜔), as shown in Fig. S5. The out-of-plane (c-axis) dielectric constant of ZrSiSe is 

then obtained using the experimental ab-plane dielectric constant and 𝛿(𝜔), according to √𝜀𝑐 =

√−𝜀𝑎𝑏 (
2𝑑

𝛿
), where d is the thickness of the ZrSiSe crystal.

The extracted c-axis dielectric functions of ZrSiSe are modeled with Drude-Lorentzian 

oscillators accounting for both the intraband and the interband contributions: 𝜀𝑐(𝜔) = 𝜀∞ +

∑
𝜔𝑝,𝑗
2

𝜔0,𝑗
2 −𝜔2−𝑖𝛾𝑗𝜔

𝑗 . Here 𝜀∞ is the high-frequency dielectric constant, 𝜔0,𝑗, 𝜔𝑝,𝑗
2  and 𝛾𝑗 are the

center frequency, oscillator strength, and scattering rate of the j-th oscillator, respectively. The 



model (red line in Fig. S5) agrees well with the experimental data and the fitting parameters are 

listed in Table. S1. 

In Fig. S6 – Fig. S11, we show the gold disk antenna launching experiment with ZrSiSe crystals 

of varying thicknesses on top.  

Section S4: Hyperbolic plasmon polariton dispersion with surface states. 

The momentum of the hyperbolic plasmon polariton (HPP) modes with surface conductivity 𝜎2𝐷 

obeys the following Fabry-Perot quantization condition: 

𝑞𝑙(𝜔) =
𝑖√𝜀𝑐

𝑑√𝜀𝑎𝑏
[𝜋𝑙 + arctan [𝑖

𝜀0
𝜀1
(1 −

2𝑞

𝑞2𝐷
)] + arctan [𝑖

𝜀2
𝜀1
(1 −

2𝑞

𝑞2𝐷
)]] (𝑆3) 

where 𝑙 = 0, 1, 2 is the mode index, 𝑑 is the sample thickness, 𝜀0 (𝜀2) is the dielectric function of 

the top (bottom) medium, and 𝜀1 = √𝜀𝑎𝑏√𝜀𝑐 is the mean dielectric function of the hyperbolic 

material with the in-plane (𝜀𝑎𝑏 < 0) and out-of-plane (𝜀𝑐 > 0) components having opposite 

signs. Here, 𝑞2𝐷 is related to the (complex) surface state conductivity 𝜎2𝐷 of the hyperbolic metal 

via 𝜎2𝐷 =
𝑖𝜔(𝜀0+𝜀2)

2

2𝜋𝑞2𝐷
=

𝑖𝜔𝜅

2𝜋𝑞2𝐷
. Inside the hyperbolic regime of ZrSiSe, 𝜀1 is much larger than the 

dielectric function of the environment (𝜀0 = 1, Air and 𝜀2 = 1.94, SiO2). At 𝜔 = 6250 𝑐𝑚−1

and considering only the real part, 𝜀1 = √𝜀𝑎𝑏√𝜀𝑐 ≈ 8.6𝑖 and therefore 𝑖
𝜀𝑗

𝜀1
≪ 1 for 𝑗 = 0, 1. 

Assuming 𝑞2𝐷 ≪ 𝑞, we can then approximate arctan [𝑖
𝜀𝑗

𝜀1
(1 −

2𝑞

𝑞2𝐷
)] ≈ 𝑖

𝜀𝑗

𝜀1
(1 −

2𝑞

𝑞2𝐷
) for 𝑗 =

0, 1. Equation (S3) can then be simplified as: 

𝑞𝑙(𝜔) =
𝑖√𝜀𝑐

𝑑√𝜀𝑎𝑏
[𝜋𝑙 + 𝑖

𝜀0 + 𝜀2

√𝜀𝑎𝑏√𝜀𝑐
(1 −

2𝑞

𝑞2𝐷
)] (𝑆4) 

and in the lossless limit (Re 𝜎2𝐷 = 0) we obtain: 

𝑞𝑙(𝜔) =
𝜋𝑙√𝜀𝑐√|𝜀𝑎𝑏| + 2𝜅

𝑑|𝜀𝑎𝑏| + 8𝜋 Im(𝜎2𝐷)/𝜔
(𝑆5) 

The influence of the surface state metallicity will be parameterized by its complex sheet 

conductivity 𝜎2𝐷. If the imaginary part of 𝜎2𝐷 at a given frequency is negative (positive), it will 

modify the HPP momentum to a larger (smaller) value, corresponding to enhanced (reduced) 

screening on the HPP dispersion. 

To further illustrate the impact of surface state contribution on the HPP dispersion, we construct 

a toy model of the surface state dielectric function and evaluate the corresponding Im(𝑟𝑝). As 

shown in Fig. S28 below, the band structure of a thin slab (5 layers) of ZrSiSe contains 

additional bands near the Fermi level compared to the bulk bands. These additional bands 

originated from the surface states of ZrSiSe and are consistent with reports in the literature for 



 

ZrSiS/Se (see e.g. Ref. (35) for ZrSiSe and Refs. (36, 37) for ZrSiS). Additional interband 

transitions associated with the surface states (e.g. green arrow in Fig. S28A) happen around 

𝜔0 = 0.78 eV ≈ 6290 cm
−1 and will therefore influence the dispersion of the observed

hyperbolic plasmons. We model the dielectric response of the surface state with surface plasma 

frequency 𝜔𝑝
𝑆𝑆 and a Lorentzian oscillator for the interband transition near 𝜔0. As shown in Fig.

S28 panel B, with increasing surface plasma frequency from 𝜔𝑝
𝑆𝑆 = 1 eV (green dotted line) to

𝜔𝑝
𝑆𝑆 = 2 eV (green dashed line), the modeled plasmon dispersion gradually approaches the kink

structure in the experimental data. The surface plasma frequency values used here (1 - 2 eV) are 

similar to those reported in the literature for ZrSiS (36). 

Section S5: Angular and thickness dependence of hyperbolic plasmons near sample edges 

In Fig. S12, we show the complete frequency-dependent near-field phase data (𝜙4) for the 20 nm 

thin ZrSiSe crystal on the SiO2/Si substrate. Dashed lines indicate the paths along which we 

extract the line profiles. The phase derivative line profile (
𝑑𝜙4

𝑑𝑟
) and the corresponding simulation 

are shown in Fig. S13. Circles and triangles marks the real-space features that correspond to the 

principal (𝑞0) and higher-order (𝑞1) HPP modes. In Fig. S14 we also show the full near-field 

amplitude (𝑆4) and phase (𝜙4) line profiles along the dashed lines in Fig. S12. The Fourier 

transform of the complex signal 𝑆4𝑒
𝑖𝜙4 are also shown in the right panel of Fig. S14 from 𝜔 =

5000 cm−1 to 8333 cm−1. Blue and orange symbols correspond to the principal (𝑞0) and

higher-order (𝑞1) HPP modes and are consistent with the momenta extracted through line profile

modeling in Fig. S13, as shown in the main text. The Fourier transform between 5000 cm−1 and

5780 cm−1 are also indicative another higher-order mode (𝑞2, green symbols) predicted by the

Im(𝑟𝑝) calculations. 

The observed HPPs near sample edges are apparently angular dependent, as seen in Fig. S12 

where the fringes in 𝜙4 are more pronounced on the right edge than at the left edge. Such angular 

dependence is contained within our quasistatic model (see Sec. S7) and stems from the 

polarization of the sample by the external field.  This effect is indeed reflected in the modeled 

near-field image shown in Fig. S19. Importantly, the entire phase simulation image shown in Fig. 

S19 is generated with the polariton wavelengths obtained from the derivative line profile 

modelling in Fig. S13. The good agreement between the experiment and simulation on both 

edges of the crystal further confirms the accuracy of the extracted polariton wavelengths through 

line profile modelling. 

As with the antenna launched HPPs, the tip-launched modes also show distinct thickness 

dependence that can be directly compared with the maximum of Im(𝑟𝑝) calculated based on 

experimental dielectric functions (Fig. S1 and Fig. S5). In Fig. S15 we show the topography and 

corresponding near-field phase images (ω = 8333 cm−1) of a multi-terraced ZrSiSe crystal on



 

SiO2/Si substrate. The thin flakes ranges from 24 to 122 nm in thickness and the phase linecut 

(Fig. S15C) shows an increase in fringe periodicities with increasing sample thickness. In 

particular, the distance between the first peak and the first dip (t) is approximately 0.13 times of 

modeled plasmon wavelength (𝑡 ≈ 0.13𝜆𝑝). Such direct extraction of polariton wavelength has 

been utlized before in monolayer hBN (33) and serve as a quick estimate of the HPP wavelength 

in ZrSiSe. In the inset of Fig. S15C, we plot the extracted HPP momentum (𝑞0 =
2𝜋

𝜆𝑝
) estimated

based on the distance of the first peak and the first dip for various thicknesses of ZrSiSe. The 

data points are normalized to the momentum of the free-space light and agrees well with the 

calculated maxima of Im(𝑟𝑝) (red curve). 

Section S6: Modeling the near-field signal near antenna edges 

To model the spatial profile of the signal near the edge of the gold disk, we develop an 

approximate solution for the scattered field created by a conducting disk, including the effects of 

diffraction. The basis of this approximation is Sommerfeld’s solution to the famous problem of 

diffraction by a perfectly conducting screen (51). Below, we review this solution and use it to 

construct an approximate solution for a metallic disk covered by a thin optically hyperbolic film.  

Consider first a wave, incident at an angle 𝛼 with respect to the plane with no component parallel 

to the edge of the conducting screen (𝛽 = 0), which we denote as the y-direction (Fig. S16 left). 

For concreteness, we first consider the case of a magnetic field 𝑯 = 𝐻𝑦�̂�, where the scattered

magnetic field has only one component along the y-direction, 𝐻𝑦 = 𝑈
⊥(𝑥, 𝑧). The scattered

magnetic field can be expressed through Fresnel diffraction integrals 𝐹(𝑧): 

𝑈⊥(𝑥, 𝑧; 𝑘) = 𝑈0(𝑥)

(

𝑒𝑖𝑘𝑧 sin𝛼+
𝑖𝜋
4

√𝜋
(𝐹(𝜂+) +

𝑒−𝑖𝑘𝑧 sin𝛼+
𝑖𝜋
4

√𝜋
𝐹(𝜂−)) − 𝑖𝑠𝑖𝑛(𝑘𝑧 sin 𝛼)

)

(𝑆6) 

where 𝐹(𝑧) = ∫ 𝑒−𝑖𝜅
2
𝑑𝜅

𝑧

0
, 𝜂± = √2𝑘𝑟 cos

𝜙∓𝛼

2
,  and 𝑈0(𝑥) = 𝐸0𝑒

𝑖𝑘𝑥 cos𝛼. Here k is the free-

space photon wavevector, and (𝑟, 𝜙) represents polar coordinates in the 𝑥𝑧-plane with tan𝜙 =
𝑧

𝑥

and 𝑟 = √𝑥2 + 𝑧2. For the other, orthogonal polarization with the incident electric field 𝑬 =

𝐸𝑦�̂�, one obtains the second solution for 𝐸𝑦 = 𝑈
∥(𝑥, 𝑧):

𝑈∥(𝑥, 𝑧; 𝑘) = 𝑈0(𝑥)

(

𝑒𝑖𝑘𝑧 sin𝛼+
𝑖𝜋
4

√𝜋
(𝐹(𝜂+) −

𝑒−𝑖𝑘𝑧 sin𝛼+
𝑖𝜋
4

√𝜋
𝐹(𝜂−)) − 𝑐𝑜𝑠(𝑘𝑧 sin 𝛼)

)

(𝑆7) 



 

An arbitrary incidence angle relative to the edge can be accomplished by introducing an angle 𝛽, 

understood as a latitude relative to the y-axis, shown in Fig. S16. The angles 𝛼, 𝛽 are related to 

the incidence angles 𝜃, 𝜙 of a spherical polar coordinate system by the relations: 

cos 𝛼 cos 𝛽 = cos𝜓 sin 𝜃 

sin 𝛽 = sin𝜓 sin 𝜃 

sin 𝛼 cos 𝛽 = cos 𝜃 

The z-component of the scattered electric field for an incident p-polarized light can then be 

decomposed into the polarizations of the fundamental solutions 𝑈⊥, 𝑈∥(52), yielding:

𝐸𝑧
𝑠𝑐𝑎(𝑥, 𝑦, 𝑧; 𝑘) = 𝑒𝑖𝑘𝑦𝑠𝑖𝑛𝛽 [𝐴

𝑖

𝑘

𝜕

𝜕𝑥
(𝑈⊥(𝑥, 𝑧; 𝑘 cos 𝛽)) + 𝐵

𝑖 sin 𝛽

𝑘

𝜕

𝜕𝑧
(𝑈∥(𝑥, 𝑧; 𝑘 cos 𝛽))] (𝑆8)

The coefficients 𝐴, 𝐵 arise from the decomposition of the polarization of the incident wave into 

components parallel and perpendicular to the edge of the screen and depend only on the polar 

and in-plane incidence angles 𝛼, 𝛽. We can then construct an approximate solution for a disk by 

solving for several angles 𝜓 and plotting the diffraction pattern produced for each angle, with the 

out-of-plane component 𝐸𝑧 plotted in Fig. S17a at a frequency of ω = 6600 cm−1.

To check the validity of this approximation, we used the COMSOL package to simulate the 

scattered field distribution produced by a plane wave whose magnetic field was polarized 

parallel to the disk. This numerical approach was necessitated by the large free-space 

wavelength, which is comparable to the size of the metallic disk, invalidating the quasistatic 

approximation typically used in the modeling of the SNOM signal. The disk was included by 

implementing a perfectly conducting boundary condition on the surface of the disk inside of a 

physical domain of dimension 4 μm × 4 μm × 2 μm padded with perfectly matched layers of 

thickness 500 nm at each edge of the domain. A scattering boundary condition was implemented 

at the edge of the physical domain, and only the scattered field was extracted. The result of this 

simulation is plotted in Fig. S17b. The agreement between the approximation and the numerical 

solution is expected to hold only near the edge of the disk, which contains the crucial feature, 

namely a divergence of the field due to a sharp edge. The angular intensity distribution around 

the circumference of the disk is also captured by the approximate model, which can then be 

modified to account for the effect of the hyperbolic medium. 

The introduction of the sample will bring with it the hyperbolic modes and modify the scattered 

field. The multiple branches of the polariton dispersion observed are derived by computing the 

poles in the reflection coefficient 𝑟𝑝(𝑞, 𝜔) in the absence of losses. In a realistic system with

finite loss, the dispersion is instead dictated by the maxima in Im 𝑟𝑝(𝑞, 𝜔). We consider a three-

layer system consisting of vacuum, sample and substrate, labeled as medium 0, 1 and 2, 

respectively. The divergence of 𝑟𝑝(𝑞, 𝜔) happens at a discrete set of values satisfying the

condition:

2𝜋𝑙 + 𝜓01 +𝜓21 = 2𝑘1
𝑧𝑑 (𝑆9) 



 

for a medium of thickness d. The phase shifts 𝜓01, 𝜓21 can be expressed in terms of reflection 

coefficients at the top and bottom interfaces, 𝑟01 = 𝑒
𝑖𝜓01 and 𝑟21 = 𝑒

𝑖𝜓21 , respectively. The

reflection coefficients 𝑟𝑖𝑗 at the interfaces are given by: 

𝑟𝑖𝑗(𝑞) =

𝜀𝑗
⊥

𝑘𝑗
𝑧 −

𝜀𝑖
⊥

𝑘𝑖
𝑧

𝜀𝑗
⊥

𝑘𝑗
𝑧 +

𝜀𝑖
⊥

𝑘𝑖
𝑧

(𝑆10) 

where the z-component of the wavevector 𝑘𝑖
𝑧 of a p-polarized light in each medium is given by:

𝑘𝑖
𝑧(𝑞) = √𝜀𝑖

⊥√
𝜔2

𝑐2
−
𝑞2

𝜀𝑖
𝑧 , Im 𝑘𝑖

𝑧 > 0 (𝑆11) 

In the hyperbolic regime (𝑞)𝜔/𝑐), 𝑘1
𝑧 is predominantly real, so the solutions of Eqn. (S9) are not

confined to a surface but can exist within the bulk of the sample. A closed-form solution for the 

dispersion can only be obtained within the quasistatic approximation (𝑐 → ∞). In that case, the 

reflection coefficients of Eqn. (S10) become independent of q and reduce to: 

𝛽𝑖𝑗 =

√𝜀𝑗
⊥√𝜀𝑗

𝑧 − √𝜀𝑖
⊥√𝜀𝑖

𝑧

√𝜀𝑗
⊥√𝜀𝑗

𝑧 + √𝜀𝑖
⊥√𝜀𝑖

𝑧

(𝑆12) 

The original transcendental equation Eqn. (9) reduces to a linear equation for the dispersion of 

each mode 𝑞𝑙. In the particular case of launching by a conducting metallic edge, the observed 

fringes in real space can be understood as a beating between the various modes 𝑞𝑙 in momentum 

space (12), giving a fringe spacing of: 

𝜆𝑝 =
2𝜋

Δ𝑞𝑙
≈ −2𝑖𝑑

√𝜀1
⊥

√𝜀1
𝑧

(𝑆13) 

with the last equality holding in the quasistatic limit. 

Having previously obtained a solution for the field created in vacuum by a screen, this 

expression can be used as a building block to construct an approximate solution to the field 

produced by the system of the disk, sample, and substrate. Since the polariton wavelength (𝜆𝑝) is 

an order of magnitude smaller than the free-space photon wavelength 𝜆0, near the edge we 

expect a quasistatic approximation to be valid, permitting the use of an image method to 

introduce a sample (12). Using the field from Eqn. (S8), we introduce an equidistant series of 

images, as in the solution for the static field of a dielectric film between two media. We take the 

infinitely thin disk as the source of this static field, situated at the interface of media 1 and 2, that 

is, below the ZrSiSe layer. For an optically anisotropic material, the thickness of the film is 

further modified by the ratio of in-plane and z-axis dielectric function:
√𝜀𝑡

√𝜀𝑧
. The scattered near-

field signal (𝑆) can be approximated as the z-components of the field 𝐸𝑧
𝑠 obtained from the

diffraction problem and the reflection coefficients 𝛽𝑖𝑗 from Eqn. (S12): 



 

𝑆(𝑥, 𝑦, 𝑧) = (1 − 𝛽01)𝐸𝑧
𝑠𝑐𝑎(𝑥, 𝑦, 𝑧 + ℎ) + 𝛽21(1 + 𝛽01)∑𝛽01

𝑛 𝛽21
𝑛 𝐸𝑧

𝑠𝑐𝑎 (𝑥, 𝑦, (2𝑛 + 1)𝑑
√𝜀𝑡

√𝜀𝑧
+ ℎ)

∞

𝑛=1

 (𝑆14) 

To include the effects of demodulation, we compute the field at a discrete set of points above the 

sample: 

ℎ(𝑡) = ℎ0 + Δℎ(1 − cos 𝑛Ω𝑡) (𝑆15) 

to obtain the complex signal 𝑠�̃� = 𝑆𝑛𝑒
𝑖𝜙𝑛. Here Ω is the tip-tapping frequency and we used

tapping amplitude Δℎ = 50 nm and minimum position ℎ0 = 5 nm. The demodulated scattering 

amplitudes (𝑛 = 3) computed at a few different frequencies are shown in Fig. S18. 

Section S7: Simulation of plasmonic fringes near the sample edge.  

The input parameter into the model is a complex wavevector 𝑄 = 𝑞𝑝(1 + 𝑖𝛾), where 𝑞𝑝 =
2𝜋

𝜆𝑝

and γ represents the dimensionless damping coefficient of the polariton mode. For very thin 

layers (𝑑 ≪ 𝜆𝑝), one can approximate the sample by a two-dimensional conducting layer with an 

effective sheet conductivity 

𝜎𝑒𝑓𝑓 =
𝑖𝜔𝜅

2𝜋𝑄
, (𝑆16) 

with 𝜅 =
𝜀0+ 𝜀2

2
 being the average permittivity of the surrounding media. The sample is modeled 

by a two-dimensional strip of width L at the boundary of two half-spaces with permittivities 𝜀0 =

1 (air) and 𝜀2 = 1.94 (SiO2). The SNOM signal is taken to be proportional to the induced dipole 

moment on the probe. The scanning probe is modeled by a spheroid, with radius of curvature a = 

40 nm and length L = 1400 nm. We compute the charge distribution 𝑛𝑖 in the sample induced by 

the probe. This quantity can be found by combining Gauss’s law with the charge continuity 

equation, giving

Φ(𝒓) − 𝑉(𝒓) ∗ 𝑛𝑖(𝒓) = Φ𝑒𝑥𝑡(𝒓), (𝑆17)

with the operation 𝐴 ∗ 𝐵 denoting convolution, Φ(𝒓) being the full potential, and 𝑉(𝒓) being the 

in-plane Coulomb potential. The external field is taken to be constant with an incidence angle 

𝜃 = 60∘ from the surface normal. Using the translation symmetry of the problem in the lateral

direction, Eqn. (S17) is reduced to a one-dimensional integral equation. Replacing the derivatives 

by finite differences further simplifies Eqn. (S17) to a matrix inversion. The SNOM signal is 

then found by computing the dipole moment induced on the probe by the distribution 𝑛𝑖(𝒓). The

complex signal (S) is calculated for a range of tip positions from each quantity 𝑛𝑖(𝒓) and then

demodulated to the 4th harmonic in order to compare with the experimental line profiles shown in 

Fig. 3D in the main text and Fig. S13. 

To simulate the near-field phase-contrast of triangular-shaped samples (Fig. S19), we created the 

two-dimensional image by solving Eqn. (S17) for a semi-infinite conducting sheet near a sample 



 

edge. We obtained two different solutions for the two cases of the in-plane component of the 

external field being parallel and anti-parallel to the sample edge. These two solutions were used 

for each edge of the triangular flake separately, and the intermediate region was interpolated 

between the edges. This approach is valid provided that the width of the sample at that point 𝐿 ≫

Im 𝑄, see Eqn. (S16).  

Section S8: Survey of electronic loss in plasmonic and excitonic hyperbolic materials 

In this section, we list the reflectance, dielectric function and optical conductivities (𝜎(𝜔) =

𝜎1 + 𝑖𝜎2) of various plasmonic and excitonic hyperbolic materials reported in the literature. To 

quantify the electronic loss, the ratio 
𝜎2

𝜎1
 is calculated based on the reported or extracted optical

conductivities. 

Section S9: Electronic band structure calculations of ZrSiSe 

The electronic structure of the system was investigated with density functional theory (DFT). 

DFT calculations were carried out at the level of DFT plus onsite Hubbard U and intersite V 

(DFT+U+V) (53), as implemented in the Octopus code (54), which delivers an hybrid-like 

quality of the band structure at a fraction of the computational cost (55). Experimental lattice 

constants of 𝑎 = 3.623 Å and 𝑐 = 8.365 Å were employed. For the slab configuration, 

containing 5 layers of ZrSiSe, a 16 Å vacuum region was chosen to properly converge the bands 

along the non-periodic dimension z. The ground state was calculated by discretizing the 

equations in real-space with a spacing of 0.159 Å and spin-orbit coupling was fully accounted for 

valence electrons while core electrons were treated with relativistic HGH pseudopotentials (56). 

The Brillouin zone was sampled with a 16×16×8 Monkhorst-Pack grid for the bulk and a 15×15 

grid for the slab geometries. 



 

Fig. S1. Optical conductivities of ZrSiS and ZrSiSe. (Left) Real part of the dielectric function 

of ZrSiS (dashed lines) and ZrSiSe (solid line). The gray-shaded region indicates the frequency 

range where ZrSiS is hyperbolic. (Right) ab-plane optical conductivities of ZrSiSe at 300 K and 

5 K. Solid and dotted lines represent the real and imaginary parts of 𝝈(𝝎) = 𝝈𝟏 + 𝒊𝝈𝟐,

respectively. 
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Fig. S2. Magnetotransport measurements and fitting. Two-band model fits of longitudinal 

(𝜌𝑥𝑥) and transverse (𝜌𝑥𝑦) resistivity for ZrSiSe at 100 K. 



 

Fig. S3. Frequency dependent near-field data. Topography and frequency-dependent near-

field scattering amplitude data (𝑆3) of the 26 nm ZrSiSe sample on a gold disk antenna. Scale 

bars in all panels are 300 nm. Red dashed lines indicate the sector region used to average the line 

profiles of 𝑆3 along the perimeter of the disk antenna and are kept the same for all frequencies. 



 

Fig. S4. Extracted line profiles and fitting. Frequency-dependent line profiles in the sample 

region from Fig.S3 are shown as blue dots. The extracted line profiles are fitted with two 

Gaussian profiles (green and yellow dotted lines) and linear backgrounds (gray solid lines). 

Black dashed lines are the sum of the Gaussians and the background, showing good agreement 

with the experiment. 



 

Fig. S5. Double-ring separation and Drude-Lorentz model of the c-axis dielectric function 

for ZrSiSe. (Left) Experimental peak separation δ(ω) obtained from the fitting in Fig. S4 and 

the slope correction discussed in the Materials and Methods section. (Right) Drude-Lorentz 

model fitting of the c-axis dielectric function data (black dots), obtained through the antenna 

launching experiment. 



 

Fig. S6. Hyperbolic ray launching experiment for fully covered Au antenna.  

(A), Topography image of a 28 nm ZrSiSe crystal on top of a 2 μm wide Au circular antenna. 

The normalized near-field amplitudes (
𝑆3

𝑆2
) outside (ω = 2222 cm−1) and inside (ω =

6250 cm−1) the hyperbolic regime are shown in panel (B) and (C), respectively. Insets in panels

B and C are the schematic of the isofrequency surfaces. Dashed lines in A and B indicate the 

boundary of the underlying Au antenna. Scale bars in all panels are 200 nm. 



 

Fig. S7. Hyperbolic ray launching data and fitting of a 40 nm ZrSiSe crystal on circular 

gold antenna. Topography (left) and the near-field amplitude data (right) collected at (A) ω =
7143 cm−1 and (B) ω = 6061 cm−1. The white dotted line indicates the boundary of gold. Blue

and red dashed lines indicate the double-ring features at 7143 cm−1 and 6061 cm−1,
respectively. Inset in B is a topography linecut along the orange dashed line. Scalebars are 500 

nm. The averaged line profiles of the near-field amplitude along the perimeter of the circular 

antenna are shown for (C) ω = 7143 cm−1 and (D) ω = 6061 cm−1. The line profiles are fitted

with two Gaussian profiles (green and yellow dotted lines) and a linear background (gray dotted 

line). 



 

Fig. S8. Hyperbolic ray launching data and fitting of a 36 nm ZrSiSe crystal on circular 

gold antenna. Topography and the corresponding near-field amplitude data (S3) at (A, B) ω =
7143 cm−1 and (D, E) ω = 6061 cm−1. Inset in panel D is the topography line profile along the

orange dashed line. The extracted near-field amplitude line profiles on the sample along the 

perimeter of the antenna are shown for 7143 cm−1 and 6061 cm−1 in C and F, respectively. The

line profiles are fitted with Gaussian functions (green and yellow dotted lines) and a linear 

background (grey dotted line). Scale bars in panels A-D are 500 nm. 



 

Fig. S9. Hyperbolic ray launching data and fitting of a 28 nm ZrSiSe crystal on circular 

gold antenna.  Topography (bottom) and the near-field amplitude data (top) at (A) ω =
7143 cm−1 and (B) ω = 6061 cm−1. The extracted near-field amplitude line profiles on the

sample along the perimeter of the antenna are shown for 7143 cm−1 and 6061 cm−1 in C and D,

respectively. The line profiles are fitted with Gaussian functions (green and yellow dotted lines) 

and a linear background (grey dotted line). Scale bars in panels A,B are 500 nm. 



 

Fig. S10. Hyperbolic ray launching data and fitting of a 25 nm ZrSiSe crystal on circular 

gold antenna.  Topography (bottom) and the near-field amplitude data (top) collected at (A) 

ω = 7143 cm−1 and (B) ω = 6061 cm−1. The white dotted line indicates the boundary of gold.

Blue and red dashed lines indicate the double-ring features at 7143 cm−1 and 6061 cm−1,
respectively. Inset in B is a topography linecut along the orange dashed line. Scalebars are 500 

nm. The averaged line profiles of the near-field amplitude along the perimeter of the circular 

antenna are shown for (C) ω = 7143 cm−1 and (D) ω = 6061 cm−1. The line profiles are fitted

with two Gaussian profiles (green and yellow dotted lines) and a linear background (gray dotted 

line). 



 

Fig. S11. Hyperbolic ray launching data and fitting of a 20 nm ZrSiSe crystal on circular 

gold antenna.  Topography (left) and the corresponding near-field amplitude data (right) at (A) 

ω = 7143 cm−1 and (B) ω = 6061 cm−1. Inset in panel B is the topography line profile along

the orange dashed line. The extracted near-field amplitude line profiles on the sample along the 

perimeter of the antenna are shown for 7143 cm−1 and 6061 cm−1 in C and D, respectively.

The line profiles are fitted with Gaussian functions (green and yellow dotted lines) and a linear 

background (grey dotted line). Scale bars in A,B are 500 nm. 



 

Fig. S12. Edge launching near-field imaging data. Frequency-dependent (ω = 8333 −
5000 cm−1) near-field phase (𝜙4) for the 20 nm ZrSiSe on SiO2/Si. Scale bars are 500 nm.



 

Fig. S13. Experimental and simulated phase derivative line profiles near edges of ZrSiSe. 

(Left) Line profiles of near-field phase derivative (
𝑑𝜙4

𝑑𝑟
) along the black dashed lines in Fig. S12 

for the 20 nm ZrSiSe on SiO2/Si substrate. (Right) Simulation of the phase derivative line 

profiles at corresponding frequencies. Colored circles and triangles mark the positions of the 

principal (𝑞0) and higher-order (𝑞1) hyperbolic plasmon polaritons, respectively. 



 

Fig. S14. Amplitude and phase line profiles near edges of ZrSiSe and the corresponding 

Fourier transform amplitude. (Left and Middle) Experimental line profiles of near-field 

amplitude (𝑆4) and phase (𝜙4) along the black dashed lines in Fig. S12 for the 20 nm ZrSiSe on

SiO2/Si. (Right) Fourier transform of the complex signal 𝑆4𝑒
𝑖𝜙4 from ω = 5000 cm−1 (red) to

8333 cm−1 (blue). Blue, orange and green symbols represent the mometa of the principal (𝑞0)

and higher-order hyperbolic plasmon polaritons modes (𝑞1, 𝑞2), respectively. 



 

Fig. S15. Thickness dependence of edge launched HPP thin ZrSiSe. (A), Topography of a 

multi-terraced ZrSiSe crystal on SiO2/Si substrate. (B), Near-field phase image (𝜙4) in the same 

region taken at ω = 8333 cm−1. The four arrows from top to down corresponds to thickness of

24 nm, 28 nm, 50 nm and 122 nm, respectively. (C), Phase line profiles at various thicknesses 

along the arrow positions in panel (B), the line profile and model for 20 nm ZrSiSe are taken 

from Fig. S12 (right edge). Gray shaded region indicates the substrate. Black dotted line indicate 

the modeled line profile with plasmon wavelength (𝜆𝑝) of 300 nm. Inset depicts the thickness 

dependence of extracted (principal) HPP momentum 𝑞0 =
2𝜋

𝜆𝑝
 normalized by the momentum of 

free-space light (𝑞𝑎𝑖𝑟 =
2𝜋

𝜆
), showing good agreement with the calculated Im (𝑟𝑝) (red curve) 

based on experimental dielectric constants of ZrSiSe. 



 

Fig. S16. Simulation coordinates. A schematic illustrating different choices of coordinate 

systems used in the expressions for the scattered fields. The shaded region represents the 

conducting screen creating the diffraction pattern, with the screen running parallel to the y-axis. 



 

Fig. S17. Simulation of z-axis electric field of a bare Au disk antenna. Absolute value of the 

z-component of the scattered field 𝐸𝑧 at a height of 25 nm above the disk, obtained using the

approximate model (Left) and the numerical solution (Right). The red arrow in both panels

highlights the direction of the incident field.



 

Fig. S18. Hyperbolic polariton antenna launching simulation. Simulated near-field amplitude 

of ZrSiSe (26.5 nm) on a gold disk (25 nm) obtained from the approximate model at ω =
7634 cm−1, 6667 cm−1, 5556 cm−1. The white dashed line shows the edge of the gold disk and

the red arrow indicates the direction of the field. 



 

Fig. S19. Angular dependence in triangular-shaped thin crystal of ZrSiSe. 

(Left) Experimental phase-contrast image (𝜙4) of hyperbolic plasmon polaritons near the edges 

of the crystal at ω = 6250 cm−1, showing apparent differences in fringe spacing for two edges

of the flake. (Right) Simulation of the phase contrast 𝜙4 image using the same polartion 

wavelengths:  𝜆𝑝0 = 580 𝑛𝑚 and 𝜆𝑝1 = 140 𝑛𝑚 for the principal (𝑞0) and higher-order (𝑞1)

mode, respectively. 



 

Fig. S20. ZrSiS. Anisotropic reflectance, real part of the dielectric function and 
𝜎2

𝜎1
 ratio of ZrSiS 

(25). Gray shaded regions indicate the hyperbolic frequency regime. 

Fig. S21. TaIrTe4. Anisotropic reflectance, real part of the dielectric function and 
𝜎2

𝜎1
 ratio of 

TaIrTe4 (24). 

Fig. S22. WTe2. Anisotropic reflectance, real part of the dielectric function and 
𝜎2

𝜎1
 ratio of WTe2 

(22). 



 

Fig. S23. Bi2Sr2CaCu2O8. Anisotropic reflectance, real part of the dielectric function and 
𝜎2

𝜎1

ratio of Bi2Sr2CaCu2O8 (BSCCO) (38). 

Fig. S24. Sr3Ru2O7. Anisotropic reflectance, real part of the dielectric function and 
𝜎2

𝜎1
 ratio of 

Sr3Ru2O7 (41). 

Fig. S25. Sr2RuO4. Anisotropic reflectance, real part of the dielectric function and 
𝜎2

𝜎1
 ratio of 

Sr2RuO4 (40). 



 

Fig. S26. Bi2Te3. Anisotropic dielectric function and 
𝜎2

𝜎1
 ratio of Bi2Te3 (42). 

Fig. S27. Black phosphorus. Excitonic dielectric function of monolayer (1L) and bilayer (2L) 

black phosphorus along the arm-chair direction (44) and the corresponding 
𝜎2

𝜎1
 ratio.



 

Fig. S28. Band structures of ZrSiSe and the impact of surface states on HPP dispersion. 

(A), First-principles calculations of the band structure for bulk ZrSiSe and a thin slab (5 layers) 

of ZrSiSe. Compared to the bulk bands, additional interband transitions associated with the 

surface states (e.g. green arrow) appear in the slab calculation. (B), Frequency-momentum 

dispersion of HPP plotted in the form of Im(𝑟𝑝). Circles: the principal modes; triangles: higher-

order polaritons. Data points are superimposed over the calculated Im(𝑟𝑝) described in the main 

text. The grey dashed line represents the free-space light cone. Black dashed lines indicate 

numerical solutions for the divergence of Im(𝑟𝑝) for the higher-order HPP branches using the 

dielectric functions in Fig. 2B. The red dashed line is a guide for the dispersion of the principal 

branch. Green dotted and dashed lines indicate the modified higher-order HPP dispersion with an 

interband resonance at 𝜔0 = 0.78 eV and with increasing surface metallicity due to surface states 

(𝜔𝑝
𝑆𝑆 = 1 eV and 𝜔𝑝

𝑆𝑆 = 2 eV for the green dotted and green dashed lines, respectively).

j 𝜔0,𝑗 (𝑐𝑚
−1) 𝜔𝑝,𝑗 (𝑐𝑚

−1) 𝛾𝑗  (𝑐𝑚
−1)

1 0 5127.2 400.0 

2 6291.3 2057.4 715.2 

3 7367.8 2242.8 1055.3 

Table S1. Parameters for the Drude-Lorentz model fitting of the experimental out-of-plane 

dielectric function of ZrSiSe using 𝜀𝑐(𝜔) = 𝜀∞ +∑ 𝜔𝑝,𝑗
2

𝑗 /(𝜔0,𝑗
2 − 𝜔2 − 𝑖𝛾𝑗𝜔). Here, 𝜀∞=2.96 is

the high frequency dielectric constant. 
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