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Photons are the physical system of choice for performing experimental tests of the foundations
of quantum mechanics. Furthermore, photonic quantum technology is a main player in the sec-
ond quantum revolution, promising the development of better sensors, secure communications, and
quantum-enhanced computation. These endeavors require generating specific quantum states or
efficiently performing quantum tasks. The design of the corresponding optical experiments was
historically powered by human creativity but is recently being automated with advanced computer
algorithms and artificial intelligence. While several computer-designed experiments have been exper-
imentally realized, this approach has not yet been widely adopted by the broader photonic quantum
optics community. The main roadblocks consist of most systems being closed-source, inefficient, or
targeted to very specific use-cases that are difficult to generalize. Here, we overcome these prob-
lems with a highly-efficient, open-source digital discovery framework PyTheus, which can employ a
wide range of experimental devices from modern quantum labs to solve various tasks. This includes
the discovery of highly entangled quantum states, quantum measurement schemes, quantum com-
munication protocols, multi-particle quantum gates, as well as the optimization of continuous and
discrete properties of quantum experiments or quantum states. PyTheus produces interpretable
designs for complex experimental problems which human researchers can often readily conceptual-
ize. PyTheus is an example of a powerful framework that can lead to scientific discoveries – one of
the core goals of artificial intelligence in science. We hope it will help accelerate the development of
quantum optics and provide new ideas in quantum hardware and technology.
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1. INTRODUCTION

Photons, the individual particles of light, have long
been used as the core player for fundamental experi-
ments and applications in quantum information science
[1]. Photons do not easily interact with their environ-
ments; therefore, they can be distributed over large dis-
tances – which makes them a key resource for long-
distance quantum communication [2, 3] and experiments
that require strict Einstein locality conditions [4–6]. Us-
ing advanced measurement-based quantum computing
schemes, photons are among the most promising candi-
dates for future quantum computers [7]. Entanglement
between two or more photons can be produced without
a vacuum or cooling, and therefore many advanced ex-
perimental results can be achieved directly with table-
top setups. Furthermore, the bosonic nature of photons
allows for the generation of complex entangled quantum
states of indistinguishable photons that are a key resource
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for quantum-enhanced measurements [8]. These poten-
tial applications have lead to enormous technological ad-
vances in integrated chips for fast and precise control
of photonic quantum states [9–12], high-quality single-
photon sources [13–16], novel photon-pair sources [17],
photon number resolving detectors [18, 19], and advanced
high-quality multi-photon interference [20–23].

One question now is how to utilize these technologies
to build up exciting new experiments for the foundations
of quantum physics and practical quantum hardware.

Historically, the design of quantum experiments
strongly relied on the intuition and creativity of human
experts who leverage their experience and come up with
blueprints of experiments. However, due to the unintu-
itive phenomena and enormous combinatorial space of
the potential designs, it becomes extremely difficult for
human researchers to discover more complex quantum
setups. It might be possible that there are high-quality
solutions to experimental design questions far outside of
the region where humans’ intuition fails. How could we
possibly find such extraordinary solutions?

This question has sparked a strong interest in the auto-
mated discovery of quantum experiments with comput-
ers, overviewed in [24]. The invention of these tools for
quantum optics experiments [25] have indeed overcome
experimental limitations and allowed for new avenues in
laboratories for entanglement research [26–29]. Other au-
tomated discovery methods have started to investigate
how to design new experiments for advanced quantum
metrology [30–32], quantum communication [33, 34], Bell
experiments [35], and circuits for photonic continuous-
variable quantum computing [36]. This possibility has
also inspired researchers to take quantum optics experi-
ments as new benchmarks to test the quality of artificial
intelligence (AI) methodologies, for instance, via rein-
forcement learning [37], recurrent neural networks [38],
and deep generative models such as variational autoen-
coders [39] or logical AI [40].

One crucial question is whether we can also learn some-
thing about physics from these tools. And indeed, several
new concepts have been published that were purely dis-
covered through automated design [25], such as a new
general idea of entanglement structure [41], and general-
ized constructions of photonic quantum gates [42]. Those
concepts were discovered by tedious analysis of the com-
puter’s solutions, which was time-consuming. The prob-
lem was that the algorithms were powerful enough to
find unknown solutions but had no incentive to present
a simple, human-understandable form of it.

This was solved by the invention of Theseus [43],
an efficient algorithm for the discovery of new quan-
tum experiments that can readily be interpreted by hu-
mans. The key insight was a shift in the representation.
Rather than describing quantum experiments as quan-
tum optical components on an optical table, experiments
are described as graphs of correlations between photons.
This representation, which has been a derivative of a
computer-discovered concept itself, was developed in [44–

46] – and allows working with a much more natural rep-
resentation, which can be translated back at any point to
an experiment consisting of optical elements. (It should
be noted that the representation is independent of pho-
tonic graph states for measurement-based quantum com-
puting [47–49], and it is so far unknown how to translate
among them.)

In this paper, we introduce PyTheus2, a highly-
efficient, open-source, automated design and discovery
framework for quantum optics experiments. At the core,
PyTheus uses a much extended graph-based represen-
tation of quantum optics, which allows us not only to
represent entanglement and quantum gates, but lets us
design quantum measurements, quantum communication
protocols, optimize experimental properties, and discover
quantum systems that involve single-photon sources,
mixed states, and states entangled in the photon-number
basis. Besides the advances of the scientific scope, we
note that PyTheus is written in Python, and therefore
can readily be combined with machine learning frame-
works such as TensorFlow and PyTorch, and allows
for immediate parallelization in computer clusters.

To showcase the applicability of PyTheus, we demon-
strate the discovery of 100 previously unknown or ad-
vanced implementations of quantum optics experiments,
ranging from exciting new systems for entanglement re-
search to quantum states from condensed matter physics
that are interesting for quantum simulation purposes,
new ways of performing quantum communication tasks
such as entanglement swapping, new quantum state mea-
surements, and quantum gates. The experiments can in-
volve both probabilistic photon sources and deterministic
single-photon sources, and many of them are readily im-
plementable in today’s modern quantum optics labs. In
the GitHub repository, we present the instructions for
PyTheus that discover each of the examples. We hope
that PyTheus’s efficiency, generality, and low entry bar-
rier kick-starts the application of computer-discovered
quantum setups in experimental laboratories worldwide,
and inspires new exciting computer-inspired ideas and
directions for fundamentals and applications of photonic
quantum physics research.

While the goal of this paper was to demonstrate the
discovery capability of PyTheus, in several cases, it was
impossible not to see clear generalizations and reasons
why the solutions work. We show this in some cases
below. One of the exceptionally interesting concepts we
discovered was a new quantum multiphoton interference
effect that can simulate probabilistic multi-pair sources
just with photon pairs. We describe this new physics
concept and its application in a parallel paper [50].

The article is structured in the following way: In sec-
tion 2, we introduce the graph-based representation of
quantum optics, which lies at the heart of PyTheus.
In section 3, we introduce the idea of the computational

2 GitHub:
https://github.com/artificial-scientist-lab/PyTheus

https://github.com/artificial-scientist-lab/PyTheus
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Graph theory Quantum Experiment

colored weighted graph quantum experiment

vertex

photon path to a detector

single photon incoming

ancillary particle

environmental interaction

edge

color internal mode number

weight ω ∈ C amplitude

real negative amplitude

correlated photon pair

single photon propagation

Table I. The correspondence between graph theory and quan-
tum experiments.

PyTheus framework, which we then apply to the dis-
covery of 100 new quantum experiments in section 4. In
section 5, we explain some future(istic) ideas that might
lie ahead of us.

2. GRAPHS AND QUANTUM EXPERIMENTS

The connection between quantum optical experiments
and graph theory was discovered a few years ago [44–46]
and has been further developed as a design algorithm
Theseus for new quantum experiments [43]. In the
graph-experiment representation, each colored weighted
graph corresponds to a quantum experimental setup, and
vice versa. Each edge and each vertex of the graph repre-
sent a correlated photon pair and a photon path, respec-
tively. Its complex weight denotes the amplitude of the
photon pair, and the edge color represents a photon’s in-
ternal mode number for a given path, which corresponds
to the photon’s degree of freedom such as polarization
[51], path [10, 12, 52], transverse spatial modes [53–56],
time-bin [57] or frequency [17, 58]. This abstract graph
representation allows us to have the full information of
quantum optical experiments and has been used for dis-
covering quantum states and transformations [43].

Here we significantly extend the bridge between graphs
and experiments, which allows us to perform design and
discovery tasks for quantum state generation (for pure
and mixed states and on the photon number basis), quan-
tum measurements, quantum communication protocols,
and gates for quantum computing. In Table. I, we show
the correspondence between graph theory and quantum
experiments. The graph representation can be directly
translated into different experimental implementations.
In the remaining part of this section, we explain how
these graphs encode quantum states, and how to trans-
late them to experimental setups.

2.1. Quantum State Generation

2.1.1. Probabilistic Photon-Pair Sources

Probabilistic photon-pair sources, which are typically
based on nonlinear processes such as spontaneous para-
metric down conversion (SPDC) and four-wave mixing
(FWM) [59], are one of the most widespread resources
to generate entangled and correlated pairs of photons. A
range of photonic quantum experiments using probabilis-
tic sources can be interpreted as a weighted colored graph
[43–46]. There, each vertex represents an optical path to
a detector and each edge refers to the correlated photon
pair produced by a probabilistic photon-pair source. The
edge weight is the amplitude associated with the pho-
tons, and the edge color describes the photon’s internal
mode number (i.e., the degree of freedom of a photon).
The connection between the graph and the corresponding
quantum state is given by the weight function [43]

Φ(ω) =
∑
m

1

m!

 ∑
e∈E(G)

ω(e)x†(e)y†(e)

m

, (1)

where E(G) is the set of edges of the graph. The quantum
state is obtained by applying the weight function to the
vacuum, i.e. |ψ〉 = Φ(ω) |vac〉. As an example of states
using four path (i.e., a, b, c, and d) with two-dimensional
internal modes (i.e., 0 and 1) in Fig. 1, the Φ(ω) is given
as

Φ(ω) ≈
∑
N

1

N !
(ω0,0
a,ba

†
0b
†
0 + ω1,1

b,db
†
1d
†
1

+ ω0,0
c,dc
†
0d
†
0 + ω1,1

a,cc
†
1a
†
1)N , (2)

where ω = (ω0,0
a,b , ω

1,1
b,d , ω

0,0
c,d , ω

1,1
a,c) is a list of edge weight

ωi,jx,y ∈ C and |ωi,jx,y| < 1, the superscript and subscript
represent the mode number and the optical path, respec-

tively. x†k is the creation operator of a photon in path x
with mode k. The pair-emission process is up to the N-
order, and the probability of occurrence for lower-order
events is higher than that of higher-order ones.

Experimentally, a common way to obtain a quantum
state is to condition the experimental results on a simul-
taneous detection event in each detector, which is also
called the n-fold coincidence detection. In our graph rep-
resentation, this only happens when a subset of the edges
contains each of the n vertices exactly once (see the sub-
set of blue edges or red edges in Fig. 1), which is the
so-called perfect matching of a graph. For the example
in Fig. 1, we neglect the empty mode and higher-order
terms N > 2 to post-select the quantum state. There are
two perfect matchings (two blue edges and two red edges)
in Fig. 1, which contribute to two quantum terms |0000〉
and |1111〉. The weight of a perfect matching is the prod-
uct of all its edge weights. For each term in a quantum
state, the weight is given by the sum of all weights of the
perfect matchings that contribute to it. Therefore, the



4

ba

c d

= +

I

II

III IV
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  Entanglement 
by path identity

I II

III IV

a b c d

Integrated photonics
  i.e., path encoding

Setups for the Graph:

Bulk optics

a
bc

d

I
III

II

IV

PBS

0
1 ba

c d

ba

c d

Fig. 1. An abstract graph representation of quantum ex-
periments producing GHZ states. There, edges and vertices
represent correlated photon-pair and optical paths, respec-
tively. The edge colors and weights ω are mode numbers
and complex coefficients. The blue and red colors refer to
the mode numbers 0 and 1, respectively. There are two per-
fect matchings (i.e., a subgraph that covers all vertices only
once), and their coherent superposition leads to a quantum
state |ψ〉 = ω0,0

a,bω
0,0
c,d |0000〉+ω1,1

a,cω
1,1
b,d |1111〉 (without normal-

ization). We can get a four-qubit GHZ state by setting all
weights equal. The graph can be translated into several quan-
tum setups with different technologies, such as entanglement
by path identity or path encoding used in integrated photon-
ics or standard bulk optics (e.g., using polarization encoding).
The squares I-IV are probabilistic sources that create photon
pairs. For clearer presentation, we draw the source in the
color corresponding to the mode they contribute.

weights for quantum terms |0000〉 and |1111〉 are ω0,0
a,bω

0,0
c,d

and ω1,1
a,cω

1,1
b,d , respectively. In the end, a coherent super-

position of the two perfect matchings in the graph leads
to the post-selected quantum state, which is

|ψ〉 ≈ ω0,0
a,bω

0,0
c,d |0000〉+ ω1,1

a,cω
1,1
b,d |1111〉 . (3)

If we set all weights the same and normalize the state,
we can then reach a four-particle Greenberger-Horne-
Zeilinger (GHZ) state.

a. Translation to Experiments – A colored weighted
graph can directly be translated into several quantum
optical experiments using different technologies [43], as
shown in Fig. 1. The most straightforward way is ap-
plying the concept of entanglement by path identity
[29, 41, 60], for which the graph representation has ini-
tially been designed [44]. In this scheme shown on the
left side of Fig. 1, paths of indistinguishable photons pro-
duced from multiple crystals are overlapped, leading to
a coherent superposition of possible origins for a photon.
Equipped with the graph-experimental correspondence in
Table I, we now translate four edges and vertices into four
photon-pair sources and optical paths. Here, we encode
photon’s internal mode number in polarization such that
blue and red edge colors in the graph depict horizontal
and vertical polarization, respectively. The four sources

are set up in such a way that two sources (blue edges)
produce photons with states |00〉 while the other two (red
edges) produce photons with states |11〉. We then pump
all sources coherently and consider that two of the four
sources produce a photon pair in this example. Condi-
tionally on perfect matching or post-selection, we have
only two cases (two-photon pairs come either from the
sources I and II or from the sources III and IV) that con-
tribute to the final quantum state in Eq. (3). All other
combinations of sources do not lead to only one photon
in each of the detectors. For example, a photon pair in
crystals I and III leads to two photons in a, one photon
in b, and c, but no photon in d; therefore, this case is
disregarded. If the mode numbers are indistinguishable,
one can observe a new form of multi-photon interference,
which has first been experimentally observed in [22, 23]
and which forms the basis of many of the proposed ex-
periments below.

Another promising technology is using integrated pho-
tonic, which usually uses path encoding [9–12], where
each photon’s one mode goes to one detector, as shown
in the bottom middle-part of Fig. 1. In this example,
each photon has two path modes depicted in blue and
red colors, respectively. Therefore, one can consider that
each vertex in Fig. 1 actually contains two sub-detectors
that directly connect to the paths for the photon’s two-
mode numbers (i.e., blue and red paths). The vertex is
activated when only one of the two sub-detectors clicks.
In this way, perfect matching means the situations where
four sub-detectors click in either blue paths or red paths,
leading to the desired quantum state. Moreover, one
can also use the standard bulk optics for generating pho-
tonic entanglement [61, 62]. When the edges are in the
same color, which means the corresponding photons have
the same mode number, one can use either probabilis-
tic beam splitters or directly path-identified photon-pair
sources to form the edge. If the edges have different col-
ors (for example, two-mode numbers in Fig. 1), one can
employ mode-dependent beam splitters such as polariz-
ing beam splitters (PBSs) and transverse spatial mode
sorters [1, 63] to create an edge. With polarization en-
coding in the example, we can insert a PBS between two
cross-crystal sources [63], for the state generation. Yet,
such a translation is not unique, and an expert may fur-
ther simplify the proposed setup.

b. Asymptotic Solutions – Until now, we know that
each perfect matching can contribute to a term of the
quantum state, and their coherent superposition gives the
desired state. With the above graph-experimental link,
one now expects to produce arbitrary multi-particle en-
tanglement in high dimensions, e.g., a six-particle three-
dimension GHZ state. A GHZ state appears when all
perfect matchings are disjoint, i.e., every edge is used
only in one perfect matching [44, 45]. However, it has
been shown that it is impossible to construct a graph of
more than four vertices with only three disjoint perfect
matchings [44, 45]. Fig. 2 exemplifies this point. Three
disjoint perfect matchings contribute to the desired quan-
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Fig. 2. Asymptotic solution for quantum experiments pro-
ducing a three-dimensional six-particle GHZ state. There are
four perfect matchings in the graph, which contribute to four
terms in the quantum state |ψ〉 = ω |000000〉 + ω |111111〉 +
ω |222222〉+ ω3 |002121〉. With very small ω, the probability
of the unwanted term can be arbitrarily small and negligible.

tum terms. However, there is another perfect matching
that leads to an additional term that is not part of the
GHZ state (the so-called Maverick term [44]). Due to the
existence of this Maverick term, we cannot get an ideal
GHZ state of perfect fidelity. However, one can adjust
the weights in the graph such that this Maverick term
has a very arbitrarily small weight, thus having a near-
perfect quantum state [43]. This can be done by lower-
ing the pump power at the expense of lower count rates,
which is experimentally feasible. Such a graph (Fig. 2)
is called as the asymptotic Solution. This concept can
be applied to many different multi-particle states with
higher dimensions.

c. Ancillary Particles – Although there is a limita-
tion to the state generation with standard linear optics
and post-selection in the graph representation [45, 64],
one can further employ ancillary particles to completely
get rid of Maverick terms [50, 65]. For example, assisted
with two ancillary photons, we can obtain the six-particle
three-dimension GHZ state (details see Fig. 3). Addition-
ally, to create quantum states with an odd number of
particles, one can just use some odd numbers of photons
produced from photon-pair sources as ancillary particles
[46]. We present further examples in section 4.

2.1.2. Deterministic Single-Photon Sources

In the above section 2.1.1, we have treated an edge in
a graph as a probabilistic photon-pair source (in general,
as the correlated photon pair) and a vertex for an optical
path connecting to a single-photon (non)sensitive detec-
tor. Experimentally, one can construct a single-photon
source that relies on a probabilistic photon-pair source,
where one photon is detected heralds the presence of the
other [18]. For example, the single-photon source in path
SPSd (SPSc) is conditionally on the detection of only one
photon in the path d (c) using a probabilistic photon-pair

0

1

2

3

4

5 7

...

+

+

6

Fig. 3. An abstract graph for producing a three-dimensional
six-particle GHZ state with two ancillary particles. The di-
amonds along the edges represent that the edge weights are
negative. Vertices 6 and 7 depicted by squares are for ancillas,
which are in the same mode number (e.g., blue color for mode
number 0). Five perfect matchings in black boxes contribute
to the three terms in the desired GHZ state, while the rest of
the perfect matchings are destructively canceled out.

source and a photon-number-resolving detector, as shown
in Fig. 4. In the graph representation, one can consider
that there is an edge between the vertex SPSd (SPSc) and
a virtual vertex which always needs to have exactly one
incoming edge. For simplicity, we can just use a input
vertex (e.g., SPSd or SPSc, without drawing its adjacent
virtual vertex) for such a single-photon source based on a
probabilistic photon-pair source, see Fig. 4. There are no
connecting edges between two input vertices. The edge
connecting to an input vertex is reinterpreted as photons
propagate towards a detector [43, 66].

Interestingly, this can also be explained in Klyshko’s
advanced-wave picture, described as “an intuitive treat-
ment of two-photon correlation with the help of the con-
cept of an effective field acting upon one of the two de-
tectors and formed by parametric conversion of the ad-
vanced wave emitted by the second detector” [67, 68]. In
other words, we can treat an edge as a quantum infor-
mation transfer of one single system; thus, one can de-
scribe many abstract quantum information flows instead
of just probabilistic photon-pair sources. In general, our
input vertex representation is directly applicable to de-
terministic single-photon sources such as the ideal on-
demand sources based on semiconductor quantum dots
[13–16] or multiplexed single-photon sources [69]. There-
fore, PyTheus can design experiments that use single-
photon sources.
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a b

a b

PBS

HWP(H→V)

Mirror

BS PNRD
#n=1

a b

cd

probabilistic photon source determinstic single photon source

d c

Fig. 4. An abstract graph for quantum experiments produc-
ing a Bell state with single-photon sources. The vertices SPSd
and SPSc described as triangles stand for the incoming path
for single-photon sources while vertices a and b stand for the
optical paths. No edges are allowed between input vertices
SPSd and SPSc. The perfect matchings in this graph lead to
a two-dimensional Bell state. The corresponding experiments
are listed below. Experimentally, a single-photon source can
be either a heralded single-photon source implemented with
a photon-pair source and a photon-number-resolving detector
(PNRD) or a deterministic single-photon source which can
be an ideal quantum-dot-based source. In this experiment,
the two photons arrive at the same time (and have the same
wavelength, polarization, and spatial mode) such that they
are indistinguishable.

2.1.3. Mixed States

So far, we have considered coherent creation processes,
resulting in pure states. However, experimentally it is
possible to introduce incoherence. Whenever distinguish-
ing information about the quantum state escapes from
the experiment to the environment, a partial trace of the
density matrix is performed, producing a mixed state.
This fact can be used systematically in the graph repre-
sentation. To do so, we dedicate one of the vertices as
the environment (environment vertex). We produce the
full quantum state

|ψ〉 = |ψ0〉 |0〉env + |ψ1〉 |1〉env + |ψ2〉 |2〉env + . . . . (4)

Then, tracing out the environment contribution, we ob-
tain

ρ = |ψ0〉 〈ψ0|+ |ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|+ . . . . (5)

We illustrate this procedure by a simple example in
Fig. 5. From a graph that produces

|ψ〉 = |000〉abc |0〉env + |111〉abc |1〉env , (6)

we trace out the last photon obtaining

ρ000111 = |000〉 〈000|+ |111〉 〈111| . (7)

a b c env a b c env

Setups for the Graph:

a

env b
c

Environment Vertex

PBS

c a

b

env

Fig. 5. An abstract graph for producing mixed states. The
detection paths were labeled a, b, c, and env, and internal
modes described in blue and red are mode numbers 0 and 1.
A mixed state can be generated by using one of the vertices
as the environment (vertex env in this example). Experimen-
tally this could be implemented by measurements that do not
discriminate between the photon modes, for instance, detec-
tors with a large active area. The corresponding setups for
the graph are listed below.

This procedure is experimentally achieved by using de-
tectors that do not distinguish between the modes in ver-
tex env. For example, if spatial modes are used, one can
use a wide-area photon detector or multi-mode fibers in
front of the detector. If the time degree of freedom is
used to encode the mode numbers, one can integrate over
the entire time such that one cannot distinguish between
time-bins. Doing so, we introduce mixedness and recover
the state in Eq. (7). Similarly to the translation in 2.1.1 a,
we can also translate the graph for creating mixed states
into different schemes, as shown in Fig. 5. Therefore,
PyTheus can be used to design experiments for com-
plex and interesting mixed states.

2.1.4. States Entangled in the Photon-Number Basis

Fock states containing a fixed number of particles
in a given spatial mode form a complete basis for
many-body Hilbert spaces. The superposition of Fock
states brings, among others, the well-known N00N states
[71, 72] that promise many advantages such as the best-
possible quantum-enhanced precision, super-sensitivity
and super-resolution [8, 73]. The N -particle N00N state
is (up to normalization)

|N00N〉N2 := |N, 0〉a,b + |0, N〉a,b , (8)

where the subscript number 2 means there are two paths
(e.g., a and b), |0〉 indicates an unoccupied mode. The
concept of the N00N state in Eq. (8) can be extended to
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a b

#n=2

a ab b a

BS

a

Fig. 6. Graphs for producing |N00N〉22 states and the re-
lated experiments. On the left side, the graph with two blue
edges (i.e., two self-loops) is for a path-entangled N00N state
(|2, 0〉a,b − |0, 2〉a,b)/

√
2. We translate this graph into several

setups (below the graph). The setups using path identity or
path encoding are the same in this case. With bulk optics,
one can achieve the state with a Hong-Ou-Mandel interferom-
etry [20, 70], where two identical photons enter a 50:50 beam
splitter. One can also perform such a state in polarization,
i.e., (|2, 0〉H,V −|0, 2〉V,H)/

√
2 on the right side. The blue and

red colors are, respectively, for horizontal and vertical polar-
ization. The coherent superposition of blue and red self-loops
gives the N00N state. Its related setup is described below the
graph. There either two horizontally polarized photons (blue
edge) or two vertically polarized photons (red edge) are in
path a with a single-photon sensitive detector.

a multi-mode case, where N particles are distributed in
one of several optical paths [74, 75].

We know the total number of photons N going through
a set of optical paths, but in contrast to the previous sec-
tions, we ignore how many photons occupy each of the
paths. Therefore, perfect matchings are not the only con-
tributions to the final state that we must consider. Here,
we need to compute all combinations of edges that lead
to a total number of N photons for a given set of all
optical paths. This includes combinations with repeated
edges, which represent multiple photon pairs from the
same source, and self-loops, in which a source produces
a collinear photon pair [76, 77]. Moreover, for some con-
tributions there can be vertices with degree zero, as long
as the total number of photons – which is also the total
degree – is N .

As an example, we show a graph for the |N00N〉22 state
in Fig. 6. In this case, the total photon number is N = 2.
All edges are in the same color, thus corresponding to
the standard path-entangled N00N states. A self-loop
edge indicates that there are two photons in its con-
nected vertex. Thus the coherent superposition of two
photons being in one of the two vertices (one of the self-
loops produced a photon-pair, but we ignore it) leads to
a coherent superposition of |2, 0〉a,b and |0, 2〉a,b, i.e., a
two-mode two-photon N00N state. One can now trans-
late the graph into quantum experiments, similarly, as
we did in section 2.1.1. In this example, the setups using
entanglement by path identity and path encoding are the
same. With bulk optics, one can use probabilistic beam
splitters that provide the mixing between the two input

a

b

c

Fig. 7. Graph for producing |N00N〉32 state with an additional
ancillary particle. The total photon number (including ancil-
lary one) for each component in the state is four. There are
six combinations of two edges that cover the ancillary vertex
only once. Two of them (black box) contribute to the required
terms |3, 0〉 and |0, 3〉, and the others (|2, 1〉 and |1, 2〉) inside
the red box cancel out.

photons, to bunch two photons in one of the two optical
paths a and b, which is the well-known Hong-Ou-Mandel
(HOM) effect [20, 70]. Moreover, we can also generate
such a N00N state in polarization or transverse spatial
modes instead of the path; see Fig. 6 for details.

As for the previous states, ancillary paths can assist
in the creation of states on the photon-number basis.
Here we condition the final state on the existence of a
total number of photons in the non-ancilla detectors but,
again, the ancilla paths are reached by single photons.
Fig. 7 shows an example in which the ancilla (vertex 3)
receives only one photon, and the other two detectors get
a total of three photons.

2.2. Quantum Measurements

A graph may also be interpreted as a quantum mea-
surement on an input quantum state. Such measure-
ments are of utmost importance in many quantum com-
munication tasks, for example, a Bell state measure-
ment for quantum teleportation. The goal of measure-
ments here is to distinguish different orthogonal incom-
ing states, e.g., in the case when all detectors click si-
multaneously. Photons entering the experiment through
input paths are represented analogously to single-photon
sources introduced in section 2.1.2. An input photon cor-
responds to one vertex in the graph. An edge connect-
ing an input vertex to a detector vertex corresponds to
the photon traveling to that detector, following Klyshko’s
advanced-wave picture [67] as explained in section 2.1.2.
The same constraints apply, excluding edges connecting
two vertices belonging to input photons.

As an example, we show a graph in Fig. 8 for the well-
known Bell state measurement (BSM) [78, 79], which
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in 1 in 2

D1 D2 D1 D2

BS

in 1 in 2

Fig. 8. An abstract graph for Bell state measurement. A
measurement event happens if the photons in1 and in2 are
in the Bell state

∣∣Ψ−〉. Simultaneous clicks in the detectors
D1 and D2 signify a successful Bell measurement. The corre-
sponding setup is given for the graph, which is a typical Bell
state measurement setup.

plays an important role in many quantum information
tasks. When the two detectors click, the incoming pho-
tons are projected to one Bell state |Ψ−〉, which can be
seen as the generation of a state given by a superpo-
sition of the two perfect matchings in the graph. To
search for an experimental setup for measuring a partic-
ular state, we let PyTheus search for a graph that would
produce the state under consideration of the topological
constraints on the graph. The graph in Fig. 8 interpreted
as state generation would produce the state |Ψ−〉 under
the condition that there is no connection between vertices
in1 and in2.

With a graph that ‘produces’ the state |ϕ〉in, we can ef-
fectively perform a projective measurement (P0 = |ϕ〉〈ϕ|
and P1 = I−|ϕ〉〈ϕ|) on the input photons. A coincidence
of all detectors corresponds to the output 0 and any other
pattern is interpreted as output 1.

The representation of measurements in terms of graphs
constitutes an extension of the previous interpretation
given in [43]. This allows us to use PyTheus for the dis-
covery of measurement setups for any state and various
constraints and conditions.

2.3. Quantum Communication

In future quantum networks that connect individual
users with quantum resources and quantum computers,
the distribution of quantum entanglement is essential.
One key concept used in quantum communication in
quantum networks is entanglement swapping [80, 81],
where two qubits that never interacted can be entan-
gled. This provides an important route for interesting
tests of quantum foundations and plays an indispensable
role in quantum technology such as quantum repeaters
[82]. PyTheus allows us to explore new directions that
could lead to solutions that require fewer resources than
current techniques or are implemented in surprising ways.
Many quantum network communication tasks have been
experimentally implemented [81, 83–85], thus the new
solutions by PyTheus can readily be implemented in

Fig. 9. An abstract graph for entanglement swapping. On
the right, an experimental setup for entanglement swapping
is shown. The two particles a and d are entangled when two
ancillary detectors click. A common source of particles a and
d (as shown crossed out below the setup) would circumvent
the point of entanglement swapping. The two particles are
to be entangled without having interacted with each other.
This restriction manifests in the graph corresponding to the
experiment (shown on the left). An edge between the vertices
a and d (dashed line) is not permitted.

laboratories.
We are interested in finding experimental setups for

creating entanglement between particles that have not
interacted or originated from a common source. With
PyTheus this can be done for scenarios involving higher
dimensions and multiple particles. Finding the corre-
sponding graph works analogously to the state genera-
tion task shown in section 2.1, but comes with extra con-
straints on the graph. We set an entangled state (e.g.
two particles in a Bell state) as a target for the opti-
mization. The experiment corresponding to the result-
ing graph should create this state. To ensure that the
two particles have no direct interaction, the graph must
fulfill the following additional constraint. It should have
no edge connecting the two corresponding vertices. Such
an edge translated to a photon pair source would mean
that the two photons could come out of the same source.
This is shown in Fig. 9. Similarly, the connection of two
vertices to the same single-photon source vertex implies
that they can not be space-like separated. Such constel-
lations would not be valid for entanglement swapping,
either. In the same way, as for incoming photons (sin-
gle photon sources or input photons), the constraints are
enforced by removing the edges from the starting graph.

Approaching these tasks with PyTheus makes it pos-
sible to explore new ways of distributing entanglement.
We show the examples found by PyTheus in section 4.

2.4. Quantum Computation

Quantum gates are a crucial building block in quantum
computation [86, 87]. A quantum gate performs a uni-
tary transformation on an input state. These transforma-
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Fig. 10. An abstract graph for a quantum CNOT gate shown
on the left side. The right panels show the corresponding
setup for a CNOT gate, which was realized by [88].

tions can also be interpreted in terms of graphs. In these
graphs, similar to measurements (described in subsection
2.2), the input photons are described by designated ver-
tices. Likewise, we impose restrictions on which types
of vertices can be connected by edges. Photons exiting
the setup (output) are also represented by vertices, as in
state generation. Additional ancillary photons can stem
from probabilistic photon-pair sources and single-photon
sources can also be involved. With PyTheus we can
search for arbitrary quantum gates under a wide range
of experimental conditions.

A target unitary quantum gate acting on an N -
dimensional Hilbert space is specified by how each ele-
ment of an orthonormal basis transforms. One canon-
ical example in quantum gates is the controlled-NOT
(CNOT) gate, which acts on two qubits and is described
by the mapping:

|00〉 → |00〉 ,
|01〉 → |01〉 ,
|10〉 → |11〉 ,
|11〉 → |10〉 .

To find this gate, we let PyTheus search for a graph
that would produce the state

|00〉 |00〉+ |01〉 |01〉+ |10〉 |11〉+ |11〉 |10〉 ; (9)

under consideration of the topological constraints on the
graph (no connections between input photons). In Fig.
10, we show an experimental setup realized [88] together
with its graph representation.

Photonic quantum gates fall into two main categories
[89]. In a post-selected gate, the outgoing photons are
detected directly after the gate. This ensures that there
is exactly one photon in each path after the gate [90–
97]. Because possibilities where two outgoing photons
enter the same path are excluded, fewer experimental re-
sources are required. However, this procedure destroys
the outgoing state, and the particles can not be used
further. The second category is heralded gates [88, 98–
103], where only ancillary photons are detected, and the
outgoing photons of the gate remain undetected. These
gates are ultimately more useful since the output state
can be used further. A graph for a heralded quantum

gate is harder to discover and needs more experimental
resources since the looser selection rules can lead to more
unwanted terms. Both types of quantum gates (post-
selected and heralded) can be represented with graphs
and thereby be designed using PyTheus. Terms pro-
duced in post-selected experiments are represented by
perfect matching, and terms produced in heralded exper-
iments are represented by collections of edges that cover
the ancillary vertices.

3. THE PYTHEUS LIBRARY

Starting from a dense or fully connected graph,
PyTheus uses gradient descent combined with topologi-
cal optimization to find minimal graphs corresponding to
some target quantum experiment. The PyTheus library
greatly expands the range of applications of its predeces-
sor, and it is significantly faster 3. The package is written
in Python and is available on GitHub for further appli-
cations and development of the source code.
PyTheus applications range from the creation of

quantum states to the design of quantum communica-
tion protocols. While diverse, all these tasks are per-
formed following the same steps, illustrated in Fig. 11.
In this section, we explain the software workflow, which
kind of loss functions we employ, and how to start using
PyTheus.

Workflow Overview – The Instruction Set file de-
tails what we want (e.g., a quantum state or a com-
munication protocol) and some instructions about how
to get it. The latter includes the entire allowed topol-
ogy of the final solution, such as the type of photon
sources/detectors and ancillary particles, how many of
each we have, or which polarization modes can be used.
It also contains the Loss Function to minimize (fidelity,
count rate, or other metrics) as well as further optimiza-
tion settings. In the example of Fig. 11, we want to obtain
a post-selected six-particle, two-dimensional GHZ state,
|GHZ〉26 = |000000〉 + |111111〉. We employ 6 standard
photodetectors and the photon pair sources described in
section 2.1.1. In this example, we also specify further
topological constraints of the final solution (thus of the
initial graph) – here, vertex 3 must not have connections
to vertex 0, 1 and 5.

The experimentally available topology specified in the
instruction set lead to the Initial Graph. This weighted
graph represents all possible states/experiments that can
be produced with the available resources. The number of
vertices, the type of edges, or which vertices can be di-
rectly connected are some of the Topological Constraints
that one can impose on the graph or that may follow
from the available tools or from the task we want to im-

3 For a eight-dimensional three-particle highly-entangled state
(SRV(8, 5, 3)) PyTheus was almost five times faster than the
current state-of-the-art method [43]. Examples of higher parti-
cle numbers were not readily available for the previous method,
but we expect increasingly higher advanges for PyTheus.
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Fig. 11. The PyTheus workflow. From the number of vertices and available dimensions, PyTheus builds the initial graph,
which is fully connected except for vertex 3, which is only connected to its nearest neighbors. We impose this based on previous
knowledge, but other constraints may arise depending on the available tools. Computing all the graph’s perfect matchings, we
find the more general state that the initial graph can produce: |ψ(ω)〉. As the loss function, we choose the Fidelity of the state
|ψ〉 with respect the target: |GHZ〉. Aiming for an interpretable graph with perfect fidelity, we iterate the weight optimization
with the edge removal until we find the simplest graph that produces |GHZ〉 = |ψ(ωS)〉. The available resources, the loss
function and further optimization details are specified in the Instruction Set.

plement – the sources described in section 2.1.2 and the
protocols from section 2.3 are representing examples. On
the initial graph of Fig. 11 the six vertices are connected
with bicolored edges and based on previous knowledge,
we only connect vertex 3 with its nearest neighbors.

From the initial graph, G(ω), we can compute the more
general state produced by the weight function Φ(ω) act-
ing on the vacuum (see Eq. (2)). However, we do not
consider the infinite terms produced by Φ(ω), we only
compute the creation events which fulfill certain Condi-
tional rules. For example, in Fig. 11 the post-selection
rule results in terms for which all detectors click. These
creation events are represented by the graph’s perfect
matchings, and produce a coherent superposition of kets
leading to the state |ψ(ω)〉. We can specify more com-
plex conditioning rules, which will be relevant, for exam-
ple, for N00N states. There, we condition on states with
a total final photon number in the output nodes. The
conditioning rules are imposed by experimental circum-
stances 2.

Once we extract a general state |ψ(ω)〉 from the ini-
tial graph, we can optimize it according to some Loss
Function. As in Fig. 11 we seek a particular state,
|GHZ〉, we maximize the Fidelity of our state accord-
ingly: F = | 〈GHZ|ψ(ω)〉 |2. To find a specific states
we can also use the Count Rate, a metric that approxi-
mates how often our experiment produces such a state.
Alternatively, we can maximize physical properties like
entanglement rather than looking for a specific state. To
perform quantum information tasks like measurements
or communication protocols, we must translate each task
into a state creation process – see sections 2.2, 2.3, and
2.4 for further details.

If the available experimental resources suffice, by opti-
mizing the weights, we will find a graph that satisfies our
needs. However, the optimal solution is not unique, and
even if many of the weights vanish, we will likely obtain
a very dense final graph, which will be hard to interpret.
Therefore, to extract useful insights from our setups, we
must simplify the graphs as much as possible, alternating
the optimization of the weights’ values with the removal
of edges. This Topological Optimization will lead us to
a simple graph, for which the removal of any additional
edge would unacceptably raise the loss function’s value.

For some graphs, like the one shown in Fig. 11, no
smaller graph can produce the target state [44]. However,
in most cases, it is challenging to ascertain whether there
exists a simpler solution, especially when we choose to op-
timize for real weights instead of complex ones. With re-
spect to these subtleties, following the workflow, we first
generate graphs with abundant ancillary particles and re-
assess the results with the goal of reducing the number of
resources. Using this procedure, we propose one hundred
experiments to be realized in quantum optics.

4. HUNDRED EXPERIMENTS

In the following, we introduce one hundred experi-
ments conceived by PyTheus. A broad catalog of de-
signs that, hopefully, will contribute to multiple branches
of quantum optics, including quantum computing, com-
munications, and quantum sensing. For each proposed
experimental setup which is new and has not been de-
scribed in any theoretical or experimental paper, we

mark the corresponding graph with a number in a box
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N00N state |50〉+ |05〉
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with an inscribed
pentagram)
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(e) Quantum measurement
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quantum advantage (Mean
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(f) Entanglement swapping
without using two Bell
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(g) Toffoli quantum gate
without ancilla photons
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(h) Mixed state with
bound entanglement that

can violate a Bell
inequality (counterexample

to the Peres conjecture
from 1999, solved 2014)

Table II. A collection of eight diverse highlights, each of which is interesting in its own right.

counting from 1 to 100. The weights of each graph can
be found in the GitHub repository, together with the in-
struction sets used to search them.

We start by showing eight highlights from our discov-
eries in Table. II.

(a) A multi-photon entangled state that goes beyond
the barrier of 3-dimensions [45]. It requires only
two ancillas and has a small number of edges which
makes it a very promising proposal for practical
application, and observation of new properties at
the foundation of quantum mechanics [104].

(b) The generation of a heralded 3-dimensional GHZ
state with single photon sources, which beats the
current state-of-the-art method [65] in number of
necessary ancilla states.

(c) The generation of a two-mode N00N state with 5
photons. The associated graph, very symmetric,
makes use of 3 ancillas.

(d) A 4-photon qubit quantum state with equal coef-
ficients c = 1√

7
, that requires complex coefficients

for their generation. The underlying reason is a si-

multaneous destructive interference effect of more
than two terms.

(e) A previously unknown quantum measurement
scheme that allows the experimental implementa-
tion of a quantum communication protocol pro-
posed in 1987 [105].

(f) A very surprising form of quantum entanglement
swapping, which does not rely on the generation of
two Bell pairs and a Bell state measurement.

(g) A post-selected 3-photon control gate that does not
require any ancilla photons.

(h) Experimental setup of a 2-photon mixed entangled
state that falsified the Peres conjecture [106]. The
state is bound entangled (its entanglement cannot
be distilled), however, it can be used to violate
Bell’s inequality [107, 108]. This could lead to an
experimental falsification of the Peres conjecture.
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Fig. 12. High-dimensional multiparticle GHZ states with an-
cillas. The weights here in these graphs are real numbers
and the diamonds inserted in the edges represent the nega-
tive sign. The vertices in square refer to the detection of an
ancillary photon. |GHZ〉44 is a asymptotic solution.

4.1. Generation of Entangled States

In this part, we propose ways to generate entangled
states, which play an important role not only in our un-
derstanding of entanglement and the non-local nature of
quantum mechanics but also in many quantum informa-
tion applications.

4.1.1. GHZ States

Bell’s theorem shows that Einstein-Podolsky-Rosen’s
propositions about local realism [109] are inconsistent

when we apply them to quantum systems of two particles,
revealed by the violation of the Bell inequality with quan-
tum mechanical statistical correlations [110]. In the late
1980s, Greenberger, Horne, and Zeilinger took a step fur-
ther from two to three particles. Interestingly, with a tri-
partite quantum system, local realism can be violated by
quantum mechanics with perfect correlations rather than
statistical correlation, and one can completely dispense
with inequalities [111, 112]. It enables the performance
of experiments where the quantum physical predictions
are mutually contradictory with expectations based on lo-
cal realism [113]. Such a GHZ state forms an important
class of entanglement and its generalization is given as

|GHZ〉dn =
1√
d

d−1∑
i=0

|i〉⊗n , (10)

where n denotes the number of particles and d is the
dimension for each particle.

Increasing the number of particles and dimensions in
the GHZ states not only enlarges the Hilbert space but
also leads to many new exciting classically paradoxical
phenomena [104, 114, 115]. Besides their fundamental
interest, high-dimensional multiparticle GHZ states have
also served as an important resource for many quantum
information applications [116].

With the size and dimension increasing, it is very
challenging to know how to experimentally create GHZ
states. Experimental progress has been made in this di-
rection to push the size and dimension, especially in the
linear optics regime [28, 61, 62, 117]. Until now, only
the three-particle three-dimensional GHZ state has been
demonstrated with linear optics [28] and superconducting

qutrits [118]. Going beyond the |GHZ〉33 state with arbi-
trary particle numbers and higher dimensions will give
rise to exciting new possible quantum applications and
new insights on the foundations of quantum mechanics.
This remains to be explored, in any experimental plat-
form.
PyTheus enables the discovery of many new multi-

particle high-dimensional GHZ states for which no exper-
imental implementations are known yet. That includes

the 3-particle GHZ state for 4, 5 and 6 dimensions 1

2 3 , an asymptotic solution for the 4-particle 4-

dimension GHZ 4 , and the 5-particle GHZ state for 3

and 4 dimensions 5 6 . The associated graphs are
shown in Fig. 12. In particular, the asymptotic solution
for |GHZ〉44 is experimentally applicable.

4.1.2. Bell Gems

Bell states offered the first proof of the non-locality
of quantum mechanics. Later on, they became the cor-
nerstone of many quantum communication schemes and
are nowadays widely used in quantum computing. These
maximally entangled bipartite states, described in the
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Hilbert space H2 ⊗H2, can be generalized for more par-
ticles and dimensions in multiple ways while keeping their
main properties [119].

In 2004, Gregg Jaeger suggested a generalization for
sets of 2N qubits, the Bell Gems [120]. To construct these
states we need to pick a pair of orthogonal states |α〉 and
|β〉 from the Bell basis: |Φ±〉 = |00〉 ± |11〉 and |Ψ±〉 =
|01〉 ± |10〉. Then, we iterate the following mappings in
all possible ways:

{|α〉 , |β〉} → (|α〉 |α〉 ± |β〉 |β〉) (11)

{|α〉 , |β〉} → (|α〉 |β〉 ± |β〉 |α〉) (12)

Therefore, for 2N qubits, we get a basis of 22
N

states. For
the case of a pair of 3 dimensional Bell states 84 states
exist. Fig. 13 shows how to generate one of these high-
dimensional Bell gems which, up to normalization, reads

7

|GEM〉 = |ψa〉 |ψa〉+ |ψb〉 |ψb〉+ |ψc〉 |ψc〉 , (13)

where |ψa〉 = |00〉+ |11〉+ |22〉, |ψb〉 = |01〉+ |12〉+ |20〉,
and |ψc〉 = |02〉+ |10〉+ |21〉.
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4 5

Fig. 13. Graph corresponding to the creation of a 3 qutrit
Bell gem.

4.1.3. Nine Ways to Entangle Four Qubits

In 2001, F. Verstraete et. al. [121] introduced a classifi-
cation of any form of entanglement between 4 qubits into
nine categories. Their classification establishes an equiv-
alence relation between states generated by reversible
stochastic local quantum operations assisted by classi-
cal communication (SLOCC) operations. States inside
the same category can perform the same quantum infor-
mation tasks, albeit with different probabilities.

Out of the nine categories, six of them include well-
known quantum states: a separable state of 4 qubits, the
W states of 3 and 4 qubits, the product of 2 Bell states,
and the GHZ states of 3 and 4 qubits. For the 3 qubit
states, the fourth particle is separable (like an ancilla).
Fig. 14 shows the graphs to produce these states.

The remaining three categories, out of the initial nine
ones, refer to less-known ways of entanglement. Ver-
straete’s work refers to them as La4 , L05⊕3

, and L07⊕1
.
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Fig. 14. Six well-known examples from different entanglement
categories described by Verstraete et. al. [121]

In Fig. 15 we see a graph for each category, producing

the states 8 , 9 , 10

|La4〉 = |0001〉+ |0110〉+ |1000〉 , (14)∣∣∣L05⊕3

〉
= |0000〉+ |0101〉+ |1000〉+ |1110〉 , (15)∣∣L7⊕1
〉

= |0000〉+ |1011〉+ |1101〉+ |1110〉 . (16)
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Fig. 15. Graphs for La4 , L05⊕3
, and L07⊕1

.

4.1.4. Quantum Error Correction

The path to the quantum computer requires qubits
with low error rates independent of their realization plat-
form. However, dealing with noise on any platform is
inevitable. Thus, we need error-correcting codes to pro-
tect the information and achieve fault-tolerant quantum
computation. This is where Logical Qubits play a crucial
role.

Logical qubits are sets of N physical qubits that define
two orthogonal states |0L〉 and |1L〉. These states are
defined in such a way that errors in the physical qubits
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can be detected by applying a set of global measurements.
These measurements will produce a different combination
of outcomes for each potential error, allowing its correc-
tion. The graphs from this section produce 3 well-known
logical qubits to detect and correct arbitrary errors on
single qubits.

The first one, the Shor code [122], employs 9 physical

qubits to define 11∣∣∣0(9)L 〉 = (|000〉+ |111〉)⊗3, (17)∣∣∣1(9)L 〉 = (|000〉 − |111〉)⊗3. (18)

The second example, the Steane code [123], employs 7

physical qubits 12∣∣∣0(7)L 〉 = |0000000〉+ |1010101〉+ |0110011〉

+ |1100110〉+ |0001111〉+ |1011010〉
+ |0111100〉+ |1101001〉 , (19)∣∣∣1(7)L 〉 = X⊗7

∣∣∣0(7)L 〉 = XL

∣∣∣0(7)L 〉 . (20)

We go from the logical qubit to the other by applying a
logical gate XL, that is, by applying a Pauli X gate on
each physical qubit.

The third and last one, with only five physical qubits

[124], is the Laflamme code 13∣∣∣0(5)L 〉 = |00000〉+ |11000〉+ |01100〉+ |00110〉

+ |00011〉+ |10001〉 − |10100〉 − |01010〉
− |00101〉 − |10010〉 − |01001〉 − |11110〉
− |01111〉 − |10111〉 − |11011〉 − |11101〉 , (21)∣∣∣1(5)L 〉 = X⊗5

∣∣∣0(5)L 〉 = XL

∣∣∣0(5)L 〉 . (22)

These two logical qubits constitute the smallest error-
correcting code resilient to arbitrary single qubit errors
[125].

Fig. 16 shows the graphs for producing each of the
logical 0 states for 5, 7, and 9 physical qubits. For the
Shor code, the second logical qubit state can be obtained
by multiplying the weights of every bicolored edge by -1
(or alternatively, taking the 3rd, 6th, and 9th qubits and
applying a minus at each red incoming edge). For the
other two codes, one can obtain the graphs associated
with the logical 1 state by switching the colors blue and
red. Such transformation is equivalent to applying the
gate X on each qubit, the logical XL.

4.1.5. Products of W States

Previous work with the graph representation showed
how to create W states for an arbitrary even number of
qubits without using any ancilla [46]. On the other hand,
to generate a W state with an odd number of qubits, we
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Fig. 16. Graphs for generating the logical 0 state using 5, 7,
and 9 physical qubits (+ ancillas, which are in a fixed state).

always needed at least one ancillary detector. Accord-
ingly, if we want to duplicate such odd-qubit states, we
can simply duplicate the graph together with the ancillas.
However, this straightforward method is not the most ef-
ficient, at least for the states |W3〉⊗2 and |W5〉⊗2. As
shown in Fig. 17, these two states can be obtained with-

out using ancillas 14 15 .
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Fig. 17. Graphs for generating the states |W3〉⊗2 and |W5〉⊗2

without ancillas.

4.1.6. Dicke States

The equal superposition of every N -qubit state con-
taining a single |1〉 gives us the W states. These states
can be generalized, superposing all permutations of N
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qubits with exactly k |1〉s. They are the Dicke states

∣∣Dk
N

〉
=

√
k!(N − k)!

N !

∑
i

Pi(|0〉⊗N−k |1〉⊗k), (23)

where
∑
i Pi(·) stands for all possible permutations of k

|1〉 among N qubits. These states, which have applica-
tions in multiparty quantum communication and quan-
tum metrology [126–129], can be produced for an even
number of qubits with a general graph introduced in pre-
vious works [46]. Here we produce a pair of Dicke states

with an odd number of qubits and two excitations 16

17 (see Fig. 18).
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Fig. 18. Dicke states with two |1〉 for five and seven qubits.

Moreover, there exists a generalization of Dicke states
for higher dimensions [130]. Given a set of integers {ki},
such that

∑
i ki = N , we describe its corresponding d-

dimensional Dicke state as

|D(N, {ki})〉 =

√∏
i ki!

N !

∑
i

Pi

(
|0〉⊗k0 . . . |d− 1〉⊗kd−1

)
(24)

where
∑
i Pi(·) stands for all possible permutations of the

N qudits. In Fig. 19 we plot the graphs that produce the

3-dimensional Dicke state with three particles 18

|D(3, (1, 1, 1)〉 = |012〉+ |021〉+ |102〉
+ |120〉+ |201〉+ |210〉 , (25)

and with 4 particles (with uneven coefficients {ki}) 19

|D(4, (2, 1, 1))〉 = |0012〉+ |1200〉+ |1020〉
+ |0102〉+ |1002〉+ |0120〉
+ |0021〉+ |2100〉+ |2010〉
+ |0201〉+ |2001〉+ |0210〉 . (26)

After plotting the results found by PyTheus to gen-
erate the last two states, we found a pattern on the
graphs that led us to states like |D(5, (2, 2, 1)〉 and
|D(4, (1, 1, 1, 1))〉: We start taking a fully connected
graph of N particles, in which the vertices are connected
by 2 bicolored edges, blue-red and red-blue, indicating

two modes (the same as in Ref. [46]). Then one can add
ancillas that are connected to the N first particles by
bicolored edges, one for each of the N particles. These
new edges introduce more modes, leading to the following
series of states for an even number of particles, 2k:

0 ancillas, 2 dimensions→ |D(2k, (k, k))〉
2 ancillas, 3 dims→ |D(2k, (k, k−1, 1))〉
2 ancillas, 4 dims→ |D(2k, (k−1, k−1, 1, 1))〉

· · ·
2(k−1) ancillas, 2k dims→ |D(2k, (1, · · · , 1))〉

For an odd number of particles, 2k+1, starting with 1
ancilla, we obtain

1 ancilla, 3 dimensions→ |D(2k+1, (k, k, 1))〉
3 ancillas, 4 dims→ |D(2k+1, (k, k−1, 1, 1))〉
3 ancillas, 5 dims→ |D(2k+1, (k−1, k−1, 1, 1))〉

· · ·
2k−1 ancillas, 2k+1 dims→ |D(2k+1, (1, · · · , 1))〉 .
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Fig. 19. The three-dimensional Dicke states for three and four
particles (top) were found by PyTheus. The 2 graphs in the
bottom row were manually produced following the observed
pattern.

4.1.7. Yeo-Chua State

In 1993, Bennett et. al. showed how to use Bell states to
teleport arbitrary and unknown single-qubit states [131].
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Fig. 20. Graph for generating the Yeo-Chua state.

Going one step further, Yeo and Chua developed a pro-
tocol to teleport unknown states of two qubits [132], and
instead of using Bell states, they employed the Yeo-Chua
state

20 |Y C〉 = |0000〉 − |0011〉 − |0101〉
+ |0110〉+ |1001〉+ |1001〉
+ |1100〉+ |1111〉 . (27)

This highly entangled state can be produced with the
graph of Fig. 20.

4.1.8. Complex Weights as a Resource

Exploring the applicability range of PyTheus, we
searched for all four-qubit states that can be expressed
by

|ψ〉 = c1 |0000〉+ c2 |0001〉+ ...+ c16 |1111〉 , (28)

where ci ∈ {0, 1}, which are 216 − 1 = 65535 states in
total. We found that for

|ψ〉 = |0011〉+ |0100〉+ |0111〉+ |1000〉
+ |1100〉+ |1101〉+ |1110〉 , (29)

PyTheus only found solutions with complex-valued
weights, despite the coefficients of the state function

being real-valued 21 . This mismatch hints at an
interesting interference between the perfect match-
ings. To our knowledge, this state has no special
significance in any particular quantum applications.
But this result shows that the use of complex-valued
edges is not merely limited to states with complex
coefficients. While we used real-valued optimization for
most solutions presented in this paper for computation
speed, complex-valued optimization could lead to fewer
required resources in some cases.

4.1.9. Single Photon Sources for State Creation

Significant progress has been made toward using de-
terministic single-photon sources in quantum optics ex-
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3

Fig. 21. Graph for a four-qubit state defined in Eq. (29) that
requires complex valued edges.
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Fig. 22. Perfect matchings of graph shown in Fig. 21 for
the state defined in Eq. (29). ω = eiπ/6. Each green box
contributes one term of the state. The perfect matchings
in the orange boxes interfere destructively. It is especially
notable that the weights of the two |0111〉 perfect matchings
(bottom right) are complex conjugates and add to one as ω2+
ω−2 = 1.

periments during the last years [13, 18, 69]. In this sec-
tion, we present graphs corresponding to quantum exper-
iments for the creation of several highly entangled states
using single-photon sources. Deterministic sources do not
suffer from the same trade-off between high fidelity and
high count rate as probabilistic sources. When using de-
terministic sources, the number of photons required can
be smaller than with probabilistic sources [133, 134].

a. Post-Selected We have found graphs for creating
different GHZ states with single-photon sources as a re-
source. One can create a six qubit GHZ from six input

photons 22 , a four qutrit GHZ state from six input

photons 23 , as well as the same four qutrit GHZ state
from a combination of two single photon sources and two

simultaneous SPDC events 24 .
b. Heralded – There have been proposals for the cre-

ation of multi-particle high-dimensional entangled states
from single photon sources using discrete Fourier trans-
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Fig. 23. Graphs corresponding to the creation of three-, four-
and five-particle GHZ states using single-photon sources with-
out the need for ancillary particles.

form [65]. With this approach, creating a heralded three-
dimensional Bell state would require seven input photons.

In Fig. 24 we show a graph 25 that creates this state
using only six single photon sources.
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Fig. 24. Graph corresponding to the creation of a heralded
three-dimensional Bell state in the outgoing photons (0-1)
from six single photon sources (2-7) and four heralding detec-
tors (8-11)

4.2. Maximizing Entanglement

When a quantum state cannot be expressed as the
product of its parts, we call it entangled. However, if one

asks how entangled a state is, the answer is not unique,
there are multiple measures of entanglement. Here we
present some of these metrics, together with states that
are known to maximize them. Finally, we choose a par-
ticular metric and optimize a graph, not to reach a par-
ticular state – as done so far by maximizing the fidelity –
but to instead maximize the entanglement metric itself.
In this way, we will recover some well-known entangled
states and also find new ones.

4.2.1. Schmidt Rank Vector

Multiparticle entangled states in high dimensions al-
low for a much deeper structure underlying the poten-
tial ways in which the particles can be entangled. These
structures can be characterized by the Schmidt Rank
Vector (SRV) and give rise to new phenomena that only
exist if both the number of particles and the number of
dimensions go beyond two [135–137]. Here we consider
tripartite states. The rank vector is a list of the ranks
of the reduced density matrices. The state SRV(A,B,C)
refers to a state, where

A = rank(ρA), B = rank(ρB), C = rank(ρC),

and ρX is the density matrix of the system with the par-
ticle X traced out. In other words, the SRV is a vector
of the dimensionalities of entanglement of every bipar-
tition, which shows the dimensionality of entanglement
between one particle and the rest of the quantum state.
This master-slave-slave configuration is very useful for
quantum applications such as layered quantum commu-
nication [138]. Taking a SRV(3,3,2) state as an example,
we then know that the first two particles are both three-
dimensionally entangled with the third particle, whereas
the third one is only two-dimensionally entangled with
the rest. The dimensionality for each particle cannot be
increased with linear operations and classical communi-
cation (LOCC).

Searching the SRV(A,B,C) states has been investigated
with the computer algorithm Melvin [25] and graph the-
ory [45, 139]. Interestingly, it has been shown from graph
theory that without using any ancilla particles, there
are several SRV(A,B,C) states that cannot be created.
[45, 139]. Here we list these states (up to normalization):

26 SRV(5,5,4) :

|000〉+ |111〉+ |222〉+ |333〉+ |443〉

27 SRV(6,3,2) :

|000〉+ |101〉+ |210〉+ |311〉+ |420〉+ |521〉

28 SRV(6,5,5) :

|000〉+ |111〉+ |222〉+ |334〉+ |443〉+ |544〉

29 SRV(7,3,3) :

|000〉+ |101〉+ |210〉+ |311〉+ |422〉+ |520〉+ |621〉
It has been unknown whether we can experimentally

create these states with additional particles, and this
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challenging question has been open for more than three
years. Also, until now, SRV(A,B,C) states in high di-
mensional systems have only been recently demonstrated
for SRV(3,3,2) [27], SRV(3,3,3) [28], and SRV(4,4,2)
[140]. By using PyTheus, one can learn how to generate
much more complex SRV states of high dimensions and
more particles, such as the impossible states described in
[45, 139]. We show the results in Fig. 25.
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Fig. 25. Graphs for producing SRV(A,B,C) states using an-
cillas.

4.2.2. Hyperdeterminant

Expanding the definition of determinant to tensors
of arbitrary dimensions, we obtain Hyperdeterminants
[141], which can also be used as an entanglement metric.
In particular, the hyperdeterminant of a tensor 2×2×2×2
characterizes the entanglement of a 4 qubit state, which

is maximal for the state 30

|HD〉 = |1000〉+ |0100〉+ |0010〉+ |0001〉+
√

2 |1111〉 ,
(30)

whose associated graph is shown in Fig. 26.

4.2.3. Negative Partial Trace

Given a state ρAB , its partial transpose with respect
to the subsystem A is

(ρTA)ab,mn = ρmb,an. (31)
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Fig. 26. Graph to generate the state |HD〉, which maximizes
the hyperdeterminant.

As shown by Peres, it is a necessary condition for the
separability of A and B that none of the eigenvalues of
ρTA are negative [142]. Moreover, it is also a sufficient
condition for bipartite states of dimensions 2×2 and 2×3
[143].

Aiming for highly entangled states, Brown et. al.
looked for states of 2, 3, 4, and 5 qubits, whose par-
tial traces for each bipartition had the lowest possible
eigenvalues [144]. They called this metric Negative Par-
tial Trace, and it leads to the following states of 4 and 5

qubits 31 32

|BSSB4〉 = |0000〉+ |+011〉+ |1101〉+ |−110〉 , (32)

|BSSB5〉 =
∣∣000Φ+

〉
+
∣∣010Ψ+

〉
+
∣∣100Φ−

〉
+
∣∣111Ψ−

〉
.

(33)

Where
√

2 |±〉 = |0〉 ± |1〉,
√

2 |Φ±〉 = |00〉 ± |11〉, and√
2 |Ψ±〉 = |01〉 ± |10〉. These states can be produced

with the graphs shown in Fig. 27.
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Fig. 27. Graphs to generate the BSSB states of 4 and 5
qubits, respectively. The latter requires an ancilla.

4.2.4. Rényi Entropy

Among all the entanglement metrics in this document,
as well as the ones that are left out, the Rényi Entropy is
one of the most important [145]. Given a state with ρAB ,
the Rényi entropy of order α between the subsystems A
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and B is

Sα(ρA) =
1

1− α
log Tr(ραA) = Sα(ρB), (34)

where ρA = TrB(ρAB) and ρB = TrA(ρAB) are reduced
density matrices. Similarly, the Tsallis entropy also de-
scribes the entanglement between A and B

Tα(ρA) =
1

1− α
(Tr(ραA)− 1) = Tα(ρB). (35)

Notice that in the limit α→ 1, both expressions approach
the Von Neumann entropy.

A relevant difference between both metrics is that, for
α > 1, only the Tsallis entropy is convex while the Rényi
one is Schur convex [146]. Taking this difference into
account, Gour and Wallach showed that the 4-qubit state
|L〉 maximizes the average of Tsallis entropies with α =
2 for 2-qubit partitions [147], a metric of entanglement
also referred to as the Meyer-Wallach measure [148, 149].
This state, created by the graph shown in Fig. 28, reads

33

|L〉 =(1 + ω)(|0000〉+ |1111〉)
+(1− ω)(|0011〉+ |1100〉)
+ω2(|0101〉+ |0110〉+ |1001〉+ |1010〉), (36)

where ω = exp(2iπ/3).
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Fig. 28. Graph to generate the 4-qubit L-state. All the
weights in the graph are complex.

4.2.5. Rényi–Ingarden–Urbanik Entropy

Minimizing the Rényi entropy over all local unitary
transformations ULOC, Enriquez et. al. described the
minimal Rényi–Ingarden–Urbanik entropy [150]

SRIU
α (φ) = min

ULOC

Sα(p(ULOC |φ〉)), (37)

where Sα is the Rényi entropy of order α ≥ 0, and p is a
normalized probability vector resulting from expanding
the state to a product basis.
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Fig. 29. Graphs to generate the states that optimize the RIU
entropy for α = 1 and α = 2.

Together with the definition, the authors numerically
find two states of three qubits that minimize the entropy

for α = 1 and α = 2 34 35

|Φ〉α=1 = 0.27 |000〉+ 0.377 |100〉+ 0.326 |010〉
+ 0.363 |001〉+ 0.74e−0.79πi |111〉 , (38)

|Φ〉α=2 = 0.438 |000〉+ 0.29 |100〉+ 0.371 |010〉
+ 0.316 |001〉+ 0.698e−0.826πi |111〉 . (39)

These states correspond to the graphs of Fig. 29.

4.2.6. Maximizing Entanglement for Each Partition

The previous states were maximally entangled accord-
ing to different metrics. Indeed, many of them were found
numerically when maximizing such metrics. Similarly, we
can use PyTheus to maximize arbitrary physical prop-
erties of the states produced by a graph, which can be
immediately translated into experiments. This is a great
advantage over previous work, in which an analytically
described quantum state may not be experimentally fea-
sible.

We optimize the graph according to the Tsallis entropy
for α = 2 (see Eq. (35)) using as loss function

min
ω
L(ρ(ω)) =

∑
A

Tr ρ2A, (40)

where ρ = |ψ(ω)〉〈ψ(ω)| is the state defined by a graph
with weights {ω}, ρA is the reduced density matrix with
respect to a subsystem A. A subsystem and its comple-
ment Ac are a bipartition of the full system. The loss
function is minimized for the sum of all bipartitions.

Given a bipartition, the entanglement between them is
maximal if

ρA = TrAc(ρ) =
1

D
I, (41)

with D being the dimension of the Hilbert space in which
ρA is defined, and I the identity matrix. Accordingly,
multipartite states with maximal entanglement for ev-
ery bipartition are called Absolutely Maximally Entan-
gled (AME); such kinds of states have applications in



20

Dim
Number of particles

2 3 4 5 6 7 8 9 10
2 3 3 7 3 3 7 7(3) 3(3) 7(3)
3 3 3 3 3 3 3 7(3) 3 3

4 3 3 3 3 3 3 ¿? 3 3

5 3 3 3 3 3 3 3 3 3

Table III. Known AME states up to 10 particles and 5
dimensions. 7: no AME exist for the 2-dimensional systems
of 4, 7, 8, and 10 particles, nor for the 3-dimensional system of
8 particles. ¿?: it is unknown whether there is an AME for the
4-dimensional system of 8 particles. 3: there exist an AME
state for the rest of systems. For the 2-dimensional systems of
8, 9, and 10 particles, as well as for the 3-dimensional system
of 8 particles, there exist a state with maximally entangled
partitions of 3 particles [152, 153]. The existence of some of
these state does not imply that they have been (or can be)
experimentally realized.

quantum protocols like threshold secret sharing or open-
destination teleportation [151]. On the other hand, given

a state of N qudits, ρ ∈ H⊗Nd , we call it k-uniform when
the entanglement is maximal for all bipartitions of k qu-
dits [152]. GHZ states of N-qudits (see Eq. (10)) are
examples of 1-uniform states.

With PyTheus we can pick types of bipartitions the
entanglement is to be maximized. Choosing all biparti-
tions targets the production of an AME state, biparti-
tions of size |A| = k target k-uniform states. A mathe-
matical result of entanglement theory is that AMEs only
exist for certain combinations of N and d (see table III).
In such situations we choose to optimize for k-uniform
states.

a. AME States – Since no AME exist for a system
of four qubits (see table III), we start optimizing the
entanglement for all possible partitions for five qubits,

obtaining two different AME states 36 37

|AME(5, 2)〉a = |00000〉+ |01101〉+ |01110〉+ |10110〉
+ |11000〉+ |11011〉 − |00011〉 − |10101〉 ,

(42)

|AME(5, 2)〉b = |01011〉+ |01100〉+ |10110〉+ |11010〉
− |00000〉 − |00111〉 − |10001〉 − |11101〉 .

(43)

For six qubits we found an asymptotic state 38

|AME(6, 2)〉 ≈ |000010〉+ |000100〉+ |001001〉
+ |010101〉+ |011000〉+ |011110〉
+ |101010〉+ |110000〉+ |111011〉
+ |111101〉 − |001111〉 − |010011〉
− |100001〉 − |100111〉 − |101100〉
− |110110〉+ ε(|000000〉+ |000110〉
+ |010001〉+ |010111〉+ |110010〉
+ |110100〉+ |111001〉+ |111111〉). (44)
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Fig. 30. Absolutely Maximally Entangled states with 5 and
6 qubits. The 6-qubit graph produces an asymptotic state.

This is not exactly the AME state of eight qubits, it has
eight terms which vanish asymptotically as ε goes to zero.
However, by doing so, we reduce the creation rate of the
whole state. The graphs to produce this and the 5-qubits
AME states are shown in Fig. 30.

b. k-Uniform States – While the AME solution for
six qubits was merely asymptotic, we can generate the

2-uniform state of such a system 39

|U2〉26 = |100011〉+ |101110〉 − |000000〉
− |001101〉 − |010111〉 − |011010〉
− |110100〉 − |111001〉 . (45)

Twelve out of twenty three-qubit bipartitions of the
above state are maximally entangled.

Similarly, we generated a 7-qubit state that maximizes
the entanglement between each of the 21 possible k = 2

partitions except one 40

|∼ U2〉27 = |0011110〉+ |0101000〉+ |0110111〉
+ |1001101〉+ |1010010〉+ |1100100〉
− |0000001〉 − |1111011〉 . (46)

The graph to produce this ‘almost’ uniform state and the
previous one are shown in Fig. 31.

c. Other States – As we have seen, even when an
AME or k-uniform state for a given system of qudits ex-
ists, it is not always realizable with linear optics. How-
ever, even if not perfect, we have found several highly
entangled states which are worth mentioning. We refer
to them as

|Ent(n,d,k)〉 , (47)



21

0

12

3

4 5

0

1

2

3

4

5

6

7

Fig. 31. k=2 uniform state for 6 qubits and k=2 (almost)
uniform state for 7 qubits (+ one ancilla).

where n stands for the number of particles, d for their
dimensions, and k for the size of the partitions.

For a system of four qubits, we find two interesting
states when maximizing the entanglement (see Eq. (40))
for every 2-qubit partition (see Fig. 32). We first optimize

using real weights 41

|Ent(4,2,2)〉R = |1010〉+ |1101〉 − |0011〉 − |0100〉 , (48)

obtaining a state which maximizes all possible parti-
tions except one. For the second solution, we extend the
weights to the complex domain, finding a local optimal

42

|Ent(4,2,2)〉C = |0011〉+ e−i0.54π |0101〉
+ e−i0.93π |0110〉+ ei0.45π |1001〉
+ ei0.71π |1010〉+ ei0.86π |1100〉 . (49)

This state minimizes the sum of partial traces for k = 2
partitions, following Eq. (40). However, while the sum
its (locally) minimal, and all qubit partitions are equally
entangled, they are not maximally entangled for k = 2.
and all are equally for all k = 1 partitions and for none
of the k = 2. However, all k = 2 partitions lead to the
same value for the partial trace defined in Eq. (40). The
entanglement seems to be ‘equally distributed’.

The complex state in Eq. (49) gives the same entangle-
ment structure as the Higuchi-Sudbery state presented in
[154]

|HS〉 = |0011〉+ |1100〉+ ω(|1010〉+ |0101〉)
+ ω2(|1001〉+ |0110〉), (50)

where ω = ei2π/3.

Finally, for a system of 8 qubits, PyTheus found a
state for which 48 out of 56 total three-qubit bipartitions
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Fig. 32. The graphs produced maximally entangled states for
single qubit partitions on a 4 qubit system, they also present
high entanglement between 2 qubit partitions (even if not
maximal). The weights on the left graph are real, and the
weights on the right graph are complex (the phase of every
edge can be found in the repository).

are maximally entangled. 43

|Ent(8,2,3)〉 = |00010000〉+ |00010111〉
+ |01101011〉+ |01101100〉
+ |01110001〉+ |10100010〉
+ |10100101〉+ |10111111〉
+ |11000100〉+ |11011001〉
− |00001010〉 − |00001101〉
− |01110110〉 − |10111000〉
− |11000011〉 − |11011110〉 . (51)

The graph to produce this state is shown in Fig. 33.
It would be interesting to extend the maximization

of other entanglement measures, such as experimental
feasible, strong forms of all-vs-nothing violations [104],
Hardy’s version of local realism experiments which goes
beyond the violations in Ref. [155, 156] (for example,
by involving more particles), or other measures of quan-
tum correlations. Such extensions would contribute to
the study of artificial intelligence for the foundations of
quantum mechanics [157].

4.3. Generation of Mixed States

4.3.1. Werner State

The Werner state with the density matrix

ρα = α
∣∣Φ+

〉 〈
Φ+
∣∣+ (1− α)

I
4
, (52)

has different properties for different values of α. For α <
0.683, it is known to be Bell-local. For α > 0.697, it
is known to be Bell nonlocal [158]. This leaves the gap
between 0.683 and 0.697 open without a mathematical
proof of its properties. By creating this state, it could be
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|Ent(8,2,3)〉

Fig. 33. The state generated by this graph is maximally
entangled for 48 of the 56 possible 3-qubit partitions.

0

1

2

3

Fig. 34. Graph for the Werner state with α = 0.69. Informa-
tion at vertex 2 is to be discarded. Vertex 3 is an ancillary
detector

possible to test the Bell-locality of a state in the middle
of the gap, α = 0.69. The graph for the creation of this

mixed state is shown in Fig. 34 44 .

4.3.2. Counter-Example to the Peres Conjecture

Relations between different notions of quantum corre-
lations are studied in quantum information theory. These
insights are important to understand the underlying re-
sources of quantum correlations and their applicability
in quantum protocols. In 1999, Asher Peres conjectured
that the notion of Bell nonlocality and distillability is
equivalent [106]. Bell nonlocality, as witnessed by a vi-
olation of Bell’s inequality, says that no local hidden-
variable model can explain the correlations observed in
an experiment. A state is called distillable if a maxi-
mally entangled Bell pair can be extracted from multi-
ple copies. The conjecture was open for 15 years until a
counter-example was discovered in 2014, first for a strong
version of the conjecture [107] and shortly after in its full
form [108]. These violations are based on the uncover-
ing of a two-particle bound state (a state that cannot be
distilled) which can be used for quantum steering and
violation of Bell’s inequality. The Moroder-Gittsovich-
Huber-Gühne-Vertesi-Brunner (MGHG-VB) state can be

0
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3

Fig. 35. Graph for the Moroder-Gittsovich-Huber-Gühne-
Vertesi-Brunner (MGHG-VB) state, which is a counter-
example to the Peres conjecture. Here, vertex 3 is an ancilla
photon and vertex 2 is the environment vertex. Due to the
structure of the MGHG-VB state, the edge weights are not
simple fractions.

written as a mixed state that is an incoherent superposi-

tion of four entangled two-qutrit states, 45

ρ =

4∑
i=1

λi |ψi〉 〈ψi| (53)

with λ =
(
3257
6884 ,

450
1721 ,

450
1721 ,

27
6884

)
and

|ψ1〉 =
1√
2

(|00〉+ |11〉)

|ψ2〉 =

√
131

12
√

2
(|01〉+ |10〉) +

1

60
|02〉 − 3

10
|21〉

|ψ3〉 =

√
131

12
√

2
(|00〉 − |11〉) +

1

60
|12〉 − 3

10
|20〉

|ψ4〉 =
1√
3

(− |01〉+ |10〉+ |22〉) .

The graph that corresponds to this state is shown in
Fig. 35. It might be interesting to generate this state
and show experimentally that the state can violate Bell’s
inequality and thereby demonstrate an experimental fal-
sification of Peres’s conjecture.

4.4. Generation of Entanglement in the
Photon-Number Basis

4.4.1. N00N States

The ability to perform precise measurements is always
affected by several limitations, some of them avoidable by
careful design of experiments and others of a fundamental
nature. Classically, one can estimate a phase parameter
more precisely by increasing the number of particles N
in the measurement process; the precision is typically
limited to 1/

√
N , also known as the standard quantum

limit (SQL). With the aid of quantum resources, one can
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beat the SQL, and the measurement precision can be
enhanced to scale as 1/N , approaching the Heisenberg
limit that is governed by the physical law of quantum
mechanics. One prominent representative of quantum
states with the ability to break the SQL is the well-known
N00N states [8, 159], as described in Eq. (8).

These N00N states can not only be used to test funda-
mental physics via violating Bell-type inequalities [160]
but also play an important role in quantum-enhanced ap-
plications, quantum-enhanced microscopes and imaging
systems [161–164], super-resolving phase measurements
[165–168], and quantum lithography [169], to name a few.
Interestingly, as the two-mode N00N states are formed in
a superposition of two distinct states |N, 0〉 and |0, N〉,
one could consider that the two terms correspond to the
“dead cat” and “alive cat” in the “Schrödinger-cat” form
[170]. With high-N00N states, we might step closer to a
better understanding of macroscopic entanglement en-
visioned by Schrödinger [171]. In the optical regime,
achieving an efficient photonic source of N00N states with
large N is very challenging. Several schemes and ex-
periments have been toward the direction of generating
photonic high-N00N states in different ways, such as by
using strong optical nonlinearities [172], by linear optics
and feed-forward [173], and by mixing coherent light with
SPDC photon-pair sources on a standard beam splitter
[170, 174–176].

Additionally, interest has also been growing in the
simultaneous estimation of multiple parameters using
multi-mode quantum states [74, 75]. Using a multimode
N00N state, one can reach the Heisenberg limit with an
O(d) advantage over what is obtained with d copies of a
two-mode N00N state [177, 178]. The generalization of
the two-mode N00N states in Eq. (8) is given as [74, 75]

|N00N〉Nd :=
1√
d

(|N, 0, ..., 0, 0〉 ± |0, N, ..., 0, 0〉 ± ... (54)

± |0, 0, ..., N, 0〉 ± |0, 0, ..., 0, N〉)1,...,d.

Here we show how to produce perfect N00N states
without using any coherent states or feed-forward. We
list some examples that might give a different conceptual
understanding and new insight. For more path-entangled
states, one can directly employ PyTheus. For the an-
cillary detectors, we always assume they are reached by
single photons, like in previous sections.

a. Two Particles – As we have introduced in sec-
tion 2.1.4, the simplest N00N state is the |N00N〉22 state
that can be deterministically created via HOM interfer-
ence when two indistinguishable photons are incident on
a standard beam splitter simultaneously [70]. From the
graph in Fig. 6, we can easily generalize the state to
an arbitrary number of modes by adding more vertices,
each one with a loop. The coherent superposition of a
loop being in one of the vertices indicates the resulting
multi-mode two-particle N00N states.

b. Three Particles – For producing 2-mode 3-
photon N00N states |N00N〉32, we additionally employ an
ancilla particle in the experiment. We show the graph
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(d) |N00N〉35

Fig. 36. Graphs for multi-mode three-particle N00N states
|N00N〉3d with increasing number of ancillas.

found by PyTheus in Fig. 36, which uses only one color,
thus corresponding to the standard path-entangled N00N
states. The edge can also be in different colors such that
we are able to construct graphs for polarization-entangled
N00N states [179–181]. We further explore the states in
multi-mode cases, as described in Fig. 36 (b), (c) and
(d) for 3-, 4-, 5-mode three-photon N00N states. Inter-
estingly, the graphs found by PyTheus exhibit a nice
structure, which may be amenable to generalization, to
systematically produce other multi-mode NOON states
without any optimization process.

c. Four Particles – For the previous N00N states,
we optimized the graphs using real weights, finding the

states |40〉 − |04〉 and |400〉 − |040〉 − |004〉 46 47 .
However, to generate the same N00N states with zero
phase difference between the terms we need to, either
add a π/2 phase on the solitary loops from Fig. 37 or,
using only real weights, add 2 more ancillas. Addition-
ally, after generating the 4-particle N00N states for 2 and
3 modes, it became obvious how to generate the graphs
for an arbitrary number of modes.

It is worth noting that given a ket |40〉, each combina-
tion of non-repeating edges contributes twice as much as
one with duplicate edges (assuming equal weights). This
is a consequence of the multinomial theorem applied to
the creation operators described in Eq. (2).

d. Other Two-Mode States – For the previous N00N
states, the associated graphs have shown some patterns.
The more obvious was the increasing need for ancillas,
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(b) |400〉 − |040〉 − |004〉

Fig. 37. Graphs with only real weights to generate 4-particle
N00N states for 2 and 3 modes. Multiplying the i the loops
of the disconnected vertices all the amplitudes of the state’s
terms become positive. To increase the number of modes,
we add a triangular subgraph connected to a loop. The edge
connecting the two new ancillas must be negative.
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(d) |N00N〉82

Fig. 38. Graphs for two-mode N00N states of 5, 6, 7, and 8
photons.

whether we were adding more photons or modes. More-
over, based on a few graphs, we realized how to generate
N00N states with 2 and 4 photons for an arbitrary num-
ber of modes. In Fig. 38 we show how to produce the

two-mode N00N state for 5, 6, 7, and 8 photons 48

49 50 51 . As with the 3-photon N00N states, it
seems to be an underlying pattern in the graphs solutions
when increasing the number of photons.

4.4.2. Platonic Solid States

We have been considering states where all N pho-
tons are in the same path, with the other paths empty.
However, PyTheus can produce path-entangled states
which do not fulfill such restrictions. Among them, a
very special case leads to the highly symmetric Platonic
Solid State [182–184], which can resolve rotations around
any axis equally well. In the Platonic picture, shown in
Fig. 39, an N -photon state is mapped onto N points on
the Poincaré sphere [185], offering a systematic way for
visualization. This also relates to a long-lasting prob-
lem of distributing N points on the Poincaré sphere in
a highly symmetric fashion, where one can have many
different solutions based on the function one tries to op-
timize [186, 187]. Additionally, the concept of Platonic
solids has also been used for fundamental investigations
in quantum physics [188, 189]. Apart from their symmet-
ric elegance, there is plenty of room for applications of
these states, for instance, in magnetometry, polarimetry,
and metrology. Researchers have started investigating
how to generate these Platonic solid state. In this part,
we show the examples found by PyTheus.

a. Tetrahedron – Our first Platonic solid state is
the tetrahedron [190], which is the unique optimal four-
photon state for characterizing polarization rotations.
The state written in the Fock basis reads as∣∣∣Ψ(1)

〉
=

1√
3

(|4, 0〉+
√

2 |1, 3〉). (55)

It can be produced by the graph in Fig. 39 (top panels),
and has already been implemented [191].

The similarity between the graphs that produce the
tetrahedron and the three-photon N00N state discovered
by PyTheus (see Fig. 36 a) shows a nice pattern: to
generate states in the Fock basis, we can add an arbitrary
number of photons to any path. In this way, starting with
a general state |M,N〉 ± |N,M〉, we can obtain

|M,N〉 ± |N,M〉 ⇒ |M+x,N+y〉 ± |N+x,M+y〉 . (56)

We only need to connect the first and second paths to x
and y ancillary photons, respectively. This construction
can be used for an arbitrary number of modes.

b. Octahedron – The octahedron state reads∣∣∣Ψ(2)
〉

=
1√
2

(|5, 1〉 − |1, 5〉), (57)

and was found by PyTheus using only 4 ancillary de-
tectors (see Fig. 39). Alternatively, we can apply the
pattern described in Eq. (56) to the graph that produces
|40〉 − |04〉, which is shown in Fig. 37 a).

c. Cube – The last platonic solid we are able to pro-

duce is the cube state, which reads 52

∣∣∣Ψ(3)
〉

=

√
3

12
(
√

10 |8, 0〉+ 2
√

7 |4, 4〉+
√

10 |0, 8〉). (58)
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Fig. 39. Graphs for producing tetrahedron, octahedron, and
cube quantum states.

In Fig. 39, we show the graph that can be used to gener-
ate the cube state. As we can see from the expression and
Fig. 39 (bottom), the graph cannot be obtained by mod-
ifying one of the previous graphs for a two-mode N00N
state.

4.5. Towards Quantum Simulation

In this section, we present quantum state generation
for states from condensed matter physics which could
be interesting for quantum simulation[192]. The quan-
tum entangled states of few- or many-body systems can
generally be expressed by the tensor network formula-
tions [193, 194]. One of the most successful members of
this family with a vast application in condensed matter
physics is the 1D matrix product state (MPS). Here one
represents the quantum state of a system with periodic

boundary conditions and N particles as

|ψ〉 =
∑
s

tr
[
A

(s1)
1 A

(s2)
2 . . . A

(sN )
N

]
|s1 . . . sN 〉 , (59)

where si = {0, . . . d − 1} denotes the local state of the

ith particle with local physical dimension d. Here A
(si)
i

is a complex matrix with dimension χ, also known as

the bond (virtual) dimension. The matrix A
(si)
i can be

viewed as a projector from a χ-dimensional virtual (cor-
relation) vector space into the physical d-dimensional
space [195]. While in non-interacting systems, described
by product states, the bond dimension χ is one, this
quantity grows exponentially with N in most strongly
correlated systems. This results in employing numerical
techniques to (approximately) obtain the ground states
of most many-body systems. Nevertheless, one can find
multiple few- or many-body ground states with χ > 1 but
independent of the particle number. Here, we present
a collection of these ground states with a concise de-
scription of their host Hamiltonian and their physical
implication upon realization. While our focus is on zero-
temperature ground states, we emphasize that the ap-
plicability of PyTheus is not limited to these states.
This is because both mixed states 2.1.3, which describe
open quantum states, and states constitute combinations
of (various) Fock states 2.1.4, can be used to study the
(grand) canonical ensemble, are treatable by PyTheus.

4.5.1. Spin-1/2 Systems

Due to the simplicity of spin-1/2 systems and the surge
of interest in qubit quantum computation, these many-
body systems received ever-growing attention. The local
physical space of these systems spanned by {|↑〉 , |↓〉}, or
equivalently {|0〉 , |1〉}, results in the local physical di-
mension d = 2. Despite such a small physical dimension,
the obtained ground states can be rich and exotic. In the
following, we list some of these states.

a. Spin-1/2 Wire – A computational quantum spin-
1/2 wire governed by nearest-neighbor interactions, asso-
ciated with non-zero two-point correlation functions and
arbitrary local entanglement, is described by [195, 196]

|ψ〉 =

1∑
si=0

tr[A(sn−1) . . . A(s1)] |s1 . . . sn〉 , (60)

where

A(↑) =
1√
2
G, G = exp(iπσx/τ), (61)

A(↓) =
1√
2
GT (φ), T =

(
e−iφ/2 0

0 eiφ/2

)
, (62)

where φ and τ denote the entanglement factor and pe-
riod, respectively.
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Fig. 40 displays the associated graph for the ground
state of the spin-1/2 wire for four particles with φ = π/2.

The state, up to normalization, reads 53

|ψ〉 =
√

2 |0000〉+ |0001〉+ |0010〉+ |0100〉
− |0111〉+ |1000〉 − |1011〉
− |1101〉 − |1110〉 −

√
2 |1111〉 . (63)
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Fig. 40. The associated graph for the ground state of the
spin-1/2 wire with four particles.

b. Spin-1/2 States with No Adjacent Spin-ups –
Aside from the previous spin-1/2 state, one can compute
entangled states where no two neighboring spin-ups ap-
pear in the ground state. One can expect to detect these
states in spin systems with nearest-neighbor interactions.
In the Rydberg-atom experiments, this situation occurs
due to the Rydberg blockade [197]. The matrix product
representation of these states reads

|ψ〉 =

1∑
si=0

tr[A(sn−1) . . . A(s1)] |s1 . . . sn〉 , (64)

where

A(↑) =
1√
2

(I + σx), (65)

A(↓) = 2σ+, (66)

with σ+ = σx + iσy.
Fig. 41 displays the associated graphs for this system

with various numbers of particles whose ground states
read

• 54 Three particles with one ancillary particle:

|ψ3〉 = |000〉+ |001〉+ |010〉+ |100〉 . (67)

• 55 Four particles:

|ψ4〉 = |0000〉+ |0001〉+ |0010〉
+ |0100〉+ |0101〉+ |1000〉+ |1010〉 . (68)
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Fig. 41. Associated graphs for spin-1/2 states with no ad-
jacent spin-ups for three, four, five, and six particles. One
ancillary particle is included in states with an odd number of
particles (left column).

• 56 Five particles with one ancillary particle:

|ψ5〉 = |00000〉+ |00001〉+ |00010〉
+ |00100〉+ |00101〉+ |01000〉
+ |01001〉+ |01010〉+ |10000〉
+ |10010〉+ |10100〉 . (69)

• 57 Six particles:

|ψ6〉 = |000000〉+ |000001〉+ |000010〉
+ |000100〉+ |000101〉+ |001000〉
+ |001001〉+ |001010〉+ |010000〉
+ |010001〉+ |010010〉+ |010100〉
+ |010101〉+ |100000〉+ |100010〉
+ |100100〉+ |101000〉+ |101010〉 . (70)

c. Majumdar-Gosh Model – The one-dimensional
quantum Heisenberg spin model is known as the
Majumdar-Gosh model when the value of the next-
nearest-neighbor interaction is half the value of the
nearest-neighbor antiferromagnetic exchange interaction.
The Hamiltonian of this model casts [198]

H =
∑
i

2−→σ i · −→σ i+1 +−→σ i · −→σ i+2, (71)

where −→σ i = (σxi , σ
y
i , σ

z
i ).
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The ground states of this model Hamiltonian are
dimerized states given by products of singlet configura-
tions of spins on neighboring sites. The linear combina-
tion of these states reads [198]

|ψ〉 =

1∑
si=0

tr[A(sn−1) . . . A(s1)] |s1 . . . sn〉 , (72)

where

A↑ =

 0 1 0
0 0 0
1√
2

0 0

 , A↓ =

 0 0 1
− 1√

2
0 0

0 0 0

 . (73)

This ground state of the Majumdar-Gosh model is one
of the simplest spin-1/2 valence-bond solids in one-
dimensional systems.

Fig. 42 displays the associated graphs for the four- and
six-particle systems whose ground states read

• 58 Four particles:∣∣∣ψ(4)
〉

= |0011〉 − 2 |0101〉+ |0110〉

+ |1100〉 − 2 |1010〉+ |1001〉 . (74)

• 59 Six particles with two ancillary particles:∣∣∣ψ(6)
〉

= |001011〉 − |001101〉

− |010011〉+ |010110〉
+ |011001〉 − |011010〉
+ |100101〉 − |100110〉
− |101001〉+ |101100〉
+ |110010〉 − |110100〉 . (75)
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Fig. 42. Ground states of the Majumdar-Gosh model with
four (left panel) and six (right) particles. Two ancillary par-
ticles are included in the right panel.

d. Dyck Words – The Fredkin spin-1/2 model with
a three-body interaction term reads [199–202]

H =
∑
i

Ui−1Pi,i+1 + Pi−1,iDi+1, (76)

where Ui = |↑i〉 〈↑i|, Di = |↓i〉 〈↓i| and the spin-singlet
projector reads Pi,i+1 = |Si,i+1〉 〈Si,i+1| with |Si,j〉 =
(|↑i〉 〈↓j | − |↓i〉 〈↑j |). The ground state of this model is
an equally weighted superposition of spin configurations
forming Dyck words. Here one may use the notation
|↑〉 = |(〉 and |↓〉 = |)〉 to translate the spin states into
the Dyck words. In this notation, the ground state forms
balanced strings whose segments contain equal numbers
of open and closed parentheses. The ground states of the
Fredkin model with six and eight particles cast

• 60 Six particles:∣∣∣ψ(6)
〉

=
1√
5

[
|()()()〉+ |()(())〉+ |(())()〉

+ |(()())〉+ |((()))〉
]
. (77)

• 61 Eight particles:∣∣∣ψ(6)
〉

=
1√
14

[
|(()())()〉+ |(()()())〉+ |(()(()))〉

+ |((()))()〉+ |((())())〉+ |((()()))〉
+ |(((())))〉+ |()()()()〉+ |()()(())〉
+ |()(())()〉+ |()(()())〉+ |()((()))〉
+ |(())()()〉+ |(())(())〉

]
. (78)

The associated graphs for these states are shown in
Fig. 43.
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Fig. 43. The graphs corresponding to the creation of Dyck
word states.

4.5.2. Spin-1 Systems

The quest to go beyond the two-level qubit systems
in quantum computation put forward other proposals
based on three-level qutrit quantum states [203, 204]. In
spin systems, this inquiry is translated into exploring the
S = 1 space spanned by {|−1〉 , |0〉 , |1〉} with physical
dimension d = 3. While spin-1 states can be realized ex-
perimentally in a controlled fashion [205], often, one may
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encounter these states as emergent phenomena in various
spin-1/2 condensed matter systems, e.g., in describing
the low-energy physics of chiral threefold fermions [206].
As a result, aside from technological implications, ex-
ploring the higher-spin systems may shed light on a bet-
ter understanding of some emergent phenomena in other
fields of physics.

a. Spin-1 Wire – The antiferromagnetic ground
state of a spin-1 chain with nearest-neighbor interactions
can be represented in the matrix product form as [207]

|ψ〉 = tr(A1A2 . . . AN ), (79)

where

Ai =

(
|0〉 −

√
a |+1〉√

a |−1〉 −σ |0〉

)
, (80)

with nonvanishing a and σ.
Fig. 44 displays the associated graph with one ancilla,

for the ground states of the spin-1 chain with three par-

ticles, which, up to normalization, reads 62

|ψ〉 = 0.3(|012〉+ |120〉+ |201〉)− 0.875 |111〉
− 0.15(|021〉+ |102〉+ |210〉). (81)
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Fig. 44. The associated graph for the ground states of the
spin-1 chain with three particles.

b. Affleck-Kennedy-Lieb-Tasaki Model – A particu-
lar spin-1 bilinear biquadratic Hamiltonian introduced
by Affleck, Kennedy, Lieb, and Tasaki (AKLT) is given
by [208, 209]

H =
∑
i

−→
S i ·
−→
S i+1 +

1

3
(
−→
S i ·
−→
S i+1)2. (82)

The ground state of this solvable model, known as the
AKLT state, is short-range entangled and classified in
symmetry-protected-topological states [210]. The MPS
representation of this state reads [193, 198]

|ψ〉 =

1∑
si=0

tr[A(sn−1) . . . A(s1)] |s1 . . . sn〉 , (83)

where si ∈ {0, 1} and

{A−1, A0, A+1} = {
√

2

3
σ+,

1√
3
σz,−

√
2

3
σ−}. (84)

Here σ± = σx ± iσy. The AKLT state is the spin-1
valance bond solids [211].

Fig. 45 displays the associated graphs for the three-
and four-particle AKLT system whose ground states

read, up to normalization 63 64∣∣∣ψ(3)
〉

= |0,−1,+1〉 − |−1, 0,+1〉+ |−1,+1, 0〉

− |0,+1,−1〉+ |+1, 0,−1〉 − |+1,−1, 0〉 , (85)∣∣∣ψ(4)
〉

= 2(|−1, 1,−1, 1〉+ |1,−1, 1,−1〉) + |1, 0,−1, 0〉

− |1,−1, 0, 0〉+ |0, 1, 0,−1〉 − |0, 1,−1, 0〉
− |0, 0, 1,−1〉+ |0, 0, 0, 0〉 − |0, 0,−1, 1〉
− |0,−1, 1, 0〉+ |0,−1, 0, 1〉 − |−1, 1, 0, 0〉
− |1, 0, 0,−1〉+ |−1, 0, 1, 0〉 − |−1, 0, 0, 1〉 . (86)
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Fig. 45. The associated graphs for the ground state of the
spin-1 AKLT state with three and four particles. One ancil-
lary particle is included in the first state.

c. Motzkin State – The spin-1 generalization of the
Dyck words is known as the Motzkin State [200, 212, 213].
The spin configurations, in this case, can be translated
into strings using |−1〉 = |)〉, |0〉 = |−〉, and |1〉 = |(〉.
Here, similar to the Dyck words, the number of open and
closed parentheses is equal. Examples of such states cast

• 65 Three particles:

|ψ〉 =
1

2
[|− − −〉+ |()−〉+ |(−)〉+ |−()〉]. (87)

• 66 Four particles:

|ψ〉 =
1√
9

[ |− − −−〉+ |()−−〉+ |−()−〉

+ |− − ()〉+ |(−−)〉+ |()()〉
+ |−(−)〉+ |(−)−〉+ |(())〉]. (88)

The associated graphs for these states are presented in
Fig. 46.
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Fig. 46. The graphs corresponding to the creation of Motzkin
states.

4.5.3. Spin-3/2 Systems

Sharing the same motivation as spin-1 systems, the
four-level spin-3/2 systems have putative implications in
qudits with d = 4 quantum computation [214]. The local
Hilbert space of these spin-3/2 systems are spanned by
{|1〉 , |−1〉 , |3〉 , |−3〉} resulting in local physical dimen-
sion d = 4.

a. Spin-3/2 Wire – Two exact ground states for a
spin-3/2 chain with ferromagnetic character are shown
to have the following matrix product representation [215,
216] ∣∣ψ±〉 = tr

(
A±1 A

±
2 . . . A

±
N

)
, (89)

where

A+ =

(
|1〉 −

√
3 |3〉

|−1〉 − |1〉

)
, A− =

(
− |−1〉 |1〉
−
√

3 |−3〉 |−1〉

)
.

(90)
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3∣∣ψ−〉
Fig. 47. The associated graphs for the ground states of the
spin-3/2 chain for three particles.

The ground states of the spin-3/2 chain, up to normal-

ization, reads 67∣∣ψ±〉 = |−1, 1,±3〉 − |1,−1,±3〉+ |1,±3,−1〉
− |−1,±3, 1〉+ |±3,−1, 1〉 − |±3, 1,−1〉 . (91)

As one ground state, say |ψ+〉, can be achieved from the
other ground state, |ψ−〉, by merely replacing |3〉 with
|−3〉, we only present the associated graph for |ψ+〉 with
three particles and one ancilla in Fig. 47.

b. Spin-3/2 Letter State – As a straightforward gen-
eralization of the Dyck words and Motzkin letter states,
discussed previously, one can introduce the letter states
for the spin-3/2 states. Here one should translate the spin
state into the letters as |−3〉 = |[〉, |−1〉 = |(〉, |1〉 = |)〉
and |3〉 = |]〉. Using this language, the six particle state

is 68

|ψ〉 =
1√
40

[ |()()()〉+ |()[]()〉+ |[]()()〉+ |()()[]〉

+ |[][]()〉+ |[]()[]〉+ |()[][]〉+ |[][][]〉
+ |(())()〉+ |(())[]〉+ |([])()〉+ |[()]()〉
+ |[()][]〉+ |[[]]()〉+ |([])[]〉+ |[[]][]〉
+ |()(())〉+ |[](())〉+ |()([])〉+ |()[()]〉
+ |[][()]〉+ |[]([])〉+ |()[[]]〉+ |[][[]]〉
+ |(()())〉+ |[()()]〉+ |([]())〉+ |(()[])〉
+ |([][])〉+ |[[]()]〉+ |[()[]]〉+ |[[][]]〉
+ |((()))〉+ |(([]))〉+ |([()])〉+ |[(())]〉
+ |([[]])〉+ |[([])]〉+ |[[()]]〉+ |[[[]]]〉]. (92)

The associated graph for this state is shown in Fig. 48.
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Spin-3/2 letter state with six letters

Fig. 48. The graphs corresponding to the creation of the
spin-3/2 letter state.

4.5.4. Spin-2 Systems

Five-level computational units can further be of in-
terest in quantum computation beyond qubits. The lo-
cal physical space of these spin-2 units is spanned by
{|−2〉 , |−1〉 , |0〉 , |1〉 , |2〉} with local physical dimension
d = 5. Similar to other higher-spin systems in condensed
matter systems, spin-2 states can also be viewed as emer-
gent states in some (lower-spin with S < 2) many-body
systems [217].

a. Spin-2 Wire – The anisotropic spin-2 chain with
nearest-neighbour interactions hosts various phases de-
pending on three parameters (a, x, σ) with a ∈ R, σ =
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±1 [218]. These phases consist of three distinct antifer-
romagnetic Haldane phases and a weak antiferromagnetic
phase.

The ground states of the weak-antiferromagnetic phase
have the following matrix product representation:

∣∣∣ψ(1)
0

〉
= tr

L/2∏
i=1

m2i−1g2i

, ∣∣∣ψ(2)
0

〉
= tr

L/2∏
i=1

g2i−1m2i

,
(93)

where

m =

(
|1〉 x

√
a |2〉√

a |0〉 |1〉

)
, g =

(
|−1〉

√
a |0〉

x
√
a |−2〉 |−1〉

)
.

(94)

Here we set a = 0.5.
When the translational symmetry is not broken, i.e.,

x = 1, two more states can also be identified for this
phase, given by

∣∣∣ψ(3)
0

〉
= tr

[
L∏
i=1

mx=1
i

]
,
∣∣∣ψ(4)

0

〉
= tr

[
L∏
i=1

gx=1
i

]
. (95)

Fig. 49 displays the associated graphs for the three-
particle ground states of the weak-antiferromagnetic
phase when the translational symmetry is broken (top
panel) and respected (bottom). The states with broken

translation symmetry, up to normalization, read 69∣∣∣ψ(1)
0

〉
=0.5(|2,−1, 0〉+ |0,−1, 2〉)

+0.25(|2,−2, 1〉+ |1,−2, 2〉)
+ |1, 0, 0〉+ |0, 0, 1〉+ 4 |1,−1, 1〉 , (96)∣∣∣ψ(2)

0

〉
=0.5(|−2, 1, 0〉+ |0, 1,−2〉)

+0.25(|−2, 2,−1〉+ |−1, 2,−2〉)
+ |−1, 0, 0〉+ |0, 0,−1〉+ 4 |−1, 1,−1〉 . (97)

When the symmetry is respected, the states, up to nor-

malization, are 70∣∣∣ψ(3)
0

〉
= |0, 1, 2〉+ |0, 2, 1〉+ |1, 0, 2〉+ |2, 1, 0〉

+ |1, 2, 0〉+ |2, 0, 1〉+ 4 |1, 1, 1〉 , (98)∣∣∣ψ(4)
0

〉
= |0,−1,−2〉+ |0,−2,−1〉

+ |−1, 0,−2〉+ |−2,−1, 0〉
+ |−1,−2, 0〉+ |−2, 0,−1〉+ 4 |−1,−1,−1〉 .

(99)

The Haldane-antiferromagnetic-A is another possible
phase in this spin-2 system described by the ground state

|ψ〉 =

2∑
si=−2

tr [As11 A
s2
2 . . . AsNN ] |s1, s2, . . . sN 〉 , (100)
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〉
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4 5∣∣∣ψ(S)
0

〉
Fig. 49. The associated graphs for the three-particle ground
states of the weak-antiferromagnetic phase when the transla-
tional symmetry is broken (left) and respected (right).

where

2∑
sm=−2

Asmm =

 |0〉
√
x |1〉 a |2〉√

x |−1〉 γ |0〉
√
x |1〉

a |−2〉
√
x |−1〉 |0〉

 . (101)

Fig. 50 displays the graph associated with the ground
state, with three particles and five ancillas, for the
Haldane-antiferromagnetic-A phase. Up to normaliza-

tion, the state reads 71

|ψA〉 =6 |0, 0, 0〉+ |−1, 0, 1〉+ |−1, 1, 0〉+ |0,−1, 1〉
+ |0, 1,−1〉+ |1,−1, 0〉+ |1, 0,−1〉
+0.5(|−2, 0, 2〉+ |0,−2, 2〉+ |−2, 2, 0〉)
+0.5(|2, 0,−2〉+ |0, 2,−2〉+ |2,−2, 0〉)
+0.25(|1,−2, 1〉+ |−1,−1, 2〉+ |−1, 2,−1〉)
+0.25(|1, 1,−2〉+ |−2, 1, 1〉+ |2,−1,−1〉). (102)
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Fig. 50. The associated graph for the three-particle ground
state of the Haldane-antiferromagnetic-A phase.

The ground states of the second antiferromagnetic Hal-
dane phase, referred to as Haldane-antiferromagnetic-B,
reads

|ψB〉 =

1∑
si=−1

tr [As11 A
s2
2 . . . AsNN ] |s1, s2, . . . sN 〉 , (103)
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where

1∑
sm=−1

Asmm =

(
|0〉

√
a |1〉√

a |−1〉 σ |0〉

)
. (104)

Similarly, the ground state of the third Haldane-
antiferromagnetic phase, known as Haldane-
antiferromagnetic-C, is

|ψC〉 =
∑

si∈{−2,0,2}

tr [As11 A
s2
2 . . . AsNN ] |s1, s2, . . . sN 〉 ,

(105)

where ∑
si∈{−2,0,2}

Asmm =

(
|0〉

√
a |2〉√

a |−2〉 σ |0〉

)
. (106)

Notice that the last Haldane phases, B and C,
have essentially the same Hamiltonian as the weak-
antiferromagnetic phase when the translational symme-
try is preserved (see Eq. (99)). One can obtain one from
the other by performing |±1〉 ↔ |±2〉.

4.5.5. Quantum Many-Body Scars

The phenomena in which weakly entangled nonther-
mal quantum eigenstates are embedded in the eigensys-
tem of non-integrable (thermal) systems is dubbed ‘quan-
tum many-body scars’ [219]. The well-known examples
of these scar states are shown to be present in the AKLT
spin chain models [220, 221]. The experimental realiza-
tions of such states are also reported in Rydberg-atom
quantum simulators [197, 222]. In the following, we sug-
gest that one may also detect these states using quantum
optics experiments.

a. Onsager’s Scars in Disordered Spin Chains – A
non-integrable quantum spin chain that exhibits quan-
tum many-body scars can be described by the coherent
state with parameter β as [223]

|ψβ〉 = tr[Ap1Bp1 . . . ApnBpn ] |p1, . . . , pn〉 , (107)

where A,B are n× n matrices with matrix elements

(Ap)ij = βpδipδj0 +
(−1)j+1βp

sin(π(n− j)/n)
δn−p,j−i, (108)

(Bp)ij = βpδipδj0 +
(−1)n−jβp

sin(π(n− j)/n)
δn−p,j−1. (109)

Here 0 ≤ i, j ≤ n − 1 with n ≥ 2. This representation
ensures that no certain spin configurations occur over
three consecutive sites in |ψβ〉.

Fig. 51 displays the graph associated with the On-
sager’s scar in a system with six and eight spins, with
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Fig. 51. The associated graphs for the Onsager’s scar in a
system with six (left panel) and eight (right) qubits. Here we
set β = 1/

√
2.

β = 1/
√

2. Up to normalization, the states read 72

73∣∣∣ψ(6)
β

〉
=4 |000000〉+ 2(|000011〉 − |000110〉+ |001100〉)

+2(|110000〉 − |011000〉 − |100001〉) + |011110〉
+ |001111〉+ |100111〉 − |101101〉 − |011011〉
+ |110011〉 − |110110〉+ |111001〉+ |111100〉 ,

(110)

∣∣∣ψ(8)
β

〉
=8 |00000000〉+ 4(|00000011〉 − |00000110〉

+ |00001100〉 − |00011000〉+ |00110000〉
− |01100000〉+ |11000000〉 − |10000001〉)
+ 2(|00001111〉 − |00011011〉+ |00011110〉
+ |00110011〉 − |00110110〉+ |00111100〉
− |01100011〉+ |01100110〉 − |01101100〉
+ |01111000〉+ |10000111〉 − |10001101〉
+ |10011001〉 − |10110001〉+ |11000011〉
− |11000110〉+ |11001100〉 − |11011000〉
+ |11100001〉+ |11110000〉) + |00111111〉
+ |10110111〉 − |10111101〉 − |01101111〉
− |10011111〉+ |11001111〉 − |11011011〉
+ |11011110〉+ |01111011〉 − |01111110〉
− |11100111〉+ |11101101〉+ |11110011〉
− |11110110〉 − |11111001〉+ |11111100〉
+ |11111111〉 . (111)

b. Scars in the PXP Model – Another platform
where quantum scars emerge is in the PXP model. This
model on a chain with L sites and with the periodic
boundary condition is [224]

H =
∑
i

Pi−1XiPi+1 + PLX1P2 + PL−1XLP1, (112)

where P = |0〉 〈0| and X = |0〉 〈1| + |1〉 〈0|. One of the
ground states of this model in the matrix product repre-
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sentation yields

|PXP〉 =
∑
{σ}

tr[Bσ1Cσ2 . . . BσL−1CσL−1 ] |σ1σ2 . . . σL〉 ,

(113)

where

B0 =

(
1 0 0
0 1 0

)
, B1 =

√
2

(
0 0 0
1 0 1

)
, (114)

C0 =

0 −1
1 0
0 0

 , C1 =
√

2

 1 0
0 0
−1 0

 . (115)

Fig. 52 displays the graph associated with the ground
state of the PXP model with six and eight particles. Up

to normalization, these states read 74 75

|PXP6〉 = |000000〉 − |000010〉
− |101000〉 − |100000〉
+ |101010〉 − 2 |010100〉
+
√

2(|100100〉+ |010000〉), (116)

|PXP8〉 = |00000000〉+ |00001000〉
+ |10000000〉+ |10101010〉
− |00001010〉 − |10000010〉
− |10100000〉 − |10101000〉
− 2(|01010000〉+ |10010100〉)
+
√

2(|01000010〉 − |00000100〉
+ |10010000〉 − |01000000〉
+ |10100100〉+ 2 |01010100〉). (117)
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Fig. 52. The graphs associated with the ground state of the
PXP model with six (left panel) and eight (right) particles.

4.6. Quantum Measurements

An important tool in quantum information is multi-
particle measurements such as the Bell state measure-
ment [78] or the GHZ analyzer [225]. Here we present a

wider range of measurements that PyTheus has discov-
ered. Many others, such as POVM (positive operator-
valued measure) or their symmetric, informationally
complete special case (SIC-POVMs) could be additional
targets for future research, given their exceptional impor-
tance for quantum information tasks [226, 227] as well as
their connection to exciting number theoretical questions
[228].

4.6.1. Analyzers

Here, we use the word analyzer to refer to experimen-
tal setups that confirm a collection of photons to be in
a particular state. Their formulation in terms of graphs
is described in 2.2. The two-dimensional GHZ analyzer
realized in Ref. [225] can be extended towards higher di-

mensions, giving the 3d GHZ analyzer 76 and the

4d GHZ analyzer 77 . Further, we show analyzers for

the W state 78 , the Higuchi-Sudbery state (shown

in Eq. (50)) 79 and the Yeo-Chua state (shown in

Eq. (27)) 80 in Fig. 53.

4.6.2. Mean King’s Problem

In 1987, L. Vaidman, Y. Akaronov, and D. Z. Albert
[105] devised an interesting quantum communication task
that can be solved only with quantum resources. Later
referred to as the Mean King’s Problem (MKP), it in-
volves two parties. Alice, who sends a quantum state
which she created to another party – the Mean King.
The Mean King then performs a projective measurement
on the state in a basis of his choice out of a collection
of mutually unbiased bases (MUBs). Alice is then al-
lowed to perform one more measurement, after which the
King declares his measurement basis and Alice must cor-
rectly guess his result. Should Alice guess incorrectly
even once, she will suffer a cruel fate, for the Mean King
is exceptionally intolerant of poor guesses. This task has
applications in quantum key distribution, wherein even
the slightest discrepancy between the shared secret key
of Alice and Bob implicates (in principle) the presence of
an eavesdropper.

Over the years, various generalizations to the initial
solution, proposed in the original paper [105], have been
introduced. Here, we employ a generalization proposed
by Hayashi, Horibe, and Hashimoto [229] for quantum
states of dimension D which is a prime power. This solu-
tion proposes that Alice first prepares a maximally entan-
gled, two-photon state |ψo〉 and sends one of her photons
to the Mean King. After the King makes a projective
measurement in one of the (D+1) MUBs, Alice retrieves
her photon and performs a measurement in the basis of
states credited to Vaidman, Akaronov, and Albert (VAA
states). There are D2 VAA states in all. For D = 2, the
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Fig. 53. Graphs for analyzers. When all detectors click, the
incoming photons were in the corresponding state.

first VAA state can be written as

|φ1〉 =
1

2
(
√

2 |00〉+ e−i
π
4 |01〉+ ei

π
4 |10〉) (118)

For D = 3, the third VAA state can be written as

|φ3〉 =
1√
3

(|00〉+ α(|02〉+ |10〉+ |01〉+ |20〉) (119)

+ β(|12〉) + γ(|21〉))

where ω = e−i2π/3, α = (ω2 + 2ω)/3, β = (ω2 + 2)/3,
and γ = (ω + 2)/3,

Experimentally realizing Alice’s measurement in this
basis is non-trivial. Setups that recreate the two-
dimensional VAA measurement using two qubits encoded
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3

MKP (2d)

0
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3

MKP (3d)

Fig. 54. Graphs realizing the VAA state measurement for the
MKP in the 2-dimensional case and 3-dimensional case.

in a single photon [230, 231] and that realize extensions
to the Mean King’s problem [232] have been proposed;
but the original solution to the Mean King’s Problem
involves two photons, to which no experimental realiza-
tion has been proposed for any prime-power D. Here
we provide examples discovered by PyTheus for select
prime-dimensional cases.

a. Two-dimensional Case – The left side of Fig. 54
shows the graph of Alice’s measurement in the VAA basis

81 . This graph was found with PyTheus by optimiz-
ing for the VAA state projection into |φ1〉. Surprisingly
however, during the translation of the graph to an op-
tical setup, we found that several other VAA states can
be projected with the same setup, by adding detectors
at unused beam splitter ports. Several of the remain-
ing VAA states can then be distinguished by the set of
possible simultaneous two-detector click events that they
each trigger. Since any result of the Mean King’s mea-
surement can be expressed in terms of a superposition of
VAA states, Alice is able to guess the result by perform-
ing the measurement of her input state in the VAA basis
and guessing the state that can be expressed in terms
of Alice’s measurement result. This procedure works re-
gardless of the Mean King’s choice of MUB in his mea-
surement.

b. Three-Dimensional Case – The right-hand side
of Fig. 54 shows the graph for the projection of the
state into the one of the three-dimensional VAA states
|φ3〉 82 . As with the two-dimensional case, we add
again detectors at the empty port of beam splitters and
find that we can distinguish between more three of the
nine states without any additional modifications. After
post-selection, Alice has a guaranteed chance to correctly
guess the Mean King’s measurement result so long as
the King does not choose the second MUB for his mea-
surement. Were the King to pick that MUB, two of the
three results of the measurement are expressed in terms
of VAA states that Alice cannot distinguish, giving her
a 50% chance of escaping the Mean King’s cruelty.
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Fig. 55. Entanglement between two qubits without a common
source. Because the vertices a and d have no connection in
the graph, each of the corresponding photons is created in one
of two disjoint subsystems (green boxes).

4.7. Quantum Communication

Quantum communication refers to communication pro-
tocols that involve the transfer of quantum states. Ma-
chine learning has been previously employed for the arti-
ficial discovery of quantum communication schemes [33].

The first experimental realization of entanglement
swapping was presented as a way of entangling two pho-
tons that never interacted [81]. In this section we show
graphs corresponding to experiments that create entan-
glement between two parties (each party with single or
multiple photons) without interaction between the par-
ties. Entanglement swapping has a strong connection to
other quantum communication tasks, e.g. teleportation.
This opens the door to use PyTheus for discovering re-
lated quantum information protocols.

a. Entangling Two Photons that Never Interacted
without Bell Pairs – Respecting the constraints that are
placed on two particles that do not interact (presented in
section 2.3) we show a graph that entangles two photons

from independent sources in Fig. 55 83 . The cor-
responding setup constructed by path identity does not
require the initial creation of entangled Bell pairs

b. Multiparticle Entanglement Swapping – Perform-
ing simultaneous entanglement swapping on multiple
pairs of particles is one of the key players in achiev-
ing resource-efficient quantum communication. Entan-
glement swapping between two qubits requires two ad-
ditional particles for a Bell state measurement. Per-
forming this swapping experiment in parallel for n qubit
pairs would require 2n additional photons. We prompted
PyTheus to find experiments that beat this naive base-
line. With this, we found a three-qubit entanglement
swapping experiment (Fig. 56), which produces the state

84 ∣∣Φ+
〉
03
⊗
∣∣Φ+

〉
14
⊗
∣∣Φ+

〉
25
, (120)

where the photons 0, 1, 2 are separated from 3, 4, 5. This
experiment requires four additional particles instead of
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Three qubit ES Outline of Experiment

Fig. 56. Entanglement swapping of 3 Bell pairs mea-
suring only 4 photons. Left: abstract graph for multi-
particle entanglement swapping. Right: outline of a multi-
particle Entanglement swapping experiment. Alice and Bob
each receive three particles from the two independent sources
1 and 2 (each a collection of SPDC crystals). When Charlie
measures a coincidence in all four detectors Alice and Bob
share three Bell pairs (0&3, 1&4, 2&5) without them having
interacted. This is possible due to a superposition of events
where Charlie either receives three photons from Alice and
one photon from Bob or one photon from Alice and three
photons from Bob.

the six particles necessary for the parallel case described
above.

Similarly, entanglement swapping between a pair of
qutrits requires four ancillary particles. We found that
”performing entanglement swapping for two pairs of
qutrits could also beat the naive baseline by only requir-

ing six ancillas instead of eight, in total, to produce 85∣∣Φ+
〉3d
02
⊗
∣∣Φ+

〉3d
13
, (121)

where the photons 0, 1 are separated from 2, 3, and

|Φ+〉3d is the first three-dimensional Bell state.
c. Entanglement Swapping with Single-Photon

Sources It is also possible to use single-photon sources
for entanglement swapping [83, 233, 234]. In Fig. 57,

we show a graph 86 for a higher-dimensional case,
performing three-dimensional entanglement swapping
with single photon sources. In total, six single photon
sources are necessary.

4.8. Quantum Gates

Universal quantum gates, which rely on the interac-
tion between two or more photons, can be realized with
non-linearities induced by measurements [87]. Quantum
gates based on this approach, such as a CNOT between
two qubits, have been realized experimentally for almost
twenty years [88]. However, since then, the attempt to
experimentally discover a wide range of quantum gates
has continued due to the advancement of experimental
resources which can deal with higher dimensional sys-
tems.
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Fig. 57. Graphs for entanglement swapping experiments.
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a. Heralded – We call a quantum gate heralded
when only ancillary particles are detected, meaning that
the outgoing particles are not measured. The photons
exiting such a gate can continue into further components
of a longer circuit. We find that a higher dimensional ver-
sion of the CNOT gate with a control qubit and a target

qutrit (CNOT(2, 3) 87 ) can also be realized with two
ancilla photons. Further, we find a heralded Toffoli gate

with four ancillas 88 ; see Fig. 58.

b. Reduced Input Space – For some tasks in which
quantum gates are applied, there is some prior knowl-
edge about the input state. One simple example is the
application of a CNOT gate on a superposition state as
the control qubit and a fixed computational basis state as
the target qubit, in order to create entanglement. This
type of knowledge about the input can be exploited to re-
duce the experimental resources required to perform the
transformation [95, 235]. A wide range of constraints on
the input state can be encoded by our framework. Here
we show examples of heralded quantum gates where a
target qubit is prepared in the zero state before entering
the gate.

PyTheus found gates CNOT(3, 3) 89 , CNOT(4, 4)

90 and the Fredkin gate 91 acting on a target input
photon in the computational zero state; see Fig. 59. A
post-selected Fredkin gate on the full input space has
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Fig. 59. Graphs for heralded quantum gates with reduced
input space.

been experimentally realized [96].
c. Post-Selected – When post-selecting a gate, all

outgoing photons are detected and thus destroyed. Such
a gate does not require as many resources as a heralded
gate, but it imposes restrictions, such as not mixing the
two output paths, on the remainder of the circuit, to
ensure that the presence of a photon in each output
of the gate can be ascertained. PyTheus found dif-
ferent post-selected high-dimensional CNOT gates, such

as CNOT(2, 3) 92 , CNOT(2, 4) 93 , CNOT(3, 3)

94 and the Toffoli gate 95 ; see Fig. 60.

4.8.1. Single Photon Sources for Quantum Gates

Experiments exploiting single-photon sources as an ad-
ditional resource for the construction of quantum gates
have been previously demonstrated [102]. Fig. 61 dis-
plays graphs for a heralded CNOT(2, 2) with two addi-

tional input photons 96 , a heralded CNOT(2, 3) with

three additional input photons 97 , and a post-selected

CNOT(2, 3) with two additional input photons 98 .

4.9. Combinatorial Measures

In this section, we demonstrate how PyTheus can
discover exceptional structures without computing the
quantum state. This ability might be useful for finding
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experimental configurations with particular symmetries
or properties that are interesting, independent of the re-
sulting quantum state. Such metrics can also be com-
bined with other objectives mentioned in the previous
sections.

4.9.1. Assembly Index

As an example for structural property discovery, we
consider the assembly index, which has been invented in
chemistry for the search of extraterrestrial life [236, 237].
Specifically, the assembly index counts the complexity
of building up a combinatorial structure, for instance,
molecules or — in our case — graphs. It counts the
number of independent processes that are necessary to
create a structure. The hypothesis is that a structure
with a large assembly index cannot be formed by natural
processes and would require complex (living) systems for
its generation. Strong indications in favor of this hypoth-
esis have been found in the study of millions of molecules
on earth [237].

Our goal here is to discover graphs with very high as-
sembly indices. The assembly index is a discrete struc-
tural metric that cannot be optimized directly using gra-
dients. However, we can use the weights of edges to trans-
form the discrete metric into a continuously differentiable
metric. A general procedure is to compute the average
combinatorial value of the weighted graph from sampled
discrete graphs. Here, the weights |ωi|2 are used as the
probability for sampling discrete graphs. While this pro-
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Fig. 61. Graphs for quantum gates with single-photon sources
as an additional resource.
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cedure is differential, it is computationally expensive as
many sampled graphs need to be evaluated to obtain an
average assembly index of the whole graph.

Alternatively, here we restrict ourselves to graphs with

exactly eight edges (with 4 99 and 6 100 vertices).
Here, the eight highest-weighted edges are used to gener-
ate the graph, and in addition, weights are used to change
the order of edges. The graphs in Fig. 62 present graphs
with very high assembly indices with 4 vertices and 8
edges as well as 6 vertices and 10 edges.
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5. OUTLOOK

This article uses a list of examples to showcase the
broad range of possibilities of digital discovery in quan-
tum optics. The goal to design one hundred novel and
intriguing experiments has led us to collect a diverse set
of tasks for which experimental setups could be designed.
To make the discoveries possible, we expanded the theo-
retical framework underlying the algorithm and produced
faster, more versatile open-source software. We hope
that this work can be an inspiration for experimental
physicists in two ways: (1) to explore some of the ex-
periments as they are proposed in this article (2) to see
that PyTheus can be used to design experiments for a
wide range of targets and for individually tailored spec-
ifications of experimental restrictions and resources. To
explore particular examples that have not been covered
in this article, the open-source library PyTheus can be
used. Many more avenues leave room for significant fur-
ther exploration, particularly within the optimization for
targets other than fidelity, as well as more specific exper-
imental constraints. For this, the PyTheus framework
can readily be expanded in the future.

A number of extensions that would be interesting in-
clude the discovery of experiments that maximize suc-
cess probability in terms of heralding efficiency or Bell
state measurement efficiency, especially as experimen-
tally available technologies became increasingly powerful
[238]. The potential of PyTheus on suggesting experi-
mental setups can pave the way to find experiments to
simulate quantum states, which are nowadays merely re-
alizable in extreme (thermodynamics) conditions, such
as high pressure and low temperature [239]. An excit-
ing extension would be the analysation whether we can
extend state generation to encoding the dymanics of a

quantum state into the weights of the graphs. Along
with this line of research, it is theoretically tantalizing to
explore the putative correlation between the complexity
of time-evolved states [240] and the complexity of asso-
ciated graphs as outputs of PyTheus.

As a final thought, we want to view our results through
an additional lens. We have created a dataset of 100
hand-selected quantum experiments that are some as-
pects exceptional (which PyTheus has discovered). This
dataset might be large enough for highly efficient artifi-
cial intelligence algorithms to bootstrap an intuition of
what properties make an experiment interesting, and al-
low them to produce proposals for new, hopefully equally
interesting quantum experiments. It would sure be ex-
citing to investigate the physical properties of the pro-
posals that the machine believes are interesting. In the
best case, it could act as an inspiration for new ideas for
the human scientist [241].
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V. Zwiller, K. D. Jöns, A. Rastelli, and R. Trotta, En-
tanglement swapping with photons generated on de-
mand by a quantum dot, Phys. Rev. Lett. 123, 160501
(2019).

[84] D. Llewellyn, Y. Ding, I. I. Faruque, S. Paesani,
D. Bacco, R. Santagati, Y.-J. Qian, Y. Li, Y.-F.
Xiao, M. Huber, et al., Chip-to-chip quantum teleporta-
tion and multi-photon entanglement in silicon, Nature
Physics 16, 148 (2020).

[85] F. Samara, N. Maring, A. Martin, A. S. Raja, T. J.
Kippenberg, H. Zbinden, and R. Thew, Entanglement
swapping between independent and asynchronous inte-
grated photon-pair sources, Quantum Science and Tech-
nology 6, 045024 (2021).

[86] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information: 10th Anniversary Edition
(Cambridge University Press; 10th Anniversary edition
(9 Dec. 2010), 2010).

[87] E. Knill, R. Laflamme, and G. J. Milburn, A scheme
for efficient quantum computation with linear optics,
nature 409, 46 (2001).

[88] S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, and
A. Zeilinger, Realization of a photonic controlled-not
gate sufficient for quantum computation, Phys. Rev.
Lett. 93, 020504 (2004).

[89] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P.
Dowling, and G. J. Milburn, Linear optical quantum
computing with photonic qubits, Rev. Mod. Phys. 79,
135 (2007).

[90] Y. Li, L. Wan, H. Zhang, H. Zhu, Y. Shi, L. K.
Chin, X. Zhou, L. C. Kwek, and A. Q. Liu, Quantum
fredkin and toffoli gates on a versatile programmable
silicon photonic chip, npj Quantum Information 8,
10.1038/s41534-022-00627-y (2022).

[91] E. Knill, Quantum gates using linear optics and
postselection, Physical Review A 66, 10.1103/phys-
reva.66.052306 (2002).

[92] T. C. Ralph, N. K. Langford, T. B. Bell, and A. G.
White, Linear optical controlled-not gate in the coinci-
dence basis, Phys. Rev. A 65, 062324 (2002).

[93] J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph,
and D. Branning, Demonstration of an all-optical quan-
tum controlled-NOT gate, Nature 426, 264 (2003).

[94] N. K. Langford, T. J. Weinhold, R. Prevedel, K. J.
Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and
A. G. White, Demonstration of a simple entangling op-
tical gate and its use in Bell-state analysis, Phys. Rev.
Lett. 95, 210504 (2005).

[95] F. Ghafari, N. Tischler, J. Thompson, M. Gu, L. K.
Shalm, V. B. Verma, S. W. Nam, R. B. Patel, H. M.
Wiseman, and G. J. Pryde, Dimensional quantum mem-
ory advantage in the simulation of stochastic processes,

Phys. Rev. X 9, 041013 (2019).
[96] R. B. Patel, J. Ho, F. Ferreyrol, T. C. Ralph, and G. J.

Pryde, A quantum fredkin gate, Science Advances 2,
e1501531 (2016).

[97] S. Daryanoosh, S. Slussarenko, D. W. Berry, H. M.
Wiseman, and G. J. Pryde, Experimental optical phase
measurement approaching the exact Heisenberg limit,
Nature Communications 9, 4606 (2018).

[98] Z. Zhao, A.-N. Zhang, Y.-A. Chen, H. Zhang, J.-F. Du,
T. Yang, and J.-W. Pan, Experimental demonstration
of a nondestructive controlled-not quantum gate for two
independent photon qubits, Phys. Rev. Lett. 94, 030501
(2005).

[99] X.-H. Bao, T.-Y. Chen, Q. Zhang, J. Yang, H. Zhang,
T. Yang, and J.-W. Pan, Optical nondestructive
controlled-not gate without using entangled photons,
Phys. Rev. Lett. 98, 170502 (2007).

[100] W.-B. Gao, A. M. Goebel, C.-Y. Lu, H.-N. Dai, C. Wa-
genknecht, Q. Zhang, B. Zhao, C.-Z. Peng, Z.-B. Chen,
Y.-A. Chen, et al., Teleportation-based realization of an
optical quantum two-qubit entangling gate, Proceedings
of the National Academy of Sciences 107, 20869 (2010).

[101] R. Okamoto, J. L. O’Brien, H. F. Hofmann, and
S. Takeuchi, Realization of a knill-laflamme-milburn
controlled-not photonic quantum circuit combining ef-
fective optical nonlinearities, Proceedings of the Na-
tional Academy of Sciences 108, 10067 (2011).

[102] J.-P. Li, X. Gu, J. Qin, D. Wu, X. You, H. Wang,
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[129] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied,
and P. Treutlein, Quantum metrology with nonclassical
states of atomic ensembles, Rev. Mod. Phys. 90, 035005
(2018).

[130] T.-C. Wei and P. M. Goldbart, Geometric measure of
entanglement and applications to bipartite and multi-
partite quantum states, Phys. Rev. A 68, 042307 (2003).

[131] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa,
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F. Häse, A. Jinich, A. Nigam, et al., On scientific un-
derstanding with artificial intelligence, Nature Reviews
Physics (2022).

https://doi.org/10.1063/1.1494475
https://doi.org/10.1103/PhysRevA.71.052331
https://doi.org/10.1103/PhysRevLett.90.177901
https://doi.org/10.1103/PhysRevLett.90.177901
https://doi.org/10.1103/PhysRevA.63.032303
https://doi.org/10.1103/PhysRevA.63.032303
https://doi.org/10.34133/2019/3474305
https://doi.org/10.34133/2019/3474305
https://doi.org/10.1103/PhysRevB.90.245419
https://doi.org/10.1103/PhysRevLett.123.160502
https://doi.org/10.1103/PhysRevLett.88.257902
https://doi.org/10.1103/PhysRevLett.88.257902
https://doi.org/10.1098/rsta.2016.0342
https://doi.org/10.1098/rsta.2016.0342
https://doi.org/10.1098/rsta.2016.0342
https://doi.org/10.1038/s41467-021-23258-x
https://arxiv.org/abs/2208.02271
https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1088/0034-4885/75/4/046401
https://doi.org/10.1103/PhysRevX.9.041017
https://doi.org/10.1038/s42254-022-00518-3
https://doi.org/10.1038/s42254-022-00518-3

	Abstract
	Digital Discovery of 100 diverse Quantum Experiments with PyTheus
	 Contents
	1 Introduction
	2 Graphs and Quantum Experiments
	2.1 Quantum State Generation
	2.1.1 Probabilistic Photon-Pair Sources
	2.1.2 Deterministic Single-Photon Sources
	2.1.3 Mixed States
	2.1.4 States Entangled in the Photon-Number Basis

	2.2 Quantum Measurements
	2.3 Quantum Communication
	2.4 Quantum Computation

	3 The PyTheus Library
	4 Hundred Experiments
	4.1 Generation of Entangled States
	4.2 Maximizing Entanglement
	4.3 Generation of Mixed States
	4.4 Generation of Entanglement in the Photon-Number Basis
	4.5 Towards Quantum Simulation
	4.6 Quantum Measurements
	4.7 Quantum Communication
	4.8 Quantum Gates
	4.9 Combinatorial Measures

	5 Outlook
	 References


