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1 Introduction

The successful detection of the gravitational waves (GW) [1] by the LIGO-Virgo-KAGRA
detectors opened a new era in precision astronomy and cosmology. Since then, the LVK
collaboration has detected around 90 GW events [2]. The primary source of these GWs
are the compact binaries and a worldwide network of ground-based [3-8] as well as space-
based GW detectors [9] are coming up to explore the dynamical evolution of these compact
binaries. The compact objects in the binary may be close to maximally rotating, as seen
in several recent detections [10]. Therefore, high-precision waveforms incorporating spin



contributions are essential to exploit the full potential in GW astronomy. Initial studies
extending the classical techniques to include spin were done in [11, 12], which was later
extended by [13-27]. The spin effects in the post-Newtonian formalism were developed
using the effective field theory approach in [28-43]. Another recently developed method of
using quantum scattering amplitudes involving massive particles of arbitrary spin were used
to obtain classical spin corrections to the two-body effective potential [44-52]. See [53-55]
for recent reviews and a more comprehensive reference to literature.

In the effective field theory approach, the current state of the art for the post-Newtonian
calculation for the conservative potential without spinning degrees of freedom is the 5PN
correction computed in [56-60]. Several partial results of 6PN [61, 62] are also known.
For the spin-orbit sector, the leading order (LO) effective potential was first computed
in [28]. The next-to-leading order (NLO) potential in [29, 30], and N?LO in [63], and
N3LO in [64, 65]. Similarly, for the quadratic in spin sector, the LO effective potential was
computed in [28]; the NLO in [32-35]; and the N?LO in [36-38]. Partial results for N3LO
were reported in [39, 40], and very recently the complete N3LO contribution has been
reported in [66]. The computation for the cubic and higher orders in the spin variables can
be found in [41-43], whereas the finite size effects are described in detail in [35, 42, 43].
Here, for maximally rotating compact objects, the N”LO spin-orbit sector contributes at
(3/2 4 n)PN order and N"LO spin-squared sector contributes at (2 4+ n)PN order.

In this article, following the same strategy adopted in [65], we present the complete
conservative N3LO quadratic-in-spin interaction potential, obtained by adopting the EFT
approach proposed in [28, 67] and using the computational diagrammatic techniques pro-
posed in [68]. In particular, we begin with deriving the required Feynman rules and then
the Feynman diagrams, where we employ the Kaluza-Klein (KK) parametrization for the
metric, for convenience. The corresponding Feynman amplitudes contain tensor integrals,
which are reduced to scalar integrals by means of a suitable set of projectors built out of
Lorentz invariance. The emerging scalar integrals, up to three loop, are further reduced to a
minimal set of independent integrals, dubbed master integrals (MIs), using the integration-
by-parts (IBP) identities [69, 70]. The analytical expression of the MIs are used to obtain
the analytic expression of the contribution of each Feynman diagram to the scattering am-
plitude. Finally, the effective Lagrangian is obtained by taking the Fourier transform of
the amplitude. The computational procedure has been performed through in-house codes,
in an automated manner using Mathematica routines with an interface to QGRAF [71],
generating the diagrams, xTensor [72], manipulating tensor algebras, LiteRed [73], per-
forming the IBP decomposition, inspired by several ideas implemented in EFTofPNG [74].
The derived effective Lagrangian contain higher-order time derivatives of the position and
the spin, which are removed by applying appropriate coordinate transformations. Then,
the EFT Hamiltonian is derived by applying the Legendre transformation. However, it
contains poles in the parameter of the dimensional regularization € = d — 3 (d being the
number of the continuous space dimensions), and logarithmic pieces depending on the
scale of the binary system and they are removed following the application of appropriate
canonical transformations, which is the main result of the article. The novel result for
the quadratic-in-spin interaction Hamiltonian are further used to compute gauge invariant



observable, specifically, the binding energy for circular orbits with aligned spins and the
scattering angle with aligned spins, and they agree with the results reported in [66].

The paper is organised as follows. In section 2, we review the description of the
spinning binaries within the EFT formalism. In section 3, we present the computation
for the N3LO quadratic-in-spin potential employing the Feynman diagrammatic approach
within the EFT framework. Then, in section 4, we describe the procedure of removing
the residual divergences and logarithms to derive the EFT Hamiltonian. We provide our
main result of the quadratic-in-spin Hamiltonian up to N3LO in section 5. In section 6,
we compute two observable from the EFT Hamiltonian, namely, the binding energy of the
binary system in circular orbits with aligned spin configuration and scattering angle for two
spinning compact objects with aligned spins. We summarize our main results in section 7.
In appendix A, we describe the notations used in this article and in appendix B, we provide
the Hamiltonians till N2LO in the quadratic-in-spin sector.

We provide the required EFT Feynman rules in the supplementary material as Feyn-
man_ Rules.m and the analytic results of the quadratic-in-spin Hamiltonian till N3LO in
the supplementary material as Hamiltonian.m.

2 EFT of spinning objects

In this section, we describe the effective action for a spinning compact object at the orbital
scale by considering the degrees of freedom of the gravitational field and the degrees of
freedom of the spinning compact objects, namely their center of mass and their spin. Then
we describe the techniques of the Post-Newtonian formulation of GR in detail and briefly
outline the procedure to compute the effective action.

2.1 Action

The effective action of the spinning compact binary can be described as the sum of the
action of the gravitational field and the point particle effective action for each of the
spinning compact objects as

Sef = SEH + Spp - (2.1)

Here Sgp is the usual Einstein-Hilbert action and it expresses the dynamics of the gravi-
tational field (g, ) along with a gauge fixing term,

— 4 4 uv
Sk = ~Toegr- / 00y/G Rlg) + 55 / 42/ g TIT (2.2)

where I'* = I'f_g? (in the harmonic gauge I'* = 0), I/ is the Christoffel symbol, G is
the Newton’s constant, R is the Ricci scalar, and g is the determinant of the g, .

The spinning compact objects can be described by a point-particle effective action of
each of them. This point-particle action can be written as an integral along a worldline in



the following way [42],
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(2.3)
2
where [,ES), Egi ), etc. denote Lagrangians containing nonminimal couplings at linear,

quadratic, etc. order in curvature specified below. We use the Pryce, Newton, and Wigner

gauge for spin supplementarity condition (SSC) given by S(q).. (u’(’a) + 4 /u%a)é'jo) ~ 0.
2 _ TR T : B g

Here, Ulyy = Guvlig)Uiy)s and Uy) 18 the four velocity, defined as Uy = da;(a)/dT. The

worldline x’{a) (1) represents the center of the spinning object and is parametrized by an

affine parameter 7, which we are going to gauge-fix to the coordinate time t by 7 = ct.

The Q’(Z’) denotes the angular velocity tensor of the spinning object and is defined as

d AAI/

WY AH (a)
oy =Maya— > (2.4)

where A’(‘a) 4(7) represent the tetrads along the worldlines, connecting the body-fixed frame

(denoted by upper case Latin indices) of the a'" compact object and the general coordinate
frame (denoted by Greek indices). The S(4),,
defined as the conjugate momenta to the A?a) 4 as

are the spin tensors of the spinning objects,

OLpp

7
o0 (a)

Sy = —2 (2.5)

The non-minimal coupling Lagrangians proportional to the different powers of curva-
ture tensor R in equation (2.3) can be represented as

R™ R™ ,SO R™ ,Sl R™ 7SQ
£ = £ 4 B 4 g8 (2.6)
where m = 1,2, ... and the n-th term in this series EEf}mﬁn) denotes that n powers of the

spin tensor is contracted explicitly to the Riemann tensor, only. Each of the Lagrangians in
this series contain a number of Wilson coefficients. Following the convention in [42], these
Wilson coefficients can be expressed as a function of the invariants’ m(q) and the S(Qa). We
then expand these Wilson coefficients explicitly as a series in S(Qa),

N N 2
(0) 2 (a) 4 (a)
Clay=C +0C <G2Nm? )) +C (G%m? )) . (2.7)

where the C((g)) depends only on the m,).

'Since we are only computing the conservative dynamics, the absolute value of the spin tensor is con-
served, i.e. d(|S])/dt = 0. Hence the Wilson coefficients, even though explicitly depend on 5?2, are time-
independent.



The contribution relevant for N3LO spin-squared from the spin-induced multipole in-
(R,S?)

teractions linear-in-curvature starts from £(a) and is given by,
(s _ 1 ©Y B g
fw = 2ma)C (CESQ)@ U(a) [S(Q)S(a)}STF A (28)
where £, = R#al,gu"‘u'g and the STF denotes the symmetric-tracefree part (in a 3-

dimensional comoving frame), which transforms irreducibly under the little group SO(3)
of massive particles and hence it makes sense to construct interactions from STF build-

ing blocks.
2 Q0
Moving on to quadratic order in curvature, the contribution from EES o ),2 entering
at 5PN order, after using the expansion (2.7) is expressed as
2 v
(R2,5%) _ 1 (@) ONUw) EwE" o
E(a) o 5 (CE2 )(a) e u? ) S(a) e (2'9)
a
The contribution from LEf‘;’Sl) start beyond the 5PN order and can be neglected here (since
2 Q2
e.g. EWEVO‘S& " = 0). However, there is a relevant term in Egi 5% [39], which reads as,
2 «a
(r2,52) _ 1/ () GxM(a) Epa B [ op v o
La 2 (CE252)(G) cd “?a) {S(G)S(a)}STF o (2.10)

These completed the description of the relevant contributions coming from all non-minimal
couplings contributing at N3LO, see (2.8), (2.9), and (2.10). We note that in order to
simplify the Feynman rules, we follow the custom to drop the STF projection in (2.8) and
to replace in all nonminimal couplings the Weyl tensor in £, B, by the Riemann tensor
(being equivalent to a field redefinition). The disadvantage of this practice is that spins
in the Cgg2 coupling are not manifestly appearing in an STF combination any more, but
could be brought into this form using a field redefinition.

We employ dimensional regularization for the computation of multi-loop Feynman
diagrams and write the gravitational coupling constant in d spatial dimensions as

d—3
Ga = Gn(VamemRy) (2.11)
where, g is the Euler-Mascheroni constant, and Ry is an arbitrary length scale.

2.2 Post-Newtonian formulation of general relativity

The inspiral phase of the binary compact objects contains three widely separated scales,
namely, the length scale related to the single compact object (Rs) (Schwarzschild radius),
the orbital separation of the binary (r), and the wavelength of the radiated gravitational
wave (A). The scales have the following hierarchy

Ry <1 <\ (2.12)

2We point out that the quadratic powers of spin (S(Qa)) on the r.h.s. of (2.9) is a scalar quantity and
appears due to the use of the expansion of the Wilson coefficients, as shown in equation (2.7). As there is no
explicit spin tensors contracted with the quadratic-in-curvature tensor (R2), in the Lh.s. this contribution

2 g0
is denoted by £Ef) S0,



As the wavelength of the radiation is much longer than the orbital separation and the
objects are moving non-relativistically, we can decompose the gravitational field (g, ) as
an expansion on the asymptotic flat space-time (9u,): gy = N + Hyw + i_zW, with two
different field modes [67]. H,, is the short-distance mode (orbital) with scaling (ko,k) ~
(v/r,1/r), mediating the gravitational interaction between the two compact objects and
is known as the potential mode. Bw, is the long-distance radiation mode with scaling
(ko, k) ~ (v/r,v/r), consisting of the on-shell gravitons emitted from the system.

Due to the virial theorem for bound orbits v? ~ 1/r, we use v?/c? ~ GNM/rc? as a
formal dimensionless expansion, with one PN order corresponding to 1/c?. Since the spin
variable S, is related to the dimensionaless spin X(q) by S(,) = Gm%a)x(a) /¢, we rescale
the spins as S(,) — S(4)/c in order to make the PN counting in 1/c manifest.

We compute the conservative potential of the binary by ignoring the radiation modes.
We further decompose the potential mode gravitons employing Kaluza-Klein (KK) param-
eterization [75, 76], where the different components of the metric g., (= 1w + Hy) are
specified by three fields, namely, a scalar ¢ field, a 3-dimensional vector A; field, and a
3-dimensional symmetric rank two tensor o;; field. Following the KK parametrization the
metric is expressed as

e2¢/c2 —€2¢/02%
Juv = 2 A _ 2 2 A A ’
_62¢/C 721 —e 2¢/C FY’L] + 62¢/C 722?2]

where, Yij = 5@- + O'Z'j/CQ.
The effective action for the binary at the orbital scale is then expressed by integrating
out the relevant gravitational degrees of freedom from the Seg as

exp [i / dt ﬁeﬁ} = / D¢DA;Do;j elSentoee) (2.13)
where, Lqg signifies the effective Lagrangian and it can be further decomposed as
Eeff = ,Ceff - Veff . (214)

Here, K.g denotes the kinetic term, and Vg denotes the effective contribution due to
gravitational interactions between the two compact objects.

The effective potential Veg can be demonstrated in terms of connected, classical, 1
particle irreducible (1PI) scattering amplitudes as

_— (2
Vet = i lim / P (X)) =) , (2.15)
—9.Jp _ )

where p is the transfer of momentum between the two compact objects and the diagram
in the above equation represents all possible Feynman diagrams consisting of gravitons (¢,
A;, and o;;) and the two point particle denoted by the two solid black lines. The gravitons
mediate the gravitational interaction between these two compact objects.



Our goal in this article is to compute the contribution of the quadratic-in-spin effective
potential up to N3LO. For this purpose, we further decompose the effective kinetic and
potential terms in the following way

K:eff = K:pp + Kspin ) Veff = Vpp + VSO + VSS 5 (2-16)

where K, and V), constitutes the kinetic and potential contributions for the center of
mass degrees of freedom of the point particles and Kgpin, Vso, and Vsg constitutes the
kinetic, linear in spin potential and quadratic in spin potential contributions.

The effective kinetic terms can be expressed as

1 1, (1 1 4 (1 5 ¢ (1 1
Ko = 32 mio [+ vt () + 55700 () + v () +0 ()

a=1,2

1 .. .. /1 o 1 1 3
o Qi ot - L J _ — 2
,Cspm = Z { 2S(a)ﬂ(a) <C> + S(a)v(a)a(a) (63) [2 + 8V(a) <

a=1,2

and the effective potential terms can be written as follows

Vp—VN+<1>V1PN+<1>V2PN+(1)V3PN+(’)<1>, (2.19)

Vso = <013) {VE8 + ( ) W0 + < ) VNzLO} +0 (19) , (2.20)

Vss = (34) {VE% + ( ) VS o+ ( ) V8o + ( ) V8ol +0 (;) . (2.21)

Here, VN corresponds to the Newtonian potential; V; with j = {1PN, 2PN, 3PN} denotes
the corresponding PN correction for the non-spinning part of the potential; Vjso with

j = {LO, NLO, N2LO} denotes the corresponding correction to the spin-orbit coupling of
the binary system; and VJ-SS with j = {LO,NLO, N?LO,N3LO} denotes the correspond-
ing correction to the quadratic-in-spin coupling of the binary system. Fach VJ-SS is then
separated with respect to their origin in the effective action as; S1S2 and S? sectors cor-
responding to the first three terms present given in (2.3), ES? corresponding to the action
given in (2.8), E? corresponding to the action given in (2.9) and E2S? corresponding to
the action given in (2.10). Our goal in this article is to compute the VE%LO employing the
advanced techniques of multi-loop scattering amplitudes, as further discussed in the next
sections.

3 Computational algorithm

We employ a Feynman diagrammatic approach following equation (2.15) to compute the
effective potential. First, we generate all the relevant topologies contributing at different



Order | Diagrams | Loops | Diagrams Order | Diagrams | Loops | Diagrams
LO 1 0 1 LO 1 0 1
1 3 1 1
NLO 7 NLO 4
0 4 0 3
2 27 2 7
N2LO 58 1 24 N2LO 25 1 12
0 7 0 6
3 125 3 15
2 342 2 101
N3LO 553 N3LO 168
1 76 1 43
0 10 0 9
(a) Spinl-Spin2 and Spinl? (Spin2?) sector. (b) ES? sector.
Order | Loops | Diagrams Order | Loops | Diagrams
LO 1 1 LO 1 1

(c) E? sector. (d) E?S? sector.

Table 1. Number of Feynman diagrams contributing different sectors.

orders of GyN. The virial theorem implies that contributions at N"LO constitute all the
terms proportional to G{\I where [ = 1,2,...,n + 1, and consequently, we take into ac-
count all the topologies at | — 1 loops for the contributions at specific order I. So, for the
evaluation of the N3LO quadratic-in-spin potential, we generate all the relevant topolo-
gies till the order G§; (3-loop) employing QGRAF [71]. There is 1 topology at order Gy
(tree-level), 2 topologies at order G% (one-loop), 9 topologies at G3; (two-loop), and 32
topologies at order G4N (three-loop). The topologies are dressed with the KK field and we
use the Feynman rules, obtained from the effective action of the PN expansion, to acquire
all the Feynman diagrams contributing to the given order of Gy and v, depending on the
specific perturbation order. We provide the relevant Feynman rules after the KK parame-
terization in the supplementary material as Feynman_ Rules.m. The number of diagrams
corresponding to the particular sector of quadratic-in-spin potential at a particular order
in 1/c and of particular loop topology are shown in table 1.> The diagrams contributing
to the non-spinning and spin-orbit sector are provided in [65]. The generated Feynman
diagrams can be understood as two-point multi-loop Feynman diagrams with all internal
lines mass-less and the external momentum, identified with the momentum transferred be-
tween two sources, as shown in figure 1. We perform the tensor algebra using xTensor [72]

3While considering the spin effects, we count only the representative Feynman diagrams, where the spin
can contribute from any of the world-line graviton interaction vertex present in the diagram. Additionally,
the diagrams, which can be obtained from the change in the label 1 <+ 2, are not counted as separate
diagrams.



Gravity Multi-loop
Diagrams Diagrams

Figure 1. Diagrammatic correspondence between the 4-point EFT-Gravity graphs and the 2-point
QFT graphs.

to translate the Feynman diagrams to their corresponding Feynman Amplitudes. Conse-
quently, we can write the generic expression of the effective potential corresponding to any
I-loop Feynman graph G as the following

0 N ()
BTy, a2, 1,02, v
V) = NEVH2 (3; R ) P (T)—2(2)) Nove
C vy, \(a) »P(a) sH2, ’
o » fote ki oec Do(p, ki)
Coefficient that depends Fourier integral Multi-loop integral

on orbital variables

(3.1)

(i) N¢ stands for a tensor polynomial built out of the world-line coordinates (a:’(‘a)), the
spin tensor (S(q).), and their higher-order time derivatives,

(ii) p denotes the transfer of the momentum between the sources (Fourier momentum),
(iii) Np is the tensor polynomial depending on p,

(iv) k; denotes the loop momentum,

(v) D, is the set of denominators corresponding to the graph G,

(vi) Nz is a tensor polynomial depending on external momenta p and loop momenta k;.

We employ a set of projectors to reduce the multi-loop tensor integrals to scalar integrals.
The projectors are built with the Lorentz invariant external momentum (p) and the back-
ground metric by exploiting Lorentz invariance. With the application of the projectors,
the numerator (Nps) of the multi-loop integral translates to

Ny o (py ki) — Nt (p, ki )N;I’VZ’"' (p), (3.2)

1,002, 1,002,

where, Ny is a polynomial, which depends on the scalar products built out of external
momentum (p) and the loop momentums (k;). Specifically, we use projectors up to rank
6 to compute the N3LO quadratic-in-spin effective potential. Following this procedure,
we obtain many scalar integrals, which are not all independent. There are linear rela-
tions between these scalar Feynman integrals, thanks to dimensional regularization, known
as IBP relations [69]. These IBP identities can be generated and solved algorithmically



and automatically, thanks to several publicly available automatic IBP solvers [73, 77, 78].
Specifically, we use LiteRED [73] to build these IBP identities and solve them, thus obtain-
ing a smaller set of independent scalar integrals, known as Master integrals (MIs). For the
entire computation of N3LO quadratic-in-spin effective potential, we obtain 1 MI at one
loop, 2 MIs at two-loop, and 3 MIs at three-loop. The MIs till three-loop are already known
in the literature and have closed analytic expressions in d dimension. The expressions of
these MIs are provided in appendix B of [65].

With the evaluation of the multi-loop integrals, we apply the Fourier transform to the
tensor polynomials, which have the following generic form

[y Nz N, ) 1) (33)
p

Here, Ny and N are the tensor polynomials depending on the Fourier momenta p and
f(p) is a function of the external momentum obtained from the evaluation of the multi-
loop integrals. We require Fourier integrals till rank 8. After the Fourier transformation,
we expand the expression as a Laurent series in € around d = 3 and obtain the effective
potential, which depends on the orbital variables, namely, X(4), S(4), and their higher-order
time derivatives.

We perform the generation of the relevant Feynman diagrams, translation of them to
their corresponding multi-loop integrands, application of IBP reduction, and the Fourier
transformation via our in-house code in an automated manner, thus obtaining the full
effective potential. The different steps of this procedure have been explained using a flow
chart in [65].

4 Processing the effective Lagrangian

The conservative quadratic-in-spin potential at N3LO contains higher-order time deriva-
tives of the position (a(,), a4y, d(4), +-+) and the spin (S(a), S(a), --+) of the compact
objects. Specifically, we obtain the 6th-order time derivative in the position and the 5th-
order time derivative in the spin. Besides, the effective potential in the non-spinning sector
at 3PN, the N3LO quadratic-in-spin potential also contains poles in the dimensional regu-
larization parameter € and the logarithmic terms of the form log (RLO) We must eliminate
higher-order time derivatives and the divergences to obtain the EFT Hamiltonian. All the
logarithms in this computation result from a poor choice of coordinates, as there are no tail
effects present either at the 3PN non-spinning sector or N3LO quadratic-in-spin sector. So,
we can define a set of suitable coordinate transformations to eliminate these contributions.
First, we describe the elimination procedure of the higher-order time derivatives. We
then demonstrate the appropriate coordinate transformations required to remove the di-
vergent and the logarithmic terms, thus obtaining the EFT Hamiltonian free of them.

4.1 Elimination of higher-order time derivatives

Here, we discuss the procedure for the removal of all the higher-order time derivatives, by
defining appropriate coordinate transformations [37, 79-82]. Under a small arbitrary shift

~10 -



in the coordinate x(,) — X(q) + 0X(q), the change in the Lagrangian is

(SE i 1 (52£ i ] 3
e (axf ) RS (&cm&c{)) X0y 9xla) + O (%)) - (4D

We can choose the small arbitrary shift 6x(,) in such a way that £+ 6L is free of the a(,),
assuming that the equation (4.1) is linear in a(,) at LO. We can also apply the total time
derivative on the dx,) to modify the equations in such a way that terms involving higher-
order time derivatives of a(,) are removed. Following the same strategy, we can define a
small arbitrary transformation simultaneously to the rotation matrix Az(fl ) = Az{l) + 5Azja )
and the spin SZ(JZ )~ Séi )T 55’@ ) to eliminate the higher-order time derivatives in spin.
A generic rotation can be expressed in terms of a matrix exponential e“(@ such that the
transformation of the rotation matrix and the spin can be described as A, — A(q)e“@
and S(,) — e ¥@ §,)e“@, correspondingly. Consequently, the small arbitrary shift in the
rotation matrix becomes

AL, = Ayl +0 (wly) (4.2)
where the w?j) denotes the antisymmetric generator of the rotation matrix, and similarly
the shift in spin becomes

ij _ ogkli, Ik 2
080 = 28wl + O (wly) - (4.3)

Following these transformations, the change in the Lagrangian® becomes

. 1\ 1 Yij o ij oV i 2 2
e=—(7) gt - (55(])) 350y + O (w05 ) - (44

So, assuming the equation of motion is linear in S(a) at LO, we can build the wzfl ) in such a
way that £+ 3L is free of S(,). We can also apply the total time derivative on the equation
of motion to define the modified equations in terms of higher-order time derivatives of S,
thus removing them from the new effective Lagrangian.

We use this approach iteratively for the elimination of the higher-order time derivatives

from the N3LO quadratic-in-spin potential. Specifically, we perform 5 iterations, where

1. we remove the terms with a,) and its higher-order time derivatives from the LO and
NLO spin-orbit potentials,

2. we remove S(a) and its higher-order time derivatives from the NLO spin-orbit po-
tential,

3. we remove the a(,) and its higher-order time derivatives from non-spinning 2PN and
3PN potentials as well as LO and NLO quadratic-in-spin potentials,

"Here V = - (£- (-38,927,) ).

- 11 -



4. we remove S(a) and its higher-order time derivatives from the NLO quadratic-in-spin
potential,

5. we remove the a(,), S(a) and their higher-order time derivatives from the N?LO spin-
orbit potential as well as N°2LO and N3LO quadratic-in-spin potential.

After each iteration, we obtain a new Lagrangian and compute the equation of motion
again to be used in the next iteration. One can check that at each step contributions cubic
in 0x(4) and quadratic in w(,) are negligible (higher order in spin or the PN approximation),
in contrast to an (incorrect) insertion of all higher-order time derivates in a single step.
Following these steps, we obtain the effective Lagrangian, which depends on the position,
velocity, and spin only.

4.2 Computation of the EFT Hamiltonians
We derive the EFT Hamiltonian by applying the Legendre transformation on the effective

Lagrangian

H(Xa P, S) = Z p’éa)).(’éa) - £(X7 X? S) ) (45)
a=1,2

where p’ denotes the canonical momenta and it is defined as
i 0L(x,%,S)
Plo= " ox

(a)

. (4.6)

We express XE a) in terms of p% a) by inverting this relation in every order of 1/¢. Exploiting
this equation, we obtain a relation between )'(Z('a) and p’@ and using it in the equation (4.5)
we obtain the required Hamiltonian #H(x, p, S).

4.3 Removal of the poles and logarithms

Both the Hamiltonian and the Lagrangian obtained in the previous step contain divergent
pieces and logarithmic terms, which can be eliminated following appropriate coordinate
transformations. In the Lagrangian description, we can employ a set of total derivative
terms with arbitrary coefficients, which are determined by demanding the cancellation of
the divergent pieces during the elimination of the higher-order time derivatives as described
in section 4.1. Another alternative method to remove such spurious divergent terms and
logarithmic terms is to add counter terms [83] in the point particle action (2.3), which can
then we removed by a field redefinitions, i.e. they vanish on-shell. On the other hand, in
the Hamiltonian description, we can utilize the properties of the canonical transformation?®
to remove the poles and the logarithmic terms, namely

H =H+{H,G}, (4.7)

5The Poisson bracket is defined as

N N
9A 9B  9A OB A 0B
Z Iy Opy 9y O ; W7 o5 9SG

i=1

where the last term is ignored in the context of the current analysis since it contributes to higher PN orders.
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where G represents the infinitesimal generator of the arbitrary canonical transformation
and H’ is free of the divergences and logarithmic terms.

Here, we follow the procedure of removal of the poles and the logarithms in the Hamil-
tonian description, where we derive all the necessary suitable canonical transformations.
Specifically, we construct an ansatz with several arbitrary coefficients for the infinitesimal
generator G and build a system of linear equations in terms of those unknown coefficients
by requiring the elimination of the divergent pieces in H’. The solutions of this system
of equations provide a set of values for the arbitrary coefficients, thus obtaining the final
effective Hamiltonian free of poles and logarithmic terms. In the next sections, we illus-
trate the strategies for the elimination of the poles and logarithmic terms from the 3PN
non-spinning sector and the quadratic-in-spin N3LO sector.

4.3.1 3PN non-spinning sector

In the non-spinning sector the 3PN corrections has been known for a long time [84]. Fol-
lowing [84], we pursue the same procedure, by adding a total derivative term with the
complete 3PN Lagrangian, to remove the divergent pieces.

ﬁTD = <616> %% [G;%I (Cl (V(l) . l’l) + c2 (V(Q) . n) >‘| N (48)

with,
1 3

1
a =3 (tmlyme) —mamy) . =g (mhyme —Amamly) . (49)

We start adopting the procedures for the removal of a’ and S¥ and their higher-order
time derivatives as mentioned in section 4.1 with the 3PN Lagrangian along with the to-
tal derivative term. Ultimately, the divergent pieces are eliminated, thus deriving a finite
Lagrangian as well as free of any higher-order time derivatives till 3PN. We build the
Hamiltonian by applying the Legendre transformation on this Lagrangian and the Hamil-
tonain still contains the logarithmic terms. So, we construct the ansatz needed to define
an appropriate canonical transformation in the Hamiltonian description to remove these
logarithmic terms. We build the following generic ansatz for the arbitrary infinitesimal
generator as,

1\ G¥ 1 1
G3pN = <66> 2 (91m(1) (p(1) 'Il) +92% (p(Z) : n)> ) (4.10)
with,
9n = grmlog (r)  forn=1,2. (4.11)
Ry

Using this generator, we obtain the canonical transformation following eq. (4.7). We con-
struct a system of linear equations in the unknown coefficients, defined in eq. (4.11) by
demanding the cancellation of the logarithmic pieces. We solve these set of equations to
obtain

gr1 = m(l)m?Q) — 4m:(31)m(2) , gro = 4m(1)m‘z’2) — m?l)m@) . (4.12)
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4.3.2 Quadratic-in-spin N3LO sector

In the quadratic-in-spin sector at N3LO, we eliminate both the divergent and the logarith-
mic pieces by finding an appropriate canonical transformation in the Hamiltonian descrip-
tion. For this purpose, we construct the following ansatz for the infinitesimal generator
stimulated by [37],

Gss—N3po = Usis2-N3Lo + 9s2-N3Lo (4.13)

where,

Js1s2-N3LO = (;0> Cﬁ\]{ (SE{)S’g%)) <g3ml(1) (p(1) 'n) + 94ml(2) (P(z) n))
(s3n) (310 (o n) <o (v )

+0r(S0)SEyplyn) + 05 (ST Sam'ply))
+90(8{ ST pla’) + 910 (ST S{o m'pl)) } : (4.14)
1N G [ fij i 1 1
Gg2_N3L.0 = (010> 7”4{ (S({)S({)) (gnm(l) (p(1) : n) +912@ (p(2) : n)>
+ (Si’l‘C SiF ninj) L ( ~n> + 1 ( ~n)
(1)P(1) g13 ma P@) 914m(2) P(2)

+ 915 (Sé’f)8€f)pél)nj> + g16 (Sé’f)S{f)p€2)nj)} + (1 2).

(4.15)
The gps are the unknown coefficients and defined as
1 r
9n = Jen— + grn log () R forn=3,4,---16. (4.16)
€ Ry

Following eq. (4.7), we use the ansatz for the infinitesimal generator defined in eq. (4.14),
(4.15) to obtain the canonical transformation and prepare a system of linear equation in
terms of the unknown coefficients in eq. (4.16) by requiring the cancellation of the divergent
as well as the logarithmic pieces. Next, we solve them to determine the arbitrary coefficients
as following

1 1
gs=15 (5miay —61mfy) T (61m{z) —5m{y))
1 1

gw_5 (61m(1) 5m(2>) , 95625 (5m(1) 61m(2)) )
gor Sty =5l ges = 1M i)

€ 10m(1) € 10771(1)
g 9__577’[,(1) 61m(2) g 10:_5m(1) 61m<2>

‘ 0m@a ‘ 10m(z)
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3 3
gr3=—— (61m?1) —5m%2)) ) 9ra=5 (5m?1) _61m?2)) ’
10 10
) 1
915=5(=3) (61m{y) —5miy)) gre=7(=3) (5m{y) —61m{y) ,
2 2 2 2
P (61mfy) —5miy)) P (61mfy) —5miy))
10m1) ’ 10m )
2 2 2 2
gy 2 omiy —01mty) sy S miy =61miy)
102 ’ 10m2) ’

(C<o>

ESQ) " (—175m3 +16mims)+30mims

Ge11=

(0) _
2mimeo — 159 (CESz)(l)m1m2> R Gel2=— o ,

(cggQ) " (175m3 — 16m3ma) — 30m3ms
1

1 ©)
g613:ﬂ (159 (CESZ> (1)m1m2 —2m1m2> s Jela=— 7 ,

(cgz) ( (16m? — 175m3) +30m?
b

2 —159(C<°>.) , S ,
ma ES2 (1)m2 ge16 351,

3 ((ngg) (—175m%+16m?m2)+30m%m2>
(0) o (1)
159 (C’Esz>(l)m1mg—2m1m2> , Jgri2= 70m1 s

ES2

(3) 3 ((C<0) ) (—175m§+16m%m2)+30m%m2)
— (0) (1)

3=—2 (1 —2 =—

gris < 59 (CESQ)(l)mlmz mlmz) , grLi4 14, )

14

\ 3 ((cggz) (16m? —175m§)+30m%>
gris=o= | 159 (0(0)2) ma —2ma grie= @
35 ES (1) ’ 35m

Ultimately, following these steps, we derive the full effective Hamiltonian, which is free of

the divergent and logarithmic pieces, in the quadratic-in-spin sector till N3LO.

5 Results

In this section, we illustrate the results for the effective Hamiltonian till N3LO. For the
convenience, we introduce a set of dimensionless variables, and write the Hamiltonian
in terms of these variables, thus obtaining a compact form. We define the total mass
M = my + m2), and the reduced mass of the two body system p = m(l)m(g)/M, the
mass ratio ¢ = my) / m(z), the symmetric mass ratio v = w/M, and the antisymmetric
mass ratio § = (m(1) — m(a))/M. The relations between these dimensionless variables can
be expressed as

mome) kg (1= (5.1)

V —m, —— = — = =

M2 M (1+¢)? 4

Furthermore, we choose the center of mass (COM) frame of reference and show the Hamil-
tonian in the COM frame, for convenience. The momentum in the COM frame is defined
as p = p(1) = —P(2), and the orbital angular momentum can be expressed as L = (r X p).
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Consequently, we obtain p? = 13%4—52 /72, where p, = p-n, p = |p| and L = |L|. Specifically,
we use the following definitions in terms of dimensionless parameters

2
~ P - rc =~ Lec ~ S(a) ~ H
_ P _ L= S |\ = = —. 5.2
p Lic ) r GNM ) GNMH ) (a) GNMM ) H ,UCQ ( )
The total EFT Hamiltonian contributing towards the quadratic-in-spin sector till N3LO is
written as
H = H~pp + 7'~lso + ﬁsg , (5.3)
where,
~ ~ 1 1
prZ%OPN+<C>H1pN+< )H2PN+< )H3PN+(9( )7 (5.4)
g (LY gs0 o=
HSO — 63 HLO + HNLO ‘l‘ HNQLO + Cg ) (55)
~ ]_ 2 ]_ ~ ~ 2
Hes = 4> (7—[5182 +H o + HES ) (Cﬁ) (HRES + Hivo + HEo)

S1S2 ES?2
+ (Cg) (H 2LO + HNQLO + HN2L0>
1 ~ 1
+ ( ) (HRE2 + Hyoo + Hisio + HEo +HED) + O (ClQ) . (5.6)
In the non-spinning part, the Hamiltonian till 3PN is known in the literature [84] and in
the spin-orbit sector the Hamiltonian is known till N2LO [63]. We present the novel result

of the HNgLO in the COM frame following an EFT approach in the following as
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The novel computation of the /’LNKI%ELO along with the previously known lower order
pieces of the Hamiltonian as well as the non-spinning and the spin-orbit Hamiltonian
permits us to obtain the total quadratic-in-spin N®LO Hamiltonian adopting the EFT
formalism. The known lower order Hamiltonians in the non-spinning and spin-orbit sectors
are reported in the appendix C of [65], where as the quadratic-in-spin sector lower order
Hamiltonians are reported in the appendix B. The total Hamiltonian in the generic frame
is also provided in the supplementary material as Hamiltonian.m. Recently, the total
Hamiltonian at N3LO has been also reported in [66]. However, as the Hamiltonians are
gauge dependent quantities, we perform a comparison of the results of gauge-independent
observable in the later part of the article.

6 Computation of observables with spin

The derived generic Hamiltonian is still gauge dependent, because of it’s dependence on
the radial coordinate. So, we can compute observable, which are gauge invariant and
comparable with other results in the literature. In this section, we focus on the computation
of two gauge invariant observable, namely, the binding energy, and the scattering angle.

For this purpose, we adopt the COM frame, where p(;) + p(z) = 0, as described in
section 5. We also assume the aligned spin configurations, which implies that the spins
are aligned to the direction of the orbital angular momentum of the compact binary. Such
aligned spin configuration is realized by

S(a) = S(a) p=0 = S(a) : (I‘ X p) = S(G)L, (61)

with, L = |L| and S(a) = |S(a)|
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6.1 Binding energy for circular orbits with aligned spins

The gauge invariant relation between the binding energy and the orbital frequency for
circular orbits is obtained by eliminating the dependence on the radial coordinate. For
circular orbits we have L
OH(7, L, S(a))
or

We invert the above relation to express 7 as a function of L. Then we substitute L as a

—0. (6.2)

function of @, the orbital frequency defined as

- 87‘7(2—/, §(a))

w = -~ .
oL

Additionally, we define a gauge invariant PN parameter x = @

(6.3)
2/3_ Following the above
procedure with the Hamiltonian given in section 5 we obtain
E(x,8(4)) = Epp(7) + Eso(x, S()) + Ess(@, S(a)) » (6.4)
where E,, and Ego are reported in [65], and
Ess(z, S(a)) = Esis2(x, S(a)) + Es2(z, S(0))
+ Egg2 (2, S(a)) + Brsz(, S(a)) + Egz2 (@, S(4)) - (6.5)

The individual terms in the above equation are given as,

~ ~ o~ 5 5 35 1001 371
Egis2(,5) = S1)S(2) {xB et {6V+ 181/2} o {SV T2 v - 2161/3}

243 2107 123 147 13
6 _ _ 2\ 2 3 4
+x{16u (16 327r)1/+81/+161/}}, (6.6)

~ ~ 25 1 ) b)
ESQ (.’E, S) = S(gl) {1'4 {181/2 —+ 6 <—2V+ 6V2> }

1 4 1 21 21
+2° fOZ/Q—QZ/S—I—f ——V—ZVQ——?VS’
3 108 q 4 6 36

194 4 1
Lo J1947 5 48357 159 ,
112 560 16

1 [ 243 747 18972\ , 13731 4 153 ,
+—-|\———Vv+ |- Ve — V4 —v
q 16 16 2048 280 16
+(1+2), (6.7)
o (0) ~ 1v 5 1/5 5
EEsz(Jf, S) = (CESZ)(D 5(21) {q;3 {qQ} +,1‘4 {31/2 —|—5 (4l/+ 1y2

+2° E1/27§1/3+1 @VqLEVQ—%VS
4 18 qg \ 16 48 48

1
+966{789 2 156 5 5,

14

28 7 8

L1405 (BTATR® 2389 o 555 4 21,
q \ 32 2048 32 56 32

+(1e2), (6.8)
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s @\ s , 1
Bz (2, 8) = (cEZ )(1) 520 {9yd (1 + q> } T 2), (6.9)
S (e ) g2 e[ (1,1

The equation (6.6) agrees with previously known classical results of [85], and the equa-
tions (6.6), (6.7), (6.8), (6.9) and (6.10) agree® with recent results given in [39, 66] derived
using similar EFT techniques as presented in this paper.

6.2 Scattering angle with aligned spins

In this section, we compute the scattering angle considering an aligned spin binary system
following [45]. First, we re-scale the spin variables as a(q) = S(q)/M(q)- In the COM, the
Hamiltonian # is expressed as a function of p,, L, r, and S(a) and inverting that we obtain
pr(H, L,7,S()). Then the scattering angle x is given by

L,r, S(a))

opr(H,
X(H, L, S(y) = —/dr - . (6.11)

We invert the relation between the Lorentz factor v and the total energy per total rest
mass I' = H/(Mc?) given by

1 -1
1+ , (6.12)

7= \/1—1;2/02: 2v

where, v = |F| is the relative velocity of the compact objects, and the relation between the

total angular momentum L and the impact parameter b given by
uyvb r—-1 o
L= T + Mec (2) (a+ —7o ) (6.13)

where, a4y = a(1) +a(z) and a(_y = a(1) — a(z). With the above inversions, we trade H for

v and L for b. This allows us to express the scattering angle as

X(U, b, S(a)) ==

8~"" 7b7 7SG/
7 /drp(v r ())777. (6.14)

Uy b

Now, applying the above procedure with the Hamiltonian given in section 5, we obtain the
scattering angle computed in the COM for aligned spins, which can be expressed as

X(Uv b, S(a)) = pr(’U, b) + Xso (U) b, S(a)) + XsS (Ua b, S(a)) ) (615)
where xpp and xso are reported in [65], and

xss(v, b, S)) = xs152(v, b, S(a)) + xs2(v, b, S(a))
+ xEs2(v, 0, S(a)) + XE252(v, b, S()) + XE2(v, b, S(a)) - (6.16)

SWe point out that our expression of binding energy contains the expanded Wilson coefficients, which
only depend on the invariant m and the corresponding results in [39, 66] are provided in terms of Wilson
coefficients depending on two invariants, namely m and S2.
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The individual terms in the above equation are given as,

1
xsisa+xs2 07 GnM v?
71_‘ b262 [a(+) Ja(+)a< ) a( ):| ( U2b ) 0 + O 672
~1 —1]
1 41 55 |
+W(GNM)2 o a2 o [ (2) -2 || (2
v2b 4 16 c? 128 ct
-1 19 —41]
1 102—2v 2332 — 499y
+(GNM)3 2o |+| 32 v L 688 2
v2b c? 14 ct
—1 —38—6v —748—37v
1704 —9925v
+-L 288 v
140 N b
—1096+5377v
63—2v —11063+ 2638w
+7T(GNM)4 ) 22 vy 15 4206+ 308 v
v2b 16 c? 448 | + v ct
—21—6v 26574+ 790v
19102720+ (—29293696 + 13555572 )v ]
v
_m —256(—24640+11507l/) (C(’>
—4730880+ (8911744 — 13996572 )v
5 v®
+O( G5 ) (6.17)

Xes2 V2 G M 2 v
s b s {9 {[] -] ()]
GNMN? ) 1|3 1]27| [(v* 1 |117 v
e e)
+(GNM)3 4l |To-v e 1|78 131 v +1 1096 — 5013w
v2b 0 8 2 7 216 * 076
GnMN\*) 15 |[11—v v2 15 |2867—T708v v
+7r( v2b ) 4| 4 tou 627 — 28y 7
— 2 6
15 l1026816 (21848324 271117 )u] (U )}}JFO(G%ZS) (6.18)

3l

- v
114688 128(3262 — 395v) e
2 6 s
XE2 v GNM 45 1 v 5 U
I :W |:a%32(+) 6a%2(*):| ’ {W( v2b ) 16 [ 676 +0 Gchig y (619)

2 . .
Xg2g2 U GnMN\*15 (1] (v 5 U
T [0123232(+> 5@%252(7)} {7‘{'( TS ) 32 [ ‘| (CG)}JrO(GN,cS) , (6.20)

— (0 (0) i
where, a]%:SQ(i) = (CESQ)(D a%l) + (C’ESQ>(2) a%Z) and simillarly for a%252(i) and a%z(i).
The equation (6.17) agrees with previously known classical results of [85], and the equa-
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tions (6.17), (6.18) and (6.20) agree with recent results given in [66] derived using similar
EFT techniques as presented in this paper. Note that the scattering angle depends on
the same combination of ng and CSJZ)SQ as the binding energy. Matching both constants
independently hence requires another observable in a more asymmetric (e.g. precessing)

kinematic regime.

7 Conclusion

In this work, we presented the complete evaluation of N3LO Post-Newtonian correction
to the quadratic-in-spin Hamiltonian for the spinning compact binaries, within the EFT
Feynman diagrammatic approach of GR. Together with our earlier study on the spin-orbit
Hamiltonian [65], this is at the current state-of-the-art result for the conservative part of
the spinning sectors up to quadratic-in-spin.

The necessary Feynman diagrams in momentum space were generated using Feynman
rules derived from the EFT Lagrangian describing the spinning compact objects. The cor-
responding Feynman amplitudes were written as a linear combination of master integrals,
employing the integration-by-parts identities for dimensionally regularized integrals. The
contribution of each diagram to the effective potential was obtained upon Fourier transform,
and Laurent series expanded around d = 3 + € space dimensions. Finally, the Hamiltonian
was derived by applying Legendre transform, and canonical transformations were employed
to remove the non-physical divergences and spurious logarithmic terms. Furthermore, we
computed two specific gauge invariant observable, namely, the binding energy with aligned
spins in the case of circular orbit, and the scattering angle for the case of aligned spins.
These results were found in agreement with the corresponding expressions available in lit-
erature, previously obtained using the self-force formalism as well as the EFT framework.
Additionally, the obtained results in the article, particularly the scattering angle, could
be used with the recently developed boundary-to-bound maps [86-88] to compute other
observables like periastron advance.

The obtained results depend on three Wilson coefficients, namely, C]E;), C]EJOS)Q, and

C]E:%)SQ. They arise from the non-minimal couplings at linear and quadratic order in curva-
ture in the EFT Lagrangian of the point particles. The coefficient C]EZOSL starts contributing
from 2PN (LO S2 sector), whereas the other two coefficients C]EDQQ) and C]EJOZ)S
the first time at 5PN. Out of them, C]E;OS)2 is related to the spin-induced quadruple moment

of the compact object: for Kerr black holes, it is known to be 1 [89, 90]; and for neutron

, contribute for

stars its value ranges within 2-8 [91]. The other two coefficients, C]E:%) and C]E]%)SQ, encode

quadrupolar deformations, due to an external field and spin-square effects. Their determi-
nation requires the matching against stationary linear perturbations of spinning compact
objects — see [92-95] for crucial work in that direction.

The observable presented in this work could also be used to match a combination

of ng) and C]E:%)SQ to the motion of a small body within the self-force formalism. The

)

dependence of gravitational waves from compact binaries on ng and C]EJOQSQ provides a
probe of the nature of black holes and encodes information about the equation of state of

neutron stars.
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A Notation and convention

Spacetime metric nw = (1,—-1,-1,-1) (A.1a)
4 dimensional indices v (A.1Db)
3 dimensional indices 0] (A.1c)
Compact object label (@) Where a = {1,2} (A.1d)
Time derivative (A.le)
Position of a' object X(a) (A.1f)
Velocity of a' object V(a) = X(a) (A.1g)
Acceleration of a'" object a(q) = X(q) (A.1h)
Separation vector for binary I =X(g) — X(q) (A.1i)
Separation distance for binary r=|r| (A.1j)
Separation unit vector for binary n= ; (A.1k)
Angular momentum of the binary L=(rxp) (A.11)
Spin vector of a™ object Séa) = eijkszf) (A.1m)
/p / (gj-l))d (A.1n)

3
/p / (SFZ;S (A.1lo)
Center of mass coordinates Pa) +P@2) =0 (A.1p)
Circular orbits pr=p-n=0 and p,=0 (A.1q)
Aligned spins S T=Su p=0 (A.1r)
Exchange of particle label (1 <> 2) <(1) <—>(2)> , (q “~ ;) ,(0 > —0). (A.ls)
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B Lower-order Hamiltonians

In this appendix we give the results for all the lower order Hamiltonians given in eq. (5.6).

B.1 Spinl-spin2 sector up to N2LO
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B.2 Spinl-spinl and spin2-spin2 sector up to N2LO

Hio=0 (B.4)
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B.3 ES? sector up to N2LO
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