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Abstract

Many chemicals are out there in our environment, and all living species are exposed. However, nu-
merous chemicals pose risks, such as developing severe diseases, if they occur at the wrong time in the
wrong place. For the majority of the chemicals, these risks are not known. Chemical risk assessment
and subsequent regulation of use require efficient and systematic strategies. Lab-based methods – even if
high throughput – are too slow to keep up with the pace of chemical innovation. Existing computational
approaches are designed for specific chemical classes or sub-problems but not usable on a large scale. Fur-
ther, the application range of these approaches is limited by the low amount of available labeled training
data.
We present the ready-to-use and stand-alone program deepFPlearn that predicts the association between
chemical structures and effects on the gene/pathway level using a combined deep learning approach.
deepFPlearn uses a deep autoencoder for feature reduction before training a deep feedforward neural
network to predict the target association. We received good prediction qualities and showed that our
feature compression preserves relevant chemical structural information. Using a vast chemical inventory
(unlabeled data) as input for the autoencoder did not reduce our prediction quality but allowed captur-
ing a much more comprehensive range of chemical structures. We predict meaningful - experimentally
verified- associations of chemicals and effects on unseen data. deepFPlearn classifies hundreds of thou-
sands of chemicals in seconds.
We provide deepFPlearn as an open-source and flexible tool that can be easily retrained and customized to
different application settings at https://github.com/yigbt/deepFPlearn. Supplementary informa-
tion: Supplementary data are available at bioRxiv online. Contact: jana.schor@ufz.de keywords:Deep
learning, toxicology, binary fingerprint, autoencoder, molecular structures

1 Introduction

Exposure to a vast amount of chemicals
threatens the health of humans and ecosys-
tems. Chemical products are essential for main-
taining our standard of living, and chemicals form
the building blocks of life. Some chemicals are haz-
ardous upon exposure, and their safety needs to
be thoroughly evaluated. The number of chemi-
cals that we are exposed to and the set of chemi-
cals of anthropogenic origin has been rapidly grow-
ing from 20 million in 2002 to currently 169 million
unique chemicals in The Chemical Abstracts Reg-
istry Service Cas [2020]. Many of those chemicals
are not relevant for exposure since they are not used
in larger quantities. The estimated number of chem-
icals available on the global market highly varies
between 30 000 up to 350 000 Fischer [2017], Euro-
pean Environment Agency [2015], Bond and Garny
[2019], Wang et al. [2020]. The number of chem-
icals detected in human bodies is of similar order
of magnitude. Mattingly et al. [2016] compiled
more than 50 thousand from scientific texts in the
Blood Exposome DB. Rappaport [2016] defined
our lifestyle and the change in environmental deter-
minants Lim et al. [2012], Landrigan et al. [2018]
rather than genetic factors as the primary cause
for many chronic diseases. Contamination with an-
thropogenic chemicals is of similar concern in the

environment Anderson et al. [2006], Busch et al.
[2016]. The NORMAN database lists ∼3000 chem-
icals as emerging pollutants across Europe Norman
Network [2020]. Chemical exposure was considered
a major threat for wildlife populations Köhler and
Triebskorn [2013], Hallmann et al. [2014], Desforges
et al. [2018]. For example, up to 26% of aquatic
species loss may be attributed to exposure to chem-
ical mixtures [European Environment Agency, 2015,
p . 245] and Posthuma et al. [2019].

Risk assessment fails to keep up with the pace
of chemical innovation. This enormous chemi-
cal exposure and observed hazards require an effi-
cient and effective risk assessment and specific reg-
ulation of chemical use. While the EU European
Commission [2019] designated a “toxic-free environ-
ment” a key priority, the European Environment
Agency forecasts that chemical exposure will fur-
ther increase [European Environment Agency, 2015,
pp. 248–249]. For 86% of the ∼21 000 chemi-
cals registered under REACH, the European legis-
lation regulating industrial chemicals, the need for
suitable regulatory actions still needs to be deter-
mined European Chemials Agency [2019]. However,
the throughput of regulatory processes is slow com-
pared to the pace of chemical innovation. The evalu-
ation of a chemical of concern takes 7–9 years, dur-
ing which exposure may continue, under REACH
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regulation [European Environment Agency, 2015,
pp. 248–249]. Also, European Chemicals Agency
[2018] found that ∼70% of the evaluated registra-
tion dossiers are incomplete or not compliant. In
summary, traditional approaches to chemical regu-
lation perform well; however, they are too slow to
master the number and growth of chemicals on the
market. Predictive in silico approaches may sup-
port this challenge – not necessarily by replacing
experimental approaches, but by prioritizing chem-
icals for further evaluation.

In silico approaches predict toxicity. Dif-
ferent in silico approaches exist to predict toxic-
ity. Structural alerts and rule-based models con-
stitute a simple but powerful approach to toxicity
prediction and build on using individual chemical
substructures as indicators for toxicity Lepailleur
et al. [2013]. These methods rely on either human-
expertise-based or data-derived rules and are easy
to interpret. However, since no mechanism en-
forces the completeness of rules, there is a high
risk of false-negative predictions Raies and Bajic
[2016]. Read-across predicts the unknown toxicity
by extrapolation from a set of highly related chem-
icals with known toxicological properties as an al-
ternative to animal experiments. Naturally, this re-
stricts to the subset of chemicals for which sufficient
information of related chemicals is available Vink
et al. [2010]. Quantitative Structure Activity Re-
lationships (QSAR) Raies and Bajic [2016] relate
molecular descriptors to toxicity or other proper-
ties of a chemical Perkins et al. [2003], Cherkasov
et al. [2014]. QSARs are built on a set of related
chemicals or expert knowledge on several chemi-
cals’ shared mode of action or are derived from a
diverse set of chemicals. Descriptors in QSARs in-
clude physicochemical properties, different molecu-
lar structure representations, or properties thereof,
and high throughput screening-derived data on bi-
ological activity. A frequently used family of de-
scriptors are molecular fingerprints that record the
occurrence of local and regional substructures Lo
et al. [2018]. QSAR approaches utilize multivariate
statistical models and more recently also machine
learning to relate molecular descriptors to toxicity.

Machine learning in 21st-century toxicology.
Toxicology experiences a paradigm shift from re-
lying on apical endpoints in animal models to in-

tegrated strategies, combing prediction and high-
throughput testing for different endpoints. Screen-
ing initiatives, e.g., the Tox21 program Thomas
[2018], test thousands of chemicals in hundreds of
bioassays to inform on an effect on the molecu-
lar processes which are relevant in toxicity. The
availability of these data enabled the development
of a new variant of QSARs: the machine-learning-
based prediction of the association of substances
with molecular pathway responses.
The Tox21 Challenge was announced in 2014 to re-
veal how well independent researchers could predict
the interference between chemicals and biochem-
ical pathways given a dataset of chemical struc-
tures only. The challenge initiators provided a set
of 12 000 chemicals with toxicity effect information
for 12 assays along with the task to predict the ef-
fects computationally. The winning method was the
DeepTox[Mayr et al., 2015] pipeline with reported
AUC values above 82%. In brief, they normalized
the molecular representation of the chemicals, com-
puted a large number of descriptors, and trained
deep learning DL models, which they evaluated on
the provided test data. Later, the challenge initia-
tors successfully validated these models on withheld
data. Further, the authors observed that the mod-
els learn simple structures in the lower and more
complex structures in the higher layers, as shown
for image recognition. In their DL models, hid-
den neurons represent known molecular substruc-
tures - toxicophores, identified manually by experts
for decades.
Pu et al. [2019] developed eToxPred to quickly es-
timate the toxicity of extensive collections of low
molecular weight organic chemicals. It employs a
Restricted Boltzman Machine classifier and a gen-
erative probabilistic model to predict a Tox-score.
The reported accuracy is 72%.
Sun et al. [2019] used support vector machine and
random forest single- and multilabel models to pre-
dict toxicity on the Tox21 Challenge data. They
used under-sampling to resolve the problem of class
imbalance in the data and reported accuracies be-
tween 74 to 81%.
Liu et al. [2015] described TarPred, a web applica-
tion for predicting therapeutic and side effect tar-
gets of chemicals. It is not available anymore.
The DeepChem Project [Ramsundar et al., 2019] is
a Python library that provides datasets, functions,
and user-contributed tutorials, intending to democ-
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ratize DL for science in general and chemistry in
particular. It is helpful to develop or, as a refer-
ence, to compare custom computational approaches
in the field.
None of these approaches provides a ready-to-use
program for classification or retraining. The main
limitation of those (and other) ML approaches in
toxicology is the lack of applicability to chemicals
outside the training data and the availability of suf-
ficient amounts of training data. A specific chal-
lenge is that the descriptors need to be fine-grained
enough to capture the particularities of molecu-
lar substructures and coarse-grained enough to al-
low for ML. In particular, the representation of a
chemical structure should preserve relevant informa-
tion which allows for the target association, while
it should also summarize structural features to re-
duce the degrees of freedom of the descriptor space.
However, the (high) dimensionality of the features
stands in considerable contrast to the (low) amount
of available labeled training data.
Here, we present deepFPlearn – a ready-to-use DL
program that predicts the association of chemical
structures and targets on the gene/pathway level.
We applied feature reduction via a deep autoen-
coder (AE) of a simple representation of the chemi-
cals’ structure – the binary fingerprint of moderate
size. Subsequently, we predicted the association of
the encoded/compressed fingerprint representation
with a deep feed-forward neural network (FNN).
We overcame the domain extrapolation problem by
training the autoencoder on a considerable reper-
toire of chemical structures and showed that the
prediction quality on the subset of labeled train-
ing data remained high. Further, we demonstrated
that deepFPlearn could classify selectively interact-
ing chemicals, which have been experimentally clas-
sified recently, with significantly higher confidence
than other chemicals.

2 Methods and data

Representation, similarity, and visualization
of chemical structures. The molecular struc-
ture of chemicals was encoded in binary topolog-
ical fingerprints – referred to as molecular fin-
gerprint or FP in the following – using Python’s
RDKit [Landrum, 2006, version 2022.03.1] func-
tion Chem.rdmolops.RDKFingerprint with mini-
mum path size: 1 bond, maximum path size: 7

bonds, fingerprint size: 2048 bits, number of bits
set per hash: 2, minimum fingerprint size: 64 bits,
target on-bit density 0.0. These FPs were gener-
ated from respective InChI or SMILES strings of the
chemicals. All training data files containing chem-
ical structure and target association information
were serialized using Python’s pickle module. Un-
compressed and compressed features were visualized
in 2D space using the UMAP algorithm [McInnes
et al., 2018]. To gauge the similarity of two binary
FPs F and G we used the Tanimoto similarity - the
ratio of intersection and union of set bits:

Tanimoto(F,G) =
setBits(F ) ∩ setBits(F )

setBits(F ) ∪ setBits(G)
(1)

Pearson correlation was used to evaluate the
similarity of compressed features. A k-means
clustering with k ∈ [2..7] was applied to the
uncompressed features. The assigned clusters were
translated to color codes in the visualizations of
uncompressed and compressed features.

The deep learning tasks were implemented us-
ing the Python library of the TensorFlow frame-
work [Abadi et al., 2016, version 2.6.0] and the
Scikit-learn framework [Pedregosa FABIANPE-
DREGOSA et al., 2011, version 1.0.2].
We used Weights & Biases Biewald [2020] for exper-
iment tracking and hyperparameter tuning (sweep).
Sweeped parameters included activation function
for the hidden layers, optimizer, learning rate, learn-
ing rate decay, batch size, and dropout. The supple-
ment provides all details about the hyperparameter
tuning procedure and the final selected training pa-
rameter values in section Hyperparameter tuning.

We applied a stratified train-test splitting to keep
the same distribution of class labels in both, the
training and the test data. For training the FNN
models, we applied a stratified k-fold (default: k =
5) cross-validation. We enabled early stopping and
fallback mechanisms and monitored validation loss
(val loss). The training stopped early if val loss
did not improve by min∆ = 0.0001 for a certain
number of epochs (patienceAE = 5, patienceFNN =
20). The model’s weights were restored to the re-
spective checkpoint model. deepFPlearn saves the
model weights for each fold and the model that
performed best across all k folds for subsequent
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prediction and further application. Training his-
tories in terms of the values for loss, binary accu-
racy, area under the reciever-operator curve (AUC-
ROC), precision, recall, and F1 score were logged in
.CSV format for each training epoch’s training and
validation data. To find the optimal classification
threshold we used Matthews Correlation Coefficient
(MCC) as one of the unbiased evaluation metrics
for imbalanced classification. MCC was calculated
with an increasing threshold from 0 to 1 on the pre-
dicted values of the validation data (and their true
values). Then, the threshold with maximum MCC
was selected as the tuned classification threshold for
each model individually. See Figure ?? C for an ex-
ample.

The deep regularized autoencoder has a
symmetric shape with one-dimensional input and
output layers of the size of the input fingerprint
LFP . The number of hidden layers NH and their
sizes Si, i ∈ [1..NH ] depend on LFP and the desired
size of the latent space Lz – see Table 1 for the
applied sizes of the hidden layers.

NH = blog2(LFP /Lz)c (2)

Si = LFP /2i i ∈ [1..NH ] (3)

The SELU activation function and lecun normal
weight initialization were used in hidden layers, and
the Sigmoid activation function for the output layer.
The model was compiled with binary cross-entropy
as loss function and Adam optimizer.

A deep neural network was constructed as a
sequential feed-forward neural network for the clas-
sification task. The dimensions of the stacked layers
depend on the mode of action of deepFPlearn. If
feature compression via the AE is enabled, the FNN
is used subsequently. Then, the size of the input
layer of the FNN matches the length of the latent
space Lz vectors. Otherwise, the size of the input
layer matches the length of the molecular fingerprint
LFP . The hidden layers were of decreasing sizes, fol-
lowed by an output layer of size 1. The number of

hidden layers N̂H and their sizes Ŝj , j ∈
[
1..N̂H

]
depend on the provided input size Linput (which is
either LFP or Lz). The last four layers with only a
few neurons (e.g. less than 32 in the example case
of LFP = 2048) were not included. See Table 1 for
the applied sizes of the hidden layers.

NN Input Input size hidden layers
AE FP LFP = 2048 1024, 512, 256, 512, 1024
FNN FP LFP = 2048 1024, 512, 256, 128
FNN compressed FP Lz = 256 128, 64, 32

Table 1: Number and sizes of hidden layers for each
trained neural network . NN – neural network; AE
– autoencoder; FNN – feed-forward NN

N̂H = blog2(Linput)/2c − 4 (4)

Ŝj = Linput/2j j ∈ [1..N̂H ] (5)

Dense layers were used with the SELU activation
function, lecun normal weight initialization, and
AlphaDropout . The Sigmoid activation function
was used for the output layer. All hidden layers
were followed by a dropout layer. To reflect a
potential imbalance in the training data, we intro-
duced an initial bias of log(P/N) (with P equal to
the number of 1-values and N to the number of
0-values in the target vector) to the output layer.
The FNN model was compiled using the Adam
optimizer and binary cross entropy as loss function

Different datasets were collected from the lit-
erature and public databases. A manually curated
dataset S was downloaded from the supplemental
material of Sun et al. [2019]. It contained chemical-
target associations for 7248 chemicals and 6 gene
targets that are involved in endocrine disruption
(ED) in humans (androgen receptor (AR), estrogen
receptor (ER), glucochorticoid receptor (GR), thy-
roid receptor (TR), PPARg, and Aromatase). See
supplemental Fig. S1 for an overview of this data’s
size and class distributions. Initially, this data had
been retrieved from bioassay data of the Tox21 pro-
gram [Thomas, 2018], and carefully transformed to
binary associations by Sun et al. [2019]: Associa-
tions were considered as not available (NA) if no
bioassay data was available, and as 1 or 0, if an
association between chemical and gene target had
been confirmed in a bioassay or not, respectively.
See Sun et al. [2019] for details. The dataset S was
extended by the artificial target ED that combines
all existing target associations with a logical OR op-
eration. Chemicals in the S dataset were identified
by their SMILES string.

Further, a dataset D was generated from the
719 996 chemicals listed in the CompTox Chem-

5

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.06.24.449697doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449697
http://creativecommons.org/licenses/by-nc/4.0/


istry Dashboard [Williams et al., 2017, accessed on
2020/07/13]. Chemicals in the D dataset were iden-
tified by their InChI identifiers.

For benchmarking, we downloaded two datasets
from MoleculeNet Wu et al. [2017], a database of
benchmarking datasets for classification problems in
molecular ML. First, we selected the Tox21 Chal-
lenge dataset - Tox21, which associates chemicals
and gene targets. Second, we used the Side Ef-
fect Resource (SIDER) database that associates
drugs with grouped adverse drug reactions. These
datasets contained 7831 and 1427 compounds, and
12 and 27 targets, respectively, and comprised bi-
narized associations between those compounds and
the targets. We followed the recommended metric
and splitting patterns Wu et al. [2017] to generate
training data from these datasets and selected tar-
gets with a 1-0-ratio of at least 0.2 and a minimal
number of 200 samples in the positive class for train-
ing.

See Table 2 for an overview which of those
datasets were used in which training or prediction
case.

case train AE use AE train FNN predict
1 S - - -
2 D - - -
3 - - S -
4 - S S -
5 - D S -
6 - D SIDER -
7 - D Tox21 -
8 - D - D

Table 2: Overview of the usage of the different
datasets for training or prediction.

Implementation. deepFPlearn was imple-
mented as a Python (version 3.9.12) package with
three different usage-modes. First, convert imports
the dataset (for training or prediction) and calcu-
lates molecular fingerprints for all structures from
their respective SMILES or InChi representation.
A data frame combines the original representation,
the calculated fingerprint, and all targets. It is
then serialized to disc as a Pickle file to acceler-
ate the data import for subsequent sessions. Im-
portantly, deepFPlearn assumes that SMILES have
been canonicalized and cleaned. We recommend
to either use ChemAxon’s chemical structure repre-

sentation toolkit1 or a chemical structure curation
pipeline relying on RDKit [Bento et al., 2020]. The
second mode is training. The neural networks can
easily be (re-)trained with any dataset that asso-
ciates chemical structures with an effect. All nec-
essary information is logged during the training to
validate and evaluate the trained models. The third
mode is to predict the association of a provided list
of chemicals with an effect using the trained models.

The user can adjust all neural network settings
and the mode of action in a JSON configuration
file.

Dependencies to external libraries and software
are managed using a platform-independent conda2

environment, which we provide in the code reposi-
tory. A singularity container3 was set up that en-
capsulates the whole project at the state of publi-
cation for usage and reproducibility. It includes the
required resources, source code, compiled package,
and test data.

3 Results

We developed the stand-alone, ready-to-use DL ap-
proach deepFPlearn to associate chemicals with
gene/pathway level targets. We further evaluated
the potential of feature compression to increase
the applicability to substances beyond the limited
amount of available training data.

Our workflow combined a pre-training strategy
via a deep autoencoder to reduce the feature space
and to generate a universal encoding of binary fin-
gerpints, followed by a classification step using a
deep feed-forward neural network, see Figure ??.

For the FNNs, we employed 5-fold cross-
validation to show that the selection of the train-
test-split has no significant impact on the model per-
formance. In particular, the standard deviation of
the ROC-AUC values (calculated on the validation
data) was ∼1%, see supplement Fig. S2. Therefore
we used a single stratified train-test-split to finetune
and train our models.

Feature compression comprehensively re-
duced trainable parameters while keeping
comparable classification performance. We

1https://chemaxon.com/products/

chemical-structure-representation-toolkit
2https://www.anaconda.com
3https://sylabs.io/
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applied different training setups: First, feature com-
pression was disabled (no AE, Figure ?? from A to
C), and FNN training used the full-length molec-
ular fingerprints. The ratio between positive
(1) and negative (0) associations differed substan-
tially between the individual targets, see supple-
ment Fig. S1. We introduced an initial bias to
the output layer of the FNN to reflect that imbal-
ance and selected AR, ER, and the artificial tar-
get ED as subsets with an acceptable imbalance to
train individual FNN models. Due to the finger-
print size of 2048, the respective hidden layer sizes
of the FNN were 1024, 512, 256 and 128 resulting in
about 2.8× 106 trainable parameters. The training
stopped early before ∼100 epochs. Binary accuracy
values of 0.85, 0.83 and 0.78 and ROC-AUC values
of 0.81, 0.83 and 0.81 were reached for AR, ER, and
ED, respectively. See Figure ?? A (top panels) for
the training histories, and Figure ?? B (lightgrey
bars) for the values of precision, recall, F1 scores
and further metrics that describe the performance
of our FNN models. See Figure ?? A for ROC and
precision-recall curves of the AR target for the clas-
sification without AE, and supplement Fig. S 3–5 for
confusion matrices, ROC and precision-recall curves
of all three targets.

Second, we applied feature reduction before the
classification by training an AE with a latent space
size of Lz = 256. This reduced the respective hid-
den layer sizes of the FNN to 128, 64 and 32, result-
ing in only 43.3× 103 trainable parameters, which is
1.55% of the uncompressed case above. We trained
both a specific AE using the (small) S dataset and
a generic AE using the (large) D dataset. See Fig-
ure ?? from A over B to C. The training of the spe-
cific autoencoder stopped early at 28 epochs which
is due to the small number of training samples.
The validation loss reached a value of 0.026. The
generic autoencoder trained for around 320 epochs
and stopped at a validation loss of 0.159. See Fig-
ure ?? for the training histories and a UMAP visu-
alization of the high-dimensional uncompressed fea-
ture space and the low-dimensional latent space of
dataset S. Coloring compounds from the uncom-
pressed and compressed space with labels calculated
on the uncompressed feature space yielded similar
cluster associations in the UMAP. Therefore, the
AE preserves relevant (structural) information dur-
ing feature compression.

Subsequently, we trained the FNNs and used the

latent space representation as input. The training
stopped early before ∼400 epochs. Binary accuracy
values of 0.85, 0.80 and 0.77 and ROC-AUC values
of 0.81, 0.81 and 0.78 were reached for AR, ER, and
ED, respectively, when the specific AE was used to
encode the fingerprints. We observed no significant
discrepancy in these values when using the generic
AE. In particular, we reached values of 0.85, 0.80
and 0.74 for binary accuracy, and 0.80, 0.79 and
0.76 for ROC-AUC values. Therefore, when the in-
put features are compressed with the generic AE,
the FNNs may be applied to a much more compre-
hensive range of molecular structures without com-
promising on the predictive power. See Figure ?? A
(middle and lower panels) for the training histories,
and Figure ?? B (medium and dark grey bars) for
the values of precision, recall, F1 score and further
metrics that describe the performance of our FNN
models that were trained with compressed finger-
prints. See Figure ?? B for ROC and precision-
recall curves of the AR target for the classification
with the generic AE, and supplementary Fig. 3 –
5 for confusion matrices, ROC and precision-recall
curves for all three targets.

Benchmarking confirmed our strategy.

We compared the results of our strategy against
the results of Sun et al. [2019], the publication from
which we extracted our FNN training data, the in-
troduced approaches eToxPred Pu et al. [2019] and
DeepTox Mayr et al. [2015], and the results reported
by MoleculeNet Wu et al. [2017]. Sun et al. [2019]
reported balanced accuracy values in their results
and we reached the same range between 74 to 81%
on the same data. Pu et al. [2019], Mayr et al. [2015]
and Wu et al. [2017] reported ROC-AUC values of
72, 82 and 83%, respectively, on the Tox21 data
of MoleculeNet while our models achieved ROC-
AUC values of 88%. For the SIDER dataset Wu
et al. [2017] reported 67% ROC-AUC values while
we reached 84%. For the MoleculeNet datasets,
we also observed only a slight drop in performance
when using the generic AE. In summary, our mod-
els perform either in the same range as existing ap-
proaches or better, which is satisfying compared to
the increased applicability of our strategy.

deepFPlearn is ready to be applied to huge
datasets. We used deepFPlearn with generic fea-
ture compression and selected the trained models
for AR, ER and ED to predict associations of the
∼ 700k chemicals from dataset D. For most of those
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compounds, the probability of acting as endocrine
disruptors was not known. deepFPlearn predicted
∼60k with high prediction probability P > 0.85.

From the ED predictions of dataset D, we in-
vestigated the top 200 and bottom 200 (ranked
by prediction probability) and empirically investi-
gated their biological feasibility. We found com-
pounds among the top 200 like Estriol, 17alpha-
Ethinylestradiol, 17beta-Ethinylestradiol, Mestra-
nol, Prednisolone Dexamethasone, Betamethasone,
and respective derivates. These chemicals are well
known to interact with the human estrogen recep-
tors and pathways or with the glucocorticoid path-
way. Interestingly, Escher et al. [2020] also iden-
tified some of those to interact selectively with
AR in the cell assay screenings. Also, the top
200 list contains the chemicals Ezlopitant dihy-
drate dihydrochloride, 5-Bromo-2, 2-diethyl-5-nitro-
1,3-dioxane, or Schinifoline, a metabolite of the
Japanese Pepper plant Zanthoxylum schinifolium.
To our knowledge, those substances have not been
tested in bioassays so far. In the bottom 200 pre-
dictions (P < 0.01) we found derivates of carbamic,
acetic, and amino acids. Those chemicals have never
been discussed in the context of steroid hormone re-
lated ED as far as we know.

Recently, Escher et al. [2020] categorized a selec-
tion of 355 out of 7968 investigated chemicals and
their activity with the ED receptors AR and ER as
selective (41), specific and unspecific (314, summa-
rized as other) binders.

We predicted the associations for the subset of
339 chemicals that have not been part of our train-
ing data with and without generic feature compress-
sion. The models for ER and ED that were trained
on the compressed fingerprints captured substan-
tially more of the selective compounds with higher
prediction probability than the models that used the
uncompressed fingerprints. However, this was not
true for the AR model. See Figure ?? B and C
for probability distributions and counts of the ED
model and supplement Fig. S6 for the comparison
of all three models.

4 Discussion

There is a great need for systematic prediction of
chemical-effect associations in toxicology. They are
required to prioritize chemicals for experimental
screening, a smart selection of chemicals for mon-

itoring, and the design of novel chemicals. Sev-
eral approaches and implementations exist that par-
tially address these challenges. However, no tools
for large-scale application are available, and the op-
tion for retraining with additional data sets is ab-
sent. While MoleculeNet [Wu et al., 2017] and
Deepchem [Ramsundar et al., 2019] provide capa-
ble frameworks for developing learning applications
on chemicals, readily applicable tools, e.g., for pre-
dicting ED, are missing.

With deepFPlearn we present an application to
investigate sets of chemicals for their potential as-
sociations to gene targets involved in ED. It is a
DL approach with the possibility of training custom
models to predict different associations of interest.

The small number of labeled training data is in
contrast to the high number of features necessary to
describe a chemical’s molecular structure. Also, the
natural interaction of chemicals and biomolecules is
biased towards ”no interaction” (label of 0) such
that the data suffer from a substantial imbalance
between 1 and 0 labels. Assessing the association
of chemicals and biomolecules requires measuring
a range of concentrations per substance and assay
and thus poses a substantial effort even with high-
throughput technologies. Since the number of sub-
stances with measured associations is small com-
pared to the universe of chemicals, there is a lack
of labeled training data. Due to the high speed at
which new chemicals are developed, this situation
will not change in the foreseeable future. To make
things worse, many positive associations (label of 1)
are potentially wrong due to mistakes during screen-
ing result interpretation. Examples are unclear ef-
fect thresholds, high variability in the experimental
designs, and limitations in the statistics of modeling
the observed effect. The imbalance of the training
data together with a large number of parameters
can easily lead to overfitting. However, our strat-
egy to initialize the output layer of the FNN with
the correct bias to reflect the imbalanced prevented
overfitting also for the FNN.

We reduced the discrepancy between large de-
scriptor size and the limited training data by com-
pressing features with a deep autoencoder. Further,
this reduced the large number of trainable parame-
ters to 1.55% of the networks that do not use an AE.
Using a large repertoire of chemicals for training
the AE further improved the domain extrapolation
without reducing the predictive power of the sub-

8

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 21, 2022. ; https://doi.org/10.1101/2021.06.24.449697doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.24.449697
http://creativecommons.org/licenses/by-nc/4.0/


sequent classification. We tested different training
situations, i) without feature compression, ii) fea-
ture compression with a subset of chemicals (specific
AE), and iii) feature compression with a large set
of chemicals (generic AE). We reached good train-
ing performances with ROC-AUC values above 80%,
with satisfying sensitivity up to 75%, and specificity
up to 97%.

Using the benchmark datasets from MoleculeNet,
and reported binary accuracies and ROC-AUC val-
ues from other approaches that used the same data
sets we showed that deepFPlearn performed com-
parably or better. However, those methods also de-
mand significant adjustments to the training data
to cope with imbalance. We found that our pre-
dictions with the generic AE captured more of the
compounds that have been experimentally analyzed
and classified by Escher et al. [2020] than the mod-
els trained on the uncompressed fingerprints, which
verifies our assumption on predicting unseen data.

deepFPlearn allows for selecting different usage
modes depending on the classification problem: If
the compounds to be classified are expected to re-
side within the domain of the training data the FNN
without AE provides superior classification perfor-
mance. However, given the overall comparable ac-
curacy of deepFPlearn when pre-training on a large
data set, we consider this the more robust, compu-
tationally efficient, and generally more applicable
approach in particular for large, heterogeneous, and
imbalanced data.

The quality of our predictions is also high on
the large CompTox dataset. Among the top 1–
associated predictions were chemicals that are well
known to interact with human estrogen or the glu-
cocorticoid receptor or related pathways. Likewise,
among the respective top 0–associated predictions
were chemicals that have never been discussed to
be involved in ED, which further enhances the con-
fidence in our models.

Our high values for specificity also suggest an ap-
plication of deepFPlearn to predict secondary ef-
fects in drug design.

The deepFPlearn results on the chemicals exper-
imentally classified as selective and unspecific also
confirmed our prediction quality. Although a rel-
atively broad distribution of prediction probabili-
ties for selective binders suggests that there is still
room for methodological improvement, many of the
chemicals predicted with a very high probability are

indeed selective binders.

We suggest a more detailed investigation of the
predicted associations and experimental validation
in upcoming studies to confirm or decline effects in
endocrine disruption.

5 Conclusion

With deepFPlearn we model the associations
between chemical structures and effects on the
gene/pathway level with a deep learning approach.

In contrast to existing approaches and implemen-
tations, deepFPlearn is a ready-to-use tool. It
comes as a stand-alone Python software package and
(additionally) wrapped in a Singularity Container to
overcome the dependency on the operating system
and required software. deepFPlearn can capture a
much more comprehensive range of substances than
those contained in the training data of the classifi-
cation network. It can be applied to classify hun-
dreds of thousands of chemicals in seconds. More-
over, with its different application modes, we pro-
vide the flexibility to train custom models with any
meaningful dataset that associates chemicals with
an effect. deepFPlearn substantially contributes to
the systematic in silico investigation of chemicals,
even for data-driven hypothesis generation on novel
substance-effect associations. With deepFPlearn

we can cope with the large, constantly, and rapidly
growing chemical universe and support prioritiza-
tion of chemicals for experimental testing, assist in
the smart selection of chemicals for monitoring and
contribute to the sustainable design of the future
chemicals.

6 Key Points

• All living species are exposed to a vast amount
(and mixtures) of chemicals; many pose risks;
this risk is not known for the majority.

• To support the lab-based risk assessment and
subsequent regulation of use, prioritize chem-
icals for experimental design and hypothesis
generation, efficient and systematic tools that
evaluate the chemical-effect association on a
large scale are required but not available so far.

• We present the ready-to-use deep learning
application deepFPlearn that predicts the
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association between the chemical’s molecu-
lar structure and the observed effect on the
gene/pathway level.

• We solved the discrepancy between large fea-
ture space describing the molecular structure
and the low amount of labeled training data
with a pre-training strategy for feature com-
pression on the chemical inventory.

• We confirmed the good performance and high
prediction quality of deepFPlearn with bench-
marking and experimentally validated datasets.

7 Availability

The source code is available in a git repository
at github: https://github.com/yigbt/deepFPlearn
under the terms of the UFZ license, which is based
on GNU General Public License as published by the
Free Software Foundation version 3 or later. We re-
fer to this repository for installation and usage in-
structions. For ease of use we also provide Docker
and Singularity containers, which is accessible via
this repository.
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11 Figures

Figure 1: The deepFPlearn workflow. A) The
molecular fingerprints serve as input for the neural
networks. B) A deep autoencoder (AE) is used to
compress the fingerprints. C) A deep feed forward
network (FNN) is used for direct classification of
the input. D) A deep feed forward network (FNN) is
used for classification of the compressed input. Sizes
of layers, activation and loss functions are different
for each network and depend on the input size, see
methods section.
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Figure 2: A) ROC-AUC and loss values during training (calculated on the training and validation data
after each epoch) of the specific (S – Sun et al. 2019) and the generic (D – CompTox) autoencoder.
The training stopped early at 28 epochs for the specific AE – due to the small number of available
training samples and reached a validation loss of 0.026. The training of the generic AE stopped at ∼320
epochs reaching a validation loss of 0.159. B) UMAP visualizations of uncompressed and compressed
representations of all compounds from S dataset; color indicates cluster assignment of a k-means clustering
with k = 4 on the uncompressed features.
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Figure 3: A) Training histories of the feed forward neural networks stratified by the selected tar-
gets/models for androgen (AR) and estrogen (ER) receptors, and endocrine disruption (ED), and the
degree of feature compression (uncompressed, specific AE, and generic AE); shown metrics are ROC-
AUC (red), loss (orange) calculated on the training (dotted) and validation data (solid) during training.
B) Comparison of the values of balanced accuracy (Balanced ACC), area under the receiver-operator
curve (AUC), precision (PREC), recall (REC), F1 score (F1), specificity (SPEC), and Matthews correla-
tion coefficient (MCC) of the individual models using no (lightgrey), the specific (medium grey) and the
generic AE (dark grey). C) MCC was calculated for increasing thresholds from 0 to 1 on the predicted
validation data. The threshold with maximum MCC was selected as the individual classification threshold
for each model. Example generated for model: AR, uncompressed input.

Figure 4: Receiver-operator (left of both panels) and precision-recall (right of both panels) curves of the
AR target without using feature compression (A), and with generic feature compression (B). The color
indicates the value of the respective classification threshold.
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Figure 5: A) Values for all metrics calculated on the validation data for the benchmarking data sets
SIDER and Tox21 summarized across all targets: balanced accuracy (Balanced ACC), area und the
receiver operator curve (AUC), precision (PREC), recall (REC), F1 score (F1), specificity (SPEC),
and Matthews correlation coefficient (MCC) of the individual models using no (light grey), the spe-
cific (medium grey) and the generic AE (dark grey). B) deepFPlearn prediction probabilities using the
ED model with generic AE on the compounds that have been experimentally measured for quantified
target association and respectively differentiated into selective and non-specifically acting compounds by
Escher et al. [2020]. Probability distributions are compared using the Kolmogorow-Smirnow test, and the
significance levels for rejecting the null hypotheses that both distributions are similar was * for p-values
below 0.05. C) Comparison of the counts of predicted 1 (active) and 0 (inactive) labels for the same
compounds as described in Figure B shown for the ED model.
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