
Probing emergent QED in quantum spin ice via Raman scattering of phonons:
shallow inelastic scattering and pair production

Arnab Seth,1 Subhro Bhattacharjee,1 and Roderich Moessner2

1International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
2Max-Planck-Institut für Physik komplexer Systeme,
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We present a new mechanism for Raman scattering of phonons, which is based on the linear
magnetoelastic coupling present in non-Kramers magnetic ions. This provides a direct coupling
of Raman-active phonons to the magnet’s quasiparticles. We propose to use this mechanism to
probe the emergent magnetic monopoles, electric charges, and photons of the emergent quantum
electrodynamics (eQED) of the U(1) quantum spin liquid known as quantum spin ice. Detecting
this eQED in candidate rare-earth pyrochlore materials, or indeed signatures of topological magnetic
phases more generally, is a challenging task. We show that the Raman scattering cross-section of the
phonons directly yields relevant information, with the broadening of the phonon linewidth, which
we compute, exhibiting a characteristic frequency dependence reflecting the two-particle density of
states of the emergent excitations. Remarkably, we find that the Raman linewidth is sensitive to
the details of the symmetry fractionalisation and hence can reveal information about the projective
implementation of symmetry in the quantum spin liquid, thereby providing a diagnostic for a π-flux
phase. The Raman scattering of the phonons thus provides a useful experimental tool to probe
the fractionalisation in quantum spin liquids that turns out closely to mirror pair production in
quantum electrodynamics and the deep inelastic scattering of quantum chromodynamics. Indeed,
the difference to the latter is conceptual more than technical: the partons (quarks) emerge from the
hadrons at high energies due to asymptotic freedom, while those in eQED arise from fractionalisation
of the spins at low energies.

I. INTRODUCTION

The long-range entanglement present in quantum spin
liquids (QSLs) lead to novel low-energy quasi-particles
with fractionalised quantum numbers [1–11]. Experi-
mental signatures of these fractionalised quasi-particles
can provide direct evidence of the underlying entangle-
ment pattern that characterises the quantum order in
the QSLs. However, detecting experimental signatures
of such unconventional fractionalised excitations calls for
an array of complementary experimental probes to col-
lectively provide information about the QSL.

In this context, probing the spins through their cou-
pling to phonons–via magnetoelastic interactions– pro-
vides useful spectroscopic insights into the physics of
QSLs. An example of this is the ultrasonic attenu-
ation [12–14] and anomalies [15, 16] of the acoustic
phonons in QSLs. Magnetoelastic interactions are also
believed to play an important role in the large ther-
mal Hall response observed in several correlated insu-
lators including the pseudo-gap phase of lightly doped
cuprates [17] and the magnetic-field induced paramag-
netic phase of the honeycomb magnet α-RuCl3 [18–27].

A related probe for the spin physics are optical
phonons, via infrared and Raman scattering experiments
where phonon energy and linewidth encode such ef-
fects [15, 28–32]. Notably, such phonon spectroscopy can
sensitively detect magnetic, superconducting, or charge-
density wave ordering, as well as couples to the re-
sultant low-energy quasi-particles in these conventional
phases [33–35]. In the simplest QSLs, however, symme-

tries are not spontaneously [2] broken and the nature
of phonon renormalisation, at low temperatures, is gov-
erned by the properties of fractionalised excitations of
the QSLs which provide additional scattering channels
for the phonons. This is expected, in particular, to lead
to an anomalous broadening of the phonon linewidth at
low temperatures whose characterisation can then reveal
important information regarding the QSL excitations.

The spin-phonon effects are expected to be particularly
strong in spin-orbit coupled magnets where the magnetic
moment is sensitive to the real space geometry due to an
interlocking of spin and real space [36–39]. Indeed such
spin-phonon coupling has recently been explored both ex-
perimentally and theoretically in candidate Kitaev QSLs
such as α-RuCl3 [15, 19, 40], Cu2IrO3 [28], β- and γ-
Li2IrO3 [30, 41] etc. In particular, for Cu2IrO3 [28],
the anomalous broadening of the phonon peaks and fre-
quency softening at low temperatures is accounted for by
the low-energy Majorana fermions that the spin fraction-
alises into [5].

Another equally interesting family of spin-orbit cou-
pled frustrated magnets are obtained in the rare-earth
pyrochlores with magnetic moments sitting on a three-
dimensional network of corner sharing tetrahedra, lead-
ing to frustrated spin-spin interactions. These so-called
spin ice systems [42–61] are primary candidates to realise
both classical cooperative paramagnets [62–65] as well as
QSLs [44, 66–77]. The magnetic moments result from a
very intricate interplay of inter-orbital Coulomb repul-
sion, atomic spin-orbit coupling, and crystal field effects.

A rather extreme example of interplay between sev-
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eral competing interactions is seen in an interesting sub-
set among the pyrochlores which are the so-called non-
Kramers spin ice materials such as Pr2Zr2O7 [31, 57, 78],
Pr2Hf2O7 [58], Tb2Ti2O7 [59–61], Ho2Ti2O7 [60] etc.
In these pyrochlore magnets, the low-energy spin-1/2
magnetic moments arise from even-electron wave func-
tions [59, 60, 79]. The degeneracy of such a non-Kramers
doublet is protected by lattice symmetry, the D3d sym-
metry at the pyrochlore lattice site, instead of the usual
time reversal symmetry for Kramers doublets. Therefore
under time reversal symmetry, T , the transformation of
the low-energy doublets, sα (α = x, y, z), made out of
spin-orbit coupled wave functions is given by

T : {sx, sy, sz} → {sx, sy,−sz} (1)

This is in stark difference from the usual Kramers case as
realised in, e.g., Dy2Ti2O7 among others, where all the
components of the resultant spin-1/2 are odd under time
reversal.

The non-trivial implementation of time reversal sym-
metry as in Eq. 1 opens up the possibility of using ex-
perimental probes which are complementary to the con-
ventional ones. For example, the transformation in Eq.
1 immediately suggests that the transverse components
{sx, sy} can linearly couple to the lattice vibrations of
the appropriate space-group symmetry (see Eq. 6 and 7)
such that this linear coupling makes the above materi-
als ideal candidates to explore the spin physics through
the spin-phonon coupling in vibrational IR/Raman spec-
troscopy of the relevant phonons. The issue assumes
particular importance in the context of QSLs since the
spin-spin interactions in several of these non-Kramers py-
rochlores, such as Pr2Zr2O7 [80], can possibly stabilise
a U(1) QSL with gapless emergent photons and gapped
bosonic electric and magnetic monopoles [44, 66–77]– the
so-called Quantum spin ice. 1

In this paper, we show that indeed such a linear cou-
pling can lead to characteristic experimental signatures
of the emergent gauge charges and photons in vibrational
Raman spectroscopy of a non-Kramers quantum spin ice,
such as those proposed for Pr2Zr2O7. We show that such
linear couplings give rise to prominent new interaction
channels between the phonon and all the three emergent
excitations of the U(1) QSL– the emergent gapped elec-
tric and the magnetic charges as well as the gapless pho-
tons. These interactions provide new scattering chan-
nels for phonons to decay into and lead to an anomalous

1 We note that there are two different assignments of gauge charges
found in the literature. In the first assignment and the one that
we use here, the magnetic monopoles of a QSL are obtained by
violations of the ice-rule on a tetrahedron which are obtained
by spin-flips. The electric charges, on the other hand, are the
point defects of the compact U(1) gauge field [72, 81]. In the
other convention, the violations of the ice-rule give rise to electric
charges (often referred to as spinons in the associated literature)
while the point defects associated with the gauge field are dubbed
as magnetic monopoles [66].

broadening of the Raman peaks in the low-temperature
regime. Remarkably, as we show, such Raman signatures
are sensitive to the non-trivial symmetry implementa-
tion on the emergent degrees of freedom– the details of
the projective representation of the symmetry group [4]
under which the low-energy fractionalised excitations of
the QSL transform. In particular, in the context of the
quantum spin ice, we discuss the two cases of zero and π-
flux. While in the former, the magnetic monopoles do not
see any electric flux, in the latter they see an electric π-
flux through every hexagonal plaquette. As a result, the
magnetic monopoles in the π-flux phase transform un-
der the non-trivial magnetic space group, as opposed to
the zero-flux phase, with the magnetic monopoles trans-
forming projectively under lattice translation. The resul-
tant effects for both the QSLs are very different from the
phonon renormalisation due to anharmonic contributions
or magnetic ordering, and hence might present impor-
tant signatures of the fractionalisation and the emergent
gauge field.

It turns out that probing the low-energy fractionalised
excitations of the QSL via the Raman/infrared scatter-
ing of the phonons is quite similar to– (a) high energy
pair production (Fig. 1(a)), and, (b) the deep inelastic
scattering [82, 83] of quarks in quantum chromodynam-
ics (QCD) by the leptons as described by the standard
model of high-energy particle physics (Fig. 1(b)). The
corresponding two relevant vertices are shown side-by-
side in Fig. 1(c) and (d) respectively. In QCD, the quarks
become asymptotically free at high energies and the
high energy lepton can then probe them on sub-hadron
length-scales [84, 85]. In a QSL, however, the non-trivial
entanglement leading to fractionalised novel excitations
is a low-energy/long-wavelength emergent phenomenon
which the phonons can probe via “shallow” inelastic scat-
tering. In particular, we show below while the first of
the two processes dominate for the zero-flux QSL, the
latter produces important low signatures of the momen-
tum fractionalisation in the π-flux case. While our work
describes such shallow inelastic scattering of an eQED in
the context of the quantum spin ices, it readily gener-
alises to other QSLs, and to probe magnetic excitations
in quadrupolar systems more broadly.

We note that the above vibrational Raman signatures
of the fractionalisation on the phonons are different from
the Loudon-Fleury type of Raman scattering where the
external photon scatters directly from the charge fluctu-
ation in the Mott insulating phase [86–90]. This kind
of coupling has been explored by Cepas et. al. in the
context of Kagome spin liquids [91], and more pertinent
for us, Fu et al. in the context of generic U(1) quan-
tum spin ice [88]. These studies already indicate several
anomalous peaks in the Raman intensity profile due to
the presence of new scattering channels in the QSL phase
invariably indicating magnetic monopoles and gauge ex-
citations of the quantum spin ice. However, due to the
localized nature of the 4f -orbitals of Pr3+, the scattering
via charge fluctuation is significantly suppressed and the
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FIG. 1. Correspondence of scattering diagrams: (a)
The high energy photon can lead to creation of a positron and
an electron via pair production, (b) In deep inelastic scatter-
ing, a photon emitted from a lepton scatters off a parton, a
quark q, contained in the hadron, a qq̄-pion as a free particle
at high energies, (c) In non-Kramers quantum spin ice, the
phonon flips a spin and creates two magnetic monopoles of
opposite charges and, (d) In shallow inelastic scattering, an
optical phonon emitted from a photon scatters off a parton, a
magnetic monopole or electric charge, emerging from the spin
degrees of freedom from fractionalisation at low energies.

Raman probe mediated by the phonons can then provide
dominant signatures of the novel excitations of the U(1)
QSL phase in non-Kramers quantum spin ice. In fact, as
we show here, even if the phonons are not at resonance
with the emergent excitations, the linear magnetoelastic
coupling can mediate an effective Loudon-Fleury [86, 90]
type of coupling between emergent QSL excitations and
the external Raman photons that form the leading contri-
bution in non-Kramers material realisations of quantum
spin ice.

We start with a brief overview of our results before
delving into the details.

A. Overview of the results

The non-Kramers nature of the low-energy doublet in
materials such as Pr2Zr2O7 restricts the form of the low-
energy spin-spin interactions (Eq. 3) of the non-Kramers
doublets as we briefly summarise in Sec. II. A further fall-
out of the unusual implementation of the time reversal
symmetry is that the time reversal-even transverse spin
components (Eq. 1) can couple linearly to the Raman
active eg and t2g phonons (Eqs. 6 and 7) as discussed
in Sec. III. These linear couplings form the leading or-
der terms that couple the lattice modes with the spins
with the latter apparently forming a U(1) QSL state–
the quantum spin ice– over a sizeable parameter regime.
Sec. IV gives a brief review of this quantum spin ice
phase and their fractionalised low-energy excitations– the
gapped bosonic electric and magnetic gauge charges and
the gapless emergent photons. These excitations are cap-
tured via a mean-field description of the parton decom-
position of spins leading to a lattice gauge theory. The
microscopic couplings of the rare-earth pyrochlore mag-
nets lead to a natural energy-scale separation between
the higher energy magnetic sector and lower energy elec-
tric sector in quantum spin ice.

The partons naturally allow to re-write the linear spin-
phonon coupling in terms of the coupling of the phonons
with the low-energy excitations of the quantum spin ice.
The resultant interaction vertices are shown in Fig. 2
while the details are discussed in Sec. V. In Sec. VI,
the Raman vertex for the phonons is derived. The re-
sulting differential scattering cross-section (Eq. 29) de-
pends on the phonon Green’s function (Eq. 31) which
receives a self-energy contribution due to scattering with
the QSL excitations (Fig. 2) via spin-phonon coupling.
The extra scattering channels then lead to an anomalous
low-temperature broadening of the phonon peaks. The
frequency dependence of such phonon linewidth contri-
butions provides information about the QSL excitations,
revealing the topologically non-trivial nature of the low-
temperature quantum paramagnet.

In Sections VII, VIII, and IX, we calculate the re-
sultant self-energy corrections (Figs. 6, 10, and 12)
within the simplest mean-field approximation for the lat-
tice gauge theory– the gauge mean-field theory (GMFT)–
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FIG. 2. Feynman diagrams for the interactions between the excitations of the quantum spin ice and the Raman
active phonons in a non-Kramers system due to the linear spin-phonon coupling (Eqs. 6 and 7) : (a) The vertex
corresponds to the phonon-magnetic monopole interaction described by Eq. 18 and 19. Dotted, solid and curly line denote
phonon, monopole and emergent photon, respectively. Thin and thick solid lines represent two flavours of monopoles, A and B,
respectively. (b) Vertex for the phonon-(emergent) photon interaction described by Eq. 24. The circle represents the dipolar
form factors (see Eq. 25) that makes the vertex gauge invariant. (c) Vertex for the phonon and electric charge interaction. The
dashed line denotes the electric charge.

where the gauge fluctuations are treated within a weak-
coupling perturbation theory with the leading order con-
tributions for the magnetic and electric sectors obtained
by neglecting the gauge fluctuations altogether. The re-
sultant frequency dependence for the phonon linewidth
is given in Figs. 7 and 8 for the magnetic monopoles;
Fig. 11 for emergent photons and Fig. 13 for the elec-
tric charges. The frequency dependence of the phonon
linewidth follows the two-particle density of states of the
emergent excitations in all three cases and hence pro-
vides a direct probe of the different excitations of the
QSL. In particular, the energy separation of the electric
and the magnetic sectors results in their contributions to
the phonon linewidth occurring at separate energies, po-
tentially paving the way for their separate identifications
by careful analysis of the frequency and temperature de-
pendence of the spectroscopic data.

The two-particle density of states are sensitive to the
symmetry fractionalisation patterns and in particular the
projective symmetry group (PSG) of the QSL. In the
case of quantum spin ice, a non-trivial example is the
so-called π-flux state, where each hexagonal closed loop
of the pyrochlore threads an electric flux of π as opposed
to zero in the regular (so-called zero-flux) quantum spin
ice phase. The two states can be stabilised for opposite
signs of the transverse term in the Hamiltonian in Eq.
3– J± > 0 (< 0) leads to the zero (π-) flux phase. In the
π-flux phase, the momentum is fractionalised due to the
larger magnetic unit cell, which is reflected in the two-
particle density of states for the monopoles and hence
shows up in the Raman linewidth. This can be easily
seen by contrasting Figs. 7 and 8 for zero and π-flux, re-
spectively. Therefore, our calculations show that Raman
scattering experiments are sensitive to particular aspects
of symmetry fractionalisation.

The above application of the mean-field approach to
calculate the Raman vertex can be invalidated via strong
gauge fluctuations, which couple to the electric charges
and the magnetic monopoles. The relevant fine-structure
coupling constant for the emergent quantum electrody-

namics of quantum spin ice has recently been numeri-
cally estimated to be . 0.1 [92]. This suggests that the
perturbative expansion may provide a leading estimate
of the effect of the gauge fluctuations for the magnetic
monopoles with their large gap. However, for the lower
energy electric charges, the effect of the coupling to the
gauge fluctuations is expected to be even stronger leading
to drastic renormalisation of the two-electric charge den-
sity of states. In any case, the perturbative corrections to
the phonon self-energy due to the gauge fluctuations are
found to be sub-leading at low temperatures as shown in
Sec. VII C.

We also briefly summarise the effect of quadratic spin-
phonon coupling terms on the vibrational Raman spec-
troscopy in Sec. X. This will be present both in Kramers
and non-Kramers systems. While in non-Kramers sys-
tems, they are expected to be sub-leading to the linear
coupling discussed above, in the case of Kramers systems,
they provide the leading source of magnetoelastic cou-
pling. In Sec. XI, we calculate the phonon self-energy
contribution due to spin-phonon coupling in the high-
temperature thermal paramagnet for the spins where
the gauge charges are ill-defined. In such a phase, the
phonon lifetime is expected to be dominated by anhar-
monic phonon-phonon interactions, which is qualitatively
different from the anomalous low-temperature broaden-
ing discussed above.

Finally, we show in Sec. XII that even in the case
of a mismatch of the phonon energy with those of the
QSL excitations– as is likely in some of the present non-
Kramers quantum spin ice candidates [32, 93]– the above
linear coupling contributes (obtained via integrating out
the phonon) to the Raman vertex. This leads to a cou-
pling between the external probe photon with all the ex-
citations of the emergent electrodynamics and provides
additional channels for scattering of the phonons that
contribute to the Raman linewidth, albeit through the
same two-particle density of states.

Finally, the details of various calculations are provided
in the appendices.
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II. MAGNETISM IN NON-KRAMERS
RARE-EARTH PYROCHLORE FAMILY

Several non-Kramers pyrochlore magnets are known
in the context of both classical and quantum spin ice
physics with substantial spin-lattice effects. The most
striking one is possibly Tb2Ti2O7 [59, 94–99], where the
first crystal field gap is of the order of 10 K and recent
neutron scattering experiments suggest that a vibronic
bound state arises due to the coupling between acoustic
phonon modes and crystal field levels which is absent in
the paramagnetic phase [61, 75]. However, the exact role
of the excited states and the applicability of quantum
spin ice physics are currently being debated. Ho2Ti2O7,
on the other hand, is a classical spin ice [60], although it
is interesting to note that on integrating out the lattice
vibrations, their linear coupling with the transverse spins
can induce (presumably very weak) quantum tunneling
terms within the classical spin ice.

The praseodymium pyrochlores, unlike the above ex-
tremes, belong to an interesting intermediate regime,
where the crystal field gap is reasonably large, but quan-
tum fluctuations are not insignificant [57]. Inelastic neu-
tron scattering by Wen et al. reveals that the existence
of quenched structural disorder in Pr2Zr2O7 can act as a
transverse field on the non-Kramers Pr3+ ion and might
lift the degeneracy of the non-Kramers doublet [100], al-
though X-ray diffraction does not show evidence of any
structural distortions. More recently, magnetoelastic ex-
periments on ultra-pure samples of Pr2Zr2O7 show possi-
bilities of substantial spin-phonon coupling and coupled
spin-lattice dynamics [80]. Further, high resolution Ra-
man scattering on the same samples at relatively high
temperatures (6 K-100 K) reveals that both the ground
state and excited crystal field doublets show a temper-
ature dependent splitting. The splitting grows more
pronounced as temperature is increased and can be ac-
counted for by the dynamical coupling of spins to the
phonons [31]. Several other non-Kramers spin-ice candi-
dates such as Pr2Sn2O7 [101], Tb2Sn2O7 [102] are also
known.

Therefore, to be concrete, we build our theory using
Pr2Zr2O7 as an example, although the results are gener-
ically applicable to any non-Kramers quantum spin ice.
In Pr2Zr2O7, the magnetic ion is the rare-earth element
Pr3+, which is in the 4f2 electronic configuration. The
ground state manifold is a doublet and given by [57, 79],

| ±〉 = a | ±4〉 ∓ b | ±1〉 − c | ∓2〉 (2)

where the different states belong to the J = 4 multiplet
with Jz | m〉 = m | m〉. Notably, characteristic to spin
ice, the natural axis of quantization for the spins is along
the local [111] axis (see Fig. 3 and Appendix A 1). The
ground state doublet is separated from the next crystal
field state by almost 10 meV [57]. Due to this large gap,
the low-temperature magnetic physics is dominated by
the above non-Kramers doublet. The effective low-energy
magnetic degrees of freedom are obtained by projecting

FIG. 3. Sublattices of an up tetrahedron: 0,1,2,3 de-
note the four sublattices and ẑ0, ẑ1, ẑ2, ẑ3 represent the four
respective local quantization axes (see Eq. A2 in Appendix
A 1).

all the spin operators to the low-energy doublet mani-
fold, and written in terms of the effective pseudo spin- 1

2

operators as sµ(≡ 1
2σ

µ) [79].
A central feature of the doublets in Eq. 2 is that under

time reversal (T ) they transform as | ±〉 →| ∓〉 such that
the pseudo-spins transform as shown in Eq. 1.

A. The spin exchange physics of non-Kramers
quantum spin ice

The pseudo-spins at different sites interact via regular
spin exchanges and the minimal symmetry allowed spin
Hamiltonian for non-Kramers spin ice is given by [45,
103, 104]

H0 =
∑
〈ij〉

[
Jzzs

z
i s
z
j − J±(s+

i s
−
j + s−i s

+
j )
]

+ · · · (3)

where · · · denote other symmetry allowed terms (includ-
ing further neighbour ones) which do not immediately
destabilise the QSL. In fact, their main effect in the QSL
phase is to renormalise the dispersion of the excitations
of the quantum spin ice [70, 105]. We neglect them here
and their effects can be taken into account systematically
along the lines discussed in the rest of this work.

Experiments reveal the exchange coupling to be
strongly anisotropic (Jzz � J±). Also, Jzz ≈ 1.6K, [57]
which is two orders of magnitude smaller than the single
ion crystal field gap. This justifies the use of single ion
crystal field states to treat the problem perturbatively.

Interestingly, the transformation of the non-Kramers
doublet under T in Eq. 1 leads to an unusual Zeeman
coupling in such materials. The external magnetic field,
being odd under time reversal, can couple linearly only
with sz but not with sx and sy. The latter, however, can
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couple to the magnetic field quadratically. The complete
onsite Zeeman Hamiltonian can be found in Ref. [106].

III. LINEAR MAGNETOELASTIC COUPLING
IN NON-KRAMERS SYSTEMS

Having discussed the spin physics, we now turn to the
linear magnetoelastic coupling in non-Kramers systems.
From the point of view of symmetry analysis, the struc-
ture of such a linear coupling is quite straightforward.
For a single tetrahedron, the linear coupling can be ob-
tained starting with the eight-dimensional vector space
spanned by the time reversal even transverse compo-
nents, (sxi , s

y
i ), of the spins on four corners of a tetra-

hedron (Fig. 3). This is then decomposed into the irre-
ducible representations of the tetrahedral group, Td, as

e⊕ t1 ⊕ t2 (4)

where e denotes the doublet and t1, t2 represent two
triplets with different symmetry transformations (see Ta-
ble I in Appendix A 3). Similarly, the (optical) normal
vibrational modes of bond distortions of a tetrahedron
are decomposed as,

a1 ⊕ e⊕ t2 (5)

where a1 is the singlet. It is evident from the above de-
composition that e and t2 vibrational (optical) modes
of a tetrahedron can linearly couple to the transverse
components of the non-Kramers doublet. Since the com-
plete symmetry of the pyrochlore is Td×I (with I being
the inversion), the complete representation is obtained by
taking symmetric and antisymmetric combinations of the
previous representations to form the ’g’ and ’u’ modes,
which are even and odd under spatial inversion respec-
tively.

As Raman scattering is insensitive to inversion-odd
modes, we only consider the eg and t2g modes. Hence,
the symmetry allowed magnetoelastic coupling for the
Raman active modes is given by

H(e)
sp =

∑
r,p=1,2

J (e)
sp ζ

(e)
p,g(r)

(
Q(e)
p (r, A) +Q(e)

p (r, B)
)

(6)

for the eg modes and

H(t2)
sp =

∑
r,p=1,2,3

J (t2)
sp ζ(t2)

p,g (r)
(
Q(t2)
p (r, A) +Q(t2)

p (r, B)
)

(7)

for the t2g modes. Here r denotes the centre of an
up tetrahedron and A/B denotes the two sublattices of
the underlying diamond lattice, dual to the pyrochlore.

Q
(e)
p (r, A/B) and Q

(t2)
p (r, A/B) respectively span the e

and t2 irreducible sector for the spins. For a single up

tetrahedron (Fig. 3), they are given by

Q
(e)
1 = sx0 + sx1 + sx2 + sx3

Q
(e)
2 = sy0 + sy1 + sy2 + sy3 (8)

and

Q
(t2)
1 =

1

2
(−sx0 + sx1 + sx2 − sx3)

Q
(t2)
2 =

1

4
(−sx0 − sx1 + sx2 + sx3) +

√
3

4
(sy0 + sy1 − s

y
2 − s

y
3)

Q
(t2)
3 =

1

4
(sx0 − sx1 + sx2 − sx3) +

√
3

4
(sy0 − s

y
1 + sy2 − s

y
3)

(9)

Finally, ζ
(e)
p,g(r) and ζ

(t2)
p,g (r) are the eg and t2g nor-

mal modes of pyrochlore lattice. These normal modes

are given by, ζ
(ρ)
p,g (k) = b

(ρ)
p,k + b

(ρ)†
p,−k where b

(ρ)†
p,k is the

creation operator of the phonons of the ρ irreducible rep-
resentation, with the bare phonon Hamiltonian given by

Hζ =
∑
ρ

∑
k,p

ω
(ρ)
k

(
b
(ρ)†
p,k b

(ρ)
p,k +

1

2

)
. (10)

An alternate and somewhat more microscopic deriva-
tion of the above physics can be obtained by consider-
ing the coupling of the doublet wave functions of Eq.
2 with the phonons, which also gives rise to phonon
mediated coupling between different crystal field states.
The physics of such couplings will be discussed else-
where [107].

The above linear coupling makes the non-Kramers spin
ice materials susceptible to spin Jahn-Teller distortions,
where the spin entropy can be quenched by distorting
the lattice and thereby splitting the doublet. Indeed,
in some samples of Pr2Zr2O7, signatures of such split-
ting have been observed [100, 108], accompanied with
random lattice distortions. However, more recent higher
quality samples appear devoid of such distortions, sug-
gesting controlled suppression of Jahn-Teller distortions
in better quality single crystals [80].

In the absence of static deformation of the crystal
field environment, the above linear spin-phonon coupling
helps to enhance the transverse fluctuations in the spin
ice manifold, which could stabilise a U(1) QSL phase via
magneto-distortive dynamics [80].

To study the effect of linear magnetoelastic coupling
(Eq. 6 and Eq. 7) via the Raman experiments on quan-
tum spin ice, we need to re-write the above spin-phonon
coupling in terms of the coupling of the phonon to the
low-energy excitations of the U(1) QSL. To derive this,
for completeness we briefly review the well-known map-
ping between the spins and low-energy gauge theory for
quantum spin ice [66, 69, 70, 109] next.
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IV. QUANTUM SPIN ICE

The description of the quantum spin ice is obtained
starting with a magnetic monopole charge density oper-
ators [69, 70, 110] Qr, defined at the centre of a tetrahe-
dron at r, as

Qr = ηr
∑
µ

szr,r+ηreµ
(11)

where, ηr = 1 (−1) for r ∈ up (down) tetrahedra of the
pyrochlore lattice and eµ is the vector connecting centres
of the two nearest neighbour tetrahedra directed from
up to down (see Appendix A 2). We call the positively
charged particles monopoles and negatively charged ones
antimonopoles. The creation (annihilation) operators for
the monopoles are defined as φ†r (φr) such that it satisfies,

[Qr, φ
†
r′ ] = δr,r′φ

†
r.

The relation between the monopole and spin operators
is given by

s+
r,r+eµ

=
1

2
φ†r e

iAr,µφr+eµ (12)

where r ∈ up tetrahedron and Ar,µ represents the com-
pact U(1) dual gauge field on the bond joining r and
r + eµ (In other words, they live on the links of the dual
diamond lattice). The spin operators remain invariant
under the following U(1) gauge transformation.

φr → φre
−iθr , Ar,µ → Ar,µ + (θr+eµ − θr) (13)

The compactness of the gauge field allows for dual elec-
tric charge excitations [66] which are gapped in the QSL.

Using the above mapping the spin Hamiltonian (Eq. 3)
can be written in terms of the gauge fields, monopoles,
and the charges to obtain the lattice gauge theory de-
scription of quantum spin ice. This is given by Eq. B1
in Appendix B along with other relevant details.

A. The gapless emergent photons

In the limit Jzz � J±, the magnetic monopoles have a
gap of O(Jzz) and can be integrated out. The low-energy
Hamiltonian is obtained in terms of the fluctuations of
the dual U(1) gauge field Ar,µ. This leads to the well-
known ring-exchange Hamiltonian that can be obtained
either via degenerate perturbation theory of Eq. 3 [66]
or equivalently integrating out the magnetic monopoles
from Eq. B1. This is given by

Heff =
U

2

∑
r,µ

B2
r,µ −

K

2

∑
7

cos

 ∑
r,µ∈7

Ar,µ

 (14)

where Br,µ(= szr,r+eµ
, r ∈ up tetrahedron) is the emer-

gent magnetic field that is canonically conjugate to the
dual vector potential, i.e., [Ar,µ, Br′,ν ] = iδr,r′δµ,ν , U is a

Lagrange multiplier imposing the half-integer constraint

on magnetic fields, and K ∼ J3
±

J2
zz

. The emergent electric

field is given by E7 =
∑

r,µ∈7Ar,µ where
∑

r,µ∈7 de-
notes the lattice curl around the hexagonal loops of the
pyrochlore.

The QSL corresponds to the deconfined phase (| K |�
U) of the above Hamiltonian. In this limit, the energy
for the pure gauge theory can be minimized by setting up
zero (π) electric flux through all the elementary hexago-
nal plaquettes for K > 0 (K < 0) [70]. These we shall
term as 0 and π-flux phases, respectively, since the mag-
netic monopoles hopping on the diamond lattice (see be-
low) see this electric flux.

The low-energy excitations of the gauge theory can
then be captured by expanding the cosine term up to
quadratic order about these static electric flux configu-
rations. This gives rise to a free Maxwell theory with two
transverse polarised gapless photon excitations and their
dispersion is given by [88],

εk = ce | k | (15)

where ce =
√
UK is the speed of emergent light.

B. The gapped magnetic monopole

The dynamics of the bare magnetic monopoles, on the
other hand can be obtained in a GMFT approximation
of Eq. B1 by freezing the gauge fluctuation [69] (see
Appendix B for details).

For K > 0, the ground state of the pure gauge theory
is in the zero electric flux sector (see above) where the
gauge mean field ansatz can be chosen as Ar,µ = 0. The
bare band structure for the two flavours (A and B) of
magnetic monopoles is then given by [69]

ε0k =

√√√√2Jzz

(
λ− J±

2

∑
µ>ν

cos (k · (dµ − dν))

)
(16)

where λ is a Lagrange multiplier introduced to take into
account the unitary constraint of the monopole operators
(see Appendix B 1) at the mean-field level.

For K < 0 on the other hand, the monopoles hop in
a π-flux background per hexagonal plaquette. This can
be implemented by choosing a suitable gauge [70] (also
see Fig. 18 in Appendix B) which doubles the size of
magnetic unit cell, leading to four flavours of monopoles.
The details of their band structure is summarized in Ap-
pendix B 2. In contrast to the zero flux phase, two non-
degenerate bands (denoted as επ+(k) and επ−(k)) appear
due to the presence of non-trivial background flux. It will
be shown in Sec. VII B that this leads to a very different
Raman response of these two QSL phases.

The bare band structure of monopoles gets further
renormalised due to the gauge fluctuations [92]. How-
ever, in the following discussion, we will assume the
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monopole-gauge coupling constant to be small, so that
these only lead to a sub-leading corrections of the GMFT
results (see Sec. VII C). We shall comment on the mer-
its/shortcomings of this approximation in the summary.

C. The gapped electric charge

The electric charges or the point defects of the gauge
field appear due to the 2π ambiguity of defining the com-
pact vector potential [66, 109]. The fluctuations of the
electric field are not small near these excitations and the
expansion of the cosine term (see Sec. IV A) is not pos-
sible. Unlike the magnetic monopoles and the photons,
these excitations are non-local in terms of the underlying
spins and their properties are better captured in the dual
description [66, 109, 111, 112] of the emergent gauge the-
ory describing the bosonic electric charges, Ψr, hopping
on the dual diamond lattice, r, via [109, 112]

Hcharge = −
∑
〈r,r′〉

t e−i2πar,r′Ψ†r Ψr′ +m
∑
r

Ψ†r Ψr (17)

where ar,r′ is the vector potential dual to Ar,µ; t is the
effective hopping strength and m is the chemical poten-
tial for the electric charges. The vector potential admits
only integer values and is defined by,

(∇× ar,r′)7∗ =
∑

rr′∈7∗
ar,r′ = Br,µ −B0

r,µ

7∗ denotes the dual elementary hexagonal plaquettes and
B0

r,µ is a static divergenceless background field. Since
there is a single spin-1/2 on every pyrochlore site, the
gauge field has a background π-flux in every dual hexag-
onal plaquette [112] such that in the gauge mean-field
limit (where we ignore the fluctuations of ar,r′ around the
background), the dynamics of electric charges reduces to
the problem of bosons hopping on the diamond lattice
subject to the background π-flux in every hexagonal pla-
quette. This can be solved using a proper gauge choice
and gives rise to 12 soft modes [109, 112]. We denote
the soft modes as ψi(i = 1, ..., 12). As mentioned earlier
(see Sec. I), the energy gap of the electric charges, ∆c,
in the QSL phase is ∼| J± |3 /J2

zz. Within the hopping
model, Eq. 17, minimum gap of the electric charges is
∆c = m− 2

√
2t.

The band structure of the electric charges gets further
renormalised due to the gauge fluctuations. Compared
to magnetic monopoles, they have a much smaller en-
ergy gap, and hence on general grounds, their coupling
with the emergent photon is expected to be relatively
much stronger. However, in order to keep our analysis
tractable, we neglect such effects within our GMFT ap-
proach and only take them into account perturbatively.

V. MAGNETOELASTIC COUPLING IN
NON-KRAMERS QUANTUM SPIN ICE

The effect of the magnetoelastic coupling in the QSL
phase can be analyzed by studying the coupling of the
phonon to the emergent excitations using the mapping
from spins to gauge charges discussed above. For the
linear coupling in Eqs. 6 and 7, the resultant interactions
are given below.

A. The magnetic monopole-phonon coupling

Here we obtain the direct coupling between the phonon
and the magnetic monopole. From Eq. 6, we get, for the
eg phonons :

H(e)
sp =

J
(e)
sp

2

∑
r

3∑
µ=0

ζ
(e)
−,g(r)

[
φ†r,Ae

iAr,µφr+dµ,B

+φ†r−dµ,A
eiAr−dµ,µφr,B

]
+ h.c.

(18)

where,

ζ
(e)
±,g(r) = ζ

(e)
1,g(r)± iζ(e)

2,g(r)

are the displacement fields and from Eq. 7 for the t2g
phonons,

H(t2)
sp =

J
(t2)
sp

2

∑
r

3∑
µ=0

3∑
p=1

(
ζ(t2)
p,g (r)L(t2)

p,x,µ − iζ(t2)
p,g (r)L(t2)

p,y,µ

)
×
[
φ†r,Ae

iAr,µφr+dµ,B + φ†r−dµ,A
eiAr−dµ,µφr,B

]
+ h.c.

(19)

The form factors L
(t2)
p,α,µ are obtained via the relation

Q
(t2)
p =

∑
α=x,y

∑3
µ=0 L

(t2)
p,α,µsαµ , their explicit forms can

then follow from Eq. 9.
Both these interactions give rise to a Yukawa type cou-

pling between the phonons and the monopole bilinear
of the form ζφ†eiAφ, albeit with different form factors.
The corresponding bare vertex is shown in Fig. 2(a). It
is clear from the interaction that the above coupling al-
lows for a phonon to decay into a monopole-antimonopole
pair: new low-energy scattering channels for the phonons
inside the QSL phase open up. Note that while the bare
monopole hopping preserves the sub-lattice flavour of the
monopole, the above vertex mixes them, keeping only the
total monopole number preserved.

Within GMFT, we assume that the gauge fluctuations
are weak and can be taken into account perturbatively.
Thus, within GMFT, the bare vertex for the magnetic
monopole-phonon interaction is given by Fig. 4, where
the gauge fluctuations have been neglected. Indeed, we
shall show that within a perturbative treatment of the
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q

k + q

k

FIG. 4. GMFT Feynman diagram for phonon and magnetic
monopole interaction (described by Eqs. 20 and 21) in the
zero flux phase: (see Fig. 2(a) for further details).

gauge field, the temperature dependence of the correc-
tions due to gauge fluctuations are sub-leading compared
to the mean-field results at low temperatures (see Sec.
VII C). In momentum space, GMFT vertices are given
by

H(e)
sp =

J
(e)
sp

2
√
N

∑
k,k′

[
(α

(e)
k + α

(e)
k′ )ζ

(e)
−,g(k− k′)φ†k,Aφk′,B

+ h.c.
]

(20)

H(t2)
sp =

J
(t2)
sp

2
√
N

∑
k,k′

3∑
p=1

[
(α

(t2)
p,k + α

(t2)
p,k′)×

× ζ(t2)
p,g (k− k′)φ†k,Aφk′,B + h.c.

]
(21)

where N is the total number of unit cells, while α
(e)
k and

α
(t2)
p,k s are vertex functions of the eg and t2g coupling,

respectively, whose forms are given in Appendix B 3.

B. The (emergent) photon-phonon coupling

To obtain the coupling between phonon and emergent
photon, once again we integrate out the gapped magnetic
monopoles (as in Sec. IV A) in presence of the magnetoe-
lastic coupling described by Eq. 18 and 19. The leading
coupling between phonon and gauge field is obtained in
fourth-order of the perturbation theory [113]. For the eg

phonons, this gives rise to

Hphonon−photon = −
J

(e)2
sp J2

±
2J3
zz

∑
7

(∑
r∈7

ζ(e)
g (r) · ζ(e)

g (r)

)
× cos [E7]

(22)

In the deconfined QSL phase, the cosine term in the
Hamiltonian above can be expanded up to quadratic or-
der as cos E ≈ 1 − E2/2. At low energies, the constant
term in the expansion leads to a quadratic term in the

phonon. This renormalises the frequency of the phonon
by a constant shift without affecting its linewidth.

The leading order coupling between the phonon and
the emergent photon, in the continuum limit is given by

Hphonon−photon = Jph−ph

∫
d3r ζ(e)

g (r) · ζ(e)
g (r) E2(r)

(23)

where Jph−ph ∼
J(e)2
sp J2

±
4J2
zzl

3 with l being the lattice length-

scale. As expected, the phonons cannot simply couple to
the dual gauge field since they do not carry the emergent
gauge charge. Instead, they couple to the gauge invariant
electric field. Further, since the Raman active phonons
are even under inversion, they can only couple to the
electric field at quadratic order. We note, in passing,
that the antisymmetric phonon modes (’u’ modes) on the
other hand are allowed to couple linearly to the emergent
electric field. Such interaction effects can be probed using
infrared spectroscopy [113].

In momentum space, Eq. 23 takes the form

Hphonon−photon =

∫ 4∏
i=1

d3ki Gαβ(k1,k2,k3,k4)

×
(
ζ(e)
g (k1) · ζ(e)

g (k2)
)
Aαk3

Aβk4

(24)

where the interaction vertex is given by

Gαβ(k1,k2,k3,k4) =
Jph−ph
N

[
−k3 · k4δαβ + kβ3 k

α
4

]
×δ(k1 + k2 + k3 + k4)

(25)

The above interaction is shown in Fig. 2(b), where
the circle represents the gauge invariant dipolar vertex
function, Gαβ . Such decay processes for phonons in a
QSL phase give rise to an additional contribution to the
phonon linewidth similar to that due to the monopoles,
albeit at a different energy-scale.

C. The electric charge-phonon coupling

Similar to the phonon-magnetic monopole coupling,
the phonons also interact with the electric charges via a
Yukawa coupling as shown in Fig. 2(c) (again, the elec-
tric charge creation/annihilation operators are not gauge
invariant and hence cannot couple to the phonons lin-
early).

To derive the coupling between the phonons and the
electric charges, we construct the bilinears of the soft
electric charge modes with appropriate symmetry that
can couple to a particular polarisation of the phonon.
Here we analyze only the eg couplings and the interaction
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q

k + q

k

FIG. 5. GMFT Feynman diagram for phonon and electric
charge interaction (described by Eq. 26): (see Fig. 2(c) for
further details).

is given by,

Hphonon−charge = J
(e)
ph−ch

∑
r

(
ζ

(e)
1,g(r)Θ1(r)

+ζ
(e)
2,g(r)Θ2(r)

)
(26)

where (Θ1,Θ2) forms an eg doublet and is given by,

Θ1 = ψ∗1ψ1 + ψ∗11ψ11 − ψ∗3ψ3 − ψ∗9ψ9

Θ2 = −ψ∗1ψ1 − ψ∗11ψ11 − ψ∗3ψ3 − ψ∗9ψ9 + 2(ψ∗5ψ5 + ψ∗7ψ7)
(27)

where ψi (i = 1, 2, · · · 12) are the soft modes of the electric
charges as obtained in Ref. [112] and discussed in the
previous section. The above interaction is shown in Fig.
5.

Due to the above magnetoelastic coupling, phonons
acquire a finite lifetime by scattering with the excitations
of the QSL. In the next three sections (Sec. VII, VIII and
IX), we compute the lifetime of the phonons and their
typical low-temperature behaviour in order to probe the
non-Kramers U(1) QSLs.

VI. RAMAN SCATTERING OF THE PHONONS
IN QUANTUM SPIN ICE PHASE

The Raman vertex for the phonon is given by [114]

HRaman =

∫
P(r) ·Eext(r) d3r (28)

where P(r) is the electric dipole moment and Eext(r)
is the external electric field (to be distinguished from
the emergent electromagnetism). Relegating details
to Appendix C, we find the Raman scattering cross-
section [115],

d2σ(q, ω)

dΩdωs
∝ R(q, ω), (29)

where for a thermal system, by Fermi’s Golden rule,

R(q, ω) =
∑
i,f

e−βEi

Z
| 〈f | HRaman | i〉 |2 δ(Ef − Ei − ω)

(30)

Here q = qin − qout is the net momentum transferred
to the system by the Raman process and ω is the dif-
ference between the frequency of incident and scattered
photons. As the speed of light is very large compared
to that of the phonons, only the q → 0 regime of the
Brillouin zone can be probed by Raman scattering. Fur-
ther, | i〉, | f〉 denote the initial and final state of the
phonons respectively, with energies Ei and Ef . Finally,
Z is the partition function for a Gibbs distribution at
temperature, T = 1/β.

At low temperatures, the initial state can be approx-
imated by the ground state. Also, we can see from the
Raman vertex (Eqs. 28 and C2) that the scattering ma-
trix element is non-zero only when | i〉 and | f〉 differ by a
single phonon, as higher phonon processes are suppressed
at low temperatures. So at low temperatures, | f〉 should
be chosen from the single phonon sector leading to

R(q, ω) ∝ −πn(ω)eβω

Z
e−βE0 lim

δ→0+
Im[Gζ(q, ω + iδ)]

(31)

where, n(ω) = 1
eβω−1

is the Bose-factor and Gζ(q, ω+ iδ)
is the retarded Green’s function of the phonon. This
can be calculated from the analytic continuation of the
Matsubara Green’s function, Gζ(q, iω), given by

Gζ(q, iω) = −
∫ β

0

dτ〈T̂ (ζ(q, τ)ζ(−q, 0))〉eiωτ

= − 2ωq

ω2 + ω2
q + 2ωqΣζ(q, iω)

(32)

where ωq is the bare dispersion of the phonon (obtained
from Eq. 10) and Σζ(q, iω) is its self-energy arising from
the interaction with the QSL excitations. Here, for sim-
plicity of the expression, we have suppressed the super-
script denoting the irrep of the phonon. Eq. 31 results in
a Lorentzian lineshape. The position of the peak of this
curve is shifted from the non-interacting one by

|∆Raman| = Re [Σζ(q, ω + iδ)] (33)

and the full-width at half maximum of the Lorentzian is
given by

Γ = 2 | Im [Σζ(q, ω + iδ)] | (34)

which can then be directly compared with experiment.
We now focus on understanding the frequency and

temperature dependence of the linewidth, Γ, in detail,
in order to extract the information it contains about the
QSL excitations via the linear magnetoelastic coupling.
The real part can be computed from the imaginary part
using the standard Kramers-Kronig theorem [116]. Since
the three QSL excitations are separated in energy scales,
we expect that they dominate the linewidth in different
frequency windows. Therefore, we particularly focus on
the frequency dependence of the linewidth.
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qq

FIG. 6. Self-energy of the phonon due to the phonon-magnetic
monopole interaction (see Fig. 4)

VII. SELF-ENERGY OF THE PHONON DUE TO
PHONON-MAGNETIC MONOPOLE COUPLING

We now calculate the self-energy of the phonons and
hence the broadening of the phonon peaks due to the
phonon-monopole interaction. We calculate the effect of
the coupling in a perturbative approach both in the zero
and π-flux phases.

A. Zero flux phase

The first non-zero contribution to the self-energy

comes at second order, O(J
(ρ)2
sp ), by computing the bub-

ble diagram of Fig. 6. Within GMFT, for the zero flux
phase, the self-energy is given by,

Σ0
ζ(ρ)(q, iΩ) =− J

(ρ)2
sp

4Nβ

∑
k,ω

| α(ρ)
k + α

(ρ)
k+q |

2

×G0
φ(k, A, iω)G0

φ(k + q, B, i(ω + Ω))

(35)

where the time ordered Green’s function (G0
φ) for

monopoles in the zero flux phase is defined as (see Eq.
B7 in Appendix B 1),

G0
φ(k, A/B, iω) =

∫ β

0

dτ〈T̂
(
φk,A/B(τ)φ†k,A/B(0)

)
〉eiωτ

=
2Jzz

ω2 + (ε0k)
2 (36)

To obtain the broadening of the Raman peaks, we cal-
culate the imaginary part of Σ0

ζ(ρ)
(q, iΩ→ Ω + iδ). Per-

forming the frequency summation using standard Mat-
subara summation techniques [116], we get

lim
δ→0

Im[Σ0
ζ(ρ)(q,Ω + iδ)] =

πJ
(ρ)2
sp J2

zz

4N

∑
k

| α(ρ)
k + α

(ρ)
k+q |

2

[
n(ε0k)− n(ε0k+q)

ε0kε
0
k+q

(
δ(Ω + ε0k+q − ε0k)− δ(Ω + ε0k − ε0k+q)

)
+
n(ε0k) + n(ε0k+q) + 1

ε0kε
0
k+q

(
δ(Ω + ε0k + ε0k+q)− δ(Ω− ε0k − ε0k+q)

)]
(37)

where, n(ε0k) = 1

eβε
0
k−1

is the Bose occupation for the

magnetic monopole with ε0k being the single-particle dis-
persion within GMFT as given by Eq. 16.

The first two delta functions of Eq. 37 imply processes
where a monopole scatters by absorption of a phonon (ab-
sorption process). The prefactor (n(ε0k) − n(ε0k+q)) rep-
resents the net probability of such processes. On the
other hand, the last two delta functions in Eq. 37 arise
due to the conversion of a phonon into a monopole-
antimonopole pair or vice-versa (pair production process,
Fig. 1(c)). The prefactor (1 + n(ε0k) + n(ε0k+q)) repre-
sents the net probability of two competing processes- the

first(second) is the annihilation (creation) of a phonon
followed by creation (annihilation) of the monopole-
antimonopole pair.

Eq. 37 is one of the central results of this work.
It shows that the self-energy correction of the phonons
arises from its coupling to the magnetic monopoles. We
now analyze the self-energy, in particular, its frequency
dependence, which can be detected in Raman scatter-
ing experiments. For Raman scattering, only the q ≈ 0
regime of the Brillouin zone is accessible. In this limit,
clearly the probability of the absorption process of the
phonons vanishes since the difference of the two Bose
factors go to zero as q→ 0, leading to

Γ(Ω, T ) = 2 | Im[Σ0
ζ(ρ)(q = 0,Ω)] |= 2πJ

(ρ)2
sp J2

zz

N

∑
k

| α(ρ)
k |2

[2n(ε0k) + 1

(ε0k)2
|
(
δ(Ω + 2ε0k)− δ(Ω− 2ε0k)

)
|
]

(38)
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From Eq. 16, we see that the bare monopole band
structure is gapped with its minima at k = 0 and the
energy gap, ∆0 =

√
2Jzz (λ− 3J±). It is evident from

Eq. 38 that the splitting of phonons into a monopole-
antimonopole pair occurs only if the phonon frequency
is larger than the pair creation energy (2∆0) such that
Γ ∼ Θ (| Ω | −2∆0). This is visible in Fig. 7, where we
plot the linewidth, Γ(Ω, T ) versus the frequency, Ω, for
various temperatures, T , for both the eg and the t2g
modes, for ∆0 = 1.26Jzz as an illustrative example for
plotting. The profile of the curve remains qualitatively
same as long as the constraint λ > 3J± is satisfied, which
defines the extent of the QSL. Apart from the depen-

dence on the form factors, α
(ρ)
k , and the Bose factor, both

these curves reflects the two-particle density of states pro-
file of monopoles, shown in the inset of Fig. 7(b). The
effect of the form factors can be noted from the qualita-

tive difference of the two plots. Since α
(t2)
k → 0 as k→ 0

(from Eq. B14), the linewidth for t2g smoothly vanishes
for Ω → 2∆0. By contrast, for eg, the vertex function

(α
(e)
k ) tends to a nonzero constant as k → 0 (from Eq.

B14) and the linewidth shows a sharp behaviour even at
zero momentum.

B. π− flux phase

The phonon-magnetic monopole coupling in the
π−flux phase is obtained from the linear spin-phonon
coupling of Eq. 6 and Eq. 7 via parton decomposition
of the spins and freezing the gauge fluctuations to a suit-

able GMFT ansatz as described in Sec. IV B. Focusing
only on the eg phonons, the phonon-monopole coupling
is given by,

H(e)
sp =

J
(e)
sp

2
√
N

∑
k

∑
µ,ν=1,2

(
Mµν

k ζ
(e)
−,g(q = 0)φ†k,Aµφk,Bν

+h.c.
)

(39)

The details of the vertex functions Mµν
k are given in Ap-

pendix D 1. The Feynman diagram of the above inter-
action is again represented by the Yukawa vertex which
is very similar to Fig. 4 except for the fact that four
distinct diagrams are possible due to the extended sub-
lattice structure. The phonon self-energy in this phase is
given by,

Σπζ(e)(q = 0,iΩ) = −J
(e)2
sp

4Nβ

∑
k,ω

∑
µ,ν,α,β

Mµα
k Mνβ

−k

×
[
Gπφ
]
µν

(k, A, iΩ + iω)
[
Gπφ
]
αβ

(k, B, iω)

(40)

where, [Gπφ]µν(k, A/B, iω) is the Green’s function for the

A/B monopoles in the π-flux phase (see Eq. B13 in Ap-
pendix B 2 for the detailed expressions). Computing the
imaginary part of the above expression, we obtain the
linewidth of the phonons in the π−flux phase. The con-
tribution where the phonon creates into two monopoles,
is given by,

Γ(Ω, T ) =
πJ

(e)2
sp

2N

∑
k

[
1 + 2n(επ+(k))

επ+(k)2
P1(k)δ

(
Ω− 2επ+(k)

)
+

1 + 2n(επ−(k))

επ−(k)2
P2(k)δ

(
Ω− 2επ−(k)

)
+ (P3(k) + P4(k))×(

1 + n(επ+(k)) + n(επ−(k))

επ+(k)επ−(k)
δ
(
Ω− επ+(k)− επ−(k)

)
+
n(επ+(k))− n(επ−(k))

επ+(k)επ−(k)
δ
(
Ω + επ+(k)− επ−(k)

))]
(41)

where, P1(k), P2(k), P3(k), P4(k) are real functions of
momentum whose detailed forms are given by Eq. D2 in
Appendix D 2 and επ±(k) are the bare monopole disper-
sions in the π-flux phase as discussed above. The detailed
forms are given by Eq. B10 and B11 in Appendix B 2.

The above expression should be contrasted with that
for zero flux (Eq. 38). There are four distinct delta func-
tions appearing in the expressions. The first two terms
are closely related to the two-particle density of states
for the επ+(k) and επ−(k) bands, implying the decay of a
phonon into monopole-antimonopole pair with respective
energy in the two bands, ±. On the other hand, the last
two entries represent the processes where a phonon scat-

ters into monopole-antimonopole pair of different energy
bands. Consequently, unlike the zero flux case, both the
pair production and absorption processes show non-zero
amplitude even at q = 0.

As an aside, we briefly comment on the connection of
this ‘shallow inelastic scattering’ referred to in Fig. 1(d)
to the deep inelastic scattering familiar from QCD. In
the latter, a photon scatters off a quark which, when it
is highly relativistic, is possible with only a minor mo-
mentum contribution from other quarks. By contrast,
with fractionalisation being a low-energy phenomenon,
the kinematics works out differently despite the topo-
logical correspondence between the two diagrams. It is
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FIG. 7. Frequency dependence of linewidth of (a) eg and (b) t2g phonons in the zero flux phase due to the

phonon-magnetic monopole coupling: For both plots, we have chosen λ
2Jzz

= 0.7 and
J±
2Jzz

= 0.1 for illustrative purpose.

The inset of (b) shows the two-particle density of states (DOS) of magnetic monopoles for the same values of λ/2Jzz and
J±/2Jzz.

the capacity of the scattering between the two bands for
the π-flux phase to absorb energy and momentum which
provides the non-vanishing cross-section even at low q
for the shallow scattering.

In Fig. 8, we plot various contributions to the
two-particle density of states of magnetic monopoles
in the π−flux phase, which represent the four distinct
delta functions of Eq. 41. The phonon linewidth
is obtained from the sum of these delta functions
weighted by appropriate momentum dependent form fac-
tors (P1(k),P2(k),P3(k),P4(k)) and the Bosonic distri-
bution functions at finite temperature. It is evident from
the figure that, unlike the zero flux case, the Raman
linewidth shows a non-zero signal even at very low en-
ergy compared to the monopole gap. Availability of the
two non-degenerate bands allow a non-zero probability
of the process where a monopole (say with energy επ−(k))
absorbs the phonon and converts into another monopole
of different band structure (επ+(k)) even at q = 0. Also,
the enlargement of the magnetic unit cell compared to
that of the zero flux case– leading to the momentum
fractionalisation– is very well captured in such a Ra-
man response profile, which is a signature of the non-
trivial projective implementation of symmetry. Hence,
the phonon linewidth measurements via Raman exper-
iments can be an extremely useful tool to identify the
non-trivial projective symmetry group of a QSL phase.

C. Beyond GMFT : Gauge fluctuations

The above Raman cross-section was obtained within
GMFT neglecting the gauge fluctuations. We now con-
sider the effect of long-wavelength gauge fluctuations
within a weak-coupling approach for the emergent elec-
trodynamics. At present, it is not clear that such a weak-
coupling approach is valid for treating the gauge fluctua-
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FIG. 8. Density of states of different bands contribut-
ing to the phonon linewidth in the π-flux phase: We
have chosen λ/2Jzz = 0.7, J±/2Jzz = 0.3 for illustrative pur-
pose. Red and blue curves denote the two-particle density of
states for upper(επ+) and lower(επ−) bands, respectively. Black
and magenta curves denote density of states of επ+ + επ− and
επ+ − επ−, respectively.

tions. In fact the coupling parameter– the fine structure
constant– for the emergent electrodynamics is generically
expected to be sizeable. However, recent numerical cal-
culations [92] on quantum spin ice (via Eq. 14) suggest
that the emergent fine-structure constant is . 0.1 which
may suggest that the perturbative expansion could still
provide an estimate of the effect of gauge fluctuations.

For the zero flux case, this is captured by the expan-
sion, e±iAr,µ ≈ (1± iAr,µ). Hence, (from Eq. B1) the
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interaction between monopole and gauge field is given by,

HGF =
iJ±

4
√
N

∑
k,k′,µ 6=ν

[
γµνB (k,k′)Ak−k′,µφ

†
k,Bφk′,B

+ γµνA (k,k′)Ak−k′,µφ
†
k,Aφk′,A

]
(42)

where Ak,µ = 1√
N

∑
r∈I Ar,µe

ik·r. The details of the

vertex functions, γµνA/B(k,k′), are given in Appendix E for

the zero flux phase. The π-flux phase can be treated in a
similar way. There are two (related by Ward identities)
effects of the gauge fluctuations– renormalisation of the
vertex (Fig. 2(a)) and renormalisation of the monopole
propagator (Fig. 9)– which we discuss in turn.

In presence of such gauge fluctuations, the vertex
functions for the bare phonon-monopole interactions get
dressed via the virtual photon exchange processes as de-
scribed by Fig. 2(a). This effect can be taken into ac-

count by calculating the modified vertices, α
(ρ)
k + δα

(ρ)
k .

We compute the leading order corrections by expand-
ing the bare monopole energy about the band minima
at k = 0 (Eq. E3). Similarly, all the bare vertex func-

tions (α
(e)
k , α

(t2)
k , γµνA/B(k,k′)) are also Taylor expanded in

polynomials of momentum and only the leading terms are
considered. We note that the terms with higher powers
of momentum contribute to more sub-leading (in tem-
perature) corrections to the mean-field vertices at low
temperatures. With the above approximations, the lead-
ing frequency independent corrections to the eg and t2g
vertices are obtained as (see Appendix E for further de-
tails),

δα
(e)
k ≈ a0 +

a1

β4
+
a2e
−β∆0

β
3
2

+ k2

(
a3

β2
+
a4e
−β∆0

β
1
2

)
δα

(t2)
k ≈ ã0 +

ã1

β5
+
ã2e
−β∆0

β2
+ k2

(
ã3

β3
+
ã4e
−β∆0

β

)
(43)

where ai and ãi are temperature independent constants.
The correction to the linewidth can now be obtained by
incorporating these vertex corrections to Eq. 38. We
note that such contributions do not change the depen-
dence of the Raman response on the two-particle den-
sity of states of the monopoles. Instead, they modify
the temperature dependence and overall profile of the
linewidth vs frequency plots (see Fig. 7) obtained from

the GMFT ansatz by renormalisation of the form factors.
However, since the QSL phase is stabilised only at low
temperatures, the temperature dependent vertex correc-
tions merely give rise to a sub-leading correction to Eq.
38 as T → 0.

Apart from the vertex corrections, the virtual photon
exchange due to the gauge fluctuations also renormalises
the monopole self-energy, via processes shown in Fig.
9. Such contributions renormalise the bare monopole

qq

FIG. 9. Self-energy of the magnetic monopoles due to the
gauge fluctuation.

qq

FIG. 10. Self-energy of the phonon due to the phonon-
(emergent) photon interaction (see Fig. 2(b)).

linewidth as well as its band structure. The broadening
of the linewidth is sub-leading in the low-temperature
regime. On the other hand, the renormalisation of the
band structure modifies the two-particle density of states
of monopoles by an amount proportional to the speed of
emergent light (ce). As a result, the Raman linewidth
gets renormalised compared to the GMFT results de-
scribed in Fig. 7 via the dressed two-monopole density
of states. However, since the large anisotropy of the ex-
change coupling (Jzz � J±) ensures ∆0 � ce [72, 88, 92],
such effects are small. The large gap of the magnetic
monopoles in QSL phase preserves the essential features
of the Raman response obtained in the GMFT ansatz.

VIII. SELF-ENERGY OF THE PHONON DUE
TO PHONON-PHOTON COUPLING

Similar to the Raman response due to the phonon-
monopole coupling, the leading contribution to the
phonon linewidth due to phonon-photon interaction (see
Eq. 24) can be computed from the Feynman diagram
shown in Fig. 10 appearing in the second-order pertur-
bation theory. The phonon self-energy is given by,

Σζ(e)(q, iΩ) =
1

β2

∑
k2,k3,k4

∑
Ω2Ω3Ω4

Gβγ(q,k2,k3,k4)Gµν(q,k2,k3,k4)δ(Ω + Ω2 + Ω3 + Ω4)

× Gζ(k2,Ω2)Dβµ(k3,Ω3)Dγν(k4,Ω4)δ(q + k2 + k3 + k4) (44)
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Here Dµν(q, iω) denotes the photon propagator which
can be calculated from the effective low-energy Hamilto-
nian of the pure gauge theory given in Eq. 14, i.e.,

Dµν(q, iω) = −
∫ β

0

dτ〈T̂ (Aq,µ(τ)A−q,ν(0))〉eiωτ

= − Uδµν
ω2 + ε2

q

(45)

Eq. 44 can be further simplified by performing the fre-

quency summation [116]. For the Raman scattering ex-
periments discussed earlier, we consider only the q → 0
limit and focus on the imaginary part. Typically, the dis-
persion for the optical phonon can be approximated as,
ωq → ω0. Also, the energy scale of the emergent photon
is much smaller than the optical phonon excitations of the
pyrochlores [32, 88, 117]. Hence, at the low temperatures
of the QSL phase, it is fair to consider n(ω0) � n(εk).
Setting n(ω0) = 0 in the leading approximation, the con-
tribution to the phonon linewidth is obtained as,

Γ(0, E) =
π(Jph−phU)2

2N2

∑
k

[
k · kδβγ − kβkγ

]2 1

4ε2
k

[
δ(E + εk) [n(−E)]2 + δ(E − εk) [1 + n(E)]2

+ δ(E) {2[n(εk)][n(εk) + 1]}
]

(46)

where, E = (Ω − ω0)/2. It is clear from the above ex-
pression that the Raman response occurs around Ω = ω0

due to the gaplessness of the photons, which is differ-
ent from the frequency window at which the magnetic
monopole signatures occur. For small positive energies
E, the above expression is further simplified to,

Γ(0, E) ∝ E4(1 + n(E))2 (47)

For the higher energy regime, the photon band struc-
ture starts deviating from the linear behaviour and the
above form is no longer valid. The complete energy de-
pendence of the above contribution to the linewidth is
shown in Fig. 11 for different temperatures, where we
have used the lattice regularized dispersion for the emer-
gent photons [72, 88]. Apart from the usual dipolar form
factor, the linewidth profile is mostly sensitive to the pho-
ton density of states, which is shown in the inset of Fig.
11.

IX. SELF-ENERGY OF THE PHONON DUE TO
PHONON-ELECTRIC CHARGE COUPLING

The final contribution to the phonon self-energy in the
QSL phase arises from scattering of the phonons off the
electric charges. Again, assuming weak coupling between
the charges and the gauge field, we compute the phonon
linewidth due to Eq. 26 using GMFT. As we have already
seen, this interaction is very similar to that between
phonons and monopoles. Hence, the contribution to the
phonon self-energy also comes from similar Feynman di-
agrams as shown in Fig. 12. There are two possible scat-
tering channels for electric charge-phonon interactions–
absorption of a phonon by a charge, or, annihilation of
a phonon followed by pair production of charges (with
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FIG. 11. Energy dependence of the linewidth of the eg

phonons due to phonon-(emergent) photon coupling:
The energy dependence is shown at different temperatures.
ce =

√
UK is the velocity of the emergent photons and its

density of states is plotted in the inset.

charge ±1). Similar to monopoles, only the second pro-
cess is relevant here. Therefore, Γ ∼ Θ(| Ω | −2∆c), and
the linewidth vs frequency profile closely follows the two-
particle density of states of the electric charges. This is
shown in Fig. 13 for t/m = 0.2 as an illustrative exam-
ple (However, it can be chosen from any value that satis-

fies, m > 2
√

2t, defining the validity of the QSL descrip-
tion, and the profile remains qualitatively unchanged).
Clearly, the Raman response due to the phonon-charge
coupling has a threshold energy scale of ∼ 2∆c which is
a different energy scale compared to the response due to
magnetic monopoles and photons.
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qq

FIG. 12. Self-energy of the phonon due to the phonon-electric
charge interaction (see Fig. 5)
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FIG. 13. Two-particle density of states of the charges:
For illustrative purpose, we have chosen t/m = 0.2 where
∆c/m = 0.43.

X. BILINEAR COUPLING

Having discussed the effects of the linear magnetoe-
lastic coupling in the QSL phase, we now briefly discuss
the more familiar contribution to the Raman response
of the phonons arising due to magnetoelastic interaction.
This is present both in Kramers and non-Kramers sys-
tems, as it arises due to modulation of the spin-exchange
interactions via the phonons and can be obtained from
the bare spin Hamiltonian of Eq. 3 by Taylor expand-
ing the exchange coupling constants in powers of lattice
displacements (δµν) from the ionic equilibrium position
(R̄µν) [118] as

Jµνα (r) = Jα +
∂Jµνα (r)

∂Raµν
δaµν(r)

+
1

2

∂2Jµνα (r)

∂Raµν∂R
b
µν

δaµν(r)δbµν(r) (48)

Here, Jµνα (r) denotes the generic bond dependent ex-
change coupling constant on the bond of the pyrochlore
connecting the sites (r,µ) and (r,ν). Here, (r,µ) denotes
the position vector of the four spins sitting on the corners
of the tetrahedron with its centre at r for µ = 0, 1, 2, 3,
with α representing zz or ± interactions, and,

Raµν = (r,µ)a − (r,ν)a, (a = x, y, z)

δaµν = Raµν − R̄aµν

Substituting Eq. 48 in the spin-Hamiltonian of Eq.
3, we get the coupling between the phonons and spin-
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q q + q′ + k

q′ k

(d)

FIG. 14. Feynman diagram for phonon and magnetic
monopole interaction due to the spin-phonon cou-
pling quadratic in spin operators: (a) and (b) are the
contributions from H1, and, (c) and (d) are the contributions
from H2 (see Eq. F3 and F4).

bilinears,

Hquad
sp = H1 +H2 (49)

where H1 and H2 represent the interaction vertices lin-
ear and quadratic in phonons, respectively. Their de-
tailed forms are given by Eq. F1 and F2 in Appendix
F. A unitary transformation can be performed on the
displacement operators, δµν(r), to re-write it in the nor-

mal mode coordinates, ζ(ρ)(r), described in Sec. III. The
above interaction is re-written in terms of the fraction-
alised degrees of freedom in a QSL phase using the parton
decomposition of spins as described in Sec. IV. Within
GMFT, the quadratic magnetoelastic coupling between
the phonons and emergent excitations of the QSL is de-
scribed by Fig. 14 and 15 (also see Eq. F3 and F4 in
Appendix F).

The phonon-magnetic monopole vertex arising from
the quadratic coupling is shown in Fig 14 where (a) and
(b) panels show the contribution from H1 , and, (c) and
(d) panels show the contribution from H2. It is clear from
these diagrams that such magnetoelastic coupling gives
rise to the hopping of the monopoles which preserves the
monopole flavour, i.e., monopoles on A and B sublattices
do not mix under this dynamics. This feature can be
contrasted with the monopole dynamics due to the lin-
ear magnetoelastic coupling described earlier in Eq. 20
and 21.

The quadratic coupling also generates a coupling be-
tween phonons and emergent photons which is shown in
Fig. 15 with (a) and (b) panels depicting contributions
from H1 and H2, respectively. In contrast to the lin-
ear coupling case, the phonons now couple to the gauge
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FIG. 15. Feynman diagram for phonon and photon in-
teraction due to the spin-phonon coupling quadratic
in spin operators: The circles represent the form factor
that makes the vertex gauge invariant. (a) and (b) are con-
tributions due to H1 and H2, respectively (see Eq. F3 and
F4).

invariant magnetic field. As expected from time rever-
sal invariance of the phonons, the magnetic field appears
only at quadratic order in such couplings. We also note
that the process shown in Fig. 15(a) is in the single
phonon scattering channel, which was not present in the
previous case.

Similar to the linear magnetoelastic interaction, the
quadratic coupling also renormalises the phonon fre-
quency and linewidth by opening up the decay channels
for phonons depicted in Fig. 14 and 15. However, these
new scattering channels do not change the essential fea-
tures of the Raman linewidth, and its frequency depen-

dence on the density of states of emergent excitations
remains unchanged. In the non-Kramers materials, this
contribution is expected to be sub-dominant compared
to the phonon renormalisation due to the linear spin-
phonon coupling. However, we note that the quadratic
coupling is the only component of the magnetoelastic
coupling present in the Kramers materials.

XI. SELF-ENERGY CALCULATION IN
(THERMAL) PARAMAGNETIC REGIME

Finally, to contrast the case of the QSL to an ordinary
paramagnet, we compute the self-energy of phonon in the
high-temperature paramagnetic regime, where T � Jzz
such that the thermal fluctuations predominate. In this
thermal paramagnet, due to the presence of abundant
thermally excited both electric charges and magnetic
monopoles, they cease to be well-defined (sparse) quasi-
particles, instead presenting randomly fluctuating back-
ground fields. In such a case, individual monopoles or
charges cannot propagate coherently, and, the deconfined
U(1) gauge theory no longer is a valid description of
the system. Instead of using the emergent excitations,
the dressed self-energy due to the spin-phonon interac-
tion (as described in Eq. 6 and 7) is now computed in
terms of the original short-range correlated spin degrees
of freedom. The phonon self-energy due to the linear
spin-phonon coupling is given, e.g. for eg modes, by

Σζ(e)(q, iΩ) = −J (e)2
sp

∑
α=x,y

3∑
µ,ν=0

[
η(e)
µν (q)κααµν (q, iΩ) + η(e)

µν (−q)κααµν (−q,−iΩ)
]

(50)

where

καβµν (q, iω) =

∫ β

0

dτ〈T̂
(
sαµ(q, τ)sβν (−q, 0)

)
〉0eiωτ (51)

is the time ordered spin correlation function and η
(e)
µν (q)

is the form factor for the eg mode. Similar expressions
hold for t2g modes as discussed in Appendix G.

From the bare spin Hamiltonian, we expect the spin-
correlations to be diagonal in the spin indices (defined
using the local quantisation axes given by Eqs. A1
and A2), i.e., καβµν (q, iω) = δαβκ

αβ
µν (q, iω). Further, in

this thermal paramagnetic phase, the spins are inco-
herent and, therefore, the spin correlations are domi-
nated by the short time values which we replace by the
equal time correlators, which in turn can be computed
from the high-temperature expansion using the bare spin-
exchange Hamiltonian. The leading contribution is given
by,

〈sxrsxr′〉0 = 〈syrs
y
r′〉0 ≈ e

− |r−r′|
ξ (52)

where ξ ∼ 1/ ln
(
T
J±

)
is the finite correlation length in

the paramagnetic phase. Taking the Fourier transform
and substituting it in in Eq. 50, we obtain,

Σζ(ρ)(q, iΩ) ∝ − J
(ρ)2
sp ξ3β√

N(1 + q2ξ2)2
(53)

The above expression is purely real, and hence con-
tributes only to a Raman frequency shift that decays
inversely with temperature.

Therefore the leading effect of the spin-phonon cou-
pling is to renormalise the phonon energy while its life-
time receives sub-leading contributions. Therefore, the
Raman linewidth for the phonons acquires an anoma-
lous broadening while going from the high-temperature
paramagnetic phase to the low-temperature QSL. This
leads to the question what happens to the linewidth
at the thermal confinement-deconfinement phase tran-
sition between the low-temperature quantum and high-
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temperature thermal paramagnets? This is an interesting
and experimentally relevant question which will be very
useful to understand in the future.

XII. PHONON MEDIATED LOUDON-FLEURY
VERTEX

In addition to the renormalisation of optical phonons,
the magnetoelastic coupling can further mediate interac-
tion between the external Raman photons and the mag-
netic degrees of freedom. Such interactions are of partic-
ular interest in those materials where the phonon has a
very different energy scale compared to the QSL excita-
tions [32, 93]. In such a scenario, the renormalised Ra-
man vertex is obtained by integrating out the phonons
leading to a phonon mediated Loudon-Fleury vertex.

As explained in the earlier sections, the external pho-
tons of the Raman experiment probe the phonons of
the system (via Eq. 28), which further couple to the
fractionalised excitations via the magnetoelastic coupling
(see Eq. 20, 21, 24, 26). Therefore, integrating out
the phonons leads to an interaction between the exter-
nal photons and the emergent electrodynamics (see Eqs.
H3 and H4 in Appendix H for further details) as shown
schematically in Fig. 16 for the leading interaction be-
tween external photons and magnetic monopoles. The
vertices for the other emergent excitations are detailed
in Appendix H.

Typically, all the phonon mediated vertices are sup-
pressed by the energy scale of an optical phonon and
would lead to corrections to the usual Loudon-Fleury ver-
tices described in Ref. [88]. Raman intensity due to such
processes is obtained by calculating the imaginary part of
the bubble diagram shown in Fig. 17. It is clear from the
diagram that the resulting monopole bubble is exactly
same as the one obtained (see Fig. 6) earlier. Therefore,
the Raman intensity due to the phonon mediated Loudon-
Fleury processes are sensitive to the two-monopole den-
sity of states in the QSL phase and it can in principle also
characterise the physics of spin fractionalisation even if
the phonon is off-resonant to the quasiparticles of the
QSL phase.

XIII. SUMMARY AND OUTLOOK

To summarise, our results emphasise that magnetoe-
lastic coupling can provide a very useful tool to probe
the novel low-energy excitations of a QSL via spectro-
scopic methods such as Raman spectroscopy. We pro-
vide an explicit example of such a case in the context of
non-Kramers candidate quantum spin ices, such as the
recently studied material Pr2Zr2O7. In such systems,
the spin-phonon interaction is enhanced due to the pres-
ence of linear spin-phonon coupling, which is an essen-
tial consequence of the non-Kramers nature of the low-
energy magnetic degrees of freedom. We show that in the

+ −→

FIG. 16. Feynman diagram for the phonon mediated
Loudon-Fleury vertex for magnetic monopoles: The
curly lines denote the external Raman photons. The first and
second figure show the coupling of phonon to external photon
(see Eq. C1) and magnetic monopole, respectively. Integrat-
ing out the phonons, the external photon-monopole (see Eq.
H3) vertex is obtained which is shown in the rightmost panel.

FIG. 17. Feynman diagram contributing to the Raman in-
tensity due to the phonon mediated Loudon-Fleury vertex for
magnetic monopoles.

U(1) QSL phase of the quantum spin ice, all the emer-
gent excitations–the emergent gapped magnetic and elec-
tric charges as well as gapless emergent photons–interact
with the phonons leading to new scattering channels for
the latter and resulting in an anomalous renormalisation
of its frequency and lifetime. Such renormalisations are
very different from those arising due to the anharmonic
effects or spin-wave excitations of a magnetically ordered
state.

We characterise all the three types of excitations
by studying the frequency dependence of the Raman
linewidth of the relevant phonon modes, which in turn
depend on the two-particle density of states of the re-
spective excitations. Therefore, they carry characteristic
signatures of the fractionalisation. Since in the quan-
tum spin ice phase, the magnetic sectors and the electric
sectors are naturally separated in energy, the Raman re-
sponse also appears in different energy windows for these
degrees of freedom alongside the gapless emergent photon
to which both the charges couple.

Moreover, it is further shown that such probes can
also distinguish between zero flux and π−flux phases of a
QSL, and hence the PSG implementation realised in the
QSL. The results remain valid even if the phonon fre-
quencies are much larger than those of QSL excitations
via renormalisation of the Raman vertex for the spins.
Such phonon mediated Loudon-Fleury contributions are
expected to be the leading contributor to the Raman re-
sponse in non-Kramers quantum spin ice. Given the re-
cent development in synthesising high-quality single crys-
tals of Pr2Zr2O7 and obtaining their Raman response,
albeit so far only at high temperatures, we hope that our
work will contribute to the uncovering of the experimen-



19

tal signatures of QSLs in the context of the search for
fractionalised quantum phases of matter in d = 3.

The present calculations use a generalised mean field
theory applied to lattice gauge theory. While such ap-
proaches can generally provide the correct description
of the physics of the QSL qualitatively, fluctuations of
the emergent U(1) gauge field will affect the quantita-
tive comparison of the present results with experiments.
While a perturbative (in the gauge-matter coupling) cal-
culation, presented here, shows that such effects are sub-
dominant, the premise of the smallness of the coupling is
an assumption of the present work. In fact, there are in-
dications that the coupling between matter (monopoles)
and light (photons) is larger in spin ice than in ordinary
QED, as well as tunable from material to material, calling
for a research programme addressing the phenomenology
of eQED at intermediate to strong-coupling [92]. The
deviation of the present results due to strong gauge-
matter interactions provides an important and interest-
ing theoretical as well as experimental context to study
strong-coupling eQED. In this regard, experimental de-
viations of the above Raman signatures in candidate ma-
terials will provide a concrete motivation to understand
concrete experimental consequence of such a strongly-
coupled emergent QED. Such a research program would
obviously be of interest well beyond the spin ice setting.
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Appendix A: Details of the pyrochlore lattice

1. Local basis for the spins

The spins on a tetrahedron are described by,

si = sxi x̂i + syi ŷi + szi ẑi (A1)

where, (x̂i, ŷi, ẑi) is the set of local basis defined at site i
of a tetrahedron(see Fig. 3). In terms of the global co-
ordinates, these local basis vectors for an up tetrahedron
are given by,

ẑ0 =
(1, 1, 1)√

3
, x̂0 =

(2̄, 1, 1)√
6

, ŷ0 =
(0, 1̄, 1)√

2

ẑ1 =
(1̄, 1̄, 1)√

3
, x̂1 =

(2, 1̄, 1)√
6

, ŷ1 =
(0, 1, 1)√

2

ẑ2 =
(1̄, 1, 1̄)√

3
, x̂2 =

(2, 1, 1̄)√
6

, ŷ2 =
(0, 1̄, 1̄)√

2

ẑ3 =
(1, 1̄, 1̄)√

3
, x̂3 =

(2̄, 1̄, 1̄)√
6

, ŷ3 =
(0, 1, 1̄)√

2
(A2)

2. Lattice vectors

The four nearest neighbour vectors, which connect the
centre of an up tetrahedron to that of its adjacent down
tetrahedra, are given by,

e0 =
(1,1,1)√

3
e1 =

(1̄, 1̄,1)√
3

e2 =
(1̄,1, 1̄)√

3
e3 =

(1, 1̄, 1̄)√
3

(A3)

The FCC lattice vectors are given by,

dµ = e0 − eµ , for µ = 1, 2, 3 (A4)

3. Symmetry table for spins

The tetrahedral group, Td, is made out of 24 symmetry
elements which can further be classified into 5 conjugacy
classes. To decompose the vector space of (sxi , s

y
i ) oper-

ators into the irreducible representations (see Sec. III),
we compute their transformations under one representa-
tive symmetry transformation from each non-trivial class
: C3[111] (three-fold rotation about the global (1, 1, 1)
axis), C2[ẑ] (two-fold rotation about the global ẑ axis),
σd[x = y] (reflection about the x = y plane) and S4[ẑ]
(reflection about the z = 0 plane followed by four-fold
rotation about the global ẑ axis). This is given in Table
I for the transverse spin components, sxi and syi . Here
we do not consider time reversal odd szi operators, since
these are not relevant to the linear magnetoelastic cou-
pling.
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Symmetry Transformation of spin operators

C3[111] sx0 → 1
2
sx0 +

√
3

2
sy0 , sy0 → −

√
3

2
sx0 − 1

2
sy0

sx1 → − 1
2
sx2 +

√
3

2
sy2 , sy1 → −

√
3
2
sx2 − 1

2
sy2

sx2 → − 1
2
sx3 +

√
3

2
sy3 , sy2 → −

√
3
2
sx3 − 1

2
sy3

sx3 → − 1
2
sx1 +

√
3

2
sy1 , sy3 → −

√
3
2
sx1 − 1

2
sy1

C2[ẑ] sx0 → sx1 ; sy0 → sy1
sx1 → sx0 ; sy1 → sy0
sx2 → sx3 ; sy2 → sy3
sx3 → sx2 ; sy3 → sy2

σd[x = y] sx0 → − 1
2
sx0 −

√
3

2
sy0 , sy0 → −

√
3
2
sx0 + 1

2
sy0

sx1 → − 1
2
sx1 −

√
3

2
sy1 , sy1 → −

√
3
2
sx1 + 1

2
sy1

sx2 → − 1
2
sx3 −

√
3

2
sy3 , sy2 → −

√
3
2
sx3 + 1

2
sy3

sx3 → − 1
2
sx2 −

√
3

2
sy2 , sy3 → −

√
3
2
sx2 + 1

2
sy2

S4[ẑ] sx0 → − 1
2
sx2 −

√
3

2
sy2 , sy0 → −

√
3
2
sx2 + 1

2
sy2

sx1 → − 1
2
sx3 −

√
3

2
sy3 , sy1 → −

√
3
2
sx3 + 1

2
sy3

sx2 → − 1
2
sx1 −

√
3

2
sy1 , sy2 → −

√
3
2
sx1 + 1

2
sy1

sx3 → − 1
2
sx0 −

√
3

2
sy0 , sy3 → −

√
3
2
sx0 + 1

2
sy0

T sx0 → sx0 ; sy0 → sy0
sx1 → sx1 ; sy1 → sy1
sx2 → sx2 ; sy2 → sy2
sx3 → sx3 ; sy3 → sy3

TABLE I. Transformation of the transverse components of
spins under lattice symmetries and time reversal

Appendix B: Details of the GMFT of quantum spin
ice

The lattice gauge theory description of the spin Hamil-
tonian in Eq. 3 is given by

H0 =
∑
r

Jzz
2

(Q2
r,A +Q2

r,B)

− J±
4

∑
r,µ6=ν

φ†r+dµ,B
ei(Ar,ν−Ar,µ) φr+dν ,B

− J±
4

∑
r,µ6=ν

φ†r−dµ,A
ei(Ar−dµ,µ−Ar−dν,ν)φr−dν ,A

(B1)

subject to the hard-core constraint

φ†rφr = 1 (B2)

arising from the spin-1/2 Hilbert space dimension of the
non-Kramers doublet. In Eq. B1, A,B denote two sub-
lattices of the diamond lattice. dµs (µ = 1, 2, 3) are the
lattice vectors and d0 = 0 (see Appendix A 2).

1. GMFT of monopole dynamics in the zero-flux
phase

To implement the unitary constraint of the monopole
operators described by Eq. B2, we introduce a new term

to the Hamiltonian with a global Lagrange multiplier, λ.

λ
∑
r

(
φ†rφr − 1

)
(B3)

The constraint is imposed softly if we consider λ to be a
large number (more precisely, it needs to be the largest
energy scale of the problem). With this term, the con-
straint can be relaxed by rewriting monopole operators
as φ†r = eiχr (where χr takes real eigenvalues from (0, 2π]
and satisfies [χr,Qr′ ] = iδr,r′) and expanding it up to
linear order of χr.

φ†r ≈ 1 + iχr (B4)

Substituting the above expansion in the bare monopole
Hamiltonian (obtained by freezing the dual gauge fluc-
tuations in Eq. B1) along with the Lagrange multiplier
term, we obtain,

H0 ≈
Jzz
2

∑
r

Q2
r,B −

J±
4

∑
r,µ6=ν

χr+dµ,Bχr+dν ,B

+ λ
∑
r

χr,Bχr,B + B → A

=
∑
k

[
Jzz
2
| Qk,B |2 +

(
ε0k
)2

2Jzz
| χk,B |2

]
+ B → A

(B5)

where ε0k is the bare monopole dispersion in the zero flux
sector and given by Eq. 16. In the above equation, we
ignore the unimportant additive constant. We note that
the above Hamiltonian describes a bunch of decoupled
Harmonic oscillators which can be easily diagonlised us-
ing the standard ladder operator formalism.

Qk,A/B = −i

√
ε0k

2Jzz
(ak,A/B − a†−k,A/B)

χk,A/B =

√
Jzz
2ε0k

(ak,A/B + a†−k,A/B)

The monopole Hamiltonian is simplified to,

H0 =
∑
k

ε0k

(
a†k,Aak,A + a†k,Bak,B + 1

)
(B6)

a. Action for the magnetic monopoles

We can obtain the action for the monopoles corre-
sponding to the mean field Hamiltonian H0 using stan-
dard Trotter decomposition technique and implementing
the unitary constraint of φr field via the Lagrange multi-
plier term in the path integral formulation. We note that
since A and B monopoles are decoupled in the mean field
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FIG. 18. Unit cell of the diamond lattice with π-
flux: The gauge mean field is chosen such that Ar,r+eµ = π
on the yellow bonds and Ar,r+eµ = 0 on the black bonds.
A1, A2, B1, B2 denote the four sublattices in the enlarged unit
cell of the π−flux phase.

Hamiltonian, their action is additive.

S0 = SA0 + SB0

SA0 =
∑
k,ω

φ∗kω,A

[
ω2

2Jzz
+ λ− J±

2

∑
µ>ν

cos (k · (dµ − dν))

]
× φkω,A

SB0 =
∑
k,ω

φ∗kω,B

[
ω2

2Jzz
+ λ− J±

2

∑
µ>ν

cos (k · (dµ − dν))

]
× φkω,B

(B7)

We can further compute the Green’s function for
monopoles from the above action which is given by Eq.
36 of the main text.

2. GMFT of monopole dynamics in the π− flux
phase

The bare dynamics of the magnetic monopoles in the
π-flux phase can be obtained by choosing a suitable
gauge fixing condition shown in Fig. 18. It can fur-
ther be written as Ar,µ = εµQ · r with εµ = {0, 1, 1, 0}
and Q =

√
3π
2 (1, 0, 0). Similar to the zero flux case, the

monopoles can hop only inside the A or B sublattice.
Hence, the monopole dynamics can be expressed in terms
of the following action.

Sπ = SAπ + SBπ

SAπ =
∑
k,ω

(φ∗kω,A1 φ∗kω,A2)

(
ω2

2Jzz
+ λ+ J±

4 dA(k) J±
4 fA(k)

J±
4 f
∗
A(k) ω2

2Jzz
+ λ− J±

4 dA(k)

)(
φkω,A1

φkω,A2

)
(B8)

SBπ =
∑
k,ω

(φ∗kω,B1 φ∗kω,B2)

(
ω2

2Jzz
+ λ+ J±

4 dB(k) J±
4 fB(k)

J±
4 f
∗
B(k) ω2

2Jzz
+ λ− J±

4 dB(k)

)(
φkω,B1

φkω,B2

)
(B9)

where,

dA(k) = 2 (cos (k · d1) + cos (k · (d1 − d3)))

fA(k) = 1 + e−ik·d1 + e−ik·d2 − e−ik·d3 + e−ik·(d1+d2) − e−ik·(d3−d1) + e−ik·(d2+d3) + e−ik·(d2+d3−d1)

dB(k) = 2 (cos (k · d1)− cos (k · (d1 − d3)))

fB(k) = 1− e−ik·d1 + e−ik·d2 + e−ik·d3 + e−ik·(d1+d2) − e−ik·(d3−d1) + e−ik·(d2+d3) + e−ik·(d2+d3−d1)

λ is the global Lagrange multiplier introduced to take
into account the constraint φ†rφr = 1. (A1, A2, B1, B2)

denotes four sublattices of the enlarged unit cell. The
above action can further be diagonalised to obtain the
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dispersion for four monopole bands.

επA±(k) =

√
2Jzz

(
λ± J±

4

√
| dA(k) |2 + | fA(k) |2

)

επB±(k) =

√
2Jzz

(
λ± J±

4

√
| dB(k) |2 + | fB(k) |2

)
(B10)

whereA±(B±) denote two bands made out of linear com-
bination of A1 and A2 (B1 and B2) to diagonalise the
SAπ (SBπ ). Since A and B monopoles do not mix under
the above dynamics, their bands are degenerate.

επA±(k) = επB±(k) ≡ επ±(k) (B11)

We can compute different Green’s function for monopole from the above action of the monopoles. The Green’s
function is defined as,

[
Gπφ
]
µν

(k, A/B, iω) =

∫ β

0

dτ
〈
T̂
(
φk,A/B,µ(τ)φ†k,A/B,ν(0)

)〉
eiωτ (B12)

where, µ, ν = 1, 2. The different Green’s function are given by,

[
Gπφ
]
11

(k, A/B, iω) =
Jzz√

| dA/B(k) |2 + | fA/B(k) |2

[√
| dA/B(k) |2 + | fA/B(k) |2 + dA/B(k)

ω2 +
(
επ+(k)

)2
+

√
| dA/B(k) |2 + | fA/B(k) |2 − dA/B(k)

ω2 +
(
επ−(k)

)2
]

[
Gπφ
]
22

(k, A/B, iω) =
Jzz√

| dA/B(k) |2 + | fA/B(k) |2

[√
| dA/B(k) |2 + | fA/B(k) |2 − dA/B(k)

ω2 +
(
επ+(k)

)2
+

√
| dA/B(k) |2 + | fA/B(k) |2 + dA/B(k)

ω2 +
(
επ−(k)

)2
]

[
Gπφ
]
12

(k, A/B, iω) =
JzzfA/B(k)√

| dA/B(k) |2 + | fA/B(k) |2

[
1

ω2 +
(
επ+(k)

)2 − 1

ω2 +
(
επ−(k)

)2
]

(B13)

3. The GMFT vertex functions for magnetoelastic
coupling in zero-flux case

The vertex functions for the magnetic monopole-
phonon interaction vertices of Eq. 20 and 21 are given
by,

α
(e)
k =

1

2

∑
µ

eik·dµ

α
(t2)
1,k =

1

4
(−eik·d0 + eik·d1 + eik·d2 − eik·d3)

α
(t2)
2,k =

ei
π
3

4
(−eik·d0 − eik·d1 + eik·d2 + eikd3)

α
(t2)
3,k =

e−i
π
3

4
(eik·d0 − eik·d1 + eik·d2 − eik·d3) (B14)
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Appendix C: Vibrational Raman spectroscopy

Necessary condition for a phonon mode to be Raman
active is that it should have even parity and the phonon
contribution to the polarizability tensor (Λ) should oscil-
late as a function of time. For small amplitude of vibra-
tion, we can expand Λ as powers of normal modes [114].

Λ = Λ0 + ζ(ρ) ·
[
∇ζ(ρ)Λ

]
ζ(ρ)=0

(C1)

where ζ(ρ) is the phonon modes belonging to ρ irre-
ducible representation of the symmetry group. Λ0 is the
time independent part, hence do not contribute to the
Raman scattering. The Raman coupling in Eq. 28 is
then given by [114]

HRaman =
∑
p

∫
dk dk′

[
∇
ζ
(ρ)
p

Λ
]ij
ζ
(ρ)
p =0

ωink ω
out
−k′

× ζ(ρ)
p (k− k′)Aini (k)Aoutj (k′)

(C2)

where A(r) is the vector potential corresponding to the
external electric field, Eext(r),– again not to be confused
with emergent electromagnetism. ∇ζ(ρ)Λ forms a set of

symmetric 3×3 matrices which have the same symmetry
properties as ζ(ρ). In other words, this set forms an irre-
ducible representation (ρ) of the symmetry group. The
detailed structure of the matrices are given below.

1. Raman Matrices

Structures of the Raman matrices are obtained
by decomposing six dimensional space of second or-
der [114] polynomials(x2, y2, z2, xy, yz, zx) into the irre-
ducible representations of symmetry group Td and con-
structing the Hessian matrices for different components.
The decomposition is as follows:

a1 ⊕ e⊕ t2

where the basis for the irreducible subspaces are

a1 : x2 + y2 + z2 (C3)

e : (2z2 − x2 − y2, x2 − y2) (C4)

t2 : (xy, yz, zx) (C5)

Hence, the relevant polarizability matrices of the Raman
scattering are given by,

eg : [∇
ζ
(e)
1,g

Λ]
ζ
(e)
1,g=0

∝

−1 0 0
0 −1 0
0 0 2

 ,

[∇
ζ
(e)
2,g

Λ]
ζ
(e)
2,g=0

∝

1 0 0
0 −1 0
0 0 0

 (C6)

t2g : [∇
ζ
(t2)
1,g

Λ]
ζ
(t2)
1,g =0

∝

0 1 0
1 0 0
0 0 0

 ,

[∇
ζ
(t2)
2,g

Λ]
ζ
(t2)
2,g =0

∝

0 0 1
0 0 0
1 0 0

 ,

[∇
ζ
(t2)
3,g

Λ]
ζ
(t2)
3,g =0

∝

0 0 0
0 0 1
0 1 0

 (C7)

Appendix D: Raman response in π− flux phase

1. Vertex functions of magnetoelastic coupling

The vertex functions (Mµν
k ) of the magnetic monopole-

phonon coupling in the π-flux phase (see in Eq. 39) are
given by,

M11
k = 2(1 + eik·d1)

M12
k = 2(1− eik·(d1−d3))

M21
k = 2(eik·(d1+d2) + eik·(d2+d3))

M22
k = 2(1− eik·d1) (D1)

2. Self-energy of phonons due to magnetic
monopoles

Similar to the zero flux case, the self-energy can be
obtained by calculating the bubble diagrams appearing
in the second-order perturbation theory. The only differ-
ence is that due to the larger unit cell, sixteen nonequiv-
alent diagrams (see Fig. 19) need to be taken care of.

For convenience, we introduce the following conven-
tion.

Aµ→ Aν

Bα→ Bβ

≡
(
Aµ→ Aν
Bα→ Bβ

)

We now compute all the distinct contributions to the
phonon self-energy. In the following equations, we group
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qq

Aµ→ Aν

Bα→ Bβ

FIG. 19. Self-energy bubble diagrams for phonon in
π-flux phase: The label Aµ→ Aν (Bα→ Bβ ) implies the
Aµ (Bα) monopole is created in the left vertex and Aν (Bβ)
monopole is annihilated at the right vertex. µ, ν, α, β = 1, 2,
hence, there are 16 possible distinct diagrams.

the distinct diagrams along with their Hermitian conju-
gate.

(
A1→ A1
B1→ B1

)
=
∑
k

M11
k M11

−kJ
2
zz√

| dA |2 + | fA |2
√
| dB |2 + | fB |2

[(√
| dA |2 + | fA |2 + dA

)(√
| dB |2 + | fB |2 + dB

)
W++

+
(√
| dA |2 + | fA |2 + dA

)(√
| dB |2 + | fB |2 − dB

)
W+−

+
(√
| dA |2 + | fA |2 − dA

)(√
| dB |2 + | fB |2 + dB

)
W−+

+
(√
| dA |2 + | fA |2 − dA

)(√
| dB |2 + | fB |2 − dB

)
W−−

]
(
A1→ A1
B1→ B2

)
+

(
A1→ A1
B2→ B1

)
=
∑
k

Re
(
M11

k M12
−kfB(k)

)
J2
zz√

| dA |2 + | fA |2
√
| dB |2 + | fB |2

[(√
| dA |2 + | fA |2 + dA

)
(W++ −W+−)

+
(√
| dA |2 + | fA |2 − dA

)
(W−+ −W−−)

]
(
A1→ A1
B2→ B2

)
=
∑
k

M12
k M12

−kJ
2
zz√

| dA |2 + | fA |2
√
| dB |2 + | fB |2

[(√
| dA |2 + | fA |2 + dA

)(√
| dB |2 + | fB |2 − dB

)
W++

+
(√
| dA |2 + | fA |2 + dA

)(√
| dB |2 + | fB |2 + dB

)
W+−

+
(√
| dA |2 + | fA |2 − dA

)(√
| dB |2 + | fB |2 − dB

)
W−+

+
(√
| dA |2 + | fA |2 − dA

)(√
| dB |2 + | fB |2 + dB

)
W−−

]
(
A1→ A2
B2→ B1

)
+

(
A2→ A1
B1→ B2

)
=
∑
k

J2
zz

(
M12

k M21
−kf

∗
AfB +M21

k M12
−kfAf

∗
B

)√
| dA |2 + | fA |2

√
| dB |2 + | fB |2

[W−− −W−+ −W+− +W++](
A2→ A2
B2→ B2

)
=
∑
k

M22
k M22

−kJ
2
zz√

| dA |2 + | fA |2
√
| dB |2 + | fB |2

[(√
| dA |2 + | fA |2 + dA

)(√
| dB |2 + | fB |2 + dB

)
W−−

+
(√
| dA |2 + | fA |2 + dA

)(√
| dB |2 + | fB |2 − dB

)
W−+

+
(√
| dA |2 + | fA |2 − dA

)(√
| dB |2 + | fB |2 + dB

)
W+−

+
(√
| dA |2 + | fA |2 − dA

)(√
| dB |2 + | fB |2 − dB

)
W++

]
(
A2→ A2
B1→ B2

)
+

(
A2→ A2
B2→ B1

)
=
∑
k

Re
(
M21

k M22
−kfB(k)

)
J2
zz√

| dA |2 + | fA |2
√
| dB |2 + | fB |2

[(√
| dA |2 + | fA |2 + dA

)
(W−+ −W−−)

+
(√
| dA |2 + | fA |2 − dA

)
(W++ −W+−)

]
(
A1→ A2
B1→ B2

)
+

(
A2→ A1
B2→ B1

)
=
∑
k

J2
zz

(
M11

k M22
−kfAf

∗
B +M11

−kM
22
k f∗AfB

)√
| dA |2 + | fA |2

√
| dB |2 + | fB |2

[W−− −W−+ −W+− +W++]

There are five other distinct diagrams which can be obtained by replacing A → B in the above diagrams (more
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specifically, second, third and sixth expression). Adding up all the above contributions, we obtain,

Σπζ(e)(q =0, iΩ) =
J

(e)2
sp

N

∑
k

[P1(k)W++(k, iΩ) + P2(k)W−−(k, iΩ) + P3(k)W+−(k, iΩ) + P4(k)W−+(k, iΩ)] (D2)

where, P1(k), P2(k), P3(k), P4(k) are real functions of momentum and

Wmn (k, iΩ) = − 1

β

∑
ω

1

(Ω + ω)
2

+ (επm(k))2

1

ω2 + (επn(k))2
(D3)

The phonon linewidth is obtained from Eq. D2 by calculating its imaginary part. Apart from the momentum
dependent form factors, the contribution is mostly dominated by the four Wmn terms. Calculating their imaginary
parts, we obtain,

lim
δ→0
Im (W±±(k,Ω + iδ)) =

π(1 + 2n(επ±(k)))

4επ±(k)2

[
δ
(
Ω + 2επ±(k)

)
− δ

(
Ω− 2επ±(k)

)]
lim
δ→0
Im (W+−(k,Ω + iδ)) = Im (W−+(k,Ω + iδ))

=
π(1 + n(επ+(k)) + n(επ−(k)))

4επ+(k)επ−(k)

[
δ
(
Ω + επ+(k) + επ−(k)

)
− δ

(
Ω− επ+(k)− επ−(k)

)]
+
π(n(επ+(k))− n(επ−(k)))

4επ+(k)επ−(k)

[
δ
(
Ω + επ−(k)− επ+(k)

)
− δ

(
Ω + επ+(k)− επ−(k)

)]
(D4)

Substituting the above expressions in D2, we obtain the linewidth of the phonon in the π−flux phase due to the
phonon-magnetic monopole coupling which is given in Eq. 41 of the main text.

Appendix E: Effect of Gauge fluctuations for the
magnetic monopoles

The vertex functions of the photon-magnetic monopole
interaction of Eq. 42 are given by,

γµνB (k,k′) = e−ik·dµeik
′·dν − e−ik·dνeik

′·dµ

γµνA (k,k′) = e−ik·(dµ−dν) − eik
′·(dµ−dν) (E1)

Due to the photon-monopole interaction, the interac-
tion vertices of phonon-monopole coupling is modified.
The leading order contribution to the vertex correction
obtained from the perturbative expansion is given by,

δα(ρ)(q,p, iΩ, iωm) = −
J2
±

16N
3
2

∑
k

∑
µ,ν

(α
(ρ)
k + α

(ρ)
k+q)γµB(p,k + q)γνA(k,−q + p)

1

β

∑
ωn

Gφ(k + q, B, iΩ + iωn)

Dµν(k + q− p, iΩ + iωn − iωm)Gφ(k, A, iωn) (E2)

where, γµA,B(k,k′) =
∑
ν(6=µ) γ

µν
A,B(k,k′).

To further simplify the above expression, we first per-
form the frequency summation of the above expression
using Matsubara method and then the momentum in-
tegrals are computed using the several approximations.
The monopole band structure is expanded around the
minima at k = 0 up to first non-zero term.

ε0k ≈ ∆ +m0k
2 (E3)

where m0 is a constant measuring the curvature of the
band at k = 0. Further, the vertex functions are also

expanded in momentum and approximated to the leading
term to obtain from Eq. B14,

| α(e)
k |≈ 2 , | α(t2)

k |=

√∑3
p=1 | α

(t2)
p,k |2

3
≈ k

3
(E4)

and from Eq. E1,

γµνA (k,k′) ≈ i(k + k′) · (dν − dµ)

γµνB (k,k′) ≈ i(k + k′) · (dν − dµ) (E5)

We substitute the above expressions in Eq. E2. Due to
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Raman criterion, only q = 0 limit is considered. Further,
we set Ω = ωm = 0 to find the frequency independent
correction. We redefine the notations as,

δα(e)(0,p, 0, 0) = δα(e)
p

δα(t2)(0,p, 0, 0) = δα(t2)
p

Finally, applying all the approximations described

above, the leading corrections to the vertex functions are
obtained which is given in Eq. 43.

Appendix F: spin-phonon interaction: quadratic in
spin operators

The detailed form of the quadratic spin-phonon cou-
pling, described in Eq. 49, is given by,

H1 =
∑
r,µ,ν

(
∂Jzz
∂Raµν

δaµν(r)szr,r+eµ
szr,r+eν

− ∂J±
∂Raµν

δaµν(r)
(
s+
r,r+eµ

s−r,r+eν
+ h.c.

))
(F1)

H2 =
∑
r,µ,ν

(
1

2

∂2Jzz
∂Raµν∂R

b
µν

δaµν(r)δbµν(r)szr,r+eµ
szr,r+eν

− 1

2

∂2J±
∂Raµν∂R

b
µν

δaµν(r)δbµν(r)
(
s+
r,r+eµ

s−r,r+eν
+ h.c.

))
(F2)

Further, the above interactions can be re-written in terms of the fractionalised degrees of freedom in a QSL phase
using the parton decomposition of spins described in Sec. IV. Within GMFT approximation, it is given by,

H1 =
∑
r,µ,ν

(
∂Jzz
∂Raµν

δaµν(r, A)Br,µBr,ν +
∂Jzz
∂Raµν

δaµν(r, B)Br−dµ,µBr−dν ,ν

− ∂J±
∂Raµν

δaµν(r, A)
(
φ†r+dν ,B

φr+dµ,B + h.c.
)
− ∂J±
∂Raµν

δaµν(r, B)
(
φ†r−dν ,A

φr−dµ,A + h.c.
))

(F3)

H2 =
∑
r,µ,ν

(
1

2

∂2Jzz
∂Raµν∂R

b
µν

δaµν(r, A)δbµν(r, A)Br,µBr,ν +
1

2

∂2Jzz
∂Raµν∂R

b
µν

δaµν(r, B)δbµν(r, B)Br−dµ,µBr−dν ,ν

−1

2

∂2J±
∂Raµν∂R

b
µν

δaµν(r, A)δbµν(r, A)
(
φ†r+dν ,B

φr+dµ,B + h.c.
)

−1

2

∂2J±
∂Raµν∂R

b
µν

δaµν(r, B)δbµν(r, B)
(
φ†r−dν ,A

φr−dµ,A + h.c.
))

(F4)

Appendix G: Hamiltonian and form factors in the
paramagnetic phase

For the convenience of calculation, we express the
Hamiltonian given in Eq. 6 and 7 in momentum space
representation.

H(e)
sp = J (e)

sp

∑
k

3∑
µ=0

(
ζ

(e)
1,g(k)sxµ(−k) + ζ

(e)
2,g(k)syµ(−k)

)
×
(
1 + eik·dµ

)
(G1)

H(t2)
sp = J (t2)

sp

∑
k

3∑
p=1

∑
α=x,y

3∑
µ=0

L(t2)
p,α,µζ

(t2)
p,g (k)sαµ(−k)

×
(
1 + eik·dµ

)
(G2)

From the above Hamiltonians, we can obtain the self-
energy of the phonon using similar kind of perturbation
theory as applied to QSL phase. Again, the first non-zero

contribution comes in the second order(O(J
(ρ)2
sp )) in the

perturbative series and it is given in Eq. 50 of the main
text. The form factors in the Eq. 50 are given by,

η(e)
µν (q) = 1 + eiq·dν + e−iq·dµ + eiq·(dµ−dν)

η(t2)
µν,α(q) = (1 + eiq·dν + e−iq·dµ + eiq·(dµ−dν))

×
3∑
p=1

L(t2)
p,α,µL

(t2)
p,α,ν

(G3)

Appendix H: Phonon mediated Loudon-Fleury
vertex

The phonon mediated Loudon-Fleury vertex between
external photons and magnetic monopoles (emergent
photons) is obtained by integrating out the phonons from
Eq. 20, 21 and C2 (Eq. 24 and C2). The leading order
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interaction vertices are then given by,

Hφ
LF = 〈HRamanHsp〉ζ (H1)

HA
LF = 〈H2

RamanHphonon−photon〉ζ
− 〈H2

Raman〉ζ〈Hphonon−photon〉ζ
(H2)

where 〈Ô〉ζ =
∫
Dζ Ô e−βHζ∫
Dζ e−βHζ

and Hsp = H
(e)
sp + H

(t2)
sp .

Simplifying the above expressions, we get,

Hφ
LF =

J
(ρ)
sp

2ω0

∫ 4∏
i=1

d3ki
[
∇ζ(ρ)Λ

]ij
ζ(ρ)=0

ωink1
ωoutk2

(αk3 + αk4)Aini (k1)Aoutj (k2)φ†k3,A
φk4,Bδ(k1 + k2 + k3 + k4) + h.c.

(H3)

HA
LF =

1

2ω2
0

∫ 8∏
i=1

d3ki
[
∇ζ(ρ)Λ

]ij
ζ(ρ)=0

[
∇ζ(ρ)Λ

]mn
ζ(ρ)=0

Gαβ(k1,k2,k3,k4)Aαk3
Aβk4
Aini (k5)Aoutj (k6)Ainm (k7)Aoutn (k8)

×δ(k5 − k6 + k1)δ(k7 − k8 + k2)
(H4)

FIG. 20. Feynman diagram for phonon mediated Loudon-
Fleury vertex for emergent photons

where the optical phonon band structure is approximated
as ωq ≈ ω0. Clearly, the above contributions are sup-
pressed by the optical phonon energy scale compared to
the usual Loudon-Fleury vertex [88]. Feynman diagram
for Eqs. H3 and H4 are shown in Figs. 16 and 20, re-
spectively.
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[33] B. Lüthi, Physical acoustics in the solid state, Vol. 148
(Springer Science & Business Media, 2007).
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