Crises and chaotic scattering in hydrodynamic pilot-wave experiments
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Theoretical foundations of chaos have have been predominantly laid out for finite-dimensional dynamical
systems, such as the three-body problem in classical mechanics and the Lorenz model in dissipative systems.
In contrast, many real-world chaotic phenomena, e.g. weather, arise in systems with many (formally infinite)
degrees of freedom, which limits direct quantitative analysis of such systems using chaos theory. In the
present work, we demonstrate that the hydrodynamic pilot-wave systems offer a bridge between low- and
high-dimensional chaotic phenomena by allowing for a systematic study of how the former connects to the
latter. Specifically, we present experimental results which show the formation of low-dimensional chaotic
attractors upon destabilization of regular dynamics and a final transition to high-dimensional chaos via the
merging of distinct chaotic regions through a crisis bifurcation. Moreover, we show that the post-crisis
dynamics of the system can be rationalized as consecutive scatterings from the nonattracting chaotic sets
with lifetimes following exponential distributions.
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Hydrodynamic pilot-wave systems formed by a
milimetric droplet bouncing on the vertically vi-
brating bath of the same fluid are primarily stud-
ied for their analogies to quantum phenomena.
These intriguing analogies are rooted in the rich
dynamics that arise from the interaction of the
droplet with the surface waves that it generates at
each impact. Here, we experimentally study one
such system formed by a single droplet bouncing
on a circularly shaped vibrating bath and uncover
the qualitative changes in the system’s dynamics
as a control parameter is slowly varied. In par-
ticular, we present compelling evidence that some
of these changes correspond to so-called “crisis bi-
furcations” wherein a chaotic attractor loses sta-
bility giving way to a discontinuous change in the
dynamics upon a small variation of the control
parameter. Finally, we show that the complex
dynamics of the system that follows a merger of
previously distinct chaotic sets can be understood
as scatterings from chaotic repellers with distinct
physical properties.

I. INTRODUCTION
When a fluid bath vibrates vertically with an ampli-

tude above a critical value, the surface undergoes an in-
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stability leading to the spontaneous formation of the so-
called Faraday waves.!? Nearly two decades ago, Yves
Couder and coworkers®# showed that when a bath of sil-
icone oil is vertically vibrating with an amplitude slightly
below this point of instability, a millimeter-sized droplet
of the same fluid can bounce vertically and “walk” (move
horizontally) on the surface without coalescing due to
the presence of a thin air layer between the droplet and
the bath surface. In this regime, the impulse that the
droplet experiences at each impact is determined by the
surface topography, which itself is shaped by the waves
generated at previous bounces. Although these waves
do not persist and decay exponentially, they do so at a
rate that vanishes as the vibration amplitude approaches
the Faraday threshold, thus retaining a “memory”® of
the droplet’s trajectory. Soon after the initial demon-
strations of bouncing and walking, Couder and cowork-
ers realized macroscopic analogs to quantum mechanical
phenomena such as tunneling and orbital quantization
on these setups.®” Their results were extended in subse-
quent studies® '? and the setups were named “hydrody-
namic pilot-wave systems”'® due to their reminiscence of
the de Broglie-Bohm interpretation of quantum mechan-
ics. Today, the exploration of analogies between pilot-
wave hydrodynamics and quantum phenomena continues
to be an active area of research; see the recent review by
Bush and Oza.*

Over the past two decades, pilot-wave hydrodynamics
have also received considerable attention for their dy-
namical properties.'® Hydrodynamic pilot-wave systems
can be viewed from two different theoretical perspectives
that are compatible with one another. If one approxi-
mates the droplet as a point particle and takes its posi-
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tion and momentum as state variables, then the corre-
sponding dynamical system is non-Markovian since the
time-evolution of the system not only depends on its
present state but also on its history which determines
the surface topography.®16 Alternatively, if one takes the
droplet and fluid bath as a whole and includes the bath’s
configuration in the description of the system’s state! 18
then the knowledge of the present state becomes suffi-
cient for predicting its future, thus rendering the system
Markovian. In this latter approach, the hydrodynamic
pilot-wave setup constitutes an infinite-dimensional dy-
namical system since the surface field approximated as
a continuum introduces infinitely-many degrees of free-
dom. In the following, we adopt this infinite-dimensional
Markovian view in order to explain how complex dynam-
ics can arise in a hydrodynamic pilot-wave system.

The view of complex hydrodynamic phenomena as
those arising in infinite-dimensional dynamical systems
can be traced to Hopf’s early mathematical work in
turbulence.'® Over the past thirty years, this approach
enjoyed a resurgent interest mainly due to the ad-
vancements in computing hardware and numerical al-
gorithms that made searching for simple time-invariant
solutions such as equilibria and periodic orbits in fully-
resolved Navier-Stokes simulations feasible.??:2! Besides
numerical simulations, the influence of invariant solu-
tions on weakly turbulent flows was also demonstrated
in experiments.???3 One of the frequently-stated goals of
this research field is building low-dimensional models of
turbulence using (unstable) periodic orbits as building
blocks.?* Although several papers?2°2% illustrated the
resemblance of turbulent flows and periodic orbits in dif-
ferent fluid flows, building quantitatively accurate models
based on periodic orbits has only been possible in highly-
restricted configurations.?? In this paper, we explore an
alternative approach to this problem, namely one that
takes the chaotic repellers as building blocks as opposed
to periodic orbits, and demonstrate its success through
our analysis of hydrodynamic pilot-wave experiments.

Finite-lifetime chaotic motion can be observed in a
variety of settings, such as chemical reactions,?” advec-
tion of suspended particles,3! and dynamics of transition-
ally turbulent flows.??> Among these, a well-studied phe-
nomenon is chaotic scattering, that is the scattering of a
particle from the neighborhood of a nonattracting chaotic
set in the phase space of a system.33 36 Although ini-
tially studied in open billiard systems,?33° chaotic scat-
tering found applications in various other systems with
chaotic repellers, for recent examples see Refs.>” 3%, In
the present paper, we demonstrate that the chaotic dy-
namics of a hydrodynamic pilot-wave system can be de-
composed into chaotic repellers formed around distinct
periodic solutions of the system. Consequently, we show
that the observed dynamics can be understood as con-
secutive scatterings from these repellers.

Our experiments consist of a single droplet bouncing
on a bath with variable topography that introduces a ra-
dially confining force, which is known to enable chaotic

dynamics in hydrodynamic pilot-wave systems.!”4%4! In

this setup, we slowly change the control parameter to un-
cover the series of bifurcations that lead to the formation
of the system’s chaotic attractor. In particular, we ob-
serve crisis bifurcations,*? i.e., discontinuous changes of
the system’s attractor upon small changes of the control
parameter. In the final chaotic regime, we study lifetime
statistics of dynamics in different parts of the attractor
and show that they have exponential tails as expected for
chaotic repellers.*> Our results suggest that the final cri-
sis bifurcation that leads to the formation of the system’s
attractor is mediated by a chaotic repeller, in contrast
to well-studied36:4244 crisis phenomena that take place
when a chaotic attractor of a continuous-(discrete-)time
system collides with a periodic orbit (fixed point) of sad-
dle type. We, thus, argue that our findings open new the-
oretical questions for high-dimensional chaotic systems.

This article is structured as follows. In section II,
we discuss the experimental setup, a symmetry-reducing
transformation of experimental data, and the construc-
tion of Poincaré sections. In section III we examine how
droplet dynamics change as the memory Me of the vi-
brating fluid bath is varied. We also rationalize our find-
ings using tools from chaos theory. Finally, we discuss
the significance of our findings in the broader context of
hydrodynamic quantum analogs as well as fluid turbu-
lence in IV.

1. METHODS
1I.1. Experimental setup

Our setup consists of a computer-controlled electro-
magnetic shaker on which a bath containing silicone oil is
mounted and a camera above records the dynamics of the
bouncing droplet. As shown in Fig. 1, the bath is in the
shape of a circular corral formed by concentric cylinders
with a deep inner section surrounded by a shallow damp-
ing (overflow) region; a configuration which was shown to
yield an effective radially-confining force.84% All experi-
mental runs are performed by setting the bath’s vibration
frequency to fo = 75 Hz and using a single droplet with
a diameter D = 0.85 £ 0.05mm. The bath acceleration
~ is varied to adjust the memory

Me = (1—~/v6)". (1)

Me is a dimensionless control parameter that is propor-
tional to the damping time of the surface waves® and
tends to infinity as the bath acceleration v approaches the
Faraday instability threshold at vg. In our experiments,
we adjust v according to (1) such that Me is varied in
approximately equal steps and study the changes in the
system’s behavior. In presenting our results, we convert
length and time to dimensionless quantities by measuring
them in units of the Faraday wavelength Ap = 5.3 mm
and time tp = 2/ fo, respectively. The droplet trajecto-
ries are reconstructed via image processing for detecting
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FIG. 1. Schematic of the experimental setup. (A) Top view

showing the corral (white dashed circle), the overflow region,
and accelerometers (gray squares). (B) Side view illustrat-
ing fluid layer and imaging configurations. The center of the
corral is chosen as the origin of the coordinate system.

the droplet center in each frame recorded by the cam-
era (Fig. 1B), and the droplet’s instantaneous velocity is
estimated by computing the time-derivative of the cubic
splines that fit these trajectories. Further experimental
details can be found in the Appendix.

11.2.  Symmetry reduction

Fig. 2 (top) shows examples of reconstructed droplet
trajectories in our experiments at different Me. While
visualizations in the laboratory frame are illustrative,
they contain redundant information due to symmetries
of the corral, i.e., azimuthal reflection and rotations. As
a result of the reflection symmetry, for each clockwise
rotating orbit, the system also exhibits a dynamically
equivalent counter-clockwise rotating one. In the case
of the circular orbit in Fig. 2A for instance, the clock-
wise and counter-clockwise orbits can be distinguished
using the sign of their angular momentum L = m(x X v),
where m is the mass of the silicone oil droplet, and
x(t) = [z(t),y(t)], v(t) = [vs(t),vy(t)] are its instanta-
neous two-dimensional position and velocity, respectively.
These two orbits trace approximately the same trajec-
tory on the xy-plane. The continuous rotation symme-
try poses a different challenge; any non-circular trajec-
tory (e.g., lemniscate in Fig. 2A) can be rotated by an
arbitrary angle about the origin to generate a dynami-
cally equivalent trajectory at a different orientation. In
order to eliminate this degeneracy, we apply Budanur
and Fleury’s'® continuous symmetry reduction method
to our experimental data. The basic idea of this method
is to set the polar angle in the velocity plane of the pilot-
wave system’s state space to a fixed value so that each
rotation-equivalent trajectory is mapped to a single rep-
resentative. Formally, this transformation is applied to
all dynamical degrees of freedom, including those encod-
ing the state of the bath. In the present experimental
case, we neglect the bath’s degrees of freedom which are
not essential for our discussion to follow and transform

the measured coordinate x(t) and velocity v(t) as
X(t) = R(=0(1))x(t) and v(t) = R(=0())v(t), (2)

where 0(t) = arg(v, (t)+iv, (t)) is the instantaneous polar
angle in the velocity plane and R(f) is the 2 x 2 matrix

R(O) = [Cos § —sin 9} 3)

sinf cosf

whose action rotates a two-dimensional vector in coun-
terclockwise direction by 6.

By fixing the phase of the measurements on the veloc-
ity plane to 0, the transformation (2) maps all-rotation
equivalent measurements to one with 9, = |v|| and
¥y = 0, hence, performs a symmetry reduction. Note
that the transformation (2) is defined as long as the speed
[lv(¢)|| of the droplet does not vanish, which is the case
for the dynamical regime of interest, see Fig. 8 of the ap-
pendix. We note that the analogous transformation that
maps coordinates x to (||x||,0) cannot be applied since
this transformation is singular at the origin z = y = 0,
which is approached by the lemniscate-shaped trajecto-
ries (Fig. 2A,B).

Fig. 2 (bottom row) shows the symmetry reduced tra-
jectories corresponding to the panels above. As seen in
Fig. 2A (orange), symmetry reduction maps the circular
trajectory to approximately a point corresponding to the
one at which the droplet velocity is in positive x direc-
tion.

In the case of the lemniscate orbit, the trajectory
Fig. 2A and all of its rotation copies are mapped to
the symmetry-reduced lemniscate shown in the bottom
panel. Another feature of our symmetry reduction can
be understood by noting the apparent symmetry of the
symmetry-reduced lemniscate in Fig. 2A (bottom) with
respect to the y = 0 line. This follows directly from the
fact that the azimuthal reflection symmetry of our pilot-
wave system is equivalent to the transformation § — —g
after symmetry reduction. Consequently, the lower and
upper halves of the zgy-plane correspond to droplet mo-
tions with positive and negative angular momenta, re-
spectively. This fact is also observed in the circular
(Fig. 2A, bottom) and oval (Fig. 2C, bottom) trajecto-
ries, where the counterclockwise-rotating (L > 0) trajec-
tories are confined to the lower half of the Zg-plane after
symmetry reduction.

1.3. Reduction to a Poincaré section

In order to identify the sequence of bifurcations, we de-
fine the Poincaré section?® as the position-velocity pairs
(Xp,Vp) on the symmetry-reduced trajectories that sat-
isfy the half-plane condition

%p-[1,00=0 &

which corresponds to taking the intersections of the tra-
jectories (x(t),v(t)) with the § axis in the positive-z di-
rection. We chose this section since it is intersected by

Vp - [1,00>0, (4)
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FIG. 2. Experimentally measured droplet trajectories where the top row shows the trace of the drop in the lab and the bottom
row shows their symmetry-reduced representations. The arrow heads indicate the direction of time and the dashed circles show
the boundary of the corral. (A) Circle (orange) and lemniscate (blue) at Me = 20, (B) lemniscate chaos at Me = 26.48, (C)

oval chaos at Me = 31.48, (D) chaos Me = 31.86.

all of the symmetry-reduced trajectories (Fig. 2, bottom
row) that we observe. In our results to follow, we approxi-
mated these intersections as linear interpolations between
the symmetry-reduced data points at times ¢; and ¢; 41
with j(ti> < 0 and .f(ti+1) > 0.

Because we only measure droplet trajectories, our
Poincaré section (4) in the space of symmetry-reduced
trajectories (Z, g, Uy, 0) corresponds to a two-dimensional
plane (0, g, 7,,0). Consequently, the Poincaré section (4)
retains only a subset of the system’s state due to our
neglect of the bath’s degrees of freedom. Formally, an
equivalent Poincaré section could have been defined for
the infinite-dimensional state measurements containing
the bath’s degrees of freedom as done for the numerical
data by Budanur and Fleury.'® The section (4) should
be understood as a projection of that Poincaré section
onto a two-dimensional plane, and as we shall demon-
strate next, the retained information is sufficient for our
analysis.

I1l. RESULTS & DISCUSSION

In the following, we present the results of a parametric
study wherein we vary Me in small increments to follow
the changes in the symmetry-reduced dynamics.

I11.1. Crisis Bifurcations

Fig. 3 shows the orbit diagram which we obtained by
recording the symmetry-reduced droplet trajectories’ in-
tersections with the Poincaré section (4) starting from
the lemniscate trajectory at Me = 20 and increasing Me
in small steps of AMe = 0.36 up to Me = 32.8 and
reversing the direction of parameter sweep afterwards.
Top (bottom) panels correspond to the experimental run
where Me was increased (decreased).

For the stable lemniscate solution at Me ~ 20, we ob-
tain two (localized) intersections on the Poincaré section
at gp/Ar & £0.025. Upon increasing the Me, this so-
lution loses stability and a chaotic lemniscate attractor
(Fig. 2B) takes its place. This transition to chaos results
in the expansion of the gp interval spanned by the in-
tersections in Fig. 3 (top panel), starting at Me ~ 22.5.
Upon further increase in Me, the chaotic lemniscate at-
tractor loses stability at Me = 26.6, after which we ob-
serve circular trajectories similar to the orange curve
in Fig. 2A. On the orbit diagram, the corresponding
intersections with the Poincaré section are localized at
gp/Ar ~ —0.08. When we increase Me further, we ob-
serve modulations to the circular trajectories and the
formation of a new oval chaotic attractor (Fig. 2C).
This is once again indicated by the gradual expansion
of the markers in the orbit diagram at Me ~ 29.5. Fi-
nally, we observe a sudden expansion of the attractor
at Me ~ 31.65, which results in droplet trajectories in-
termittently switching between oval motions and lemnis-
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FIG. 3. Orbit diagram generated by marking the intersec-
tions of the symmetry-reduced trajectories with the Poincaré
section (4). Top panel shows the parameter sweep with in-
creasing Me and bottom panel for the opposite direction as in-
dicated by the arrows. Vertical dashed red lines at Me = 26.6
and Me = 31.65 mark approximate parameter values at which
the crisis bifurcations take place. The labels (A-D) next to
the dashed rectangles indicate the corresponding trajectories
shown in Fig. 2.

cates as shown in Fig. 2D. Qualitative features of this
chaotic motion remain unchanged for the higher Me val-
ues shown in Fig. 3. Decreasing Me from this point (bot-
tom panel of Fig. 3), however, yields a different scenario.
Although at Me = 31.65, the dynamics fall back onto
the oval chaos (Fig. 2C), we do not recover the lemnis-
cates upon further decrease of Me. Rather, we follow the
branch of stable circular trajectories down to Me = 20.0
as shown in Fig. 3. In other words, for the parameter
interval Me € [20.0,26.6], we have a multistable system
with distinct branches of stable dynamics that can be
observed depending on how the system is initiated.
Sudden changes in the orbit diagram Fig. 3 indicated
by the dashed red lines can be understood as crisis
bifurcations*? at which the attractor of a nonlinear sys-
tem undergoes a discontinuous change upon a small vari-
ation of the control parameter. The first of these bifur-
cations takes place when the lemniscate chaos (Fig. 2B)
loses stability at Me = 26.6. This so-called boundary cri-
sis*? generically takes place when a chaotic set intersects
with its basin boundary. Usually, this boundary is the
stable manifold of another solution, such as a periodic or-
bit. Naturally, in an experimental study, we cannot probe
unstable solutions. Nevertheless, we note that multista-
bility of the system for Me € [20.0,26.6] is in agreement
with this scenario. The second crisis bifurcation takes

Me < 31.65

Me > 31.65

FIG. 4. State space cartoon of the hydrodynamic pilot-
wave system prior (Me < 31.65) and after (Me > 31.65) the
symmetry-increasing crisis bifurcation. Solid (striped) areas
correspond to distinct stable (unstable) state space regions in
the vicinity of lemniscate and oval orbits depicted as closed
curves. Orange curve segments indicate possible transitions
between the regions with arrowheads showing the directions.

place at Me = 31.65, when the chaotic attractor with
oval-shaped trajectories (Fig. 2C) suddenly expands into
the upper-half of the gp axis in Fig. 3. Recalling that
the azimuthal reflection symmetry is represented by the
sign change of the § coordinate, we conclude that this
crisis bifurcation is a symmetry-restoring*” one at which
the previously-disconnected state-space regions that are
reflection copies of one another merge to form the fi-
nal chaotic attractor (Fig. 2D) of the pilot-wave sys-
tem. The appearance of lemniscate-shaped trajectories
(Fig. 2D) following the symmetry-restoring bifurcation
suggests that it is the result of a merger of oval-shaped
chaotic trajectories with lemniscate ones, which lost sta-
bility via boundary crisis at Me ~ 26.6. This scenario,
illustrated as a state-space cartoon in Fig. 4, is markedly
different from previously studied642:44 crisis bifurcations
that follow a chaotic attractor’s collision with an unstable
periodic orbit.

111.2.  Chaotic scattering

In our bifurcation study, we observed seemingly chaotic
trajectories in the neighborhoods of both lemniscate
and oval orbits. As our final result and further evi-
dence for the bifurcation scenario depicted in Fig. 4, we
demonstrate that the system’s dynamics following the
symmetry-increasing bifurcation at Me ~ 31.65 can be
understood as chaotic scatterings from the state-space re-
gions corresponding to the lemniscate- and oval-shaped
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orbits. To begin, we track the time-series of the angular
momentum L that distinguishes clockwise and counter-
clockwise rotating trajectories. Fig. 5A shows the an-
gular momentum time-series (blue) corresponding to a
chaotic trajectory segment similar to the one shown in
Fig. 2D. Intervals, such as t € [5007F, 10007F], during
which the angular momentum oscillates between posi-
tive and negative values of L correspond to lemniscate-
shaped orbits. Conversely, the episodes during which the
angular momentum remains either positive or negative
correspond to the oval-shaped trajectories. This indeed
suggests that the lemniscate orbits should separate the
chaotic ovals with opposite senses of rotation, just prior
to the crisis bifurcation, and hence constitute a chaotic
basin boundary.

If the chaotic attractor can be decomposed into dis-
tinct chaotic repellers, then we would expect the droplet
to spend exponentially-distributed times within each of
these sets.*> In order to test this hypothesis, we first
computed the moving average (L)r, of the angular mo-
mentum, shown in Fig. 5A, with a window length T, €
[104,113]TF (see the appendix for details). During the
lemniscate episodes, the window-averaged angular mo-
mentum remains near zero, whereas for the ovals, it
takes a near constant value (L)1, ~ +0.05m\%/TF.
Following this observation, we choose the thresholds
L; = 0.025mA\%/TF and L, = 0.045m\% /T and assume
that the episodes with [(L)r,| < L; (Fig. 5A, transpar-
ent red) and |(L)r,| > L, (Fig. 5A, transparent cyan)
corresponds lemniscate and oval trajectories respectively.
Under this assumption, we estimated the distribution of
the lifetime 7 for the lemniscate trajectories at four Me
values as shown in Fig. 5B. The survival function S(7)
is the probability of the droplet to remain in lemniscate-
like motion for a time 7, and for all Me values it appears
to have an exponential tail for 7 > 1007%. Interestingly,
this distribution shows very little variation upon chang-
ing Me, thus we fit an exponential to the mean of S(7)
in Fig. 5B for 7 > 1257T%. The lifetimes of the oval tra-
jectories shown in Fig. 5C, on the other hand, become
progressively shorter as we increase Me. Similar to the
lifetime distributions of the lemniscates, the ovals also
show exponential tails for high 7.

A lifetime distribution with an exponential tail is the
hallmark*® of transient chaos.*®®0 Intuitively, one can
understand the necessity of an exponential-tailed lifetime
distribution by arguing that a chaotic system is memo-
ryless®! for time scales much longer than the Lyapunov
time ,uZl, where py, is the leading Lyapunov exponent.
Since any noise in the system is typically amplified as
exp urt, the system’s memory of its present state will be
completely lost after a time ¢ > uzl. Therefore, the ex-
ponential tails of the lifetime distributions in Fig. 5B,C
lead us to the conclusion that the lemniscate- and oval-
shaped motions of the droplet correspond to distinct
chaotic repellers which are visited transiently by the dy-
namics. The overall dynamics can, thus, be viewed as
consecutive scatterings between these strange repellers.
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FIG. 5. (A) Time series of angular momentum (blue) and

its window average (orange) for a chaotic droplet trajectory
similar to the one shown in Fig. 2D. The shaded red (cyan)
indicates window-averaged angular momentum intervals that
are ruled as lemniscate (oval) for computing the lifetimes.
(B) Lifetime distributions of the lemniscate trajectories at
Me values beyond the symmetry-increasing crisis along with
an exponential fit to their average. (C) Lifetime distributions
of the oval trajectories at Me values beyond the symmetry-
increasing crisis along with exponential fits (solid black) to
the tails of the distributions. The legend for the Me values
of the data in C is identical to that in D, hence not shown.

In Fig. 6A, we illustrate one such scattering event where
the droplet transitions from the oval-repeller with pos-
itive angular momentum ((L)r, > L,) to the negative
side after spending some time on the lemniscate repeller.
In order to illustrate these different regions in Fig. 6, we
also plotted samples from a very long trajectory with dif-
ferent colors corresponding to distinct state-space regions
(blue: lemniscate, orange: oval with (L)1, > L,, green:
oval with (L)1, < —L,).

Prior to the symmetry-increasing crisis bifurcation at
Me =~ 31.65, the oval-shaped chaotic trajectories con-
stitute an attractor of our pilot-wave system. The
symmetry-increasing bifurcation is, therefore, one at
which the chaotic ovals lose stability and become tran-
sient. The post-crisis reduction of the mean lifetimes
of oval-shaped orbits (Fig. 5C) is reminiscent of the
well-understood behavior in dissipative two-dimensional
maps.*?* In those systems, attractors generically lose
stability through homoclinic or heteroclinic tangencies of
periodic orbits. Subsequent mean lifetimes of the chaotic
transients drop off following a power-law as a function of
the distance from the critical parameter value at which
the crisis bifurcation takes place. In the present case, our
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FIG. 6. (A) Symmetry-reduced chaotic attractor of the

pilot-wave system where colors correspond to points on the
distinct chaotic repellers inferred from the window-averaged
angular momentum of the trajectories. Blue points corre-
spond to those on the lemniscate trajectories whereas the
orange and green are those on ovals with (L), > L, and
(LYyr, < —L, , respectively. A trajectory (black) transition-
ing from the (L)1, < —L, region (orange) to (L)1, > Lo
region (green) one after spending some time on the lemnis-
cate repellor (blue) is also shown where arrowheads indicate
the direction of time. (B) Same data points and the transi-
tioning trajectory in the lab frame where the dashed circle
indicates the corral boundary. Due to the degeneracy of lab-
frame visualizations, the orange and green data points overlap
in B.

measurements near the critical Me are not dense enough
to quantitatively test a power-law behavior. Moreover,
the chaotic attractor in the present case loses stabil-
ity through its merger with the chaotic lemniscates, for
which, to the best of our knowledge, there is no obvious
reason to expect a power-law scaling. Nevertheless, it
is clear that the lifetimes of ovals become progressively
shorter as we increase the Me further from its critical
value. We would like to note that this behavior can be ex-
ploited to tune the probabilities of observing the droplets
in oval and lemniscate states.

IV. CONCLUDING REMARKS

In this paper, we presented a parametric study of a
hydrodynamic pilot-wave system, in which we identified
two crisis bifurcations. The first of these occurs when
chaotic lemniscate trajectories lose stability giving way to
stable circular-like trajectories. The second symmetry-
increasing one occurs when a chaotic attractor corre-
sponding to oval trajectories merges with the lemniscate
repeller, yielding the final attractor of the system. We
have also demonstrated that the proximity of the control
parameter Me to its critical bifurcation value determines
the lifetime distribution of the oval-shaped motions, pro-
viding a useful tool for adjusting the global statistics of
similar pilot-wave systems. We note that global bifur-
cations due to the merger of distinct chaotic sets were
previously observed in the discrete->>">* and continuous-
time'® models of the pilot-wave hydrodynamics.

The idea of decomposing high-dimensional chaos into
subunits of chaotic repellers by identifying crisis bifurca-
tions has recently been explored in the numerical stud-
ies of transitionally turbulent shear flows.?® 57 Similarly,
chaotic basin boundaries were also investigated in the nu-
merical studies of laminar-turbulence transition in shear
flows.?8 61 The instability of these basin boundaries, how-
ever, renders them inaccessible to direct observations
in the laboratory. To the best of our knowledge, our
study is the first experimental demonstration of transi-
tions mediated by a chaotic basin boundary and the high-
dimensional attractor formation through the merger of
distinct chaotic sets. A future research direction that is
motivated by these results is a theoretical treatment of
high-dimensional attractors as those formed by chaotic
repelleres around distinct periodic orbits. In particular,
it might be possible to adapt the periodic orbit expan-
sions for chaotic repellers®® to predict lifetime distribu-
tions such as those shown in Fig. 5.

One of the most striking features of hydrodynamic
pilot-wave systems is the wavelike patterns that are rem-
iniscent of the quantum wave functions which emerge
in long-time statistics of the droplet position at high
Me %1062 Already in Ref.?, Harris et al. argued that the
emergent statistics can be understood as a droplet’s tran-
sient visit of unstable (quasi-)periodic orbits. Our results
are consistent with their insights and suggest new meth-
ods to understand the nature of deterministic dynam-
ics underlying the emergent wavelike statistics. Specif-
ically, lifetime measurements, such as those in Fig. 5,
can be used to characterize individual neighborhoods in
these experiments. Moreover, we would like to note that
tuning the lifetime distribution of a particular droplet
motion by varying a control parameter’s proximity to a
bifurcation value might be relevant for quantum analo-
gies since the adjustment of the lifetime distribution of
some state directly influences the probability of observ-
ing the droplet in that state. In our case, we achieved
this by varying Me, which as we moved farther away
from the symmetry-increasing crisis bifurcation, resulted
in shorter and shorter oval lifetimes, hence a lower prob-
ability of observing it.
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Appendix: Experimental details

The vibrating bath in the experiment is made from
black anodized aluminum. The circular corral lo-
cated at its center has a diameter 19.95 £ 0.05 mm
and depth 6 + 0.05mm, as shown in Fig. 1. The
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corral is filled to a height 6.9 + 0.1 mm with silicone
oil (polydimethysiloxane), which has kinematic viscos-
ity v = 21.5 x 107%m?/s, density p = 953 kg/m?, and
surface tension 0=20.8x1072 N/m at room temperature
(T = 21.6 £0.1°C). For this fluid layer depth, a thin
0.9 + 0.1 mm overflow layer—that serves to dampen sur-
face waves—is formed outside the corral. A transparent
plastic lid placed on top of the aluminum bath shields
the corral (and the droplet) from stray air currents.

The aluminum bath is mounted on an air-cooled elec-
tromagnetic shaker (Data Physics V55) and is leveled
perpendicular to gravity. The shaker oscillates vertically
at a frequency fo = 75Hz, when a sinusoidally vary-
ing voltage signal of the same frequency is input. Three
piezoelectric sensors (PCB 352C65), mounted as shown
in Fig. 1, measure the vertical () and horizontal (7, ¥,)
accelerations of the vibrating aluminum bath. The setup
is aligned such that |v.|/7], |7y |/|7] < 0.01. For a given
memory Me, the target vertical acceleration ~yys. is com-
puted using Eq. 1, i.e., yare = Yr(1 — Me™1). Here,
vr = 4.32 g is the experimentally measured critical accel-
eration (in units of g = 9.8 m?/s) for the onset of Faraday
instability at 21.7°C. A feedback loop controls the am-
plitude of the sinusoidal voltage signal driving the shaker,
such that the measured vertical acceleration () deviates
from ~ypz by less than £0.1%, i.e., |[y—vame|/Yare < 0.001.

To generate droplets of a desired size, silicone oil-filled
in a syringe to a fixed height—was drained through a 33
gauge needle for a fixed time. The syringe was then
touched against the vibrating bath to dislodge the droplet
onto the fluid surface. The longer (shorter) the duration
of draining, that larger (smaller) is the drop size. For a
fixed drain-time, droplets generated using this technique
varied in diameter by about £0.05 mm. All experimental
runs reported in this study were performed with a sin-
gle silicone oil droplet of diameter 0.85 + 0.05 mm. Im-
ages of the bouncing droplet were recorded at intervals
At =~ 57ms, using a CMOS camera (Basler acA2000-
165um) mounted above the bath (cf. Fig. 1B). In pixel
units, the diameters of the corral and the droplet are
468+1 and 20%£1, respectively. To track the position
of the droplet in real-time, a gaussian filter (with a 6
pixel standard deviation) was applied to each image and
the location of the brightest pixel-approximating the co-
ordinates (x.,y.) of the droplet center-was measured.
The time series z.(t), y.(t) were then interpolated onto
a temporal grid with spacing At = 5.7ms, using a cu-
bic spline interpolation. Instantaneous droplet velocities
vz (t), vy (t) were then computed by computing derivatives
of the spline interpolation. An an example, Fig. 7 shows
droplet trajectories reconstructed by overlaying succes-
sive images, each approximately 150 milliseconds apart
in time.

The horizontal speed ||v|| of the droplet remains fairly
constant (= 0.06), for the dynamical regimes explored
in this article. To demonstrate this, Fig. 8 shows that
the probability density function of ||v|| for representa-
tive values of Me € [20,33.64], normalized such that

FIG. 7. Reconstructed trajectories of the silicone oil droplet
tracing (A) Oval and (B) Lemniscate at Me = 32.8. The
white dashed circle marks the boundary of the corral. The
yellow curve is the trajectory of the brightest pixel (after
Gaussian blurring) on the droplet.
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FIG. 8. Probability density function of the droplet velocity

at various Me values.

J Pd|lv] = 1 in each case. Recall that symmetry-
reduction in the velocity plane requires that the speed
of the droplet does not vanish. Indeed, the probability
of the droplet speed ||v|| < 0.01 is smaller than 102 for
Me > 32.1. Even though this is an insignificant frac-
tion, such decrease in droplet speed is possibly due to
the droplet (very rarely) approaching the boundary of
the inner corral and subsequently bouncing back.

The sequence of bifurcations (Figs. 2, 3) was iden-
tified using an experimental run, where memory Me €
[20, 33] was increased (decreased) in steps of AMe = 0.36
(AMe ~ —0.37) and the droplet position was tracked
for a duration 1800s at each Me. The lifetime distri-
butions (cf. Fig. 5) were estimated from separate runs,
each approximately 9 x 10*s long. The ambient room
temperature (measured using a PT-100 probe placed be-
side the shaker) over the duration of these experimental
runs was fairly constant (20.6 £0.1°C). Nevertheless, we
measured the critical memory Me, corresponding to the
crisis bifurcation before and after each experimental run.
Me,. was reproducible to within AMe ~ £0.15 for dif-
ferent runs, which suggests that the temperature of the
silicone oil, its physical properties, and consequently vz
do not vary significantly across the various experiments
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runs. Lastly, although all experimental runs reported in
this article correspond to a single droplet, the repeata-
bility of results was validated using (at least five) dif-
ferent experiments performed with different droplets and
replacing the silicone oil in the bath each time.

The survival probabilities in Fig. 5B,C, as mentioned
in the main text, were estimated from window-averaged
angular momentum (L)7, of the droplet. Here, T, is the
average characteristic time-scale for tracing the lemnis-
cates and ovals at each value of Me. T,, was estimated
by computing the Fourier transform of the time-series of
L for the entire duration (= 9 x 10%s) of each experi-
mental run. The following table lists the values of T}, for
lemniscates and ovals at each Me.

TABLE I. Characteristic times for tracing ovals and lemnis-
cates.

Me 32.1 | 32.8 | 33.3 | 33.6
T, (lemniscate) | 105 104 110 105
T, (oval) 40 | 30 | 39 | 38
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