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The quantum Kibble-Zurek mechanism (QKZM) predicts universal dynamical behavior near the quan-
tum phase transitions (QPTs). It is now well understood for the one-dimensional quantum matter. Higher-
dimensional systems, however, remain a challenge, complicated by the fundamentally different character of
the associated QPTs and their underlying conformal field theories. In this work, we take the first steps toward
theoretical exploration of the QKZM in two dimensions for interacting quantum matter. We study the dynam-
ical crossing of the QPT in the paradigmatic Ising model by a joint effort of modern state-of-the-art numerical
methods, including artificial neural networks and tensor networks. As a central result, we quantify universal
QKZM behavior close to the QPT. We also note that, upon traversing further into the ferromagnetic regime, de-
viations from the QKZM prediction appear. We explain the observed behavior by proposing an extended QKZM
taking into account spectral information as well as phase ordering. Our work provides a testing platform for
higher-dimensional quantum simulators.

INTRODUCTION

The near-critical region of continuous symmetry break-
ing phase transition is characterized by critical slowing
down reflected in an asymptotically divergent relaxation time
scale and correlation length. When a many-body system is
quenched – driven across the critical point at a fixed rate –
critical slowing down will prevent its order parameter from
keeping up with what would have been the instantaneous equi-
librium. In particular, the correlation length – hence, the size
of the fluctuating domains within which the order parame-
ter is approximately uniform – will lag behind the state im-
plied by the externally imposed conditions. Thus, instead of
an infinite range order predicted in equilibrium for the post-
transition broken symmetry phase, one is left with a mosaic
of fluctuating domains. Independent choices of disparate bro-
ken symmetry states within each domain result in excitations
and lead to the formation of stable topological defects.

Inevitable appearance of the topological defects in the wake
of the cosmological phase transitions was pointed out by Kib-
ble [1], who tied their emergence and stability to the homo-
topy group, and suggested that their post-transition density
will be set by thermal activation (which would imply that their
density is independent of the rate of quench). Kibble also
noted that, in the wake of the Big Bang, the Hubble radius
at the epoch of the transition will imply a lower bound on de-
fect density and emphasized that – even at that density – they
can have dramatic consequences for the subsequent evolution
of the Universe.

The role of critical slowing down in the creation of topo-
logical defects in laboratory phase transition was pointed out
by one of us [2]. The key difference with the cosmological
setting is that now the relativistic causality (reflected in the
Hubble radius or the light cone) does not play any useful role.

Rather, it is the combination of the critical slowing down and
the limits imposed on the growth of the correlation length that
decide the size of domains that can independently select how
to break symmetry. Hence, one can infer properties of the
post-transition broken symmetry state arising from this non-
equilibrium process – including the dependence of the den-
sity of topological defects and other excitations deposited by
the quench on the speed of the transition – from the universal
equilibrium scalings and the quench rate [2–8]. This leads to
the Kibble-Zurek mechanism (KZM) that is still being tested
both numerically and in laboratory experiments [9–26].

The KZM applies not only to thermal phase transitions
but has also been extended to the case of quantum criti-
cal points of local Hamiltonians [27–41]. By now, the cor-
responding quantum KZM (QKZM) has been extensively
explored and understood for one-dimensional (1D) models,
where very recently pioneering experiments in systems of
Rydberg atoms have confirmed its predictions in interacting
quantum matter [42]. Other experiments have already started
to explore QKZM [43–46], considered effectively mean-field
type systems [47–50], or spin models immersed in environ-
ment [51, 52].

Going beyond 1D for interacting quantum matter appears
central not only because of the real-world relevance of 2D sys-
tems but also because of fundamental differences compared
to 1D. Specifically, conformal field theories describing the
universal properties at 2D quantum phase transitions are fun-
damentally different from their 1D counterparts in that they
are generally of a strongly interacting nature. This leads to a
change of the character of excitations and the dynamics in the
vicinity of the critical point as well as subsequent evolution.
While some results on nonequilibrium real-time evolution are
available, see [29, 53–55], the theoretical and numerical treat-
ment of interacting quantum 2D systems poses severe chal-
lenges. The question to what extent the QKZM also applies
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to interacting 2D quantum many-body systems has so far re-
mained largely open.

Very recent developments in the Rydberg atom quantum
simulator platforms [56–58] or superconducting qubits [59]
have nevertheless opened the way to access quantum dynam-
ics in 2D at large scales and at a high level of control with
the potential to target the outstanding challenge of QKZM in
2D [56]. A particularly notable step forward is a very recent
experiment in a Rydberg atom array [56]. In the vicinity of
the critical point it is consistent with the QKZM scaling of
the correlation length obtained through a fitting procedure to
the post-quench correlation function extracted from a 16× 16
square lattice.

In this work, we provide a large-scale numerical analysis
of the dynamics in the 2D transverse-field Ising model in sys-
tems of various sizes with open and periodic boundary con-
ditions. Going beyond the previous analysis of experimental
data, we access the full scaling form of the correlation func-
tion, which has the advantage that no prior assumptions on
the correlation function are required besides the scaling hy-
pothesis. Thereby, we take the first steps towards a numeri-
cal and theoretical study of the dynamics of quantum phase
transitions and the QKZM for short-range interacting quan-
tum matter in 2D. In a combined effort we employ a set of
state-of-the-art numerical methods. These include time evo-
lution via a time-dependent variational principle (TDVP) for
matrix product states (MPS) [60] or neural quantum states
(NQS) [61, 62] on finite lattices, and 2D infinite projected
entangled pair states (iPEPS) operating directly in the ther-
modynamic limit [63, 64].

Profiting from the individual strengths of each of the nu-
merical approaches, we find strong evidence for universal dy-
namical behavior consistent with the scaling properties pre-
dicted by the QKZM. We observe that the scaling regime is
accessible already at moderate sweep rates and system sizes,
in accord with the recent experiments on Rydberg atom quan-
tum simulator platforms. While we can identify the predicted
QKZM scaling in the vicinity of the quantum phase transitions
with high fidelity, we also observe deviations upon sweep-
ing deeper into the ferromagnetic phase. To account for it,
we introduce an extended quantum Kibble-Zurek mechanism
(xQKZM), which recognizes the effect of the modifications of
the system’s spectrum during the sweep and their influence on
the excitation energies.

RESULTS

Quantum KZ mechanism.— Quantum phase transitions oc-
cur in ground states of quantum many-body systems. They
mark the singular points where quantum phases of matter
transform into each other. In the vicinity of these respective
quantum critical points, the macroscopic physical properties
become universal as a consequence of a divergent correlation
length ξ. QKZM extends this universality – it applies not only
to static but also to dynamical properties.

Figure 1. Schematic depiction of the dynamics across a phase
transition in a two-dimensional spin-1/2 model. In the initial para-
magnetic state (bottom) spins align with the direction of the trans-
verse magnetic field. A measurement of the spin configuration in
that state along the ordering direction would then typically yield a
random pattern of spins pointing up (blue cones) or down (red cones).
After a slow ramp across a quantum critical point the system devel-
ops a quantum superposition of ferromagnetic domains which upon
measuring spin configurations along the ordering direction will yield
typically a collapse onto a mosaic of such domains (top). On the
front face, we include the growth of the ferromagnetic correlation
range as a function of time t starting from t = −τQ as the ramp
progresses across the critical regime with the critical point located at
t = 0. The healing length ξ̂ that determines the size of domains in
the Kibble-Zurek mechanism is set at the characteristic time |t| < t̂,
where the growth rate of the instantaneous ground state correlation
length ξGS exceeds the maximal speed of the relevant sound, v, in
the system.

Of paradigmatic importance is the QKZM prediction of
universal defect production upon quench though a quantum
critical point. Such dynamical crossing can be parametrized
by the distance from a quantum phase transition through a di-
mensionless Hamiltonian parameter ε. Close to the critical
point, the correlation length ξ in the ground state diverges ac-
cording to ξ ∝ |ε|−ν and the energy gap closes according to
∆E ∝ ξ−z , where ν and z are the universal correlation length
and dynamical critical exponents, respectively.

To study QKZM, a quantum Ising system is initially pre-
pared in a paramagnetic ground state of its Hamiltonian. It
is subsequently smoothly ramped across a quantum critical
point to the symmetry-broken state by varying that Hamilto-
nian. Close to the critical point, the ramp can be linearized

ε(t) =
t

τQ
, (1)

with t denoting the time. Consequently, t = 0 corresponds
to the quantum critical point in the fully adiabatic limit, and
the quench time τQ sets the speed of the ramp. As long as
the evolution is adiabatic, the respective adiabatic correlation
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length, ξ ∝ |ε|−ν , increases at the rate:

dξ

dt
=
dε

dt

dξ

dε
∝ 1

τQ

ν

|ε|ν+1
, (2)

which diverges at the critical point. However, perturbations
and excitations of the order parameter in a quantum many-
body system have a limited maximal speed of propagation v
(e.g., the speed of the relevant sound). Therefore, at some
point, the actual speed at which correlation length can increase
will not be able to keep up. This results in the so-called sonic
horizon. It determines the size of the domains that can choose
broken symmetry in unison, as shown schematically in Fig. 1.

Consequently, as the critical point is approached, there ex-
ists a time −t̂ where the rate dξ/dt exceeds the relevant
sounds speed v. For z = 1 we have that v = const. whereas
for z 6= 1 the velocity becomes scale-dependent. For general
z we have that structures of size ξ are subject to the relevant
velocity v ∝ ξ−(z−1) ∝ εν(z−1). Comparing dξ/dt with v
results in a characteristic time scale

t̂ ∝ τzν/(1+zν)
Q (3)

at which the sonic horizon is determined. The scaling ob-
tained in this way is the same as in the adiabatic-impulse ap-
proximation [2, 65]. The corresponding healing length is set
at t̂ to be:

ξ̂ ∝ τν/(1+zν)
Q . (4)

At large length and time scales, ξ̂ and t̂ specify the quench-
induced evolution of the system near the critical point.

Setting and methods.— Motivated by the recent experi-
ments in Rydberg atom quantum simulators [56, 57] and by
its paradigmatic theoretical relevance, we consider in the fol-
lowing the 2D quantum transverse-field Ising Hamiltonian on
a square lattice:

H(t) = −J(t)
∑

〈m,n〉
σzmσ

z
n − g(t)

L2∑

m=1

σxm. (5)

Here, σαl , α = x, y, z, denotes the Pauli matrices on lattice
site l with the linear extent of the system, L, implying overall
L2 lattice sites. The model exhibits a quantum phase transi-
tion at gc/Jc = 3.04438 [66].

In Fig. 2, we show results for the energy gap between the
ground state and the first excited state in the zero momen-
tum and even parity sector as a function of the transverse-
field strength g for periodic boundary conditions obtained us-
ing NQS and the approach to obtain excited states introduced
in Ref. [67]. In the vicinity of the quantum phase transition,
as expected, one can observe significant finite-size effects.
Nonetheless, the collapse of the data after finite-size rescaling
with the known critical exponents z = 1 and ν = 0.629971,
which we show in the inset, reveals consistency with the ex-
pected universal behavior.
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Figure 2. Energy gap as a function of the transverse field g in a
periodic lattice. We collect results for different linear system sizes
L and fixed J = Jc = 1. The data was obtained using the NQS
approach for excited states, see the main text and Methods. The in-
set shows the collapse of the data after finite size rescaling with the
known critical exponents z = 1 and ν ≈ 0.63. The collapse on the
paramagnetic side was used to extrapolate the gap to L = 20 in the
main panel. The black dashed lines on both sides of the transition –
in the regimes near estimated ±t̂, where the data are also converged
in L – are consistent with exponent zν = 0.56 that is shifted by a
small non-universal 7% correction from the exact 0.63.

In the analysis of the time-evolved system, however, we
will later see that the best collapse of the data is achieved as-
suming zν = 0.56 to be the value of the product of the two
critical exponents. The dashed lines in Fig. 2 show power
laws of this form fitted to the data on both sides of the tran-
sition in regimes where finite size effects are small. These
fits show that the data is on these finite intervals consistent
with zν ≈ 0.56. We attribute this to sub-leading corrections
which, for the considered ramp times τQ that we can numeri-
cally achieve, still yield a noticeable contribution, and whose
influence can be effectively captured by slightly modified crit-
ical exponents.

Of central importance is a quantitative estimate of prefactor
in the time scale t̂, whose general scaling form has already
been presented in Eq. (3). For what follows, we define t̂actual

as the time at which the rate |ε̇(t̂)/ε(t̂)| = |t̂−1| approximately
equals the gap ∆E ∝ (gcε)

zν (setting the prefactor in that
equality to one). With our fitted value for the prefactor of the
gap opening on the paramegnetic side, we obtain

t̂actual ≈
(

τzνQ
11.6(3)

) 1
1+zν

= 0.208(4)τ0.36
Q . (6)

The main uncertainty in the fit originates from varying the fit-
ting range. The domain of the fitted curve on the paramagnetic
side in Fig. 2 corresponds to the gap at t̂ for 0.8 ≤ τQ ≤ 6.4.
Notice that the value of the prefactor in Eq. (6) depends on the
choice of an arbitrary O(1) prefactor when equating the rate
with the gap.
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Method boundary cond. L τQ tf

iPEPS n.a. ∞ . 3.2 . 2 t̂actual

NQS periodic . 20 . τadiab
Q . t̂actual

MPS open . 14 any τQ

Table I. The employed numerical methods have complementary
strengths. The table summarizes their rough ranges of applicability.
Here L is the linear lattice size and t̂actual is the value of t̂ in Eq. (6)
with approximated prefactor, and τadiab

Q estimates the crossover to
adiabatic transition at ξ̂/L ≈ 0.2, see Fig. 4.

To study the QKZM in our model, we initialize the sys-
tem in the ground state |ψ(t = ti)〉 = |→→→ . . .→〉 of the
Hamiltonian (5) for J/g = 0, where all spins align along the
transverse field. We then solve numerically the Schrödinger
equation i∂t|ψ(t)〉 = H(t)|ψ(t)〉. We fix the unit of time by
setting Jc = 1 (and ~ = 1). Throughout this work, we study
different sweep protocols in order to ensure that our observa-
tions are independent of the protocol details. On the one hand,
we consider a linear quench:

g(t)/gc = 1− ε(t), J(t)/Jc = 1 + ε(t), (7)

with ε(t) following Eq. (1), starting at ti = −τQ with J(ti) =
0, crossing the critical point at t = 0, and ending at tf = τQ.
As this sweep exhibits a nonanalytic temporal behavior at the
starting ti, and therefore might potentially generate further ex-
citations masking the targeted QKZ features, we complement
our analysis also by a smooth ramp, where the dimensionless
distance follows

ε̃(t) =
t

τQ
− 4

27

t3

τ3
Q

, (8)

between ti = − 3
2τQ and tf = 3

2τQ. It has a vanishing first
time-derivative at ti limiting the generation of additional ex-
citations at the start of the protocol. Both ramps exhibit the
same slope in the vicinity of the quantum critical point around
t ≈ 0, which, according to the general QKZM argument, is
expected to result in identical universal scaling (we show in
the Supplementary Material that those additional excitations
are negligible compared to QKZM excitations).

For the simulation of the quantum many-body dynamics,
we employ three different numerical techniques, allowing us,
on the one hand, to perform mutual cross-checks and, on the
other hand, to cover complementary regimes of applicability.
For a summary of the individual strengths and limitations of
the methods, see Table I. First, we consider iPEPS as a tensor
network method that operates directly in the thermodynamic
limit of a two-dimensional system. Notably, our iPEPS sim-
ulations have been done with the neighborhood tensor update
code [64], which provides a more stable upgrade of the full
update code [63]. The second method is based on MPS, for
which a one-dimensional ordering of the lattice sites is cho-
sen to represent the wave function. Thereby we can simulate
finite systems with open boundary conditions. The MPS wave
function is evolved using the TDVP algorithm [60]. Finally,
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Figure 3. Kibble-Zurek dynamical scaling in 2D quantum Ising
model; infinite lattice. In A, we collect the scaled ferromagnetic
correlation function at the critical point, ξ̂2∆Czz(t = 0, R), as a
function of the scaled distance, R/ξ̂, and in B a scaled excitation en-
ergy per site, ξ̂3Q, as a function of the scaled time, t/t̂ (the critical
value of the field is reached at t = 0). The main panels show the col-
lapse of the data for slower quenches with τQ ≥ 0.28, in agreement
with the dynamical scaling hypothesis. We obtain the best collapse
for t̂ = ξ̂ = τ0.36

Q , where for rescaling we fix the prefactor in Eqs. (3)
and (4) to one. The exponent that we obtain for the available (lim-
ited) τQ’s is less than 10% below the expected one of 0.386. Insets
show a full range of quench times τQ = 0.1 · 2m/10 = 0.1, ..., 3.2,
with integer m in A, and sparser data with integer m/5 in B.

we use neural network quantum states, a recently proposed
class of variational wave functions [61], to simulate finite sys-
tems with periodic boundary conditions. The time evolution
was computed using convolutional neural networks and reg-
ularization techniques introduced in Ref. [62]. Furthermore,
we also use NQS wave functions to variationally obtain the
first excited states in addition to the ground state in order to
extract information about the energy gap we show in Fig. 2.

Universal behavior in the thermodynamic limit.— We first
consider the ramped quantum Ising model in the putative QKZ
regime for times−t̂ < t < +t̂ on an infinite lattice in the ther-
modynamic limit by means of iPEPS simulations. We probe
the system’s properties mainly via two quantities. The first
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one is the ferromagnetic correlation function

Czz(t, R) = 〈ψ(t)|σzmσzn|ψ(t)〉, (9)

where R is the distance between the spins m,n. Concretely,
we computeCzz(t, R) for spins aligned along one of the axes.
Second, we consider the excitation energy density

Q =
1

L2
(〈H(t)〉 − E0(t)) , (10)

where 〈H(t)〉 = 〈ψ(t)|H|ψ(t)〉 denotes the time-dependent
expectation value of the Hamiltonian H(t) at time t with
|ψ(t)〉 being the numerically exact solution of Schrödinger’s
equation. Moreover, E0(t) is the ground state energy of H(t)
at parameter values g(t) and J(t).

In Fig. 3A, we show the correlation function Czz(t, R)

at t = 0 in units rescaled by the correlation length ξ̂ for
various ramp times τQ. It is a central result of our work
that we observe a data collapse for Czz(t, R) upon utilizing
the known scaling dimension ∆ with 2∆ = 1 + η, where
η = 0.036298(2) [66].

Our data directly aligns with the QKZM prediction imply-
ing the following scaling form [68–71]:

ξ̂2∆Czz(t, R) = FC

(
t/ξ̂z, R/ξ̂

)
, (11)

with FC a non-universal scaling function. Overall, this predic-
tion is expected to be asymptotically exact in a coarse-grained
sense in the long-wavelength and low-frequency limit, corre-
sponding to long ramp times τQ. In Fig. 3A, we find that
the scaling regime can already be reached for rather small
τQ’s, which appears as a promising result from the experi-
mental perspective. Let us emphasize, however, that we ob-
tain the best data collapse for the slower quenches in the range
0.3 < τQ < 3.2 for ξ̂ ∝ τ0.36

Q . The value 0.36 for the expo-
nent aligns directly with exponent identified for t̂ using the en-
ergy gap, see Eq. (6). As already discussed before, we see an
error of about 7% as compared to the asymptotically expected
zν/(1 + zν) = 0.3865, which suggests that subleading cor-
rections beyond the asymptotic universal behavior still yield a
weak but noticeable contribution (see the Supplementary Ma-
terial for a comparison of the qualities of collapse for the two
values of the exponent).

In Fig. 3B, we quantify the number of defects as measured
by the excitation energy density Q in the putative scaling
regime. In the asymptotic limit of τQ → ∞, it is expected
from the QKZM in d spatial dimensions that the excitation
energy density Q also follows a universal behavior according
to [68–71]:

ξ̂d+z Q = FQ

(
t/ξ̂z

)
. (12)

Here d is a number of space dimensions. In Fig. 3B, we
observe a data collapse of the properly scaled Q in a time
window in the vicinity of the critical point. As for the ferro-
magnetic correlation function, the best collapse for the slower
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Figure 4. Kibble-Zurek dynamical scaling in 2D quantum Ising
model; finite-size scaling. We show the data collapse corroborat-
ing the dynamical scaling hypothesis, combining the results for open
and periodic boundary conditions. In A, we show the correlation
function scaled according to Eq. (11), where finite-size effects are
not appreciable in the presented range of ξ̂/L. For OBC, we calcu-
late the correlation function with respect to the central spin. In B,
we show the scaled excitation energy density following Eq. (14). For
OBC, we compare the total energy (per spin) with the contribution
to the excitation energy coming from the central spins. The latter
closely follows the PBC results—extending them toward the adia-
batic limit, marked by the change of power-law slope. We can esti-
mate the quench rate marking the transition to adiabatic limit τadiabQ ,
based on crossover happening around ξ̂/L ≈ 0.2. In this plot, we use
the exponent ξ̂ = τ0.36

Q with τQ ≥ 0.28, as in Fig. 3, that provides
the best collapse also in this case.

quenches is obtained for ξ̂ ∝ τ0.36
Q , also consistent with

Eq. (6).
Universal behavior in a finite system.— After having ex-

plored the case of thermodynamically large systems, in the
next step, we now address the experimentally relevant regime
of large but finite system sizes with linear extent L. In order
to obtain a comprehensive picture, including the behavior both
for open and periodic boundary conditions, we base our anal-
ysis on results obtained using MPS and NQS wave functions,
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Figure 5. Excitation energy measured deep in the ferromagnetic phase. In A, we plot the excitation energy per site at the final g = 0

for a system with OBC. The data for different system sizes are plotted as a function of ξ̂/L = τ0.36
Q /L, and the energy is scaled consistently

with the relation Q ∝ ξ̂−2 ∝ τ−0.72
Q that follows from (15). This results in a relatively good – but imperfect – collapse for available system

sizes. We show both the total energy (per spin) and the contribution coming from the central spins. In B, we test the conjecture of adiabatic
excitation energy rescaling in Eq. (15), plotting the ratio of the excitation energy to the energy gap at different values of ε, comparing it with
the final ε = 1. The flattening of the curves in the central part of the panel supports the conjecture. Here, we use L = 14 with OBC. Finally,
in C, we quantify the deviation from the pure power-law dependence on τQ that follows from the simple conjecture in Eq. (15). Snapshots of
excitation energies at other values of g show its build-up with an increasing energy gap (decreasing g). Here we calculate energy contribution
for central spins in a system with OBC and L = 14, which, in the KZ-regime, we also compare with the available iPEPS results (crosses). We
fit Eq. (16) with parameters (a, b) equal to (1.4, 0.16) for g = 0 (ε = 1), (1.2, 0.2) for ε = 0.5, and (1.0, 0.3) for ε = 0.3. The fit is restricted
to the regime of validity of Eq. (16) in between the KZ regime and the adiabatic regime. We use ε̂ calculated at twice the estimate in Eq. (6) –
that is also used to single out part of dynamics within the universal KZ-regime (red filled area).

where for MPS (open boundary conditions) we have a smooth
ramp in Eq. (8), and for NQS (periodic boundary conditions)
we have a linear ramp in Eq. (1). The key consequence of con-
sidering a finite system is that the energy gap does not close in
the vicinity of the critical point, as illustrated by our numer-
ical results in Fig. 2. This implies that for sufficiently large
τQ, an additional adiabatic regime emerges, where the system
asymptotically follows the ground state. This finite-size effect
can provide a further test of a generalized KZ scaling. On a
general level, the respective crossover from QKZ to adiabatic
scaling occurs when ξ̂ ∝ L. While for ξ̂ � L the system
follows the QKZ paradigm, the adiabatic regime is recovered
for ξ̂ → L.

In Fig. 4A, we focus first on the QKZ regime by showing
results for the ferromagnetic correlation function Czz(t, R)

for various τQ resulting in different 0.05 ≤ ξ̂/L ≤ 0.2. Here,
we again observe a convincing data collapse irrespective of
boundary conditions and quench details (smooth or linear), in
line with the considerations outlined before, that ξ̂/L � 1
is expected to yield the QKZ regime. We also note that we
identify a collapse of similar quality for times −t̂ < t < t̂
within the predicted scaling regime.

Concerning the excitation energy density, we find power-
law behavior for ξ̂ � L consistent with

Q ∝ ξ̂−3 , (13)

which follows directly from the general QKZM prediction
that the excitation energy density is supposed to exhibit the

following scaling form [68–71]:

ξ̂d+zQ = FQ

(
t/ξ̂z, ξ̂/L

)
. (14)

In particular, we emphasize that for t = 0, our numerical find-
ing of algebraic ξ−3-dependence extends over more than one
decade. For larger τQ and consequently upon approaching
ξ̂ → L , we also observe the expected deviations towards
the adiabatic regime, where Q ∝ τ−2

Q . Let us note that the
finite-size gap differs for open and periodic boundary condi-
tions implying that also the crossover scale between QKZ and
adiabatic is slightly shifted with respect to each other.

Extended quantum Kibble-Zurek mechanism.— After ex-
ploring the QKZ scaling in the vicinity of the quantum critical
point, we now take the next step by continuing the parame-
ter ramp deep into the ferromagnetic phase down to g = 0.
Unlike short-range 1D systems, the 2D quantum Ising model
supports a symmetry-broken phase at nonzero temperatures
which can lead to new kinds of dynamics such as coarsening
or phase-ordering kinetics. These simulations, which corre-
spond to long evolution times, turned out to be numerically
the most challenging, and we could not fully converge the
iPEPS and NQS simulations for this purpose. Therefore, we
rely mostly on the MPS technique in the following.

In Fig. 5A, we display our numerical results for the exci-
tation energy per site Q as a function of τQ in rescaled units
for finite system sizes obtained using MPS. While we observe
a kind of data collapse, as one might expect from the general
picture of the QKZM, there does not appear a clear power-
law behavior as the collapsed data exhibits a slight bending in
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the utilized double-logarithmic plot (apart from the expected
crossover to the exponential scaling in the adiabatic limit at
large τQ).

To understand and quantify the deviations from the ex-
pected power-law dependence, we now formulate a simple
conjecture to predict the excitation energy at the end of the
ramp at g = 0 far beyond the universal regime, which termi-
nates around t = t̂. This conjecture we call the extended quan-
tum Kibble-Zurek mechanism (xQKZM), generalizing a con-
cept established in 1D [71] to our interacting 2D setting. After
t̂ the evolution becomes adiabatic, i.e., the gap becomes large
enough to prevent any transfer of occupation between the in-
stantaneous ground state and excited states. The xQKZM is
based on two assumptions, whose validity and limitations for
the considered parameter regimes will be discussed later on:
i) after t̂ the redistribution of occupations among the instan-
taneous excited eigenstates can be neglected, so that energy
changes can only emerge from the parametric dependence of
the energy eigenvalues corresponding to the eigenstates dur-
ing the sweep; ii) the details of the parametric dependence
of the relevant energy eigenvalues can also be neglected so
that the eigenvalues exhibit roughly a global rescaling by a
scale set by the gap ∆E(ε). A schematic depiction display-
ing the parametric dependence of the gap and the occupations
is shown in Fig. 6. This yields the following estimate for the
excitation energy Q at the end of the ramp:

Q ∝ ξ̂−(d+z) ∆E(ε)

∆E(ε̂)
∝ ξ̂−d∆E(ε). (15)

In the first step we assume that the excitation energy at +ε̂,
corresponding to the time t = t̂ is proportional to ξ̂−(d+z)

in accordance with the scaling hypothesis in Eq. (12) and the
data collapse in Fig. 3B. In the second step, we assume a fur-
ther simplification in that the gap scales as ∆E(ε̂) ∝ ε̂zν over
the full range of considered ε̂; this assumption holds for small
enough ε̂ (or, equivalently, slow enough quenches) and large
enough system sizes such that the slowest quenches are still
not adiabatic. In this regime, the simple conjecture predicts
that in particular, for g = 0, the excitation energy should scale
as ξ̂−d. This power law is indicated by dashed lines in Fig. 5A
and C. While it captures the leading trend, our data show a
deviation beyond the leading power-law behavior that we dis-
cuss later. An equation similar to (15) appeared in Ref. 72 but
for small ε where ∆E(ε) ∝ εzν .

In Fig. 5B we test the xQKZM prediction including the ra-
tio ∆E(ε = 1)/∆E(ε) numerically by comparing the rela-
tive excitation energy change Q(ε = 1)/Q(ε) to the relative
change ∆E(ε = 1)/∆E(ε) of the gap between some interme-
diate values ε of the ramp and the end ε = 1. In accordance
with Eq. (15) we can see flattening of the curves in the cen-
tral part of Fig. 5B that lies between the KZ regime on the left
(where ε < ε̂) and the adiabatic regime on the right.

Let us now discuss the regime of validity of the proposed
xQKZM conjecture. Concerning the first assumption of ne-
glecting the redistribution of occupations among eigenstates,
this clearly depends on the overall considered quench times.

0 0.25 0.5 0.75 1 1.25 1.5
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0.2

0.4

0.6

0.8

1

g/gc

(E
−
E

0
)/
G
ap

(g
=

0)

ground state
1st excited
state

g(−t̂)g(t̂)

Figure 6. Schematic depiction of the xQKZM. The lines in the plot
show the energies of the ground state and of the first excited state
(combined data from Fig. 2); the shaded area represents further ex-
cited states. The circles indicate the occupation of the ground state
and of the low-lying excited states. The assumption of the xQKZM is
that for a given rate τQ excited state occupation is generated during
the time interval [−t̂, t̂]. Subsequently, the occupations are assumed
to be time-independent, but excitation energy is increased due to adi-
abatic gap rescaling.

For sufficiently large τQ the general expectation would be that
the system is supposed to undergo phase-ordering kinetics and
coarsening dynamics, which would involve a second type of
universal dynamical process and which originates precisely
from redistribution of occupations. However, for the τQ con-
sidered in the numerical computations of this work we are op-
erating in a different regime. While the τQ are still sufficiently
large in order to observe numerical evidence for the QKZM,
the overall time span of the dynamics in the ferromagnetic
phase for times t > t̂ is limited so that such redistribution can
be for now approximately neglected. Concerning the second
assumption of a roughly uniform shift of the relevant energy
eigenvalues deep in the ferromagnetic phase the respective
validity depends crucially on whether the dominant occupa-
tion of the instantaneous eigenstates originates from states of
the order of the instantaneous gap, or more specifically from
eigenstates not too far up in the excitation spectrum. Although
the QKZM describes the creation of occupations in excited
states, it is still reasonable to assume that these excitations
are not dominantly located in the non-universal high-energy
regime, where universality would anyway be out of reach.
Further, by increasing τQ the likelihood of generating high-
energy excitations can be systematically decreased, so that the
assumption ii) is more likely to be approximately valid.

In Fig. 5C we test the conjecture in Eq. (15) against our nu-
merical data. We find that the bare xQKZM already accounts
for the main contributions to the excitation energies. Consis-
tent with Fig. 5B, however, we also observe that a quantitative
comparison requires to take into account corrections. Empiri-
cally, we find that these are consistent with a logarithmic de-
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pendence on τQ:

Q(ε) ' Q(ε̂)
∆E(ε)

∆E(ε̂)
(a+ b log(τQ)) (16)

with a, b some constants. In Fig. 5 C we include the xQKZM
in combination with these logarithmic corrections to the nu-
merical MPS data and observe a close correspondence. The
main influence of the logarithmic correction is to impose a
bending of the excitation energy towards smaller τQ. Let us
note that for the xQKZM data, we focus just on the bulk be-
havior to avoid boundary contributions, which are significant
for the considered system sizes but are irrelevant in the ther-
modynamic limit. For that purpose, we only show the MPS
data for the energy in the center of the 2D lattice. Further,
assuming that the bulk gap is not affected by boundary condi-
tions, we use our numerically obtained gap ∆E(ε̂) from Fig. 2
and the exact value ∆E(g = 0) = 16J .

Beyond xQKZM.— A central assumption in the xQKZM
is that redistribution of occupations among eigenstates can
be neglected. This naturally neglects all scattering processes
leading to thermalization or phase ordering kinetics which
might be especially relevant in the 2D context studied here.
For that purpose, we study a slight variant of the dynami-
cal protocol, which allows us to obtain some understanding
of the influence of thermalization and phase ordering kinetics
onto the excitation energy density Q. Specifically, we inter-
rupt the ramp when the transverse-field strength gs reaches a
value gs/gc = 1/2 for a waiting time tw, where all Hamil-
tonian parameters are held constant, before continuing down
towards g = 0. In this way, we provide further time for
the system to relax and to redistribute occupations. The ef-
fect of the additional evolution on the outcome at g = 0
is shown in Fig. 7, where we include both the final excita-
tion energy density ε and the final magnetization fluctuations
〈M2〉 =

∑
R C

zz(t, R) in the inset. We can see that the fi-
nal excitation energy density tends to decrease with respect to
tw = 0, implying a kind of cooling effect due to the interme-
diate waiting interval. Further, the magnetization fluctuations
increase with tw consistent with coarsening, i.e., the tendency
of the system to develop ferromagnetic order at sufficiently
low transverse fields.

We attribute this observed path dependence to thermal-
ization dynamics and phase ordering kinetics, which is not
present in the 1D version of the model that is effectively non-
interacting. It, however, becomes immediately relevant for the
2D case. One can understand the observed energy decrease
by first deriving the equation of motion for the internal en-
ergy E(t) = 〈H(t)〉, which we will show here for the linear
quench:

dE(t)

dt
= − 1

τQ

∑

〈m,n〉
〈σzm(t)σzn(t)〉+

1

τQ

∑

m

〈σxm(t)〉 . (17)

While the energy itself is the sum of the spin-spin interac-
tion and the transverse-field term, the energy change during
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g = 0; L = 14; OBC

∼ ξ̂−2
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Q
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0.125 0.5
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1
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Figure 7. Influence of free evolution in the ferromagnetic phase
on the final state at g = 0. Here, we consider a protocol as in Fig. 5,
but with the ramp that stops at ε = 0.5 deep in the ferromagnetic
phase for a waiting time tw. The evolution then continues to g = 0
where the observables are measured. In the main panel, we show the
total excitation energy per spin and, in the inset, correlations in the
system measured by the variance of ferromagnetic magnetization.
The energy decreases and quickly saturates with increasing tw. In
contrast, no such saturation is seen in the variance, where longer tw
provides more time for magnetic ordering.

the dynamics is governed by their difference. Now, it is cru-
cial to realize that the thermalization dynamics and the re-
sulting coarsening in our 2D Ising model is exactly charac-
terized by a redistribution of energy between these individual
contributions. It is a central consequence of the ramp start-
ing on the paramagnetic side, that the transverse magnetiza-
tion is enhanced compared to the instantaneous equilibrium
state. The accompanying thermalization dynamics is charac-
terized by a transfer of energy from the transverse field to the
interaction term. According to Eq. (17), this, in turn, also
implies a negative change in the energy leading to a cooling
effect. In other words, thermalization and coarsening dynam-
ics, which naturally favor the interaction energy compared to
the transverse-field contribution, directly affect the final en-
ergy at g = 0. These considerations also provide a direct
interpretation of the results we observe in Fig. 7. While the
intermediate interruption of the ramp protocol itself does not
change the energy directly, it gives the system the additional
time tw to thermalize towards the instantaneous equilibrium
state leading to an enhanced interaction and reduced field en-
ergy. However, this implies a larger right-hand side in the
magnitude of Eq. (17) when the protocol is resumed after tw
implying a stronger reduction of the total energy as compared
to the case without stopping. Overall, Eq. (17) highlights, in
combination with thermalization and coarsening properties of
genuinely interacting 2D models, that there can be a notice-
able energy change occurring during the parameter ramp in
the ordered phase.
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DISCUSSION

In this work we have studied the QKZM in a 2D transverse-
field Ising model utilizing the combined effort of state-of-the-
art numerical methods. As a main result, we have found uni-
versal defect production in the vicinity of the quantum criti-
cal point. For parameter sweeps deep into the ferromagnetic
phase, we have introduced an extended QKZM (xQKZM),
which accounts for additional spectral information for the pre-
diction of the final excitation energy densities.

The exponent that yields the best scaling collapse consis-
tently deviates by about 7% from the precise values of the
critical exponents that have been determined in previous nu-
merical studies. We attribute this deviation to the fact that all
simulations were limited by maximal feasible ramping rates
τQ or system sizes L. These limitations constrain our numer-
ical experiments to probe a regime where corrections to the
asymptotic universal scaling laws are relevant. In this regime,
the gap opening is still approximately described by a power
law, but the best fitting exponent differs from the known value
in the asymptotic limit. Hence, we expect better agreement
of the dynamically observed critical exponents with results
from studies in equilibrium for larger system sizes and slower
ramping rates. Our results, among others, help to estimate
the necessary parameters. For instance, in order to avoid the
finite-size effects for τQ ' 20, assuming ξ̂/L ≤ 0.1 in Fig. 4,
would require the system of linear size L = 30.

Motivated in part by the remarkable progress in Rydberg
atom and superconducting qubit quantum simulators, the the-
oretical analysis provided in this work exhibits a natural im-
plementation in an experimental context. While evidence for
QKZM has already been observed in systems of Rydberg
atoms for a one-dimensional quantum spin chain [42], very
recent developments enable the realization of the dynamics
of transverse-field Ising models in two-dimensional geome-
tries involving hundreds of spin degrees of freedom [56, 57].
Notice that although these systems typically realize antiferro-
magnetic spin interactions, the resulting dynamics is equiva-
lent to that of an Ising ferromagnet upon transforming σzl 7→
−σzl on every other lattice site. It is straightforward to im-
plement the fully-polarized initial condition [42, 56, 57, 73]
and to temporally tune the couplings in order to realize
the parameter sweep across the underlying quantum critical
point [42, 56, 57]. Further, measurements in these systems
yield spin configurations along a tunable axis, e.g., along σz

or σx, which can give access to both the spin-spin correla-
tion functions we considered, see Eq. (9), and the total Ising
energy, see Eq. (5). Although quantum-optical systems such
as Rydberg atoms exhibit remarkable isolation from the envi-
ronment, decoherence nevertheless limits the experimentally
accessible time scales. In this context, it is important to em-
phasize that the recent experiments have demonstrated already
long coherence times, such as to observe the QKZM in one di-
mension [42] and close-to-adiabatic preparation of symmetry-
broken low-energy states [56, 57]. Overall, this makes our the-

oretical results directly experimentally accessible in Rydberg
atom systems with the potential to address central questions
that have remained open after the pioneering experiment on
2D QKZM in Ref. 56. This concerns for instance the QKZ
scaling deep in the ferromagnetic regime for larger system
sizes and longer ramp times as well as immediate evidence
for scaling behavior illustrated by a data collapse of the full
correlation function.

METHODS

In this work, we use a combination of three state-of-the-
art numerical algorithms. They provide mutual cross-checks
where their ranges of applicability overlap and their full range
is broader than any individual one.

The first, in order of appearance, is the 2D iPEPS tensor
network on an infinite lattice. To simulate time evolution, we
used the neighborhood tensor update 64 which is a more effi-
cient version of the code in Ref. 63. Here we use second-order
Suzuki-Trotter decomposition with time step dt = 0.01. Ac-
curacy is limited in a controlled way by a bond dimension D
of the iPEPS ansatz. All presented results appear converged
forD = 8. Evaluation of expectation values requires approxi-
mating the infinite tensor environment whose accuracy is lim-
ited by an environmental bond dimension χ. The results for
D = 8 were converged with χ ≤ 32. The iPEPS simulations
fail after t ≈ 2t̂actual where the convergence in D becomes
insufficient.

The second method is based on representing the system’s
wave function as a one-dimensional matrix product state,
where the 1D chain spans a 2D lattice. We obtain the best con-
vergence (with respect to the required MPS bond-dimensions
D) using a diagonal steps-like covering. The time evolution
is simulated using the TDVP algorithm of Ref. 60 (combining
the one-site scheme with local application of two-sites updates
for enlarging bond dimensions) and 4th order time-dependent
Suzuki-Trotter decomposition. We typically find the time-step
dt = 1/8 to be sufficient (with a few smaller time-steps at the
beginning to avoid instability of the TDVP when applied to
the initial product state). We simulate the system sizes up to
L = 14, with the bond dimension up to D = 512 to converge
the presented results in various limits.

The third numerical approach employs neural quantum
states (NQS) as variational ansatz for the wave function [61].
This approach was recently shown to be suited for the accu-
rate simulation of quench dynamics in the two-dimensional
quantum Ising model [62]. The precision of NQS simulations
is determined by the size of the neural network, which allows
for systematic convergence checks. The time evolution was
simulated using convolutional neural networks (CNNs) and
regularization techniques introduced in Ref. [62]. For sys-
tem sizes L ≤ 10, we used a single-layer network with fully
connected filters. For larger systems, we employed two-layer
networks with square filters that have a diameter of L/2. We
checked different network sizes for convergence and found



10

that 6 channels, or 4 followed by 3 channels, were sufficient
in the single and two-layer case, respectively.

With the NQS, we can simulate finite systems with periodic
boundary conditions in 2D, explicitly enforcing the invariance
of the wave function under all lattice symmetries. This al-
lows us to estimate boundary effects by comparing to MPS
simulations, and the large system sizes reached convincingly
reveal the power-law scaling of energy at the critical point.
However, we found that the accuracy of the NQS simulations
breaks down when continuing the ramp too far into the ferro-
magnetic phase; in particular, g = 0 is currently out of reach.

To compute the energy gap, we implemented the algorithm
for excited state search introduced in Ref. [67]. The first step
is to perform the ground-state search using the stochastic re-
configuration algorithm as already established in [61]. In the
second step, the stochastic reconfiguration is modified such
that the trial wave function is explicitly projected onto the sub-
space orthogonal to the ground state. We used the rescaled en-
ergy variance σE = 〈H2 − 〈H〉2〉 /L4 to assert the accuracy
of our result and reached for both the ground state and the first
excited state in all cases σE < 10−4 and often σE ≈ 10−5

within 250 optimization steps of size δτ = 0.01.
Acknowledgements We acknowledge funding by Na-
tional Science Centre (NCN), Poland under projects
2019/35/B/ST3/01028 (JD) and NCN together with Eu-
ropean Union through QuantERA ERA NET program
2017/25/Z/ST2/03028 (MMR), and Department of Energy
under the Los Alamos National Laboratory LDRD Program
(WHZ). WHZ was also supported by the U.S. Department
of Energy, Office of Science, Basic Energy Sciences, Ma-
terials Sciences and Engineering Division, Condensed Mat-
ter Theory Program. This project has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement No. 853443), and M. H. further acknowl-
edges support by the Deutsche Forschungsgemeinschaft via
the Gottfried Wilhelm Leibniz Prize program. MS was sup-
ported through the Leopoldina Fellowship Programme of the
German National Academy of Sciences Leopoldina (LPDS
2018-07). Parts of the numerical simulations were performed
at the Max Planck Computing and Data Facility in Garching.
Moreover, the authors gratefully acknowledge the Gauss Cen-
tre for Supercomputing e.V. (www.gauss-centre.eu) for fund-
ing this project by providing computing time through the John
von Neumann Institute for Computing (NIC) on the GCS
Supercomputer JUWELS at Jülich Supercomputing Centre
(JSC) [74].
Data Availability All data needed to evaluate the conclusions
in the paper are present in the paper and/or the Supplementary
Material.
Author Contributions All the authors contributed equally to
the preparation of the manuscript, discussions, and interpre-
tation of the results. Numerical simulations have been per-
formed by M.S. (NQS), M.M.R. (MPS) and J.D. (iPEPS).
Additional information Correspondence and re-
quests for materials should be addressed to M.S.

(email:markus.schmitt@uni-koeln.de) or M.M.R.
(email:marek.rams@uj.edu.pl).

Competing interests The authors declare no competing inter-
ests.

[1] T. W. B. Kibble, Topology of cosmic domains and strings, J.
Phys. A9, 1387 (1976); Some implications of a cosmologi-
cal phase transition, Physics Reports 67, 183 (1980); Phase-
transition dynamics in the lab and the universe, Physics Today
60, 47 (2007).

[2] W. H. Zurek, Cosmological experiments in superfluid helium?,
Nature 317, 505 (1985); Cosmic strings in laboratory superflu-
ids and the topological remnants of other phase transitions, Acta
Phys. Polon. B24, 1301 (1993); Cosmological experiments in
condensed matter systems, Physics Reports 276, 177 (1996).

[3] A. del Campo and W. H. Zurek, Universality of phase transition
dynamics: Topological defects from symmetry breaking, Int. J.
Mod. Phys. A 29, 1430018 (2014).

[4] P. Laguna and W. H. Zurek, Density of kinks after a quench:
When symmetry breaks, how big are the pieces?, Phys. Rev.
Lett. 78, 2519 (1997).

[5] A. Yates and W. H. Zurek, Vortex formation in two dimensions:
When symmetry breaks, how big are the pieces?, Phys. Rev.
Lett. 80, 5477 (1998).

[6] N. D. Antunes, L. M. A. Bettencourt, and W. H. Zurek, Vortex
string formation in a 3d U(1) temperature quench, Phys. Rev.
Lett. 82, 2824 (1999).

[7] M. Uhlmann, R. Schützhold, and U. R. Fischer, Vortex quantum
creation and winding number scaling in a quenched spinor Bose
gas, Phys. Rev. Lett. 99, 120407 (2007).

[8] E. Witkowska, P. Deuar, M. Gajda, and K. Rzążewski, Solitons
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LINEAR VERSUS SMOOTH RAMP

In the main text we consider a straight linear ramp and one that is smoothed at the ends. The straight ramp with its sharp
beginning (discontinuous time derivative) is inconvenient for tensor networks (TN) simulations because from the very start
it generates some excitations that have nothing to do with the KZ mechanism in question but whose entanglement has to be
accounted for by extra bond dimension of the networks. This does not seem to be a problem for the neural network (NN) and
that is why the NN employs the linear ramp that also requires less time to simulate. For the same reason it would be more
convenient to perform in an experiment.

The precise beginning and ending of the ramp does not affect the KZ mechanism because KZ excitations are set near the
critical point which is right in the middle between the beginning and the end. This can be seen in e.g. Fig. 4A where there is
no appreciable difference between NN and TN results. Small discrepancies between NN and TN in Fig. 4B are solely due to
their different boundary conditions which are, respectively, periodic and open and, therefore, the discrepancies are finite size
effects, compare Fig. S1 below where open boundary conditions are assumed for both the linear and the smooth ramp. This
independence on ramp’s beginning/ending is very convenient for experimental implementations giving them some flexibility.
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linear
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Figure S1. Independence of the KZ mechanism on the ramp details. We compare the excitation energy for a linear ramp in Eq. (1) of the
main text, and a ramp that is smoothed at the ends as in Eq. (8) of the main text. Both ramps have the same slope – set by τQ – when crossing
the critical point. We show excitation energy per spin measured at the critical point, and at the end of the ramp when g = 0. The details of
the ramp have a marginal influence on the resulting excitation energy. There is a very small “cooling” effect related to a slightly longer time
for coarsening dynamics in the smooth ramp that is visible for g = 0 and fast quenches – consistent with trends in Fig. 7. This is, however, a
sub-leading effect.
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Figure S2. The best collapse of the correlation function. Scaled correlation function for 36 values of τQ = 0.1·2m/10, with m = 15, . . . , 50.
In the left panel we assume ξ̂ = τ0.36

Q and in the right one ξ̂ = τ0.386
Q . The collapse on the left is clearly better than on the right for available

range of quench times τQ.

DYNAMICAL EXPONENT

In Fig. S2, we compare collapses of the correlation function obtained by iPEPS on an infinite lattice for the range of quench
times 0.28 ≤ τQ ≤ 3.2 with the exponents 0.36 and the exact 0.386. Considering the longest τQ that we can achieve here,
the effective 0.36 clearly yields a better collapse than 0.386. The collapse for 0.386 is still decent, but mainly because the two
exponents differ by just 7%. The precision of our numerical data is good enough to discriminate this small difference.

EXTRAPOLATION OF THE ENERGY GAP

The inset in Fig. 2 of the main text tests the finite-size scaling hypothesis for the energy gap near the critical point. The collapse
is compelling, especially on the paramagnetic side. In Fig. S3 below, we use the data on the paramagnetic side to extrapolate
the gap in system size up to L = 100. The extrapolated data agrees with the expected power-law with exponent zν ≈ 0.63, and
give an impression of the significance of finite size effects close to the critical point. The extrapolation to L = 20, which is the
size we use to simulate quenches, is also shown in Fig. 2 of the main text.
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Figure S3. Extrapolation of the energy gap in larger system sizes. We extrapolate the energy gap on the paramagnetic side of the critical
point for a few large system sizes based on the finite-size scaling collapse shown in the inset of Fig. 2 of the main text.
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