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Abstract: Recent advances in object detection facilitated by deep learning have led to numerous
solutions in a myriad of fields ranging from medical diagnosis to autonomous driving. However,
historical research is yet to reap the benefits of such advances. This is generally due to the low number
of large, coherent, and annotated datasets of historical documents, as well as the overwhelming focus
on Optical Character Recognition to support the analysis of historical documents. In this paper, we
highlight the importance of visual elements, in particular illustrations in historical documents, and
offer a public multi-class historical visual element dataset based on the Sphaera corpus. Additionally,
we train an image extraction model based on YOLO architecture and publish it through a publicly
available web-service to detect and extract multi-class images from historical documents in an effort
to bridge the gap between traditional and computational approaches in historical studies.

Keywords: sphaera; object detection; historical illustrations; digital humanities; artificial intelligence;
dataset

1. Introduction

The current study of the vast amount of unexplored sources available in archives and
libraries by means of classical historical methods remains beyond our capabilities. This led
to the emergence, in the recent years, of a large number of initiatives aimed at digitizing
such collections of historical documents, such as the Google Book Search (GBS) and Open
Content Alliance (OCA) [1]. These digitization efforts have bestowed on us a wealth of
historical material in digitized format. The vast majority of these digital copies consist
of raster images from flat bed scans or page photographs. While such raster images are
abundant, their content, i.e., text and illustrations, are generally non–machine readable,
and thus remain hidden to the readers until they open and read the digital copy.

In the frame of the project The Sphere: Knowledge System Evolution and the Scientific
Identity of Europe (https://sphaera.mpiwg-berlin.mpg.de/, accessed on 2 October 2022)
we analyze a collection of 359 editions centered on the Tractatus de sphaera by Johannes
de Sacrobosco (–1256) and printed between 1472 and 1650. This collection, dubbed the
Sphaera Corpus, contains around 76,000 pages with 30,000 visual elements. The elements
are separated into four distinct categories based on their function within the printed book,
as discussed in Section 3. These visual elements were manually collected and labelled by
student assistants, which allowed us to construct a relatively large and unique mutli-class
dataset. As a result, we were able to use this dataset to train a neural network to detect
and classify visual elements from the Sphaera Corpus, then to test its performance on other
corpora. Given the success of our model, as reported in Sections 4 and 5, and its ability to
change the way we analyze historical sources, we integrated it in a public web-service in an
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effort to reach a wide audience of historians regardless of their level of computer literacy.
In this respect, our contributions in this paper can be summarized as follows:

1. Highlighting the importance of the study of visual elements in historical corpora.
2. Providing a curated dataset for the detection of visual elements in historical corpora

(accessible here [2]) and comparing the performance of object detection models on
this real dataset as opposed to large synthetic historical datasets.

3. Proposing a dedicated object detection model for visual elements in historical docu-
ments, and comparing it with state-of-the-art historical page segmentation methods.

4. Providing an easy to use web-service (https://cordeep.mpiwg-berlin.mpg.de/, ac-
cessed on 2 October 2022) for the detection of visual elements in historical documents.

In the following, we introduce the current approaches to historical document page
segmentation and image extraction in Section 2, and introduce the Sacrobosco Visual Ele-
ments Dataset (S-VED) derived from the Sphaera Corpus in Section 3. We then evaluate the
performance of three different model architectures, YOLO, DocExtractor, and Faster-RCNN,
on S-VED in Section 4, after which we evaluate the generalization abilities of these models
on various datasets, as well as whether training on S-VED results in a better model than
large synthetic datasets in Section 5. Finally, we present our web-service in Section 6, and
discuss, in Section 7, some of the limitations encountered while building S-VED and when
training and evaluating the results of models trained on this dataset.

2. State of the Art

The availability of large amounts of digitized historical documents opened the door
to the use of computational approaches for their analysis [3]. While research in the field
of historical document processing is diverse, ranging from manuscript dating and writer
identification to building large digital libraries, the main bulk of scholarship in this regard
was devoted to Optical Character Recognition (OCR) approaches in an effort to extract and
automatically read the text in raster images of historical sources. Initial efforts in this field
relied on simple computer vision techniques for image segmentation and word and letter
extraction [4]. However, the variability of fonts and page layouts of historical documents,
as well as the large variety of alternative spellings cause a high number of errors. With the
onset of deep learning, OCR research adopted neural network architecture to achieve its
objectives. Pre-processing approaches aimed at page segmentation as a preparatory step
before OCR analysis relied on architectures such as U-Net [5] and Mask R-CNN [6], similar
to those presented in [7,8]. This step is often followed by approaches such as [9–11] which
rely on a combination of Convolutional Neural Networks (CNN) and Recurrent Neural
Networks (RNN) to extract features and process texts.

While advancement in the domain of text recognition in historical documents is
clear, the same cannot be said of the field of image recognition within these documents,
which is often considered a pre-processing step during page layout analysis [3]. This is all
the more remarkable if we consider that historical disciplines have become increasingly
concerned with the relationship between text and visual elements, with an ever-increasing
number of historical projects dedicated to this subject [12–14]. While page segmentation
approaches, such as [7], return text/non-text masks, the latter of which often includes visual
elements, this remains insufficient for any meaningful historical study, as such approaches
often lack accurate visual element localization, as well as semantic classification of these
elements. In this regard, one of the main hurdles hindering the success of semantic visual
element recognition within historical documents is their high variability, as well as the
general scarcity of coherent historical datasets focused on visual element recognition, with
only 11 out of the 56 historical document datasets mentioned in [15] containing graphical
elements. Additionally, in the majority of cases where visual elements were recorded in
these datasets, they were not classified according to their semantic classes [16].

This high variability of visual elements means that some of the available datasets con-
cern a specific time period or a specific medium, such as hand-written manuscripts, printed
books, or newspapers. This is clearly the case of the Newspaper Navigator Dataset [17],
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which contains visual content from 16 million historic newspapers in the United States
published between 1798 and 1963, or the HORAE dataset [18], which focuses on books of
hours from the late Middle Ages. In response to the scarcity of historical datasets, synthetic
datasets emerged in an effort to create larger, more diverse, and highly variable datasets
without resorting to manual annotations. Such synthetic datasets were proposed in [19],
which offers DocCreator, a platform to automatically generate synthetic, historically looking
document images, while [8] created a synthetic dataset from elements of a large corpus of
real historical-document images that helped in training an accurate historical document
segmentation model. Refs. [10,20], moreover, also relied on synthetic data to enhance the
performances of their OCR models for printed and handwritten documents. In this paper,
we present and rely on a hand-curated dataset of historical illustrations from the early days
of printing to train a well performing object detection model and highlight the need for
larger datasets that cover the period-specific high variability of visual elements.

3. The Sacrobosco Visual Elements Dataset (S-VED)

The importance of visual elements in the Sphaera Corpus stems from the nature of
the corpus’s editions, which have already been analyzed from very different perspec-
tives [21–26]. The 359 Sphaera editions, centered on the Tractatus de sphaera by Johannes
de Sacrobosco (–1256)and printed between 1472 and 1650, were primarily used to teach
geocentric astronomy to university students across Europe, generally between fourteen
and eighteen years old [27]. Their visual elements, therefore, played an essential role in
visualizing the ideas, messages, and concepts that the texts transmitted. This high inter-
connectivity and dependence between text and visual elements implies that the latter are
integral to the comprehension of the former and vice versa. As a precondition for studying
the relation between text and visual elements, a time-consuming image labelling process
was conducted by five student assistants in order to extract and label the visual elements
from the 76,000 pages of the corpus. These students were instructed to create a bounding
box around each visual element created by a single woodblock and assign it to a single class
(see Section 7 for difficulties faced during the labelling process and their effect on the model
output). Each students worked, on average, around 40 hours per month and completed
the labelling work in about 5 months. This well curated data represents a dataset of visual
elements of early modern scientific works, and allows us to train a model to extract images
from similar corpora.

The work of the student assistants resulted in the creation of the Extended Sacrobosco
Visual Elements Dataset (S-VEDextended). This dataset consists of almost 30,000 visual
elements located on 23,190 pages, covering almost 30% of the corpus’s pages, and classified
into four classes whose count is shown in Table 1. These classes represent the four main
categories of visual elements found in the Sphaera Corpus (Figure 1). However, copyright
constraints prevent us from publicly sharing many of the 23,190 pages of the S-VEDextended.
To circumvent this issue, we created the S-VED (accessible here [2]) , which contains a total
of 4000 pages sampled from the S-VEDextended and shares its distribution (Table 1).

Table 1. The total number of pages, pages without any visual elements, and samples per class in
S-VED and S-VEDextended.

S-VED S-VEDextended

Total Pages 4000 46380
Pages w/o visual elements 1960 23,190

Content Illustrations 2076 21,000
Printer’s Marks 19 235

Decorations 218 2041
Initials 614 6258
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Figure 1. Two pages from the S-VED showing the four different classes. Green: Decoration,
Magenta: Printer’s Mark, Blue: Initial, and Red: Content Illustration (Left page: Sphaera Ion-
nis de Sacro Bosco, 1569, Venice, https://hdl.handle.net/21.11103/sphaera.101040, accessed on
2 October 2022, Österreichische Nationalbibliothek. http://data.onb.ac.at/rep/1089F5CC, ac-
cessed on 2 October 2022 —Right page: Sphaerae mundi compendium foeliciter inchoat, 1490, Venice,
https://hdl.handle.net/21.11103/sphaera.100885, accessed on 2 October 2022, courtesy of the Library
of the Max Planck Institute for the History of Science).

The four classes are:

1. Content illustrations: visual elements inserted in and around the text in order to
explain, enrich, describe, or even criticize the content of the latter.

2. Printer’s Marks: visual elements often located at the beginning or the end of the book,
and are considered to be the emblems, or insignia, of the printers who produced the
books in question.

3. Decorations: decorative items placed on the page for multiple purposes, e.g., marking
the end of a paragraph or chapter, or simply decorating the contour of the text.

4. Initials: small visual elements each representing a letter at the beginning of a para-
graph. These letters were often abundantly decorated, and served to highlight the
structure of the text.

The largest component of both S-VED and S-VEDextended is the Content Illustration
class, which constitutes almost 70% of the entire dataset. The visual elements of this
class are those that convey the scientific information, as they are generally placed within
a treatise’s text and represent its content. These images vary in size, with the majority
covering between 7 and 17% of a page’s area, while their position varies across the page but
generally avoids the margins (Figure 2). As this section of the dataset concerns the scientific
content of the editions under investigation, it is evident that this collection is particularly
relevant for the history of astronomy on the one hand and the study of the evolution and
transformation of visual language in science on the other.

The number of identified Printer’s Marks is smaller since each edition has either none,
one, or a maximum of two. Since these images are missing in some cases, the number of
Printer’s Marks is lower than the total number of editions in the Sphaera Corpus. Visual

https://hdl.handle.net/21.11103/sphaera.101040
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elements of this class are the largest in size within the discussed datasets because they
were often printed on their own dedicated page, frequently placed in the center with no
regard for space constraints (Figure 2). Printer’s Marks convey relevant information for
book historians, particularly those involved in the economic history of the book. The
oldest editions of the corpus were printed in 1472, less than only 20 years after the pub-
lication of Gutenberg’s Bible. The 178 years covered by the corpus, therefore, represent
the period during which the book as a commercial product evolved in conception and
design to resemble the book as it is known today. The presence or absence of a Printer
Mark in an edition alone denotes the awareness of the printers and publishers of the time
about their fundamental role in promoting or hindering the dissemination and success of
specific scientific content [26]. Moreover, the Printer’s Marks’ emblems are rich figurative
illustrations, dense in details that are never random or merely the result of artistic taste. For
large-scale editorial initiatives, for instance, when the amount of capital required for the
production was particularly relevant, printers often joined forces (and money) and divided
the investments and profits among themselves. In such cases, ad hoc joint ventures were
signalized to the audience by a Printer Mark that displayed elements and details of the
Printer’s Marks of the individual printers and publishers who joined the project. Lastly,
Printer’s Marks, or the details of which they were comprised, were often used to signal
the closeness of the printer’s workshop to a specific societal group or well-established
institutional network. These could be religious orders, specific confessions, a single city
and its ruler, or philosophical schools [28–33].

Figure 2. Distribution of visual element classes by page size percentage (90% interquartile range) and
bounding box centroid localization.

The visual elements of the Decoration class generally occupy the least page space but
can be found almost throughout the whole page area, including the margins. Initials are
small in size and are predominantly located along the left-hand side of the page, which is to
be expected given that Sphaera Corpus texts are written in left-to-right scripts, such as Latin,
French, Italian, and German, among others (Figure 2). Initials and Decorations and book
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ornaments, in general, are collections that are useful for understanding the framework
of book and printing history. Decorations are studied in reference to the patterns and
stylistic choices they display. It is estimated that about one-third of the print runs printed
during the early modern period bear no imprint at all; therefore, the study of Decorations
can be particularly useful for determining the printers of such books. Moreover, as the
majority of visual elements in early modern books were the result of the woodblock printing
technique and woodblocks themselves were exchanged among printers, Decorations can
reveal cooperative networks of economic nature among printers.

The purpose of studying Initials is two-fold. The first is very similar to the one
described for the Decorations. Namely, Initials are large-sized letters that mostly display a
sophisticated graphic for the font, and are printed over a decorative background, usually
showing very elaborate patterns and ornaments. Secondly, if collected from a corpus
of great size, Initials help us to understand one aspect of the evolution of the book as a
commercial product. This aspect is related to the structure of the texts. Before the advent of
printing technologies, manuscripts were assemblages of texts collected over long periods of
time. Over generations, manuscripts often changed owners; consequently, the individual
and almost personal aspects a manuscript exhibited were dependent upon the current
owner and the way they used the manuscript. In this context, large-size Initials used
throughout the body of the text were extremely useful for quickly identifying when a new
text or a new argument within one manuscript began. Though commonplace today, title
pages, chapter numbers, or similar structural aspects of books were not used or extremely
rare. Initially, printed books were mostly conceived and designed similarly to the well-
known form and format of manuscripts. While the printed book became a product for
a larger and more “anonymous” audience, its layout evolved, and title pages, headings
for texts, chapters, sections, as well as running heads and other components began to
appear, improving and generalizing the usability of books. During this stage, Initials began
losing their function and increasingly assumed a merely ornamental function, eventually
rendering them largely obsolete. A statistical study concerning Initials that covers an
extended time period can, therefore, reveal the major phases of this process [34–38].

This classification into different semantic classes was only possible due to rigorous
historical analysis. However, other datasets (shown in Section 5) do not distinguish between
illustration classes, and lump them into a single category of visual material. This led us, in
some cases, to merge our four classes into one in order to compare our results with those of
other datasets. We additionally collected an equal number of negative examples, i.e., pages
without any visual elements, that were randomly sampled from the corpus. In total, the
S-VEDextended contains 46,380 pages along with the visual element annotations, which we
use to train our model as shown in the following sections. The model, moreover, is publicly
available through our dedicated web-service (Section 6).

4. Detecting Visual Elements in the Sphaera Corpus

The time-consuming creation of the S-VED opened the door towards the automatic
detection of these visual elements, which would be beneficial not only within the scope
of the Sphere project, but also for other projects that deal with similar corpora. With this
aim in mind, we trained three different deep learning–based object detection models on the
visual elements of the Sphaera Corpus. We applied and compared the state-of-the-art object
detector YOLOv5 [39], the pixel-wise segmentation classifier DocExtractor, a state-of-the-art
off-the-shelf system for element extraction from historical documents [8], and Faster-RCNN,
a two-step object detector [40].

4.1. Models and Training

YOLO [41] is considered a state-of-the-art object detection system both in regard to
speed and accuracy, which prompted us to use it for the detection of graphical elements in
historical documents. YOLO is an abbreviation for “You Only Look Once” and describes
the algorithm’s ability to detect objects in images with a single forward pass through
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its network. In this paper, we use the YOLOv5, which is the fifth and latest version of
this neural architecture. YOLO’s neural network can be described in three stages: The
first consists of a backbone that extracts features from the input, after which comes a
neck that aggregates the features, and finally a head that detects objects. The backbone
could be substituted by any neural network architecture. However, YOLOv5 provides five
predefined such architectures; they differ in size, and thus in speed and performance. In this
case, we used the so-called YOLOv5l architecture, which corresponds to the second largest
available architecture and offers robust feature extraction but still fulfills our inference
speed requirements. Our YOLOv5 model was initialized with the pretrained weights used
on the COCO [42] dataset, and trained with an initial learning rate of 0.01. At training
time, various data augmentation techniques were applied to prevent overfitting to the
training data, which include standard approaches such as affine transformations and color
augmentations, as well as perspective and mosaic augmentations. These account for the
scan angle differences and object sizes, respectively.

DocExtractor is a line-level page segmentation system introduced by [8], which gener-
ates pixel masks for both visual elements and text in historical documents. DocExtractor’s
architecture relies on an encoder-decoder (namely a modified U-Net [43] with a ResNet-
18 [44] encoder) for pixel-wise segmentation. We trained this “out-of-the-box” network
on our data using the recommended hyper-parameters (https://github.com/monniert/
docExtractor, acccessed on 2 October 2022) and used it to benchmark our YOLO model,
as it has specifically been proposed for processing historical documents and because its
architecture is commonly used in state-of-the-art OCR systems [45] to segment pages and
extract text regions, outperforming Mask-RCNN [6] as shown in [8].

Faster-RCNN is a two step object detection model, composed of a Region Proposal
Network (RPN) and a detection network [40]. The RPN is composed of a fully-convolutional
network, trained end-to-end to generate region proposals which are fed to the object
detection model. We used a ResNet50 as the backbone, and following our approach
with the YOLO model, initialized the model with weights pretrained on COCO [42], and
fine-tuned it with an initial learning rate of 0.005.

These models are trained on the S-VEDextended training-split, which contains a total
of 38,426 page images of which 3772 are used for validation, while the test-split contains
7954 page images. The S-VED split consists of the same validation and test split, however,
it only uses a subset of 4000 page images from S-VED’s training split as its training set.
Almost half of the samples in every split contained a visual element, while the other half
was a negative sample. To account for the general variability of image sizes, especially
those of scanned books, we trained the two above-mentioned models using large and
small S-VED/S-VEDextended image sizes: 1280 × 1280 and 640 × 640, respectively. The
models were trained on a NVIDIA A100GPU until no significant performance increase was
observable, which took 35 epochs (equivalent to a single compute day) for the YOLOv5
model, 25 epochs for DocExtractor, which took approximately a week, and 40 epochs for
Faster-RCNN, which required 36 h. The significantly greater training time of DocExtractor
stems from the fact that the “out-of-box” DocExtractor training pipeline only supports a
batch size of 1, originating from the memory restrictions the authors of DocExtractor were
bound to.

4.2. Model Evaluation

To evaluate the performance of the above-mentioned models in Section 4.1, we rely on
the commonly used Intersection over Union (IoU) metric, whose values are between 0 and
1, to assess the accuracy of our bounding box localization (see Equation (1)):

IoU =
BGT ∩ BP
BGT ∪ BP

(1)

where BGT denotes the area of the ground truth bounding box and BP denotes the area of
the predicted bounding box. A low IoU value indicates a detection that does not sufficiently

https://github.com/monniert/docExtractor
https://github.com/monniert/docExtractor


J. Imaging 2022, 8, 285 8 of 18

overlap with our ground truth bounding box, while a high IoU value indicates a higher
overlap between the predicted and ground truth bounding boxes. Following [46], we set
a threshold of 0.5, above which a detection is considered correct if the predicted class is
also correct. From these correct detections, we report the average precision (AP) values in
Table 2 for the two input sizes on both S-VED and S-VEDextended, where the AP is calculated
by averaging the precision values corresponding to all recall values between 0 and 1 using
an “all-point interpolation” technique [46]. In the calculation of the AP, empty pages (pages
that do not include an illustration) can only contribute in a negative manner. In other words,
false positive illustrations on empty pages penalize the AP, whereas pages that are correctly
recognized as devout of visual elements by a model do not improve the AP score. We
emphasize this fact due to the high number of empty pages in our test set. The AP values
in Table 2 show the evaluation of all our tested models on a single, comprehensive, visual
element class containing all four classes discussed in Section 3. The reason for this merger
is due to the fact that an “out-of-box” DocExtractor is not designed to differentiate between
the four categories presented in the S-VED. As evident from Table 2, YOLO outperforms
both DocExtractor and Faster-RCNN by varying degrees. The high AP scores achieved on
both high and low resolution images can be considered an almost perfect result. The small
variations—in the order of 10−2 and 10−3—between the AP scores of the two different input
sizes is investigated using GradCAM [47], and is generally attributed to our image labelling
strategy (see Section 7). This is particularly noticeable where the models consider a group
of visual elements in a page as a single object in lower resolution inputs, but consider the
same group as multiple objects with higher input resolution, thus directly affecting the AP
scores. When it comes to the training dataset, the results of training YOLO, DocExtractor,
and Faster-RCNN on both S-VED and S-VEDextended prove to be similar, with an almost
insignificant drop in AP when switching from the latter to the former. This indicates that
S-VED, while smaller than the extended version, is still highly useful to train object-detection
models aimed at historical visual elements in printed books.

Table 2. Average precision (AP) results for both models for two different image input resolutions.

Model S-VED (1280 × 1280) S-VED
(640 × 640)

S-VEDextended
(1280 × 1280)

S-VEDextended
(640 × 640)

YOLOv5 0.962 0.974 0.983 0.986
Faster-RCNN 0.949 0.940 0.975 0.965
DocExtractor 0.890 0.735 0.925 0.809

Since the best YOLO AP values for both S-VED and S-VEDextended were obtained with
an input image resolution of 640 × 640, and those of Faster-RCNN with 1280 × 1280,
all further evaluations in this paper will be reported using the aforementioned image
resolutions for their respective models.

In order to further investigate the precision of the YOLO and Faster-RCNN models on
the four different classes discussed in Section 3, we report their AP results in Table 3. Both
YOLO and Faster-RCNN record their highest AP for Content Illustration and Initial classes
for both S-VED and S-VEDextended, while this average precision drops for Printer’s Marks
and Decorations, with varying degrees, for both models on the tested datasets. While
the drop in average precision can be generally related to the significantly lower number
of Decorations and Printer’s Marks in both S-VED and S-VEDextended, we investigate the
source of this drop by looking at error cases in Figure 3, as well as the Confusion Matrices
shown in Figure 4. It is clearly visible in this case that the lower average precision for the
Decoration class in both models’ results is due to a high number of False Negatives signaled
by the relatively high percentage of instances missed by the model and, consequently,
classified as background (see Figure 3: Left). On the other hand, the lower average precision
reported for the Printer’s Mark results stems from False Negatives due to inter-class
misclassification, where the Printer’s Marks are often classified as Initials, Decorations, and
most frequently Content Illustrations, especially in the Faster-RCNN results. This inter-
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class misclassification is due to the fact that Printer’s Marks are often very similar in form to
Content Illustrations (see Figure 3: Right), but generally differ from the latter semantically.
While Printer’s Marks are commonly placed at the beginning or end of the book and
identify the printer(s) who produced the book, Content Illustrations are exclusively located
within the inner pages of the book. Since page information is not provided to the model
as an input, this inter-class misclassification is expected. A detailed look at the limitations
and fringe cases that cannot be effectively solved by this model is presented in Section 7.
Overall, the YOLO model trained on S-VEDextended makes 436 false positive detections from
a total of 4511, whereas for the Faster-RCNN model trained on S-VEDextended, this ratio is
671 to 4749. The confidence thresholds for the two models were chosen to maximize the
average between precision and recall, which resulted in a confidence threshold of 0.2 for
YOLO and 0.7 for Faster-RCNN.

Table 3. Average precision results for the four different types of visual elements as achieved by the
YOLOv5 model with its best performing input image resolution 640 × 640 and the Faster-RCNN
model with its best performing input image resolution 1280 × 1280. The mean average precisions are
reported as the standard mean (mAP) over the APs of the classes and the weighted mean (wmAP),
where APs are weighed according to the relative number of instances of the class.

AP YOLOv5 AP Faster-RCNN

Class S-VED S-VEDextended S-VED S-VEDextended

Content Illus. 0.976 0.988 0.955 0.978
Initials 0.987 0.988 0.981 0.987

Printer’s Marks 0.819 0.923 0.168 0.530
Decorations 0.834 0.92 0.592 0.899

mAP = 0.904 mAP = 0.955 mAP = 0.674 mAP = 0.849
wmAP = 0.969 wmAP = 0.984 wmAP = 0.934 wmAP = 0.971

Figure 3. Classification Errors. (Left) False Negative: the model failed to recognize a dec-
oration visual item embedded within a numerical table (Sphaera, 1614, Leipzig, https://hdl.
handle.net/21.11103/sphaera.101208, accessed on 2 October 2022, Bayerische Staatsbibliothek.
urn:nbn:de:bvb:12-bsb11110900-6); (Right) Class misclassification: the model classified the im-
age as a Content Illustration while the image is a Printer’s Mark printed at the beginning of the
book on a dedicated page (Qvaestiones novae in libellvm de sphaera Ioannis de Sacro Bosco, 1562, Paris,
hdl.handle.net/21.11103/sphaera.100156, accessed on 2 October 2022, Universitätsbibliothek Augs-
burg. urn:nbn:de:bvb:384-uba003411-4).

https://hdl.handle.net/21.11103/sphaera.101208
https://hdl.handle.net/21.11103/sphaera.101208
hdl.handle.net/21.11103/sphaera.100156
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Figure 4. Class confusion tables for (Left) YOLOv5 (S-VEDextended, 640 × 640, confidence
threshold = 0.2), (Right) Faster-RCNN (S-VEDextended, 1280 × 1280, confidence threshold = 0.7).

Finally, we evaluate the localization capabilities of both YOLO and Faster-RCNN
models by plotting the variation of the mAP with different IoU thresholds as shown in
Figure 5. It is clearly visible that the mAP remains above 0.9 up to an IoU threshold of 0.8
in both cases, which indicates that the predicted bounding boxes are well localized with
respect to the ground truth boxes.

Figure 5. Average precision (AP) results with different IoU detection thresholds on sphaera data for
YOLOv5 (S-VEDextended, 640 × 640) (left) and for Faster-RCNN (S-VEDextended, 1280 × 1280) (right).

The results above clearly indicate that dedicated object detection models, such as
YOLO and Faster-RCNN, are better suited to the specific task of visual element detection.
However, while DocExtractor lags behind these two models when it comes to object
detection, the former is designed as a page segmentation model and is thus able to return,
in addition to image regions, line segmentation results that could also be useful for scholars.
Given our focused interest in visual element detection in historical corpora, the next section
is dedicated to evaluating the generalization ability of the better performing model, YOLO,
on numerous real and synthetic datasets.

5. Generalization to Other Historical Corpora

Having shown that YOLO trained on either S-VED or S-VEDextended (YOLOS−VED
and YOLOS−VEDX for short) performs better than Faster-RCNN, as well as other state-of-
the-art pixel segmentation approaches for visual element extraction trained on the same
data (namely DocExtractor), we evaluated the generalization abilities of the YOLO models
on multiple datasets containing historical documents from different periods and topics.
However, one of the major setbacks in applying Machine Learning to historical documents
is the relative lack of large, labelled, and open source historical datasets compared to other
fields, e.g., autonomous driving, robotics, etc. Despite this lacuna, generally discussed in
Section 2, we highlight below several relatively small historical datasets on which we test
the generalization abilities of our model in order to compare the performance of YOLO
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trained on S-VED and S-VEDextended to that trained on a large synthetic historical image
dataset, SynDoc [8], which was created to remedy the shortage of real historical datasets
discussed above.

5.1. Datasets Used

Mandragore dataset is offered by the Bibliothèque Nationale de France [48], is a
collection of illuminated manuscripts, which are handwritten manuscripts whose pages are
often heavily decorated with painted illustrations dating mainly to between the 11th and
15th centuries. The dataset contains annotated pages from 8 different manuscripts totalling
1691 pages.

RASM dataset is a dataset of a 100 historical Arabic pages including both text and
visual elements [49]. The RASM dataset not only differs from the S-VED in the fact that the
former is mostly composed of handwritten manuscripts with hand-drawn drawings and
diagrams while the latter is composed of printed pages and visual elements from printing
woodblocks. It differs also because the language of the RASM manuscripts is Arabic, while
the S-VED dataset contains mostly Latin sources.

IlluHisDoc dataset was presented in [8] as a benchmark for historical document
illustration segmentation. This dataset contains 400 annotated pages from 20 historical doc-
uments from the Bibliothèque Nationale de France ranging from pre-printing manuscripts
to 19th century printed books, distributed across four main document classes: printed
documents with multiple illustrations such as drawings, decorations, paintings, and photos
(P); manuscripts with scientific diagrams (MSS); manuscripts with illuminations (MSI); and
manuscripts with drawings (MSD).

Pseudo Proclus Visual Element Dataset is created within the Sphere Project and se-
mantically resembles the S-VED. Pseudo Proclus’s Sphaera is a text that was first printed
in 1499 in Venice and is similar to Sacrobosco’s Sphaera, which is the basis for the S-VED.
Both of these texts were aimed at university students and discuss the topic of geocentric
astronomy in the early modern period [50]. However, their visual apparatuses, while por-
traying similar topics, do not entirely overlap. This dataset contains a total of 2213 visual
elements—across 74 editions—divided into the same classes as S-VED.

SynDoc dataset is a synthetic document dataset introduced in [8] to tackle the lack of
large-scale annotated historical document datasets. SynDoc contains a total of 10,000 page
images generated from a randomized page generation engine that created a large number
of page backgrounds and filled them with a combination of text, images, drawings, and
glyphs from multiple sources. The result is a dataset that contains a large number of images
that mimic the layout and content of a wide range of historical documents.

The four historical datasets (Mandragore, RASM2019, illuHisDoc, and Pseudo
Proclus) combine a wide range of page layouts from printed and handwritten sources
across a long period of time. They also contain a very diverse repertoire of visual
elements, ranging from simple hand drawings to complex illuminated visual elements
as well as historical photographs from the 19th century. As a consequence, evaluating
our generalization ability on the four historical datasets gives us a good measure of
the performance of our model. In contrast, since SynDoc is a synthetic dataset, we
refrain from using it to test our model, as it does not represent true historical documents.
Instead, we utilize this dataset to train a YOLO model (YOLOSynDoc) with the objective
of investigating whether relying on a synthetic dataset is more beneficial than on S-VED,
especially when the test set is an out-of-historical-domain corpus. To achieve this, we test
YOLOS−VED, YOLOS−VEDX , and YOLOSynDoc on the real historical datasets discussed
above, and report their results in Table 4. Additionally, we investigate whether the
creation of a hybrid dataset generated by merging elements from diverse real historical
and synthetic material would result in training a model with better generalization
abilities, paving the way for the creation of a large, open source, historical image dataset
and image detection benchmark. With this in mind, we iteratively train different models



J. Imaging 2022, 8, 285 12 of 18

on a combination of four out of the five datasets above, and test it on the unseen dataset,
reporting the results in Table 5.

Table 4. Performance of YOLOv5 trained on S-VED, S-VEDextended, and SynDoc respectively with
respect to the different historical document datasets (* marks results where recognized Initials
are ignored).

Model Architecture Trained on Tested on AP (1280 × 1280) AP (640 × 640)

YOLOv5 S-VED S-VEDextended 0.962 0.974
illuHisDoc 0.543 0.761

RASM 0.474 0.762
mandragore 0.228/0.617 * 0.312/0.509 *

Pseudo Proclus 0.975 0.979

YOLOv5 S-VEDextended S-VEDextended 0.983 0.986
illuHisDoc 0.693 0.793

RASM 0.725 0.849
Mandragore 0.304/0.704 * 0.416/0.726 *

Pseudo Proclus 0.985 0.988

YOLOv5 SynDoc S-VEDextended 0.787 0.807
illuHisDoc 0.826 0.762

RASM 0.714 0.714
Mandragore 0.349 0.405

Pseudo Proclus 0.905 0.788

Table 5. Cross validation results, where the YOLOv5 model was trained on all five data sets except
the respective test set. A resolution of 640 × 640 was used for all data sets.

Trained on Tested on AP

S-VED, SynDoc, mandragore, RASM, Ps.Proclus illuHisDoc 0.864
S-VED, SynDoc, illuHisDoc, mandragore, Ps.Proclus RASM 0.961

S-VED, SynDoc, illuHisDoc, RASM, Ps.Proclus mandragore 0.77
S-VED, SynDoc, illuHisDoc, RASM, mandragore Pseudo Proclus 0.965

SynDoc, illuHisDoc, RASM, mandragore, Ps.Proclus S-VED 0.948

5.2. Dataset Evaluation

As can be seen from Table 4, training YOLO on the S-VEDextended dataset yields better
results than on SynDoc across the majority of the tested historical datasets in high resolution
(1280 × 1280). The only exception appears to be the illuHisDoc dataset, which is the only
dataset that encompasses a very large temporal period, including some photographs and
modern images that are completely absent from S-VEDextended. This in general indicates
that the S-VEDextended dataset is more representative of manuscript and early printing
visual elements than SynDoc, while the latter might be a better fit for someone looking
to exploring a dataset with a very large temporal frame. On the other hand, the results
obtained with YOLOS−VED show high AP scores for both S-VED training sets and Pseudo
Proclus datasets in high definition, but fail to produce acceptable results in other historical
datasets, underperforming YOLOSynDoc by almost 0.2 and 0.3 for both RASM and illuHis-
Doc respectively. This is clearly a result of the lower number of datapoints in the S-VED
compared to both S-VEDextended and SynDoc. The situation is generally better when dealing
with lower resolution images, where YOLOS−VED shows comparable or better results than
YOLOSynDoc, and only trails the latter by 0.09 in the case of Mandragore, a test dataset
which appears to always return low AP scores.

The reason for this perpetually low AP score on Mandragore does not appear to be the
high amount of False Positives, but rather the high amount of False Negatives stemming
from the fact that decorated Initials, similar to the ones usually annotated in both S-VED
(as a separate class) and in SynDoc (along with all other visual elements), are not annotated
in the Mangradore ground truth data. The result of this inconsistency is that both models
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are accurately recognizing these decorated Initials as visual elements, but such detections
are considered to be False Positives instead of True Positives. Using YOLOS−VED and
YOLOS−VEDX , which are able to recognize Initials as a separate class, we calculate the AP
value while ignoring these Initials, thus avoiding their detection and their effect on the
general AP score. By doing this, the AP value increased by values ranging between 0.2 and
0.4 across models and input resolutions, reaching scores comparable to those from other
datasets (reported with * in Table 4). The same could not be done with the YOLOSynDoc
since no specific Initials class exists.

Overall both YOLOS−VEDX and YOLOSynDoc appear to generalize well to other his-
torical datasets, with the former maintaining an edge over the latter, especially in the case
of lower quality input. Additionally, the generalization ability of YOLOS−VED to other
historical datasets appears to be amplified for lower resolution inputs. This generalization,
in all cases, comes with a notable drop in AP score. To avoid this, we create multiple hybrid
datasets from the combination of the real and synthetic datasets discussed in Section 5.1.
These hybrid datasets are built by creating a single, comprehensive class of visual elements,
since many datasets do not differentiate between the visual element classes as is the case
with the S-VED. At each iteration, we train a model on a hybrid dataset composed of a
maximum 1000 datapoints—a number chosen to create a diverse hybrid dataset by merging
relatively small historical image datasets—from all but one of the datasets mentioned above,
and test the performance of that model on the remaining dataset. The results of the various
models trained on the different combinations of training sets are reported in Table 5, which
shows an expected improvement of the AP scores in the majority of cases, indicative of
better generalization abilities. The noticeable increase in generalization when trained with
multiple real historical datasets serves to emphasize the need for the creation of larger,
cross-historical-domain datasets.

6. CorDeep: A Web-Service for Detecting Visual Elements in Early Modern
Printed Books

Having demonstrated that, in the case of the S-VED, as well as numerous other datasets,
YOLO performs better than the current state-of-the-art approaches (see Section 5.2) and driven
by our belief in the necessity to generate datasets by extracting and studying visual elements
in historical corpora [12,14,51], we provide a public web-service whose sole objective is
to extract visual elements from historical corpora (https://cordeep.mpiwg-berlin.mpg.de/,
accessed on 2 October 2022) without storing any user data. This web-service is built with
the Flask framework and is running on a server of the Gesellschaft für wissenschaftliche
Datenverarbeitung mbH Göttingen (GWDG). We rely on the YOLOS−VEDX model due to its
high AP score on the one hand and its ability to classify the detections into four semantically
meaningful classes on the other (see Section 3). With this web-service we hope to bridge
the gap between the computer scientist and the historian, allowing the latter, without any
experience in machine learning, to extract visual elements from large historical corpora
with ease.

Interacting with the web-service is fairly simple and consists mainly of providing a
historical document through the standard data upload page. This can be of any format,
ranging from a simple PDF, raster images (all common file formats accepted), IIIF manifest
JSON files, or by providing a URL to a IIIF manifest JSON file. Once uploaded, the image
data is processed on the server by our illustration-extraction model and its output is
visualized in the application’s integrated viewer (see Figure 6). This output information
can be retrieved in the form of image material or bounding box and label information in
a CSV file. While this is a work in progress, historians can expect results along the line
of those reported in Section 5.2, showcasing the abilities of YOLOS−VEDX to extract and
classify visual elements in a wide range of historical documents.

https://cordeep.mpiwg-berlin.mpg.de/
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Figure 6. Screenshot of the web application CorDeep depicting the visualization of detected material
by the application.

7. S-VED Limitations

While the results of the models presented in both Sections 4 and 5 are promising,
looking at the erroneously classified pages reveals some of the cases that not only remain
beyond the reach of our best model, but also force us to discuss what exactly a visual
element is. In the S-VED, the focus is solely on printed visual elements; i.e., images,
diagrams, initials that were intentionally printed using a woodblock during the book’s
production. However, as is clearly visible from Figure 7 (left), the readers of many of these
books decided to add their own visual elements, either jotting down their version of a
visual element to better explain the accompanying text or adding decorative elements to
the margins. While these hand-drawn elements are an interesting research topic on their
own, they are not considered to be part of the S-VED. Based on this, some of these hand-
drawn images are naturally not detected by our model, but some are and are consequently
considered False Positives.

Another issue that we were forced to address during both the labelling and evaluation
of our dataset is related to the definition of a visual element. Can we consider a group of
small elements, in close proximity to one another and representing a similar topic, as a
single visual element, or should we label each of these small elements as individual visual
elements? The importance of this question lies in the fact that our labelling technique
naturally affects the desired model prediction output. In order to find a historically valid
solution, we opted to divide such groups into smaller visual elements when it was possible
to identify that they were printed using different woodblocks. These woodblocks were
generally expensive and often re-used by different printers over a long period of time [52],
which would mean not only that our labelling logic in this case is historically grounded,
but that once correctly labelled, the same group of images are likely to repeat in other
Sphaera editions in the same form. Despite this labelling methodology, errors persist where
multiple small visual elements are grouped together by CorDeep rather than classified as
single visual elements as desired (see Figure 7 (right)).



J. Imaging 2022, 8, 285 15 of 18

Figure 7. Different types of errors arising from our S-VED annotation strategy. (Left) False Posi-
tive Content Illustration detection of hand-drawn images in the margins (Procli de Sphaera Liber I.,
1561, Basel, München, Bayerische Staatsbibliothek https://hdl.handle.net/21.11103/sphaera.101551,
accessed on 2 October 2022. urn:nbn:de:bvb:12-bsb10170643-6); (Right) Detection of multiple im-
ages as a single visual elements in red, the desired outcome for multiple visual elements in green
(Michael Psellus de arithmetica, musica, geometria, 1557, Paris, München, Bayerische Staatsbibliothek
https://hdl.handle.net/21.11103/sphaera.101497, accessed on 2 October 2022. urn:nbn:de:bvb:12-
bsb10205218-2).

The data itself, in this case S-VED, clearly dictates what the model detects. Since the
CorDeep model is trained on S-VEDextended, the CorDeep visual element detector usually
results in effective detections in corpora of similar nature to the Sphaera Corpus. However,
as shown in Section 5.2, the models possess relatively good generalization abilities, and can
extract elements from out-of-domain corpora with high AP.

8. Conclusions

This paper presents two important contributions to traditional and computational
historians alike. The first is the S-VED, which adds a relatively large, multi-class, histori-
cal visual-element-oriented dataset to the current repertoire of open access datasets and
opens the door towards a fine-grained distant reading of large corpora through their visual
elements. The second is CorDeep, our open access web-service that allows any historian,
without any prior machine learning knowledge, to seamlessly extract visual elements from
entire corpora at the click of a button. The accessibility of this web-service, along with its
historically oriented model, allow historians to investigate the content of large historical
corpora by extracting their visual elements in distinct classes; a task that would otherwise
require countless hours. The fact that the field of Digital Humanities is developing at
lightning speed only emphasizes the importance of the above contributions and highlights
the need to better disseminate historical datasets, as well as to provide easy-to-use compu-
tational models for general use [53]. These contributions are envisioned to be the first of

https://hdl.handle.net/21.11103/sphaera.101551
https://hdl.handle.net/21.11103/sphaera.101497
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many, while the next steps will focus on adding new classes to CorDeep, allowing historians
to detect not only visual elements, but also for instance numerical tables. In addition, larger
versions of the S-VED are expected to be published once copyright conflicts are resolved,
adding more visual elements to an already sizeable open access dataset.
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