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Abstract 

Automating dynamic fine root data collection in the field is a longstanding challenge with multiple applications for co-
interpretation and synthesis for ecosystem understanding. High frequency root data are only achievable with paired 
automated sampling and processing. However, automatic minirhizotron (root camera) instruments are still rare and 
data are often not collected in natural soils or analysed at high temporal resolution. Instruments must also be af-
fordable for replication and robust under variable natural conditions. Here, we show a system built with off-the-shelf 
parts which samples at sub-daily resolution. We paired this with a neural network to analyse all images collected. 
We performed two mesocosm studies and two field trials alongside ancillary data collection (soil CO2 efflux, temper-
ature, and moisture content, and ‘PhenoCam’-derived above-ground dynamics). We produce robust and replicated 
daily time series of root dynamics under all conditions. Temporal root changes were a stronger driver than absolute 
biomass on soil CO2 efflux in the mesocosm. Proximal sensed above-ground dynamics and below-ground dynamics 
from minirhizotron data were not synchronized. Root properties extracted were sensitive to soil moisture and occa-
sionally to time of day (potentially relating to soil moisture). This may only affect high frequency imagery and should 
be considered in interpreting such data.

Keywords:   Digital repeat photography, minirhizotron, neural network, root dynamics, root length density, root phenology, root–
shoot synchrony, root surface area.

Introduction

Plant phenology (seasonal patterns of recurrent events such as 
leaf growth and senescence) drives interannual variability of the 
terrestrial carbon (C) sink (Raupach et al., 2011). It responds 
to environmental conditions such as climate and weather 

(Richardson et al., 2013), can differ above and below ground 
(Adair et al., 2019), and is partially determined by life history 
(Steinaker et al., 2010). While overall growth is also driven by 
whole-plant resource budgets, root and shoot phenology are 
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not always linked (Abramoff and Finzi, 2015). Above- and 
below-ground environments differ (e.g. Blume-Werry et al., 
2017) and plants temporally partition resource uptake and de-
mand, resource assignment, and activity of individual organs 
(Herrmann et al., 2016), which may cause this desynchrony.

Tools to remotely monitor ecosystem dynamics above 
ground are well developed, for instance ‘PhenoCams’ (Luo 
et al., 2018; Richardson et al., 2018) or satellite-derived vege-
tation indexes (Wu et al., 2017). However, using above-ground 
measurements to proxy for below-ground activity is an unre-
liable assumption (Kutschera, 1960; Abramoff and Finzi, 2015; 
Ma et al., 2021). Root phenology measurements are needed 
in natural field contexts, and high frequency datasets are rare 
(Radville et al., 2016). This is because of the demanding, de-
structive, non-repeatable nature of traditional sampling. Data 
scarcity contributes to basic simulation of root dynamics by 
models, often relying on poorly calibrated root:shoot ratios, 
simple environmental triggers, or optimality concepts (De 
Kauwe et al., 2014; Walker et al., 2015). These are hard to vali-
date because high frequency datasets do not exist at field sites 
providing other data (e.g. C fluxes) for model fitting.

Roots are also crucial for C cycling because alongside 
microbes, they control decomposition, and are the main C 
source to soil organic matter (Dijkstra et al., 2021). Thus, mis-
representation of root dynamics affects prediction of ecosystem 
capacity to sequester carbon. Unfortunately, mesocosm experi-
ments are prone to artefacts which disproportionately affect 
roots (Poorter et al., 2012) so the benefits of field experiments 
(Schindler, 1998) are particularly large for the below-ground 
parts. In natural field conditions, repeatable root observa-
tions are made with minirhizotrons (buried observatories and 
camera systems). Many other advances in root phenotyping 
(e.g. Nagel et al., 2012; Le Marié et al., 2014; Liu et al., 2021) 
are only currently possible in more controlled conditions. 
While there are constraints and biases to minirhizotron usage, 
they allow non-destructive, repeatable sampling, unlike other 
methods with other advantages (Maeght et al., 2013; Freschet 
et al., 2021). Minirhizotron automation has been possible for 
15 years (Allen et al., 2007) but still often uses infrequent im-
aging and manual-driven analysis (e.g. Defrenne et al., 2021). 
Robotic minirhizotrons for monitoring below-ground phe-
nology of roots could offer many opportunities, but have 
barely advanced beyond pioneering experiments using these 
systems (Vargas and Allen, 2008; Iversen et al., 2011; Allen and 
Kitajima, 2013, 2014).

Automated observations introduce a bottleneck: processing 
high frequency imagery to calculate proxies of visually iden-
tifiable root properties. A manual approach will inevitably not 
annotate images as fast as collection. Recently, convolutional 
neural networks (CNNs) show promising results to identify 
roots in a variety of settings (Rahmanzadeh and Shojaedini, 
2016; Vincent et al., 2017; Huo and Cheng, 2019; Alonso-
Crespo et al., 2022; Bauer et al., 2022). In particular, field soil 
minirhizotron imagery has been analysed several times (Wang 

et al., 2019; Gillert et al., 2021; Han et al., 2021; Bauer et al., 
2022; Peters et al., 2022, Preprint; Smith et al., 2022), but trans-
ferability between sites and out of agricultural soils is difficult 
to assess without widespread adoption in new settings. These 
have also never been applied to high frequency studies where 
variability between images (e.g. soil moisture and soil animals) 
may cause instability in the time series data produced.

We built a robotic minirhizotron system (henceforth, RMR) 
with a per instrument parts budget of €2000, allowing replica-
tion. We paired this with an established CNN method (Root-
painter, Smith et al., 2022) previously used in low sampling 
frequency studies or soil cores (Han et al., 2021; Alonso-Crespo 
et al., 2022). We processed segmented images via scripts to ex-
tract basic root properties (root length density and root surface 
area from segmentation) at high time resolution.

Besides the image acquisition itself, there are several chal-
lenges to reliable and useful long-term field operation. We split 
these into four objectives which we considered essential to 
demonstrate the RMR method. These were as follows: (O1) 
the RMR method can generate architectural traits reliably 
validated against state-of-the-art computer-assisted manual 
methods; (O2) the time series generated are consistent be-
tween replicated RMRs; (O3) RMRs plus autonomous seg-
mentation and trait extraction produce good quality and stable 
time series for long periods (under the constraints of this study, 
several months) in a variety of sometimes adverse field condi-
tions which could otherwise be avoided in manual campaigns 
(e.g. condensation); and (O4) given the potential imperfection 
in the first three objectives, these time series are interpret-
able in relation to system functioning. In this case, we tested if 
root and leaf development were synchronized through paired 
above-ground proximal remote sensing, and how well root de-
velopment could predict soil CO2 evolution compared with 
other commonly measured properties (above-ground green-
ness, soil temperature, and soil moisture).

It is also important to show method robustness across dif-
ferent study systems. In this study, we performed four sepa-
rate trial experiments of the RMR method. Two of these were 
in a mesocosm and two were in field conditions. Each trial 
experiment tested different combinations of the objectives as 
summarized in Table 1, and had minor modifications to the 
instrument design, which are further detailed in the Materials 
and methods.

The mesocosm experiments were: (E1) using a single 
RMR in a greenhouse paired with proximal remote-sensed 
above-ground dynamics and soil CO2 fluxes (O1 and O4), 
and (E2) eight replicated RMRs in a greenhouse paired with 
proximal remote-sensed above-ground dynamics only (O1, 
O2, and O4).

The field experiments were: (E3) for 4 months in the au-
tumn in a Mediterranean tree–grass ecosystem paired with 
‘Phenocam’ greenness (O1, O3, and O4), and (E4) for 2 
months in winter/spring in a temperate grassland (O1 and O3). 
Field experiments encountered heterogenous soil appearances,  
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condensation, soil animals, root litter, and other disturbances 
potentially affecting instrument operation, human annotation, 
and consistency of CNN segmentation across a high frequency 
time series. Hence we expected a worse validation (O1) for 
these experiments. Both of these were also replicated but at a 
lower scale than E2 (O2).

Materials and methods

Minirhizotron system design
We based our minirhizotron instrument (RMR, Fig. 1) on a movable 
camera design able to travel in two axes (along a minirhizotron tube, 
and rotationally around a minirhizotron tube) by using both a rotational 

motor and a linear actuator (a rotational motor converted into linear 
motion). All components of the system were purchased unmodified, 
with the exception of a customized fish-eye lens to allow the camera 
to focus at ~3 cm within the observatory and the linear actuator, which 
was built to our dimensions. The RMR uses an (internal) 10/9.6 (ex-
ternal/internal)×100 cm observatory. This is comparable with the only 
other automatic minirhizotron systems used in published experiments 
(Iversen et al., 2011; Svane et al., 2019). It takes ~40  min to sample 
112 separate images covering the entire tube. Timing of cycles is set 
by a timer switch and the instrument completes one sampling cycle 
whenever it is powered on. Robotics are controlled by a Lattepanda 
development board computer with an integrated Arduino-based co-
processor (ATmega32u4, LattePanda, Shanghai, China) which allowed 
us to control the robotic components with Arduino and the image cap-
ture by shell scripts simulating manual operation of the Graphical User 
Interface (GUI)-based camera software. The light source is provided 

Table 1.  Summary of experimental trails presented in this study

Experiment Description Revisions O1: val-
idation 

O2: replication 
consistency 

n Duration 
(months) 

O3: field 
operation 

O4: co-inter-
pretation 

E1 Proof of concept 
(greenhouse)

Camera: IDS 
1005XS-C mains 
power

✓ n/a 1 3 n/a ✓

E2 Cross-instrument 
consistency  
(greenhouse)

Camera: DFK AFU050-
L34 mains power

✓ ✓ 8 2 n/a ✓

E3 Field trial  
(Extremadura, Spain)

Camera: DFK AFU050-
L34 solar power

✓ Partial 3a 4 Partial ✓

E4 Field trial (Thuringia, 
Germany)

Camera: DFK AFU050-
L34 solar power

✓ Partial 2 2 ✓ n/a

We had four objectives: O1, consistency against manual methods; O2, consistency of interpreted data between replicated instruments; O3, operation in real-world 
field conditions; and O4, co-interpretation potential with other data. ✓ indicates full addressing of objectives. Otherwise partial addressing of O2 through lower 
replication and O3 via iterative design improvements is indicated. Also shown are instrument revisions, number of viable instruments (n) and duration, of the trial

a In E3, we ran eight instruments in the field, but had problems with long-term timekeeping due to low temperatures which limited this number to three 
concurrent instruments with good data. This issue was subsequently fixed for E4 but the instruments were split between two sites (second site not 
shown) to limit vulnerability to travel disruption.

Fig. 1.  Conceptual diagram of the RMR. The full system (A) moves a camera chassis (B: camera side/C: reverse side) longitudinally and rotationally to 
image soil in close contact with the tube. The camera chassis is designed to minimize reflectance by mounting the light source on the opposite side of 
the shield, away from the focal area. In this figure, the light shield and screws are shown in false colours. In the finished instrument, they are matt black to 
reduce reflectance.
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by a ring of LEDs which were angled away from the image subject to 
reduce reflectance and only switched on during image capture. The in-
strument framework was made of black plastic, and all exposed screw 
heads were painted black for the same purpose. Cable management was 
achieved by affixing cables to a rigid band only able to bend in the lat-
eral direction. A power supply converter from 12 V to 5 V was used for 
the PC, camera, and LED ring lights. One sampling cycle required ~10 
Wh of power.

RMRs operate at any angle; we ran the RMR horizontally in the 
greenhouse (E1 and E2) or at an angle in the field (E3 and E4). We tested 
the RMR across a range of temperatures from –20 °C to ~35 °C (see 
details later). Images (25 μm pixel−1, ~1000 dpi, 6.5 × 4.9 cm in our final 
system) are captured with a small overlap in .jpg format. These were saved 
onto removeable 128 GB SD cards; in order to obtain the images, the SD 
cards were swapped with blank alternatives when the instruments were 
not powered. A log file was amended at the end of each imaging cycle 
which could be checked much faster than individual images and easily 
accessed over WiFi. A single image was <1 Mb, therefore the RMR could 
sample ~1100 cycles without the SD card being changed.

Over the course of the four experiments, we made some minor modi-
fications to the RMR design as we discovered ways to ensure long-term 
reliability. In brief, these were: using the best camera possible to ensure 
good quality images—the most basic step of minirhizotron imaging—in 
our off-the-shelf design we were limited to a USB-2 connection due 
to a smaller/more flexible cable than the USB-3 standard. Our optimal 
camera in E1 (IDS 1005XS-C, IDS imaging Development Systems, 
Obersulm Germany) was out of stock until a new model in the line by 
E4, so we used our second choice in E2 and E3. In E4, we further added 
a magnetic rotational sensor to allow a more reliable return to ‘reset’ po-
sition between cycles and limit rare but critical mechanical failure, and 
a GPS clock to prevent a drift in the internal BIOS clock which we 
noticed occurred unpredictably at low temperatures. This problem ren-
dered images uninterpretable in time series context. Although this modi-
fication was successful in E4 we further tested this robustness in a –20 °C 
cold room. These latter modifications were not known to be necessary 
in early instrument design but were critical for long-term, reliable field 
operation (O3). Further information about the design can be found in 
Supplementary Protocol S1, and a summary of the hardware and duration 
differences between experiments in Table 1.

Greenhouse experiments
We designed two greenhouse experiments: (E1) with one RMR 
(128 880 individual images) and (E2) with eight RMRs (216 000 indi-
vidual images). In E1 we sampled every 2 h and had additional ancillary 
instruments; in E2 we sampled every 6 h without paired ancillary instru-
ments. Each mesocosm [140 cm (L)×40 cm (W)×30 cm (H)] was filled 
with soil sieved to 0.5 cm (roots and stones removed), harvested from 
Meusebach, Germany. Soil C:N was 18:2. We did not measure soil density 
(our soil was highly artificial) but did not expect this to differ between 
mesocosms in E2, set up at the same time. Soil covered the upmost sur-
face of the RMR by 2 cm, so the field of view (FOV) spanned 2 cm to 
12 cm below the soil surface.

Each RMR observatory was located in a mesocosm unit, extending 
internally 90 cm from one end. As here the RMR was horizontal, the 
first ~10 cm of the length, usually partially above ground, was not sam-
pled. Aside from the camera, which we changed because of a supply issue 
(resulting in worse image quality in E2), and minor modifications for 
cable management, the RMR design was the same. In E1 we used a ‘fresh’ 
observatory installed factory clean, but in E2 we re-used an experimental 
set-up for manual measurements which we cleaned before starting. Thus, 
this latter experiment potentially had artefacts on the tube surface, which 
we discuss later. Both experiments were run in the greenhouse of the 
Max Planck Institute for Biogeochemistry, Jena, Germany.

In both E1 and E2, a three species seed mix (80/15/5% by mass Antho-
xanthum odoratum, Plantago lanceolata, and Medicago scutellata) was scattered 
evenly over the soil surface, kept moist to germinate. Additionally, in both 
E1 and E2, water was provided at irregular intervals (3–10 d) and varying 
volumes (between 2 litres and 6 litres per mesocosm), evenly over the 
mesocosm surface via a watering can with a distributor nozzle to mimic 
field rain events. Partway through each experiment, we then withheld 
water to move the system towards a state of drought-induced root se-
nescence. This senescence period was longer in E2 (1 month) than in E1 
(2 weeks).

All mesocosm units in both greenhouse experiments were included in 
the FOV of a standard ‘PhenoCam’ set up (Sonnentag et al., 2012; Rich-
ardson et al., 2018), modified for indoor use via a fish-eye lens. The camera 
settings were defined from the ‘PhenoCam’ protocol (Richardson et al., 
2018). Images were collected between 12.00 h and 13.00 h local time. 
We defined a single region of interest (ROI) for each entire mesocosm 
unit, parallel to the long axis of the minirhizotron. Data were processed 
as in field-scale studies (e.g. Luo et al., 2018, 2020). During this time, 
artificial lights were switched off and watering never took place during 
this hour. FOVs during each experiment were stable and images were 
available from the entire period. From the images, we obtained the daily 
green chromatic coordinate (GCC), the ratio between digital numbers in 
the green channel and the sum of the digital numbers in red, green, and 
blue (RGB) channels, commonly used to represent canopy greenness in 
field studies. GCC has been found to outperform the normalized differ-
ence vegetation index (NDVI) in forests when assessing vegetation cover 
and condition and supressing scene illumination variation (Nijland et al., 
2014). Using greenness indexes assumes that healthy vegetation is greener 
than less healthy vegetation.

We also installed soil moisture and soil temperature probes [a combi-
nation of EC-5 soil moisture probes (Li-COR Biosciences, Lincoln, NE, 
USA) and ML-3 soil temperature probes (Decagon Instruments, USA)], 
and measured root biomass through six 4.5 cm×13 cm ingrowth cores in 
each mesocosm installed at initiation. These were evenly spaced, at 5 cm 
from the wall of the unit and an equal distance from the central minirhi-
zotron tube. These were retrieved and root biomass measured by sieving 
the soil to 2 mm and weighing the washed and dried (60 °C, 3 d) roots. 
In E1, we sampled six unreplicated time points (to minimize disturbance 
and because of the limited area of soil not occupied by the minirhizo-
tron or the gas exchange measurement), plus the start (no roots). In E2 
we sampled the start (no roots), three unreplicated time points, and then 
one time point at the end of the experiment with three replicates per 
mesocosm.

Finally, in E1, we measured system gas exchange using a Li-8100A In-
frared Gas Analyzer (IRGA), a Li-8100-104 opaque long-term chamber 
(Li-COR Biosciences) every half-hour. We let vegetation grow within 
the chambers. CO2 concentrations were converted to fluxes using the 
R package RespChamberProc; in general, the fit of all observations was 
very good (>99% with an R2 of 0.99). Occasional, unplanned periods 
of power disruption in both experiments prevented data collection and 
image capture but did not affect the subsequent minirhizotron images.

Field trials
The third (E3, 68 432 images, 203 cycles per instrument) and fourth 
(E4, 53 760 images, 240 cycles per instrument) trials were in two dif-
ferent field settings. E3 was at Majadas de Tiétar (Spain), a Mediter-
ranean wood–pasture (El-Madany et al., 2018; Nair et al., 2019). We 
deployed eight RMRs as in E2 powered by per-instrument solar pan-
els coupled with an external 12 V battery and charge controller. We 
sampled twice daily from October 2019 until January 2020 (~22 800 
images per instrument). Majadas de Tiétar is a Mediterranean ecosystem 
where the growing season lasts from autumn until late spring, but much 
undecomposed root litter remains after dry summer (Nair et al., 2019). 

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/74/3/769/6770100 by M

PI C
hem

ical Ecology user on 07 February 2023

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erac427#supplementary-data


Automated root dynamics transferrable between field settings   |  773

The soil is an Abruptic Luvisol with a sandy upper layer and a thick 
clay layer starting at 20–40 cm. In E3, we encountered an unpredictable 
issue with the BIOS clock when night temperatures fell below 0 °C, 
affecting accurate timekeeping (and hence reference time for images 
collected) at all subsequent sampling points. Therefore, we show sum-
mary data from two instruments where timekeeping was not disrupted 
across all 4 months and a third composite instrument made from two 
instruments with partial time series (i.e. only ‘true’ time-referenced data 
used, with three instruments over 80% of the time series, gapfilled via 
linear interpolation for periods missing data). We also use a unified me-
teorological dataset for a large-scale ecosystem experiment (‘MANIP’) 
at the site. Air temperature was the mean of three measurements made 
at 2 m height at three eddy covariance towers located within ~950 m 
of each other. Precipitation was likewise the mean of precipitation re-
corded at each tower. GCC used in this experiment was the mean of 
‘pasture’ GCC captured from a ‘PhenoCam’ digital camera used for site 
comparison between the three towers (Luo et al., 2020) with a 3 d av-
erage taken for a daily value.

E4 was conducted in plots of the Jena biodiversity Experiment 
(Roscher et al., 2004; Weisser et al., 2017) in Jena, Germany from 1 Feb-
ruary to 4 April 2022 where mean air temperature was 4.5 °C and min-
imum temperature was –7.5 °C. Here two instruments ran from mains 
power sampling four times daily. A single meteorological station was 
located in the centre of the experiment site. Air temperature was meas-
ured at 2 m and rainfall from a single precipitation gauge. This site is a 
loamy Eutric Fluvisol in the floodplain of the river Saale.

In E3 and E4, observatories were installed at 40°, E3 in May 2015 and 
E4 in August 2020. In this manuscript we show root properties averaged 
over the whole observatory depth, which in both E3 and E4 reached 
45 cm underground. A summary of objectives and hardware differences 
between E1 to E4 is given in Table 1.

Processing minirhizotron imagery for root trait time series
Images collected from all four experiments were very different and con-
tained different artefacts (Fig. 2). However, we processed all images in the 
same way, over four steps. These were: (1) segmentation of the images into 
binary maps using a trained CNN; (2) processing of the binary images 
to extract root properties; and (3) validation of these properties against 
manual annotation (to fulfil O1). Once we were confident in the valida-
tion, we (4) applied quality control checks, gapfilled and aggregated the 
resulting data to produce time series which could be compared with each 
other across instruments (O2), and interpreted over long periods (O3) 
and with other data (O4). This overall process is summarized in Fig. 3.

In Step 1, we trained a CNN with a GUI, allowing corrective anno-
tation (Rootpainter, Smith et al., 2022). For this study, we hosted our 
own remote server, using local computer cluster GPU cores. We used a 
random model trained from scratch in each experiment. We aimed for 
separation of RMR image pixels into two classes—roots and soil—anno-
tating the totality of each root. Living and dead roots were separated 
based on connectiveness, colour, and expert user opinion. We paid at-
tention to closely growing roots but allowed their annotations to touch 
when there was no clear separation in the image. We started without 
any pre-annotated images, training on 308 (E1), 300 (E2), 400 (E3), or 
350 (E4) complete 2292 × 1944 random images. This had the benefit 
of allowing the annotator to see the context of the whole image al-
though there are advantages in loading time and training time to work on 
subimages, as recommended in the original publication. In all cases, we 
had stopped training when we (qualitatively) assessed that the segmen-
tation was not improving, the model had undergone 60 epochs training 
without improving fit, and the corrective annotation had processed at 
least 300 images. Training data are a major issue for automatic minirhi-
zotron studies which have only short intervals between images but may 
have sudden changes (e.g. changes in soil colour following rain). Random 

Fig. 2.  Example of three random images (A–C) from each of our experiments. Each image is originally 2292 × 1944 pixels. The soil appearance and 
image quality were very different between experiments due to a combination of different image sensors and different image subjects. Notable examples 
of segmentation challenges are scratches and tube surface artefacts (E1B and E2B), litter and remains of dead roots (E3), and condensation and soil 
animals (E4C).
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annotation is unlikely to capture these events, and targeting these times 
introduces bias. Because of the camera change (Table 1), and potentially 
because of the legacy of previous roots around the observatory, images in 
E2 and E3 were also challenging to both human annotations and CNN 
segmentation due to low contrast, poor focus, and faint marks on the tube 
surface. E3 also had high litter content, leading to ambiguity between 
roots and litter, and rapid soil appearance changes as the ecosystem was 
released from summer drought. Thus, high throughput of training data via 
corrective annotation/active learning strategies (e.g. Beluch et al., 2018; 
Budd et al., 2021; Ren et al., 2021) offers a major advantage in such un-
predictable tasks.

In Step 2, we processed the segmented dataset to produce basic root 
traits through scripts in Python 3. In this analysis we extracted root length 
and segmented root surface area (sRSA), which we defined as the total area 
of roots in the segmented image. To do this, we first applied a filter on the 
segmentation with a total area of <0.5 mm2, which we treated as noise. 
Because our minirhizotron images contain partial aspects of more than 
one plant’s root system, root network area was the total area remaining 
and was not necessarily connected. This is equivalent to ‘Network Area’ 
in the modern Rhizovision Explorer software tool (Seethepalli et al., 
2021); that is, the total pixels in the segmented area but without the net-
work connectivity from a single root system. We divided this by the area 
of the image for a value as a percentage. We skeletonized the root area of 
all segmented images to one pixel wide, and calculated the total length by 
summing the number of pixels in the skeleton. We further converted root 
length into root length density (RLD) by dividing the total root length 
by the total area of the image as we were only observing those portions 
of root which encountered the observatory and not whole roots. RLD is 
a common property in analyses relating to soil exploration and resource 
uptake from fine roots (Freschet et al., 2021), while sRSA incorporates 
variation in diameter and can be assumed to correlate more closely to 
observable biomass if density is stable. For RLD, we did not adjust for di-
agonal connections or prune branches of the skeleton, but otherwise this 
is similar to the simplest level of analysis using Rhizovision Explorer. This 
software can be directly paired to the Rootpainter CNN and has been 
successfully used to process imagery from agricultural soils with similar 
accuracy to manual annotation (Bauer et al., 2022), and can potentially 
extract many more features of interest. However, our datasets in natural 
ecosystems were challenging to both the CNN segmentation and for the 
human operator to choose appropriate settings for the software over tens 
of thousands of images. We also faced a software constraint from the huge 
number of segmented images we had to process in one go, restricting the 
use of GUI-based software. Hence, we used a simpler programmatic op-
tion to generate our time series where we had the advantage of frequent 
resampling to make up for individual inaccuracy.

In Step 3, we use 378/170/140/90 random manually annotated images 
in E1/E2/E3/E4 as validation data. Images were annotated by multiple 
users (E1, E2, and E3) or the lead author (E4) with anonymous file names 
in GIMP software (https://www.gimp.org/). In E1 and E2, we tried to 
produce high quality annotation with up to an hour of annotation time 
per image. For E3 and E4 these were just a ‘fast-pass’ annotation (max-
imum 10 min annotation time per image, often less) deemed suitable for 
high-throughput time series where a wide range of soil and root condi-
tions were encountered, and covering these was as important as strict 
pixel-level annotation in a limited number of training images. We com-
pared at image level; that is, we did not assess the fit of individual pixels. 
By working at the image level, we discarded the advantage the minirhi-
zotrons have in tracking individual roots, because we were interested in 
the main patterns relatable to phenology rather than pixel-wise accuracy 
on the tiny fraction of the overall dataset where it would be feasible to 
produce extremely detailed validation data. We were also using GCC, a 
coarse image-level index for above-ground time series anyway, and it 
was easier to produce a validation set without needing full or connective 
annotation of individual roots or complete accuracy in root diameters.

To process these validation images, we used Rhizovision Explorer 
(Seethepalli et al., 2021), a state-of-the-art root imagery tool. We pro-
cessed the manual pixel maps to extract sRSA and RLD without relying 
on the segmentation or our post-processing scripts for RLD. Thus our 
validation of the RLD step is the most conservative option, and dif-
ferences could have arisen either from the trained CNN segmentation 
mismatch with manual annotation or from the skeletonization mismatch 
with the software routine. In the analyses which followed, we used RLD 
for time series whenever possible as this ignored potential inconsisten-
cies in root diameter which would disproportionately affect volume (i.e. 
sRSA). This could have affected both segmentation and manual mark-up, 
and been artefactual or real. In the comparison of C efflux in E1 and for 
growth rates in E1 and E2 we used sRSA. We made this latter choice be-
cause sRSA is closer to C pools in biomass than RLD despite potential 
diameter uncertainty. Statistical comparisons between the validation and 
CNN-segmented data are described in ‘Statistical analyses’ below. In the 
event of poor validation, we returned to Step 1 and trained the model 
further.

Finally, for Step 4, we post-processed the images for interpretable time 
series. After considering images in E1 and E2, we realized that horizontal 
installation meant that images on the top of the tube were different from 
those at the bottom. Thereafter, we treated the top of the tube as ‘truth’ 
and used this 3/8 of a complete rotational series for further analyses. In 
E3/4, where the instruments were deployed in a conventional fashion in 
the field, we used the sides of the instrument (excluding 1/4 of images 
at on the top and bottom of the tube) for analysis. In all experiments, we 

Fig. 3.  Summary of the image processing workflow from collection to interpretation. Images are collected and processed with the CNN analysis path, 
with a subset of images being used for validation data using the manual analysis path. Numbered boxes refer to the steps in the text in the ‘Processing 
minirhizotron imagery for root trait timeseries’ section. (1) CNN training and segmentation, (2) processing segmented binary images, (3) validation, and (4) 
post-processing for time series. If validation was poor in Step 3, we continued to train the CNN.
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then also took a daily average across traits extracted from all valid images 
for a single value which was not biased by any potential sub-daily cycle as 
an artefact of the segmentation (Supplementary Fig. S1). For overall time 
series in the field experiments only, we gapfilled an aggregate time series 
level accounting for the occasional missing cycle via linear interpolation 
between successive points. In the greenhouse experiments, including the 
generalized additive model (GAM) analysis which addressed O4, we used 
only the non-gapfilled data points. We then took a further 3 d rolling 
average in common with field above-ground phenology approaches 
(Migliavacca et al., 2011a; Aasen et al., 2020). To calculate growth rates 
in E1 and E2, we then took the linear slope in this smoothed three daily 
average over a 5 d window (we found similar results for a 4, 6, or 7 d 
window; Supplementary Table S1).

Statistical analyses
We performed statistical analyses for O1 and O4. For O1, we tested if 
there was a linear relationship between manual and CNN-segmented 
root properties. We used reduced major axes regression in the lmodel2 
package (Legendre, 2018) in R (R Core Team, 2018). With this analysis, 
we calculate the determination coefficient and slope of observed (x, an-
notation) versus estimated (y, CNN sRSA) in the imagery, accounting 
for a similar magnitude of the error in x and y. We also tested if system-
atic bias (i.e. slope not equal to 1) between manual and CNN analysis 
was introduced by comparing the difference between normalized (0–1) 
CNN and manual properties against confounding variables such as time, 
soil moisture, and absolute roots in the image and checking for linear 
trends.

To analyse the effect of mesocosm conditions on CO2 efflux in E1, 
we fit a GAM (Hastie and Tibshirani, 1986; Wood, 2006), implemented 
via mgcv (Pedersen et al., 2019). This allowed an independent, non-linear 
smooth to be fit per predictor; for example, an sRSA effect on soil respi-
ration could occur due to more root biomass, other root presence effects 
such as priming of soil carbon turnover, drying or wetting of soil due to 
hydraulic lift or transpiration, or root turnover itself. For predictors, we 
used normalized (0–1) soil moisture content, temperature, 5 d slope of 
normalized sRSA and normalized GCC, and the mean normalized ‘bi-
omass index’ (mean normalized GCC and normalized sRSA, combined 
due to high concurvity). We fit a univariate smooth for each without 
interactions. Otherwise, concurvity in all cases was <0.7. We used the 
restricted maximum likelihood (REML) method to estimate smooths to 
reduce overfitting. We compared the variable importance in these models 
using the varIMP function in the caret package (Kuhn, 2008).

Results

In this section, we first compare validation against manual tools 
(O1), then assess O2, O3, and O4 on a per-experiment level 
across the four experiments.

Validation against manual tools

To examine if the RMR method worked in a comparable 
fashion to state-of-the-art manual methods (O1), we validated 
sRSA and RLD from our simple extremely high-throughput 
method against the GUI-based tool ‘Rhizovision Explorer’ for 
the same properties. Overall, we found a good correlation for 
sRSA in E1 (R2=95%, Fig. 4A), E2 (R2=66%), E3 (R2=81%), 
and E4 (R2=92 %). The relationship between manual and 
CNN sRSA for E2, E3 and E4 is shown in Supplementary 
Fig. S2. In the mesocosm experiments, the CNN tended to 

identify more pixels as roots than did humans (slope >1), 
while in the field it was the reverse (slope <1). We investi-
gated the drivers of this disagreement in E1. While there was 
an expected relationship between manual cover and absolute 
difference between CNN and manual mark-up (larger values 
could be more wrong, Fig. 4B), there was no effect of time, 
soil moisture content, or manual cover on the error relative to 
the manual cover (Fig. 4C–E). Hence, we could trust the seg-
mentation on average over the whole time series in terms of 
dynamics and, if adjusted by a linear transformation, in terms 
of magnitude.

We also found a good validation of RLD. While we used a 
simpler extraction routine with less tuneable parameters than 
Rhizovision Explorer, our RLD extraction agreed closely (Fig. 
5). The R2 in E1 was 97%, in E2 was 68%, in E3 was 81%, and 
in E4 was 87%.

E1: biological interpretation

In E1 we paired the CNN sRSA and RLD time series with 
the GCC from PhenoCam imagery and the absolute root mass 
measurements (Fig. 6A, O4). We found a good correlation be-
tween normalized root mass and sRSA (Pearson r=0.96), while 
RLD was smoother and slightly less well correlated (Pearson 
r=0.94). Some of the instability in sRSA followed the last four 
watering events (Fig. 6A), only effectively possible to observe 
with the high-throughput CNN processing and not related to 
general trends in SWC.

We also compared rates of change (‘growth’) of the above- 
and below-ground indexes conceptually close to biomass. In 
general, this differed between GCC and sRSA (Fig. 6B) ex-
cept at the start of the experiment. Some of this variation 
was due to the short period after watering, but this variation 
continued when we ceased water inputs. In general, sRSA 
growth continued to be positive at the end of the experiment 
even when the GCC was stable or decreasing as the soil slowly 
dried out.

Using the GAM on E1, we were able to explain 46% of the 
total variation in CO2 soil efflux with the best-fitted model 
(Fig. 7A, O4). In this model, soil moisture content (P<0.001) 
and root growth (P<0.001) were significant. Root growth was 
most important in determining soil CO2 efflux (Fig. 7B); spe-
cifically, increasing root growth rate had a positive effect on 
soil CO2 efflux (Fig. 7D). Soil moisture was also important 
but had a non-linear shape—the fastest root growth was at 
intermediate moisture contents and the overall effect of the 
residual was smaller. In contrast, absolute ‘biomass’ index, and 
GCC slopes, our proxy for leaf growth rate, did not have an 
effect (Fig. 7C, E) on soil CO2 efflux.

E2: instrument consistency

Overall, in accordance with O2, a similar time series was 
extractable from each mesocosm (Supplementary Fig. S3).  
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Correlation between GCC and RLD was between 0.7 and 
0.96 (O3). Notably, GCC increased faster than sRSA in the 
first four mesocosms (Fig. 8; Supplementary Fig. S3). The 
mesocosms were arranged in numerical order, suggesting that 
artefacts relating to the position of the mesocosm (e.g. light) 
within the greenhouse may have driven a difference. Once wa-
tering ceased, root growth rate declined less steeply than GCC 
in all mesocosms and remained positive for longer than GCC 
growth rate, indicating a continued production of roots even 
as the above ground began to yellow. The less negative growth 
rates at the very end of the experiment may indicate that the 
area segmented as roots could not decrease further.

The roots extracted from ingrowth cores at the start of the 
experiment matched the overall time series (when normalized 
between mesocosms, see Supplementary Fig. S3B). However, 
the last data point, collected at harvest, did not agree, and the 
measured root biomass was still high when sRSA had dropped.

E3: Mediterranean/root litter field trial

The first field trial was conducted in a Mediterranean eco-
system so the period studied was early in the growing year. 
Examining mean total change in RLD over the whole depth 
and all instruments sampled, we observed the growth period 
starting in November–December, and after the initial green-
up of the above-ground system as detected by GCC (Fig. 9). 

Certain short-term instability in this index appeared to be re-
lated to periods of rainfall (as in E1). We additionally filtered 
out a short period (19–21 December) where all images across 
all instruments were anomalously very poorly illuminated (i.e. 
low current to the LEDs, probably due to poor charging of 
solar panels in bad weather). In general, temporal variability 
and noise in RLD were of similar relative magnitude to site-
level GCC (O4). RLD generally was lagged following positive 
GCC change, unlike E1, potentially due to the conventional 
installation angle here and subsequent better coverage of the 
whole soil. E3 was halted by the failure of accurate time-
keeping across all instruments (i.e. partial failure of O3), which 
we subsequently addressed in E4.

E4: Germany/low temperature field trial

In E4, instruments ran without issue under winter condi-
tions more severe than those which had previously caused 
timekeeping failures, fulfilling O3. We observed root growth 
through February and March (Fig. 10) with periodic increases 
in RLD and periods of no net growth which did not qual-
itatively appear to be linked to site conditions. We had oc-
casional unexplained periods where the measurement cycle 
did not start; this affected ~5% of observational periods with 
no relationship to temperature or humidity. The images were 
confounded by condensation and soil animals, which we were 

Fig. 4.  (A) Validation of CNN annotation for segmented root surface area (sRSA) against independent manual root annotation in E1. The green line shows 
a reduced major axis regression of the two variables, while the dashed line is a 1:1 relationship. Statistics show the equation of significant sRSA fit. (B) 
Absolute percentage difference between manual sRSA and CNN-classified sRSA, and relative percentage difference standardized to manual annotation 
over (C) time, (D) soil moisture content in the 0–5 cm soil at the time of sampling, and (E) manual sRSA. The increased absolute error at higher manual 
sRSA was expected. The clustering of data towards the early part of (C) is due to an uneven validation dataset.
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largely able to successfully train around, so did not have the 
same vulnerability to soil moisture and precipitation as E1 and 
E3. There was no relationship between the root surface area 
we segmented over the whole 0–40 cm depth sampled and air 
temperature, precipitation, or soil moisture. Hence the obser-
vations can be considered real root growth in this time.

Discussion

Use of automatic minirhizotrons

The minirhizotron technique is the best method to measure 
high frequency root phenology and dynamics in the field 
(Freschet et al., 2021). Automation of the whole work-
flow, from image collection to analysis, is essential for high 
time resolution data. Here, we presented a new automatic 
system. It is designed for relatively affordable budgets (we 
used €2000 per instrument including development). We 
therefore replicate between instruments and can frequently 

resample through time. After refinement, the method ful-
filled all our objectives of (O1) long-term operation, (O2) 
replication consistency (Fig. 8), (O3) field robustness (Figs 
9, 10), and (O4) interpretability with other datasets (Figs 7, 
9). Hence, we consider the RMR method as shown here 
robust for field data collection. We do, however, note that 
methods such as PhenoCams (Sonnentag et al., 2012; Rich-
ardson et al., 2018) or networks for spectral vegetation in-
dices (Gamon et al., 2015) are instrument standardized, but 
automatic minirhizotrons must combine robotics and im-
aging across multiple point sensors each with a short FOV. 
These technical aspects are advancing rapidly. Soils are also 
complex, and below-ground imaging needs different mag-
nification, sampling time, and power supplies depending on 
the question. Hence, we recommend against standardization 
of every aspect of RMR design if time and expertise is avail-
able to build to exact demand. In particular, cameras can 
be tooled to specific applications, as neural networks prob-
ably require retraining to new sites and tasks, and images 

Fig. 5.  Validation of CNN annotation for root length density (RLD) using our simple script for the very large dataset against extraction of RLD on manual 
annotated imagery using the Rhizovision Explorer software tool. The green line shows a reduced major axis regression of the two variables, while the 
dashed line is a 1:1 relationship. (A) is E1, (B) is E2, (C) is E3, and (D) is E4. In general there was good agreement, with disagreement due to both the 
accuracy of the CNN in segmenting (see Fig. 2) and potentially differences in the RLD extraction routines.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/74/3/769/6770100 by M

PI C
hem

ical Ecology user on 07 February 2023



778  |  Nair et al.

must always be validated against properties of interest from 
manual annotation. Other optimizations of design could also 
exclude images based on intended use angle (as we did after 
image collection for all images), and reduce image storage 
demands and capture time, although this would also result in 
incomplete imaging of the entire observatory.

Affordable instruments are particularly necessary as repli-
cation is a key shortcoming of many field studies (Filazzola 
and Cahill, 2021; Yang et al., 2022). These issues are especially 
acute for minirhizotrons given the short FOW, potential arte-
facts (Joslin and Wolfe, 1999), and huge range of soil and root 
appearances. The necessary modifications and COVID-19 led 

Fig. 6.  Above–below-ground time series from the mesocosm experiment. (A) The relative, 3 d smoothed segmented root surface area (sRSA), root 
length density (RLD), GCC (greenness of above-ground vegetation), and root mass, showing parallel development all scaled 0–1. (B) The 5 d slope of 
biomass-related values (i.e. rate of change) where at some periods GCC is increasing faster than sRSA and at others sRSA is increasing faster than 
GCC. Blue lines show watering events which are scaled in width relative to the volume of water applied.

Fig. 7.  Summary of the GAM model fit for E1. Segmented root surface area (sRSA) correlated with GCC so we used a mean of the two after 
normalization to represent biomass in the model (Est. Biomass). We were able to predict daily CO2 flux fairly well, with an R2 of 46% (A). The model 
contained univariate smooths for Est. Biomass, shown versus partial residuals in (C), the 5 d slopes (i.e. growth rate) of sRSA (D), GCC (E), soil 
temperature (F), and soil moisture content (G). Shaded area shows 2× SE. When variable importance was considered (B), the slope of root cover (i.e. 
change in amount of roots, birth, or death) was a much better predictor than that of biomass.
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to field trials E3 and E4 not using all instruments from E2, but 
we observed consistency and reliability in patterns within the 
instruments used (O2). While we discarded some of the inter-
preted images, we covered every sampling time point which is, 
to our knowledge, the numerically largest minirhizotron data-
set so far analysed. Data collected at such high frequency have 
multiple issues even in this simple analysis, with implications 
for application to more complex situations. The majority of 
this discussion concerns these issues.

Interpreting high resolution root image data

Neural network methods are an obvious approach to analys-
ing minirhizotron images, like many other root phenotyping 
applications (Atkinson et al., 2019). They are also necessary to 
exploit the high volume of imagery from automated sampling. 
While we did not develop a new CNN, we applied an estab-
lished algorithm (Smith et al., 2022) for root images, because 
of the corrective annotation interface. This method performed 
well and met O1 (Figs 4, 5; Supplementary Fig. S2) despite the 
complexity of our images and the lack of time series consider-
ation in neural network design. Interestingly, our own segmen-
tation and trait extractions did not agree perfectly with manual 
annotation and the state-of-the-art manual tool. Because 
each process contained two steps (Fig. 2; CNN: training data 
input+model fitting; manual: manual annotation+Rhizovision 
Explorer analysis), the consistent differences (overestimation in 
the field, underestimation in the greenhouse, Supplementary 
Fig. S3) could have been due either to a bias in the training 
data (i.e. accuracy in entire root area) or to an effect of the 

model fitting. The former may have occurred due to the rapid 
annotation for the manual data and the latter perhaps because 
the contrast between roots and soil differed between images. 
The trade-off between throughput and accuracy is particularly 
important for the large datasets enabled by automatic instru-
ments.

More interpretive root phenotyping (Bauer et al., 2022) can 
also be paired to the Rootpainter CNN. In theory, many fur-
ther architectural traits can be extracted with such a workflow. 
However, application to automatic measurements and field set-
tings relies on high quality imagery, a CNN able to minimize 
artefacts in unpredictable circumstances, and subjective param-
eter choice by the analyst; therefore, we did not attempt this 
here. The large size of the automatic datasets also influenced 
our choice to process the segmented imagery ourselves and 
avoid using GUI-based tools. The ability to run complex pro-
cessing routines transparently from the command line would 
be a major advance for applying such methods to large au-
tomatic datasets and perform sensitivity analyses for tuning 
parameters in automated trait extraction.

Automatic root identification from automated sampling is 
demanding on training data but also on validation. We used 
annotated images produced for other CNN trials for valida-
tion data. These were human best practice and not objective 
truth, so some difference between segmented and annotated 
images should be expected. Using a CNN meant we could 
process the data faster—an entire experiment was segmented 
in 1–3 d once the model was trained. Human annotations 
could also be outperformed in both consistency and accuracy 
alongside throughput in identifying true properties of interest 

Fig. 8.  Five day rolling average slope (‘growth rate’): brown is sRSA, orange is RLD, green is GCC across eight mesocosms in E2. RLD and sRSA are 
closely correlated. The vertical blue line indicates the last watering date, the horizontal black line is 0, and the transition point between positive growth 
rates (above-) and a decrease in the index (below-) indicating yellowing or disappearance of roots identified by the CNN trained on ‘living’ roots.
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by a sufficiently sophisticated neural network well trained on 
good quality images. However, we expected worse validation 
under field than greenhouse conditions because of the variety 
of soil and root appearances in the images. This was generally 
true, although the camera change for E2 and E3 meant that 
these validated less well than E1 and E4. (Figs 4, 5; Supplemen-
tary Fig. S3). E2 was also negatively affected by previous use 
of observatories (note the points in Fig. 6B with no manual 
sRSA but a segmented area), and E3 followed a long fallow 
period so had many images with a ground truth of no roots 
contributing to its R2. These ‘difficult’ images thus had mul-
tiple reasons for annotation to disagree with segmentation. In 
general, a suitable imaging sensor and attention to minimiz-
ing observatory artefacts is critical for homemade minirhizo-
trons. However, above-ground indexes are typically coarse in 
space and time [e.g. 3 d averaging PhenoCam data (Aasen et al., 
2020)], thus similar accuracy to E1 (95% sRSA/97% RLD) or 
E4 (92%/87%), even E2 (66%/68%) or E3 (81%/81%), with 
the less powerful camera is sufficient for generating plausible 
root time series (e.g. Figs 6–8; Supplementary Fig. S5). While 
in all four cases the CNN segmentation (plus simple processing 
for RLD) did not perfectly correlate 1:1 with manual sRSA 

and RLD (Figs 4, 5; Supplementary Fig. S3), we were not vali-
dating or training for true pixel-level identification. To mini-
mize these differences rather than use a linear conversion (as 
we would do in this experiment to interpret from segmented 
data), we recommend very high levels of effort being put into 
pixel-perfect annotation of training data. This increases the ef-
fort to train for a sufficiently general model. In any case, human 
root image interpretation is potentially biased by annotator, 
and other methods such as soil core processing have their own 
artefacts. Considering that some conversion between measure-
ments will always be necessary, consistent quantitative CNN 
interpretation has major advantages for throughput for root 
dynamics.

In the mesocosm E1, we found a good agreement in phys-
ical validation between root mass and minirhizotron sRSA 
(Fig. 6A, r=0.96), and also in the growth period of E2 (but not 
the last, replicated measurement, discussed later). This is de-
spite the potential to lose very fine roots with the common 
2  mm sieve method. Validating agreement with biomass data 
would be an important step for field interpretation. Minirhi-
zotrons are not the best method for absolute biomass estimates 
at a single time, but further consideration is due to dynamic  

Fig. 9.  (A) Three day normalized GCC (green chromatic coordinate, green) and mean RLD (brown) from three instruments at the Majadas de Tiétar 
site. Error bands on root cover correspond to maximum and minimum mean segmented root cover in the aggregation period. (B) Air temperature 
and precipitation, taken as daily mean, with error bands on temperature corresponding to observed maximum and minimum. The high errors in late 
November are due to instrument drop-out, reduction to two instruments in this period, and subsequent instrument replacement. A short period (2 d) is 
missing in mid-December as batteries failed to charge in very cloudy weather. Root growth began later in the Mediterranean growing season than leaf 
growth and continued even when GCC was declining in midwinter. There was some instability in the root index which may have followed precipitation, 
although this was not larger than relative instability in GCC.
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biomass estimates as the temporal resampling aspect cannot be 
achieved otherwise. There are differences in properties measur-
able from minirhizotrons and other methods (e.g. Milchunas, 
2009; Addo-Danso et al., 2016; Nair et al., 2019), but minirhizo-
trons are a reasonable biomass index with appropriate conver-
sions used (e.g. Johnson et al., 2001; Sullivan and Welker, 2005; 
Brown et al., 2009; Lee et al., 2017). Indeed, root identification 
relates directly to biological structures around a minirhizotron 
observatory. This can potentially be paired more easily with den-
sity and C contents than leaf greenness of a whole canopy, if the 
short FOW can be offset by sufficient replication. A key future 
goal is to ascertain whether well-known artefacts of roots around 
minirhizotrons (Vamerali et al., 1999; Rytter and Rytter, 2012) 
can be understood to correct for these issues, and indeed if these 
artefacts vary with phenology or environmental conditions.

A further issue with our segmentation of high frequency 
images related to unrealistic variation after rain/watering 
(Figs 6, 9) and, in E1 and E2, between different times of the 
day (Supplementary Fig. S2). Like similar issues using classi-
fiers for near infrared-enabled minirhizotron images (Svane 
et al., 2019), sudden changes in soil colour/reflectance led to  

erroneous pixel identification and subsequent unrealistic 
changes in roots identified. We note that in Fig. 8, this insta-
bility is not larger than similar short-term patterns in greenness 
above ground, potentially due to illumination conditions. For 
the sub-daily artefact, this was not explainable by soil mois-
ture, perhaps because very local condensation at minirhizotron 
surfaces was not represented in the sensors. Indeed, sub-daily 
variation only became apparent after roots had colonized the 
sides of the observatories, suggesting that the CNN was mis-
identifying pixels in close proximity to roots. Inspection of the 
images confirms this explanation (Supplementary Fig. S1). Diel 
variation in root diameter (Huck et al., 1970) or hydraulic re-
distribution (passive movement of water via roots from wet to 
dry soil (Ryel, 2004) at night and transpiration during the day 
drying these areas may provide an explanation which could 
bias a CNN more than human annotation. If this was a seg-
mentation artefact which affected the immediate ‘rhizosphere’ 
only, this would not have been detected by our soil moisture 
sensors.

There are several potential solutions. The first is to aggregate, 
smooth, or throw out data, which disregards information from 

Fig. 10.  (A) Three day mean normalized root length density (brown) from two instruments at the Jena Experiment site showing growth in February and 
March. The error band shows the maximum and minimum segmented RLD during the aggregation period. This winter trial shows robustness of the RMR 
to cold temperatures; the mean air temperature (red) and soil temperature at 8 cm (blue) in (B) are shown with an error band corresponding to maximum 
and minimum daily temperatures which fell as low as –9 °C. Unlike E3, it did not appear that in this experiment there was a sensitivity in root cover to 
precipitation.
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high resolution sampling but is common practice in proximal 
remote sensing at ecosystem level (e.g. using smoothing splines, 
Migliavacca et al., 2011a). We followed a smoothing strategy in 
this study, only considering daily means. However, if one wants 
to analyse sub-daily data with potential diel patterns, this is not 
a viable solution unless using time series decomposition (e.g. 
Biriukova et al., 2021). Secondly, one could post-process with 
human intervention, applying an adjustment or a separately 
trained model, to periods with problematic changes. This inter-
feres with the image index so is not favourable. Thirdly, one 
could train on more data, particularly around periods of dif-
ficulty. This exacerbates training data issues, especially if prob-
lematic events are rare but important, and may bias the model 
towards fitting these conditions at the expense of a general good 
fit. Fourthly, consistency in segmentation between sequential 
images could be used to filter for ‘true’ observations (i.e. basing 
interpretation on objective priors about root growth). Finally, 
a wholly different model structure incorporating other factors 
such as soil moisture or rainfall (i.e. describing when these is-
sues could occur) or time series information [e.g. via recur-
rent network architectures such as long short-term memory 
approaches (Hochreiter and Schmidhuber, 1997), multivariate 
time series classification (Ruiz et al., 2021), or other time se-
ries classification (Fawaz et al., 2019)] could be built. This has 
the advantage of processing data without bias, if training data 
are selected fairly, at the cost of a more complex model and/or 
more variables to measure alongside root imagery.

Field robustness of our techniques

Both automation of measurement and image analysis are 
more advanced in simple artificial systems than in field mea-
surements, where litter, soil animals, hydrology, and soil ap-
pearance complicate imagery. Instruments tested in controlled 
environments such as E1 and E2 and analysis methods also 
need to be robust in the field to study phenology. Hence we 
consider operation under field conditions (O3) a highly im-
portant part of our overall study. While E3 was compromised 
by camera quality and the structurally complex system, we 
produced a time series plausible from previous work at the 
site. In this ecosystem, autumn root growth continues through 
winter, unlike above-ground vegetation indexes in most years 
(Nair et al., 2019), and continuous operation under winter 
conditions (low temperatures, poor insolation) is critical to 
capture dynamics of ‘out of season’ root growth observed in 
many ecosystems (e.g. Shane et al., 2009; Blume-Werry et al., 
2016). The instruments operated consistently on solar power 
for 4 months with 95% uptime. While we do not show a 
whole phenological year or include mass root death in the 
summer drought, this period contained undecomposed root 
litter following the arid summer, confusing for both human 
annotators and the CNN. Difficult minirhizotron images 
are troublesome for even experienced annotators (Peters 
et al., 2022)— a key advantage of a well trained automated  

approach is consistency. Our target was also a robust index 
comparable with above-ground digital repeat photography 
(e.g. Migliavacca et al., 2011a; Sonnentag et al., 2012) rather 
than an exact match of segmentation to annotation. A key 
difference between minirhizotrons and proximal remote 
sensing is segmenting roots from soil and then interpreting 
this segmentation rather than a simple image index such as 
‘greenness’ on a defined ROI. Because we were segmenting 
complex features, minor variations in image setting may in-
troduce short-term variation. Future efforts could benchmark 
acceptable consistency for representativeness of phenology 
rather than requiring the same accuracy on a high-resolution 
dataset as in a finer scale analysis from minirhizotrons. On the 
other hand, neural network approaches could be trained to 
directly interpret properties such as root length rather than 
segmenting then interpreting, although this requires alterna-
tive models and data-demanding training if multiple traits are 
of interest.

While we encountered problems under field conditions 
in E3, we corrected these in E4. The system ran long term 
successfully after night-time temperatures as low as –7.5  °C 
without issues. In this relatively ‘easy’ (stone-free and loamy) 
soil, we were able to achieve our second strongest correlation 
with manual annotation. We could train around soil animals 
and condensation in this wet and cold part of the year, and 
found that roots were growing in this temperate winter. sRSA 
almost doubled over the 60 d of the trial. Growth did not ap-
pear to be related to meteorological conditions, suggesting that 
(i) these conditions were unlikely to be seriously biasing our 
CNN segmentation and (ii) this early-season growth may be 
driven by intrinsic cues and mobilization of stored sugars (e.g. 
Turner et al., 2007; Maeght et al., 2015) rather than imme-
diate photosynthesis. This was somewhat surprising due to the 
herbaceous community, presumably with limited long-term 
storage. Future longer time series in different ecosystem types 
will enable a deeper understanding of the coupled above–
below-ground action of the carbon cycle in plants. While we 
note our field indexes could be unstable, especially in E3, this 
was due to the low replication and differences between instru-
ments rather than individual time series inconsistency. Wider 
application of such devices is hence reliant on reasonable per-
instrument costs, the initial rationale for our instrument devel-
opment.

How close are we to true automated root phenology 
monitoring?

In comparison with all previous attempts to automate minirhi-
zotron data collection and/or analysis, we produced high fre-
quency time series in the lab and field (with support from an 
electrical/mechanical workshop and minimal computer sci-
ence expertise). We fulfilled all objectives O1–O4 necessary 
for field usability. With such information, root:leaf asynchrony 
(Steinaker and Wilson, 2008; Steinaker et al., 2010; Sloan et al., 
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2016) can be understood from high frequency data (e.g. O4 in 
E1, E2, and E3). Links to C cycling (e.g. E1) such as between 
photosynthesis, growth, and soil/ecosystem respiration (Bahn 
et al., 2008, 2009; Migliavacca et al., 2011b) could also be un-
derstood in scalable contexts. We consider the results in the 
mesocosm part of this manuscript as a proof of concept and 
do not interpret these further, but in theory such experiments 
could be conducted at field scales.

The RMR workflow can process hundreds of images at 
the same time to annotate a single image conventionally and 
collecting images much more frequently than highest effort 
manual data collection. However, it does sacrifice some fi-
delity in extraction of root properties compared with manual 
methods. These same trade-offs have already been made in leaf 
phenology monitoring (e.g. using ‘greenness’ or NDVI from 
remote sensing rather than counting leaves or measuring leaf 
angles). Minirhizotron imagery contains much more relevant 
structural information due to the extremely local scale and, 
indeed, these are regularly extracted manually. There is prog-
ress in doing this automatically (Seethepalli et al., 2021; Bauer 
et al., 2022) and we expect rapid advancement in the future. 
Extraction using deep learning of more complex properties 
such as diameters and branching patterns may also be possible, 
although this is reliant on good quality training data and good 
quality images. Consistent root diameter extraction would be a 
good first step to achieve a calculation of ‘geometric’ root sur-
face area (calculated from diameter and length and potentially 
more stable than sRSA in this study) through geometry and 
further conversion to biomass. However, to achieve such goals, 
it is important that users first pay attention to longstanding 
best-practice recommendation to minimize artefacts such as 
ensuring good contact between tube and soil, and minimizing 
condensation where possible (e.g. Iversen et al., 2011; Rewald 
and Ephrath, 2013) as well as developing new image analysis 
techniques. Of particular additional note is superposition of 
roots; our analyses were also not sensitive to roots overlapping 
or growing close, and so our segmentation may underestimate 
RLD (as is generally the case in Fig. 4), but this is not a large 
problem in this study due to the overall low root densities. 
Moving from segmented images to full time series of mul-
tiple traits from multiple species in mixed communities and 
potentially dense root systems and tracking of individual root 
birth and death are ambitious and exciting goals which could 
be achieved by root ecologists and computer scientists col-
laborating in the future. Indeed, similar tasks are possible in 
other biological image contexts [e.g. multilabel segmentation 
(Kubera et al., 2022), or dealing with overlapping via instance 
segmentation (Saleh et al., 2019)]. Other CNN-minirhizotron 
applications can even tackle this last problem, albeit without 
the corrective annotation which made our approach useful for 
automatic data (Peters et al., 2022). Other possibilities such as 
root colour are readily available post-segmentation but we lack 
a theoretical understanding of the meaning of such time series 
in field communities where individual species differ alongside 

change in time. In terms of general trends (but not absolute 
mass), our sRSA was also a reasonable proxy for root biomass; 
thus, with appropriate calibration, good quality extraction of 
root diameters, and density/area parameterization imagery, 
could be interpreted as changes in C pools and provide data to 
inform allocation in vegetation models. Interestingly the ‘har-
vest’ data point in E2 did not match the minirhizotron index, 
even when scaled. This is potentially explainable by the CNN, 
trained on live roots, outperforming humans sorting physical 
samples who also make mistakes in living/dead identification. 
In wider applications, neural networks approaches also offer 
the ability to limit operator bias via common scoring phases, 
whereas manual analysis cannot sort the same sample twice. 
Our datasets also contained a period of time where there was 
litter in the field (E3) but not a specific period of turnover 
which may be more difficult for CNNs, although roots did dis-
appear from individual time series in all experiments. Because 
the living/dead distinction is of functional interest, further de-
velopment, such as training models specifically on dead roots, 
using multiclassifier segmentation, or generating labels using 
the near-infrared or other multispectral images (Arnold et al., 
2017; Bodner et al., 2017; Svane et al., 2019) and segmenting 
using RGB images, may allow a segmentation of complex field 
imagery necessary for precise quantification of living root bio-
mass and its complex and dynamic contribution to ecosystem 
C cycling.

The major advantage of the minirhizotron method is 
resampling over long time scales in the field (Freschet et al., 
2021). We were not able to make field observations over mul-
tiple years in this study and long-term reliability remains the 
biggest unknown. Nonetheless, we did target the most ‘dif-
ficult’ times of the year in E3 and E4 where cold and wet 
conditions could affect instrument performance. The accel-
erated clocks used in E1 and E2 also partially demonstrate 
long-term performance which could capture whole annual 
cycles if performed at similar rates in the field to those in E3. 
Minirhizotron studies may also use huge replication—in ag-
ricultural settings, this can reach thousands of observatories 
(Rajurkar et al., 2022). In this case, no matter how affordable 
at budget an automated system is, entire coverage is unlikely 
to be possible with robotic systems. For this, we recommend 
pairing automated systems (to capture temporal dynamics) 
with manual systems (for spatial dynamics), ideally with ex-
actly the same camera set-up and processing workflow. In 
such a design, automated phenology data can complement 
the most informative sampling times, and spatial under-
standing can inform the most representative sites for scalable 
temporal trends.

Supplementary data

The following supplementary data are available at JXB online.
Protocol S1. Full technical instrument design.
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Fig. S1. Example of sub-daily diameter artefacts found in the 
mesocosm.

Fig. S2. Validation of sRSA and RLD in E2, E3, and E4.
Fig. S3. Comparison between mesocosms in E2.
Table S1. Comparison of linear slope window in the E1 

GAM model.
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