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Dependency parsing 

We extracted dependency parsing as an index to perform chunking of each sentence in relational 
units. We used the dependency parser provided by the Stanford parser via CoreNLP. We 
identified the heads of the sentence as the words that have a relation attached to them. For 
example, in the sentence “He’s examining one of the bodies”, “examining” is the first head, 
followed by “one” and by “bodies” (Fig. S1). These three words are the only ones that have a 
dependency relation attached to them, while the other words are all dependents of one head. The 
chunked parsing strategy counted the nodes intervening between all heads, to model a less 
incremental strategy to syntactic structure building, following the idea that speakers plan the 
structure of a few words at a time (e.g. always planning the structure of the verb at the start of the 
sentence).  
 
 

 

Fig. S1. Dependency parse of the sentence. Left-relations are in orange, right relations in green, 
heads are in purple. Heads are words on which a dependency relation is attached (i.e. from which 
an arrow starts). 
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Temporal derivative 

Methods. Since the results of production-specific parsers indicated that the LpMTG may have 
had a later response to top-down operations than BA45, we looked into how the temporal 
derivatives of the top-down and bottom-up parsers modelled the data. The temporal derivative of 
the haemodynamic response function (HRF) is usually used in fMRI analysis to account for small 
differences in the latency of the BOLD response. An increase in the temporal derivatives means 
that the BOLD response peaks earlier, while a decrease indicates a later peak. We ran the same 
linear-mixed effects model used before with the addition of temporal derivatives of all predictors 
of interest (Table S5). 
 
Results. We found a significant three-way interaction between the top-down derivative, modality 
and ROI (χ2 = 16.6, p < 0.0003) (Fig. S2); the surprisal derivative, modality and ROI (χ2 = 16.9, p 
< 0.0003); and the open nodes derivative, modality and ROI (χ2 = 10.7, p < 0.005), and a two-way 
interaction between the sentence offset derivative and ROI (χ2 = 9.3, p < 0.01). The top-down 
temporal derivative was significantly positive in BA45 in production (estimate = 0.39, SE = 0.16, p 
= 0.02), indicating an earlier BOLD peak than assumed by the canonical HRF, while it was 
significantly negative in LpMTG (estimate = -0.33, SE = 0.17, p < 0.05), indicating a later peak. It 
was not significantly different from zero in comprehension, nor did it differ between ROIs. These 
results suggest that the LpMTG may have been active after BA45 in response to more top-down 
node counts. 

Sentence offset elicited later responses in comprehension in the LpMTG (estimate = 0.6, 
SE = 0.16, p = 0.001), suggesting that the effect of sentence offset was sustained for some time 
after the end of the sentence. Word surprisal elicited later BOLD peaks in comprehension and 
earlier BOLD peaks in production, relative to the canonical HRF (difference estimate = 0.8, SE = 
0.24, p = 0.007). In comprehension, BA45 and LpMTG were both significantly related to a 
decrease in activity (BA45: estimate = 0.43, SE = 0.16, p = 0.007; LpMTG: estimate = 0.61, SE = 
0.16, p = 0.0001). In production, activity in both BA44 and BA45 increased with the temporal 
derivative for surprisal (BA44: estimate = 0.49, SE = 0.2, p = 0.023; BA45: estimate = 0.96, SE = 
0.2, p < 0.0001). These results suggest that word surprisal elicited earlier activity increases in 
production than comprehension, which likely relates to the timing of lexical access (before word 
onset in production, after word onset in comprehension). The open nodes measure showed 
earlier BOLD responses in the LpMTG in production (estimate = 1.03, SE = 0.5, p = 0.035), and 
later responses in BA44 and BA45 in production (BA44 estimate = 1.3, SE =0.5, p = 0.008; BA45 
estiamte = 1.3, SE = 0.5, p = 0.02). Again, BA45 and the LpMTG had different BOLD peak 
latencies, suggesting that BA45 responded earlier to top-down nodes but later to open nodes, 
while LpMTG responded earlier to open nodes and later to top-down nodes.  
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Fig. S2. Beta estimates for the effect of the temporal derivative of each predictor on BOLD 
activity in the regions of interest. Error bars represent standard error of the mean. Positive 
estimates indicate an earlier BOLD response, negative estimates indicate a later BOLD response. 
Note that the y-axis range differs between plots. 
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Additional ROI analysis 

For comparability with previous studies, we ran the same analysis presented in “Distinct 
dynamics for phrase-structure building in language production vs. comprehension” in a few 
additional regions often found to respond to language processing, but not known to be strongly 
involved in syntactic processing: left anterior temporal lobe (LATL), right anterior temporal lobe 
(RATL), left inferior parietal lobule (LIPL), left middle frontal gyrus (LMFG) (1–3).  
Methods. As done for the main regions of interest, we made anatomical masks of these regions 
using the Harvard Oxford atlas (max probability 25%). The LATL and RATL masks included the 
labels for the temporal pole, the anterior superior, middle and inferior temporal gyri. The LIPL 
mask included the left posterior supramarginal gyrus and the angular gyrus. The LMFG included 
the mask for the left middle frontal gyrus. We then only used the grey matter voxels in functional 
space for each participant, using freesurfer’s aparc.a2009s grey matter mask. We averaged the 
timeseries for each of these regions and ran the analysis with linear mixed-effects models as 
specified in the fMRI analysis methods section. Instead of using ROI as a fixed effect, now we ran 
separate analyses for each region (the values reported below are not corrected for the 
comparison of four ROIs, thus p < 0.0125 indicates a significant effect after correction). 
 
Results. BOLD activity in the LATL increased as a function of words (χ2 = 112.5, p < 0.0001), 
syllables (χ2 = 8.2, p < 0.005), frequency (χ2 = 7.1, p < 0.008), word surprisal (χ2 = 10.2, p < 
0.002), top-down parser (χ2 = 8.2, p < 0.004) and sentence offset (χ2 = 16.2, p < 0.0001), and 
decreased for sentence onset (χ2 = 23.4, p < 0.0001). There was also an interaction between 
modality and top-down (χ2 = 6.1, p < 0.02), modality and open nodes (χ2 = 16.8, p < 0.0001), and 
modality and sentence offset (χ2 = 15.3, p < 0.0001). Pairwise comparisons indicated that there 
was a higher response to top-down node counts in production than comprehension (estimate = 
0.6, p = 0.013), a higher response to open nodes in comprehension than production (estimate = 
0.08, p < 0.0001), and a higher response during sentence offsets in comprehension than 
production (estimate = 5.3, p = 0.0001). The results in the LATL, therefore, are similar to the main 
results in the LpMTG and LIFG. 

Activity in the RATL increased as a function of words (χ2 = 67.9, p < 0.0001), syllables (χ2 
= 4.2, p < 0.05), top-down parser (χ2 = 8.5, p < 0.004) and sentence offset (χ2 = 7.2, p < 0.008), 
and decreased for sentence onset (χ2 = 4.4, p < 0.04). There was also an interaction between 
modality and bottom-up (χ2 = 4.3, p < 0.04), modality and word surprisal (χ2 = 4.2, p < 0.04) and 
modality and sentence offset (χ2 = 6.1, p < 0.02). Pairwise comparisons indicated that there was 
a higher response to bottom-up counts in production than comprehension (estimate = 0.5, p = 
0.038), there was a higher response to word surprisal in comprehension than production 
(estimate = 0.11, p = 0.039), and there was a higher response to sentence offset in 
comprehension than production (estimate = 3.5, p = 0.013). Therefore, the RATL showed a 
different pattern of responses to the syntactic predictors than the other regions, suggesting that 
the computations taking place in the right ATL may differ in timing pressures from the left 
lateralized regions of interest.  

BOLD activity in the LIPL increased as a function of words (χ2 = 60.8, p < 0.0001), 
frequency (χ2 = 16.3, p < 0.0001), word surprisal (χ2 = 14.4, p < 0.001) and decreased for 
sentence onsets (χ2 = 7.2, p < 0.01). The syntactic predictors had no effect in the LIPL and there 
was no interaction with modality.  

Activity in the LMFG increased as a function of words (χ2 = 22.4, p < 0.0001) and 
frequency (χ2 = 5.8, p < 0.02). There was an interaction between modality and top-down (χ2 = 4.2, 
p < 0.05), modality and bottom-up (χ2 = 14.3, p < 0.0002), modality and open nodes (χ2 = 4.2, p < 
0.05). Pairwise comparisons indicated that there was a higher response to top-down counts in 
production than comprehension (estimate = 0.532, p =0.041), a higher response to bottom-up 
counts to comprehension than production (estimate = 0.64, p = 0.0002), and a higher response to 
open nodes in comprehension than production (estimate = 0.06, p = 0.042).  

Overall, all regions except for the LIPL showed some sensitivity to syntactic predictors 
that broadly matched the responses in the LpMTG and LIFG, with differences in the sensitivity to 
top-down and bottom-up counts between production and comprehension. The response of these 
regions to the syntactic predictors may have been due to the contribution of these regions in 
overall sentence-level compositional processes. 
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Fig. S3. Beta estimates for the effect of each predictor on BOLD activity in additional regions. 
Error bars represent standard error of the mean. Note that the y-axis range differs between plots.  
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Speech fluency 

Methods. We analysed whether word and syntactic predictors also explained variance in word 
duration and in length of pauses before word uttering in the production data. Pauses were defined 
as the interval between the offset of the previous word and the onset of the current word. We 
used linear mixed-effects models with pause length or word duration as dependent variables. We 
used word frequency, word surprisal, number of syllables, top-down, bottom-up and open nodes 
predictors as fixed effects and as by-participant random slopes (Fig. S3). 
 
Results and discussion. The number of syllables of a word significantly predicted an increase in 
word duration (unit is seconds, β = 0.08, SE = 0.004, t = 22.6, χ2 = 510.02, p < 0.0001), which 
was expected, but a decrease in pause length before word articulation (β = -0.02, SE = 0.004, t = 
4.9, χ2 = 23.9, p < 0.0001). The shorter pause before articulation of long words is possibly due to 
the longer time available to plan for later words during uttering of a long word. Higher word 
frequency instead predicted shorter word duration (β = -0.017, SE = 0.001, t = 15.1, χ2 = 239.8, p 
< 0.0001), but did not affect pause length (β = 0.0008). Larger word surprisal increased word 
duration to a small extent (β = 0.004, SE = 0.0004, t = 9.6, χ2 = 91.9, p < 0.0001), and it had a 
larger positive effect on pause length (β = 0.02, SE = 0.002, t = 10.4, χ2 = 109.1, p < 0.0001). 
Less predictable words based on context thus took longer to be initiated and were uttered for a 
slightly longer time (4 ms), after accounting for their length. 

We also determined how predictors of syntactic complexity related to speech fluency. 
Top-down node counts predicted the largest decrease in word duration (β = -0.045, SE = 0.002, t 
= 20.1, χ2 = 404.1, p < 0.0001), suggesting that when phrases are opened, information can be 
conveyed faster, possibly to offload working memory. It also predicted the largest increase in 
pause length before the word in question is uttered (β = 0.09, SE = 0.008, t = 10.9, χ2 = 119.7, p 
< 0.0001) suggesting that grammatical encoding related to a word is performed before word 
articulation, and that nodes are built in an anticipatory way. Bottom-up parser operations 
predicted an opposite pattern. Larger bottom-up counts increased word duration (β = 0.012, SE = 
0.0009, t = 12.6, χ2 = 159.5, p < 0.0001), but decreased pause length (β = 0.021, SE = 0.002, t = 
11.6, χ2 = 135.7, p < 0.0001). The shorter pauses suggest that at phrase closing the structure is 
already computed. Finally, open nodes predicted a significant but very small decrease in word 
duration (β = -0.002, SE = 0.0004, t = 5.3, χ2 = 28.5, p < 0.0001), and a larger decrease in pause 
length (β = -0.024, SE = 0.002, t = 14.6, χ2 = 213.9, p < 0.0001), suggesting easier processing 
the further along in a sentence. In line with the neuroimaging results, this pattern of results 
suggests that phrase-structure building happens before word articulation and at phrase-opening, 
with a decrease in pauses the further along in the sentence. 

This was the first study to show an increase in neural activity for words associated with 
higher surprisal, not only in comprehension but also in production. Many studies showed 
sensitivity of brain activity to surprisal in language comprehension computed with several models 
(4, 5). The neural results are in line with the behavioural results that show an increase in pause 
length before less probable words and a small increase in their duration, as found previously (6). 
The results thus converge in demonstrating the sensitivity of the production system to the 
statistical probabilities of the linguistic input and output, both in behavioural and neural patterns. 
This finding is in line with accounts of efficient language production that propose a uniform 
distribution of information in discourse (Uniform Information Density, (7–10). More informative 
units (in information-theoretic terms, i.e. larger surprisal in the current study) take more time in 
discourse, while redundant units can be uttered faster or eliminated (e.g. for optional words like 
complementizer that (7)).   
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Fig. S4. Estimates in seconds of the effect of each predictor of word characteristics and phrase-
structure building on word durations and pause length before word articulation. Error bars 
represent standard error of the mean. Individual points represent each participant’s estimate as 
estimated by the random slopes. The model estimated identical random slopes for number of 
syllables on pause length for each participant. 
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Fig. S5. Correlation matrix showing Pearson’s r correlation among all predictors after they were 
convolved with the haemodynamic response function (corresponding to 16338 individual time 
points). Note that not all predictors were used in the same model. 
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Fig. S6. Correlation matrix showing Pearson’s r correlation among all predictors before they were 
convolved with the haemodynamic response function (51606 words across production and 
comprehension). Note that the word rate predictor is not present because it is a vector of 1s (after 
convolving it captures how often words are said/heard, based on their onset times). 
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fMRI data acquisition and preprocessing 

Data Acquisition 
The acquisition parameters were identical in the two datasets. MRI data was collected on a 3T 
full-body scanner (Siemens Skyra) with a 20-channel head coil. Functional images were acquired 
using a T2*-weighted echo planar imaging pulse sequence (TR 1500 ms, TE 28 ms, flip angle 64, 
whole-brain coverage 27 slices of 4 mm thickness, in-plane resolution 3 × 3 mm2, FOV 192 × 192 
mm2). Anatomical images were acquired using a T1-weighted MPRAGE pulse sequence (0.89 
mm3 resolution).  
 
fMRI preprocessing 
Preprocessing was performed using fMRIPrep 20.2.6 (11), which is based on Nipype 1.7.0 (12, 
13). 
Anatomical data preprocessing 
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 
with N4BiasFieldCorrection (14), distributed with ANTs 2.3.3 (15), and used as T1w-reference 
throughout the workflow. The T1w-reference was then skull-stripped with 
a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using fast (FSL 
5.0.9 (16)). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, (17)), and the 
brain mask estimated previously was refined with a custom variation of the method to reconcile 
ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of 
Mindboggle (18).  
Functional data preprocessing 
For each BOLD run, the following preprocessing was performed. First, a reference volume and its 
skull-stripped version were generated using a custom methodology of fMRIPrep. Susceptibility 
distortion correction (SDC) was omitted, because no fieldmap was acquired. The BOLD reference 
was then co-registered to the T1w reference using bbregister (FreeSurfer) which implements 
boundary-based registration (19). Co-registration was configured with six degrees of freedom. 
Head-motion parameters with respect to the BOLD reference (transformation matrices, and six 
corresponding rotation and translation parameters) are estimated before any spatiotemporal 
filtering using mcflirt (FSL 5.0.9, (20)). The BOLD time-series (including slice-timing correction 
when applied) were resampled onto their original, native space by applying the transforms to 
correct for head-motion. These resampled BOLD time-series will be referred to as preprocessed 
BOLD in original space, or just preprocessed BOLD. The BOLD time-series were resampled into 
standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a 
reference volume and its skull-stripped version were generated using a custom methodology 
of fMRIPrep. Automatic removal of motion artifacts using independent component analysis (ICA-
AROMA, (21)) was performed on the preprocessed BOLD on MNI space time-series after 
removal of non-steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 
6mm FWHM (full-width half-maximum). The “aggressive” noise-regressors were collected and 
placed in the corresponding confounds file. Several confounding time-series were calculated 
based on the preprocessed BOLD: framewise displacement (FD), the derivative of the relative 
(frame-to-frame) bulk head motion variance (DVARS) and three region-wise global signals. FD 
was computed using two formulations following Power (absolute sum of relative motions, (22)) 
and Jenkinson (relative root mean square displacement between affines, (20)). FD and DVARS 
are calculated for each functional run, both using their implementations in Nipype (following the 
definitions by (22). Additionally, a set of physiological regressors were extracted to allow for 
component-based noise correction (CompCor, (23)). Principal components are estimated after 
high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 128s 
cut-off) for anatomical CompCor (aCompCor). For aCompCor, three probabilistic masks 
(cerebrospinal fluid (CSF), white matter (WM) and combined CSF+WM) are generated in 
anatomical space.  
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Table S1. Summary of model output of BOLD activity in production and comprehension. ROI1 
refers to the contrast BA44 vs. BA45, ROI2 refers to the contrast BA44 & BA45 vs. pMTG. Mod 
stands for modality. AIC stands for Akaike Information Criterion, used for the production only 
models to determine model fit. 

  BOLD 

Predictors Estimates  std. Error CI Statistic p 

(Intercept) -0.18 0.01 -0.20 – -0.15 -14.37 <0.001 

word rate 0.52 0.05 0.42 – 0.61 10.84 <0.001 

syllable 0.24 0.12 0.00 – 0.47 2.00 0.046 

frequency 0.13 0.05 0.04 – 0.22 2.78 0.005 

top-down 0.12 0.16 -0.19 – 0.43 0.75 0.452 

ROI1 -0.01 0.01 -0.04 – 0.01 -1.04 0.298 

ROI2 -0.00 0.01 -0.02 – 0.01 -0.36 0.719 

mod1 -0.04 0.01 -0.06 – -0.02 -4.34 <0.001 

bottom-up -0.13 0.09 -0.31 – 0.05 -1.45 0.147 

surprisal 0.16 0.02 0.11 – 0.21 6.62 <0.001 

open nodes 0.03 0.02 -0.00 – 0.06 1.85 0.064 

sent onset -1.37 0.49 -2.32 – -0.41 -2.79 0.005 

sent offset 1.42 0.55 0.35 – 2.50 2.59 0.009 

top-down × ROI1 -0.02 0.10 -0.21 – 0.16 -0.25 0.801 

top-down × ROI2 -0.20 0.06 -0.31 – -0.10 -3.68 <0.001 

top-down × mod1 -0.45 0.16 -0.76 – -0.14 -2.87 0.004 

ROI1 × mod1 -0.01 0.01 -0.04 – 0.01 -1.11 0.269 

ROI2 × mod1 -0.01 0.01 -0.03 – 0.00 -1.82 0.069 

ROI1 × bottom-up -0.04 0.07 -0.18 – 0.10 -0.58 0.560 

ROI2 × bottom-up 0.09 0.04 0.01 – 0.17 2.24 0.025 

mod1 × bottom-up 0.29 0.09 0.12 – 0.46 3.33 0.001 

mod1 × surprisal 0.01 0.02 -0.03 – 0.06 0.55 0.582 

ROI1 × surprisal 0.08 0.02 0.04 – 0.12 3.80 <0.001 

ROI2 × surprisal 0.01 0.01 -0.01 – 0.04 0.96 0.338 
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ROI1 × open nodes 0.02 0.01 0.00 – 0.04 2.14 0.032 

ROI2 × open nodes 0.01 0.01 -0.00 – 0.02 1.50 0.134 

mod1 × open nodes 0.05 0.02 0.02 – 0.08 3.00 0.003 

ROI1 × sent onset -1.01 0.59 -2.18 – 0.15 -1.71 0.088 

ROI2 × sent onset -0.38 0.34 -1.06 – 0.29 -1.12 0.263 

mod1 × sent onset -0.30 0.49 -1.26 – 0.66 -0.61 0.542 

ROI1 × sent offset 1.39 0.61 0.20 – 2.57 2.29 0.022 

ROI2 × sent offset 0.44 0.35 -0.24 – 1.13 1.26 0.208 

mod1 × sent offset 1.27 0.50 0.29 – 2.25 2.54 0.011 

top-down × ROI1 × mod1 -0.12 0.10 -0.31 – 0.06 -1.30 0.195 

top-down × ROI2 × mod1 -0.12 0.06 -0.23 – -0.01 -2.22 0.026 

(ROI1 × mod1) × bottom-up 0.05 0.07 -0.08 – 0.19 0.77 0.439 

(ROI2 × mod1) × bottom-up 0.07 0.04 -0.01 – 0.15 1.66 0.097 

(ROI1 × mod1) × surprisal 0.02 0.02 -0.02 – 0.06 0.81 0.417 

(ROI2 × mod1) × surprisal -0.02 0.01 -0.04 – 0.01 -1.35 0.178 

(ROI1 × mod1) × open 
nodes 

0.02 0.01 0.01 – 0.04 2.55 0.011 

(ROI2 × mod1) × open 
nodes 

0.01 0.01 0.00 – 0.02 2.35 0.019 

(ROI1 × mod1) × sent 
onset 

-1.10 0.59 -2.27 – 0.06 -1.86 0.063 

(ROI2 × mod1) × sent 
onset 

0.14 0.34 -0.53 – 0.81 0.41 0.679 

(ROI1 × mod1) × sent 
offset 

1.46 0.61 0.28 – 2.65 2.42 0.016 

(ROI2 × mod1) × sent 
offset 

0.19 0.35 -0.50 – 0.88 0.54 0.587 

N subj 52 

Observations 115743 

AIC 418480.764 
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Table S2. Summary of model output of BOLD activity in production with top-down predictor. ROI1 
refers to the contrast BA44 vs. BA45, ROI2 refers to the contrast BA44 & BA45 vs. pMTG. Mod 
stands for modality. AIC stands for Akaike Information Criterion, used for the production only 
models to determine model fit. 

 

   BOLD  

Predictors  Estimates  std. Error  CI  Statistic  p  

(Intercept)  -0.15  0.02  -0.18 – -0.11  -7.56  <0.001  

word rate  0.46  0.05  0.35 – 0.56  8.33  <0.001  

syllable  0.07  0.14  -0.21 – 0.35  0.50  0.620  

frequency  0.08  0.07  -0.06 – 0.22  1.15  0.250  

surprisal  0.15  0.03  0.09 – 0.22  4.78  <0.001  

ROI1  0.00  0.01  -0.02 – 0.02  0.12  0.905  

ROI2  0.00  0.01  -0.01 – 0.01  0.05  0.958  

top-down  0.51  0.19  0.14 – 0.88  2.73  0.006  

bottom-up  -0.42  0.10  -0.61 – -0.23  -4.41  <0.001  

surprisal * ROI1  0.06  0.04  -0.01 – 0.14  1.75  0.080  

surprisal * ROI2  0.03  0.02  -0.01 – 0.07  1.49  0.136  

ROI1 * top-down  0.10  0.15  -0.20 – 0.40  0.67  0.501  

ROI2 * top-down  -0.11  0.09  -0.28 – 0.07  -1.22  0.224  

ROI1 * bottom-up  -0.10  0.10  -0.29 – 0.09  -1.03  0.303  

ROI2 * bottom-up  0.03  0.06  -0.08 – 0.14  0.50  0.617  

N subj  16  

Observations  45099  

AIC  170821.3 
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Table S3. Summary of model output of BOLD activity in production with early top-

down predictor. ROI1 refers to the contrast BA44 vs. BA45, ROI2 refers to the contrast 

BA44 & BA45 vs. pMTG. Mod stands for modality. AIC stands for Akaike Information 

Criterion, used for the production only models to determine model fit. 

 

   BOLD  

Predictors  Estimates  std. Error  CI  Statistic  p  

(Intercept)  -0.15  0.02  -0.19 – -0.11  -7.88  <0.001  

word rate  0.47  0.05  0.37 – 0.58  8.69  <0.001  

syllable  0.07  0.14  -0.21 – 0.35  0.49  0.622  

frequency  0.06  0.07  -0.08 – 0.21  0.90  0.370  

surprisal  0.16  0.03  0.09 – 0.22  4.83  <0.001  

ROI1  0.00  0.01  -0.02 – 0.02  0.12  0.906  

ROI2  0.00  0.01  -0.01 – 0.01  0.06  0.956  

early top-down  0.33  0.20  -0.06 – 0.72  1.64  0.100  

bottom-up  -0.35  0.10  -0.55 – -0.16  -3.54  <0.001  

surprisal * ROI1  0.06  0.04  -0.01 – 0.14  1.78  0.076  

surprisal * ROI2  0.03  0.02  -0.01 – 0.07  1.42  0.155  

ROI1 * early top-down  0.10  0.12  -0.14 – 0.35  0.85  0.397  

ROI2 * early top-down  -0.17  0.07  -0.31 – -0.03  -2.34  0.020  

ROI1 * bottom-up  -0.09  0.09  -0.27 – 0.08  -1.04  0.296  

ROI2 * bottom-up  0.04  0.05  -0.07 – 0.14  0.68  0.494  

N subj  16  

Observations  45099  

AIC  170803.9  
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Table S4. Summary of model output of BOLD activity in production with chunked top-

down predictor. ROI1 refers to the contrast BA44 vs. BA45, ROI2 refers to the contrast 

BA44 & BA45 vs. pMTG. Mod stands for modality. AIC stands for Akaike Information 

Criterion, used for the production only models to determine model fit. 

 

  BOLD 

Predictors Estimates  std. Error CI Statistic p 

(Intercept) -0.16 0.02 -0.19 – -0.12 -8.16 <0.001 

word rate 0.49 0.05 0.38 – 0.59 9.01 <0.001 

syllable 0.06 0.14 -0.22 – 0.34 0.40 0.691 

frequency 0.05 0.07 -0.09 – 0.19 0.64 0.522 

surprisal 0.15 0.03 0.09 – 0.21 4.63 <0.001 

ROI1 0.00 0.01 -0.02 – 0.02 0.12 0.906 

ROI2 0.00 0.01 -0.01 – 0.01 0.05 0.956 

chunked top-down 0.18 0.11 -0.04 – 0.40 1.60 0.109 

bottom-up -0.28 0.08 -0.45 – -0.12 -3.38 0.001 

surprisal * ROI1 0.06 0.04 -0.01 – 0.13 1.75 0.080 

surprisal * ROI2 0.03 0.02 -0.01 – 0.07 1.50 0.133 

ROI1 * chunked top-
down 

0.02 0.09 -0.15 – 0.19 0.21 0.830 

ROI2 * chunked top-
down 

-0.05 0.05 -0.15 – 0.05 -0.98 0.326 

ROI1 * bottom-up -0.07 0.09 -0.24 – 0.10 -0.83 0.409 

ROI2 * bottom-up 0.00 0.05 -0.10 – 0.10 0.04 0.971 

N subj 16 

Observations 45099 

AIC 170837.3 
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Table S5. Summary of model output of BOLD activity in production and comprehension, 

including the temporal derivative (der) of all predictors of interest. ROI1 refers to the 

contrast BA44 vs. BA45, ROI2 refers to the contrast BA44 & BA45 vs. pMTG. Mod 

stands for modality. AIC stands for Akaike Information Criterion, used for the production 

only models to determine model fit. 

 

  BOLD 

Predictors Estimates   std. Error           CI Statistic p 

(Intercept) -0.17 0.01 -0.20 – -0.15 -13.83 <0.001 

word 0.51 0.05 0.41 – 0.60 10.21 <0.001 

syllable 0.24 0.12 0.01 – 0.46 2.02 0.043 

frequency 0.13 0.05 0.04 – 0.22 2.72 0.007 

top-down der 0.05 0.36 -0.64 – 0.75 0.15 0.879 

ROI1 -0.01 0.01 -0.03 – 0.01 -0.95 0.343 

ROI2 0.00 0.01 -0.01 – 0.02 0.25 0.804 

mod1 -0.04 0.01 -0.06 – -0.02 -3.64 <0.001 

bottom-up der 0.17 0.18 -0.19 – 0.53 0.94 0.346 

surprisal der 0.07 0.12 -0.17 – 0.31 0.59 0.556 

open nodes der -0.03 0.06 -0.15 – 0.08 -0.60 0.547 

sent onset der -0.87 1.29 -3.40 – 1.66 -0.67 0.501 

sent offset der -1.56 1.19 -3.89 – 0.77 -1.32 0.188 

top-down 0.08 0.17 -0.25 – 0.42 0.49 0.628 

bottom-up -0.10 0.12 -0.34 – 0.14 -0.83 0.409 

surprisal 0.16 0.02 0.11 – 0.21 6.71 <0.001 

open nodes 0.03 0.02 -0.01 – 0.06 1.66 0.097 

sent onset -1.33 0.56 -2.43 – -0.23 -2.38 0.017 

sent offset 1.38 0.62 0.17 – 2.58 2.24 0.025 

top-down der × ROI1 0.38 0.25 -0.12 – 0.87 1.49 0.135 

top-down der × ROI2 -0.28 0.15 -0.56 – 0.01 -1.90 0.058 

top-down der × mod1 -0.20 0.36 -0.90 – 0.50 -0.57 0.570 

ROI1 × mod1 -0.01 0.01 -0.03 – 0.01 -0.98 0.325 
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ROI2 × mod1 -0.01 0.01 -0.03 – -0.00 -2.06 0.040 

ROI1 × bottom-up der 0.05 0.17 -0.29 – 0.39 0.27 0.785 

ROI2 × bottom-up der 0.06 0.10 -0.14 – 0.25 0.57 0.568 

mod1 × bottom-up der 0.13 0.18 -0.23 – 0.48 0.69 0.491 

mod1 × surprisal der -0.42 0.12 -0.66 – -0.18 -3.40 0.001 

ROI1 × surprisal der -0.00 0.07 -0.13 – 0.12 -0.07 0.942 

ROI2 × surprisal der -0.20 0.04 -0.28 – -0.13 -5.44 <0.001 

ROI1 × open nodes der -0.00 0.05 -0.11 – 0.10 -0.05 0.963 

ROI2 × open nodes der 0.09 0.03 0.03 – 0.15 2.81 0.005 

mod1 × open nodes der 0.08 0.06 -0.03 – 0.20 1.42 0.155 

ROI1 × sent onset der -0.16 1.14 -2.39 – 2.07 -0.14 0.888 

ROI2 × sent onset der 0.12 0.66 -1.17 – 1.41 0.18 0.855 

mod1 × sent onset der 2.34 1.27 -0.15 – 4.84 1.84 0.066 

ROI1 × sent offset der 0.87 1.24 -1.56 – 3.29 0.70 0.484 

ROI2 × sent offset der -2.07 0.71 -3.48 – -0.67 -2.90 0.004 

mod1 × sent offset der -2.29 1.17 -4.59 – 0.01 -1.95 0.051 

ROI1 × top-down -0.02 0.15 -0.31 – 0.26 -0.16 0.870 

ROI2 × top-down -0.40 0.09 -0.57 – -0.23 -4.71 <0.001 

mod1 × top-down -0.57 0.17 -0.90 – -0.23 -3.34 0.001 

ROI1 × bottom-up -0.04 0.13 -0.30 – 0.22 -0.29 0.769 

ROI2 × bottom-up 0.29 0.08 0.14 – 0.44 3.82 <0.001 

mod1 × bottom-up 0.40 0.12 0.16 – 0.64 3.28 0.001 

mod1 × surprisal 0.02 0.02 -0.03 – 0.06 0.66 0.506 

ROI1 × surprisal 0.08 0.02 0.04 – 0.12 3.79 <0.001 

ROI2 × surprisal 0.01 0.01 -0.01 – 0.04 1.02 0.307 

ROI1 × open nodes 0.02 0.01 -0.00 – 0.04 1.78 0.076 

ROI2 × open nodes 0.01 0.01 -0.00 – 0.02 1.13 0.258 

mod1 × open nodes 0.04 0.02 0.01 – 0.07 2.53 0.011 
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ROI1 × sent onset -0.80 0.68 -2.12 – 0.53 -1.18 0.239 

ROI2 × sent onset -0.46 0.39 -1.22 – 0.31 -1.17 0.241 

mod1 × sent onset -0.18 0.56 -1.28 – 0.91 -0.33 0.744 

ROI1 × sent offset 1.14 0.70 -0.23 – 2.51 1.63 0.103 

ROI2 × sent offset 0.40 0.40 -0.39 – 1.19 0.98 0.326 

mod1 × sent offset 0.98 0.58 -0.15 – 2.11 1.69 0.090 

top-down der × ROI1 × mod1 -0.23 0.25 -0.73 – 0.26 -0.92 0.358 

top-down der × ROI2 × mod1 0.58 0.15 0.29 – 0.87 3.97 <0.001 

(ROI1 × mod1) × bottom-up der -0.06 0.17 -0.40 – 0.28 -0.33 0.745 

(ROI2 × mod1) × bottom-up der -0.07 0.10 -0.26 – 0.13 -0.68 0.496 

(ROI1 × mod1) × surprisal der -0.25 0.07 -0.38 – -0.12 -3.81 <0.001 

(ROI2 × mod1) × surprisal der 0.06 0.04 -0.02 – 0.13 1.56 0.119 

(ROI1 × mod1) × open nodes der -0.02 0.05 -0.13 – 0.08 -0.43 0.666 

(ROI2 × mod1) × open nodes der -0.10 0.03 -0.16 – -0.04 -3.24 0.001 

(ROI1 × mod1) × sent onset der -0.52 1.14 -2.76 – 1.71 -0.46 0.647 

(ROI2 × mod1) × sent onset der -1.22 0.66 -2.51 – 0.07 -1.85 0.064 

(ROI1 × mod1) × sent offset der -0.82 1.24 -3.24 – 1.61 -0.66 0.509 

(ROI2 × mod1) × sent offset der -0.78 0.71 -2.18 – 0.63 -1.08 0.278 

(ROI1 × mod1) × top-down -0.08 0.15 -0.37 – 0.20 -0.57 0.567 

(ROI2 × mod1) × top-down 0.02 0.09 -0.15 – 0.18 0.21 0.836 

(ROI1 × mod1) × bottom-up 0.02 0.13 -0.24 – 0.28 0.13 0.895 

(ROI2 × mod1) × bottom-up -0.09 0.08 -0.24 – 0.06 -1.16 0.246 

(ROI1 × mod1) × surprisal 0.02 0.02 -0.02 – 0.06 0.83 0.408 

(ROI2 × mod1) × surprisal -0.01 0.01 -0.04 – 0.01 -0.91 0.363 

(ROI1 × mod1) × open nodes 0.02 0.01 0.00 – 0.04 2.43 0.015 

(ROI2 × mod1) × open nodes 0.02 0.01 0.01 – 0.03 3.22 0.001 

(ROI1 × mod1) × sent onset -1.41 0.68 -2.74 – -0.08 -2.08 0.037 

(ROI2 × mod1) × sent onset -0.45 0.39 -1.21 – 0.32 -1.15 0.249 
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(ROI1 × mod1) × sent offset 1.73 0.70 0.36 – 3.10 2.48 0.013 

(ROI2 × mod1) × sent offset 0.83 0.40 0.04 – 1.62 2.06 0.039 

N subj 52 

Observations 115743 

AIC 418183.922 
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Table S6. Summary of model output of the pause length preceding each word’s 

production. AIC stands for Akaike Information Criterion, used for the production only 

models to determine model fit. 

 

   pause length 

Predictors  Estimates  std. Error  CI  Statistic  p  

(Intercept)  0.15  0.02  0.11 – 0.19  7.11  <0.001  

frequency 0.00  0.00  -0.00 – 0.00  0.36  0.722  

surprisal 0.02  0.00  0.02 – 0.03  11.22  <0.001  

syllables -0.03  0.01  -0.04 – -0.02  -5.36  <0.001  

bottom-up -0.02  0.00  -0.03 – -0.02  -10.36  <0.001  

open nodes  -0.03  0.00  -0.03 – -0.02  -13.66  <0.001  

top-down  0.10  0.01  0.08 – 0.11  10.66  <0.001  

N subj  16  

Observations  45079  

AIC  82830.780  
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Table S7. Summary of model output of word duration. AIC stands for Akaike 

Information Criterion, used for the production only models to determine model fit. 

 

   word duration  

Predictors  Estimates  std. Error  CI  Statistic  p  

(Intercept)  0.27  0.01  0.25 – 0.29  28.22  <0.001  

frequency  -0.02  0.00  -0.02 – -0.01  -15.44  <0.001  

surprisal  0.00  0.00  0.00 – 0.01  9.38  <0.001  

syllables  0.08  0.00  0.08 – 0.09  22.50  <0.001  

bottom-up  0.01  0.00  0.01 – 0.01  12.61  <0.001  

open nodes  -0.00  0.00  -0.00 – -0.00  -5.35  <0.001  

top-down  -0.05  0.00  -0.05 – -0.04  -20.05  <0.001  

N subj  16  

Observations  45079  

AIC  -42830.283  
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