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Abstract

Studies of the hydrogen molecule interacting with ultrashort laser pulses allow for the

understanding of many molecular quantum phenomena in the simplest possible molecule.

In a transient-absorption experiment with H2 in the spectral range 13-17eV, transitions

from the molecular ground state to the electronically excited B, C and D states are driven

by extreme-ultraviolet (XUV) light, and a second near-infrared (NIR) laser is then used

to access other dark states. The aim of this project is to implement the simplest pos-

sible multi-level simulation based on light-matter interaction theory which can already

reproduce the experimental results, and understand with it the importance of different

excited-state couplings to the changing absorption features. The included energy levels

of the eigenstates of H2 are calculated numerically, as well as the dipole matrix elements

for the considered transitions. Intensity-dependent changes in the XUV absorption spec-

trum in the presence of a moderately strong NIR field are observed, as well as changes

in the revival time of the simulated wavepacket of the D states. In order to obtain Fano

line-shaped resonances, different implementations of a predissociating continuum are

examined. And finally, the effects introduced by a changing time delay between the two

pulses are studied.

Zusammenfassung

Untersuchungen des Wasserstoffmoleküls und seiner Wechselwirkung mit ultrakur-

zen Laserimpulsen ermöglichen das Verständnis vieler quantenmolekularer Phänomene

im kleinsten neutralen Molekül. In einem Transienten-Absorptionsexperiment mit H2

im Spektralbereich 13-17eV werden Übergänge vom molekularen Grundzustand in die

elektronisch angeregten B-, C- und D-Zustände durch extrem ultraviolettes (XUV) Licht

angeregt, und ein zweiter Nahinfrarot-Laser (NIR) wird anschließend verwendet, um an-

dere Dunkelzustände zu erreichen. Das Ziel dieses Projekts ist die Implementierung der

einfachst möglichen Multiniveau-Simulation auf der Grundlage der Theorie der Licht-

Materie-Wechselwirkung, die bereits die experimentellen Ergebnisse reproduzieren kann,

und damit die Bedeutung der unterschiedlichen Kopplungen angeregter Zustände für

die sich ändernden Absorptionseigenschaften verstehen. Die enthaltenen Energieniveaus

der Eigenzustände von H2 werden numerisch berechnet, ebenso wie die Dipolmatrix-

elemente für die betrachteten Übergänge. Es werden intensitätsabhängige Änderungen

des XUV-Absorptionsspektrums in Gegenwart eines moderat starken NIR-Feldes be-

obachtet, ebenso wie Änderungen der Erholungszeit des simulierten Wellenpaket der

D-Zustände. Um Fano-Linienresonanzen zu erhalten, werden verschiedene Implemen-

tierungen eines prädissoziierenden Kontinuums untersucht. Und schließlich werden die

Auswirkungen einer wechselnden Zeitverzögerung zwischen den zwei Pulsen betrachtet

werden.
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1 Introduction
Since the early development of quantum theory at the beginning of the twentieth cen-

tury, the hydrogen molecule has attracted a great interest as an object of study for the sci-

entific community. With only two nuclei and two electrons, it is the simplest neutral molec-

ular system. Despite its relative simplicity, the four-body-motion problem describing this

molecule is analytically not solvable, meaning, in the quantum case, that the Time-Dependent

Schrödinger Equation (TDSE) does not have an analytical solution. Therefore, the introduc-

tion of simulations and approximations has been a very popular approach for studying this

system. This approach is chosen for the following project as well.

The first laser device was built in 1960 by T. H. Maiman [1], who used ruby to create

a solid-state laser. For science, engineering, medicine and surgery, the developments that

followed the operation of that first ruby laser were remarkable. In particular, innovative tech-

niques for studying and controlling dynamics of quantum systems were developed, leading

to many Nobel Prizes. The most recent edition in 2022, was awarded to Alain Aspect, John

F. Clauser and Anton Zeilinger. In their experiments, laser devices were used to create entan-

gled pairs of photons, and the results establish the violation of Bell inequalities, which can

be regarded as pioneering work for quantum information science [2–5].

The performance of the laser-absorption experiment, the details of which are described

in [6], as well as summarized in section 2 of this thesis, gave a very particular insight in

the excited-state dynamics of the H2 molecular system. The conducted experiment studied

the interaction of H2 with two ultrashort laser pulses, in the eXtreme UltraViolet (XUV)

and in the Near Infrared (NIR) regions, respectively. The experimental setup is similar to

the one used in the so-called pump probe experiments, which have been widely used in the

past in order to obtain direct information about the dynamics of light-matter interactions of

atoms and molecules [7–12]. In pump-probe experiments, the pump pulse initiates a sample

response and then, a probe pulse monitors the response, usually with a lower optical intensity

that does not significantly affect the sample. However, the present experiment aims not only

to observe the dynamics of the system, but also to control them. It uses an XUV laser pulse to

access the excited states of the system and then, makes use of the NIR laser in order to couple

those excited states to others and access dark states of the system. The experiment is in the

spectral range of 13-17 eV, which has also been looked at in other previous experimental

works [13–16].

Past studies have already demonstrated laser control of quantum dynamics. The dynam-

ics of the wavepacket are observed [16–22] and coherent control is also a broad research

topic [23, 24]. The revival time of the wavepacket is a common observable [25, 26]. In the

present work, a wavepacket consisting in the superposition of vibrationally excited states of
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the nuclear motion within the D-potential-energy curve will be reconstructed. Moreover, the

possibility of changing the revival time using the NIR light is studied, combining the exper-

imental results with the performed simulations, as will be published in [27]. The aim of the

thesis is to create the most simple model simulation that can explain the key experimental

results, such as line width and shape.

The thesis is structured in six chapters. After a brief introduction, the experimental de-

tails motivating the multi-level simulations performed are described in section 2. Section 3

consists in a summary of the most relevant theoretical concepts for the thesis. In section 4,

the details of the multi-level simulation are described, as well as the codes used to gather the

information on the energy states and the eigenvectors of the hydrogen molecule, needed for

the computation of the time evolution. The results of the multi-level simulation are shown in

section 5. Finally, the conclusions are presented.
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2 Experimental motivation
The current work came motivated by the results of an absorption experiment with the

hydrogen molecule, which will be shortly explained in the following section. For more details

on the experimental setup, the reader is referred to [6].

The experiment made use of the transient absorption spectroscopy technique, as shown in

fig.1. Two pulses illuminated the target, a NIR pulse (central wavelength of 780 nm) and an

XUV pulse, generated by High-Harmonics Generation (HHG).

The original, short (∼5fs) NIR pulse is focused on Xenon gas, generating the higher

harmonics that constitute the XUV pulse. In order to regulate the intensity of the NIR field,

an iris aperture is implemented, which makes use of the smaller divergence of the XUV beam,

in comparison to the NIR one.

At this point, the two pulses travel together, but it is desirable to separate them, in order

to study the time delay, τ , between the pulses as an experimental parameter. This is done

with the interferometric spit mirror and the refocusing toroidal mirror, as indicated in fig.1,

by means of using again the difference in divergence of the two beams.

The residual NIR light that was not delayed is removed using an Indium filter 200 nm

thick. The combination of the mirrors and the filter completely separate the pulses, that

now have a concrete and measurable time delay between them. The obtained XUV radiation

spans energetically between 13 and 17 eV, in which vibronic transitions between the ground

molecular state and excited electronic and vibronic states exist. The relevant transitions will

be detailed in a posterior section.

These two pulses go through a second iris, in order to eliminate stray light, and hit then

the H2 target. The NIR light is filtered out and the XUV signal is detected by a Charge-

Coupled Device (CCD) camera, after being dispersed by a non-linear grating. A calibration

for the relationship between the energy and the position of the camera is therefore needed.
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Figure 1: Experimental set-up of the absorption experiment with hydrogen target. From the

original NIR pulse, another ultrashort XUV pulse is generated by HHG. The two pulses are

separated in time by an interferometric split mirror and an indium filter, which removes the

residual overlapping NIR radiation. The two pulses (XUV and NIR) hit the H2 target with

a time delay, τ , between them. Finally, the NIR light is filtered out, and the XUV light is

projected and detected on a CCD camera. Figure from [6].

Some brief comments about the NIR pulse preparation are also presented in the follow-

ing, but again the reader is to previous jobs [28] for more details. A schematic representation

of the process is presented in fig.2. A 20 fs NIR pulse is s the output of a TiSa laser system

consisting of an oscillator and a multi-pass amplifier, Femtopower HR/HE CEP by Femto-

lasers GmbH. By means of a doubly-differentially pumped hollow-core fibre, the bandwidth

of the pulse is broadened, such that a broad spectrum centred at 1.6 eV is obtained. The pulse

then is again compressed by being repeatedly reflected in a system of chirped mirrors. The

prepared pulse has then a Full Width at Half Maximum (FWHM) of 4.7 fs and energy of

about 1 mJ (the original energy of the pulse leaving the laser amplifier is 3 mJ).

Note the reader that the pulse is prepared to be Carrier-Envelope Phase (CEP) stable,

meaning that the carrier and envelope peaks are locked, and there will not be a displacement

between them. Experimentally, this is important for the HHG process. Moreover, since in

the simulation no displacement was introduced, the simulated pulses are also CEP stable.

Therefore, a greater consistency between experiment and simulation was achieved.
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Figure 2: Scheme of the short NIR pulse preparation. The pulse is amplified in the laser

cavity, band-broaded by a doubly differentially pumped hollow fibre and compressed again

by a system of chirped mirrors. Figure from [28].

A typical absorption line, which could be observed in the experiment, is shown in fig.3, on

the left side. On the right side, the optical density is shown for different NIR intensities. As it

can be seen, incrementing the intensity of the NIR light causes line-shape changes and some

lines get to be more visible. Reproducing this kind of results is the aim of the performance of

the simulations, as it will be shown in the results section.

Figure 3: Example of experimentally measured spectra. On the left, one absorption spectrum

measured from the experiments. In green, the theoretical values of the D energy levels can be

observed. On the lower part, some more lines could be observed, which come mostly from C

levels. On the right, several spectra are plot for increasing (lighter to darker) NIR intensity.

The changes on the line-shape created by the NIR pulse will be investigated in the following.

Summarizing, with this experimental set-up, a transient-absorption spectroscopy experi-

ment was realized. The results of this experiment raise interesting questions about the origin

of the observed phenomena. The aim of this work will be to simulate this experimental con-

ditions and use simplified theoretical methods in order to replicate and explain the observed

results. In the next section, the relevant theoretical concepts used in the simulation will be

presented.

5



3 Theoretical Framework

In this section, a short explanation of the relevant theoretical concepts for this work will

be presented. First, the system of units used along the thesis will be described. Next, the

main aspects of light-matter interaction which take place in the experiment will be exposed.

Finally, a summary of the features of the particular target, the H2 molecule is presented.

3.1 Atomic Units

Atomic units were used in this work. In this unit system, some of the relevant nature

constants are set to one, such that the equations get simplified. The affected quantities are:

• The reduced Planck constant ℏ = 1.

• The elementary charge e = 1.

• The Bohr radius a0 = 1.

• The electron mass me = 1.

• The quotient 1
4πϵ0

= 1

In atomic units, one time unit corresponds to t = 1 a.u. ≈ 24.189 as and one energy

unit, E = 1a.u. ≈ 27.211 eV. The intensity units follow the conversion I = 1 a.u. =

3.51× 1016W/cm2 and the field strength E = 1 a.u. = 5.142× 1011V/m.

Atomic units are usually abbreviated as “a.u.”. Not to be confused with the arbitrary units,

which will be referred to as “arb.u.” during this work.

3.2 Light-Matter interaction

A short summary of the most important concepts when studying light-matter interaction,

will be now presented. In fig.4, a schematic representation of the absorption phenomena is

shown.
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Figure 4: Schematic representation of a light beam interacting with a medium, which absorbs

part of the photons that travel through it. The absorption is quantified by Lambert-Beer’s law.

The experiment presented in the previous section provides as a result the intensity signal

for each photon energy of the light that travelled through the medium. The most important

quantity in this absorption experiments is the Optical Density (OD), which allows for the

comparison of the light intensity before and after going through the medium. The Optical

Density is defined as follows,

OD(ω) = −log10

(
I(ω)

I0(ω)

)
. (1)

The experimental optical density was obtained using this equation. In order to do so, the

reference intensity I0(ω) needs to be defined. One way of defining the reference intensity

would be to use the directly measured intensity from the experiment when no target interacts

with the laser. In this case, the absolute optical density is measured, which has always a

higher intensity than the signal with target. For the current experimental data, the reference

consisted of a low pass-filtered version of the signal with the target. This produces a smooth

curve, which resembles the light before the interaction. By this calculation, the so called

pseudo-optical density is obtained from the measured signal and the reconstructed reference.

An example of so can be seen in fig.5. This procedure does not take into account the general

non-resonant absorption of light in a medium. For this reason, the signal can sometimes have

a higher intensity than the reference, and the pseudo-optical density can be negative, while

the absolute optical density cannot.
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Figure 5: Measured spectrum and reference obtained by Fourier transforming the measured

spectra and applying a low-pass filter. With this reference, the so-called pseudo-optical den-

sity is obtained. As it can be seen, in this case, the reference can have a smaller intensity than

the measured spectrum, which leads to negative values of the pseudo-optical density.

On the one hand, the Lambert-Beer’s law is considered (see fig.4), which relates the light

intensity I(ω, z) after going through a medium with macroscopic absorption coefficient α(ω)

for a distance of interaction z and the original intensity, I0(ω). It reads

I(ω, z) = I0(ω)e
−α(ω)z. (2)

The macroscopic absorption coefficient is related to the molecular cross-section for any

particular interaction, σ(ω), via the number of illuminated molecules, ρN . The cross-section

represents the probability that a molecule interacts with an incident photon of energy ℏω. The

relation is then given by

α(ω) = ρNσ(ω). (3)

Let us now on the other hand consider the wave equation of a light beam, represented by

the electric field E, propagating in homogeneous media without currents or charges

(
∇2 − 1

c2
∂2

∂t2

)
E(x, t) = µ0

∂2

∂t2
P(x, t), (4)

where c is the speed of light in vacuum, µ0 stands for the vacuum permeability and P(x, t)
is the linear polarization of the medium. For our particular problem, z is chosen to be the

propagation direction. Therefore, the following one-dimensional equation can be used
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(
∂2

∂z2
− 1

c2
∂2

∂t2

)
E(z, t) = µ0

∂2

∂t2
P (z, t). (5)

The linear polarization can be obtained from the susceptibility of the medium via the

following integral

P (z, t) = ϵ0

∫ ∞

0

χ(τ)E(z, t− τ) dτ, (6)

which, by taking a Fourier transformation on both sides, transforms in the following relation

in frequency space.

P̃ (z, ω) = ϵ0χ(ω)Ẽ(z, ω) (7)

In general, χ(ω) is a tensor quantity. However, for linear, homogeneous and isotropic

media, as in our case, it is a scalar quantity, and the previous relation holds.

Assuming a plane wave for the electric field and inserting this expression in equation (5),

the dispersion relation can be obtained, given by

k2 − ω2

c2
(1 + χ(ω)) = 0, (8)

where k represents the wave number. The dispersion relation is usually given as a function of

the index of refraction n, which relates to the susceptibility as n =
√
1 + χ. Note now, that

χ(ω) is a complex quantity, which can be decomposed in its real and imaginary parts, as

χ(ω) = χ′(ω) + iχ′′(ω). (9)

In the relevant case of a diluted gas sample, χ(ω) is some orders of magnitude smaller

than unity. By Taylor-expanding and inserting the previous relation in the dispersion relation,

the wave number can be approximated by

k ≈ ω

c

(
1 +

χ′(ω)

2
+
iχ′′(ω)

2

)
. (10)

The real part of the complex wave number is related to the dispersion of the medium,

and the imaginary part quantifies the absorption of the medium. Therefore, the imaginary

part must be related to the macroscopic absorption coefficient, and indeed, the following

expression holds
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α(ω) =
ω

c
χ′′(ω). (11)

Inserting this expression in equation (3), one finally arrives to the relevant expression for

the cross-section, given by

σ(ω) =
1

ρN

ω

c
Im(χ) =

ω

cϵ0
Im

(< µ(ω) >

E(ω)

)
, (12)

for which equation (7) was also used. < µ(ω) > is the average dipole moment per unit

volume, and its expected value is related to the Polarization P̃ (z, ω), interpreted as the dipole

moment per unit volume, via the number of molecules, ρN . The expected value of the dipole

moment is the quantity that will be theoretically calculated in the simulation.

By using this result in the expression for the Lambert-Beer’s law, the relevant expression

for the OD is found, which reads

OD(ω) = −log10

(
I(ω)

I0(ω)

)
=
σ(ω)

ln10
· ρN · l. (13)

As expected, the absorption of the medium is directly proportional to the cross-section of

the interaction, the number of absorbers (molecules, in our case) ρN and the distance that the

light travelled in the medium, l. From this expression, the optical density will be calculated

in the simulations.

3.3 The Hydrogen molecule

This work focuses on the study of the Hydrogen molecule, H2. Therefore, some relevant

concepts about the structure and the possible transitions of the molecule in interaction with a

light-field will now be presented. This section consist mostly of a summary from the works

of [29].

3.3.1 Born-Oppenheimer approximation

The Born-Oppenheimer (B-O) approximation, which forms the basis of all molecular

structure theory, will be briefly introduced in this section.

The key idea of the approximation is to take into account the large difference in mass

between electrons (me) and nuclei (M ),

me

M
∼ 10−3...10−5,

which causes the movement of electrons and nuclei to happen on very different timescales. In
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the B-O approximation it can be considered that, on a timescale relevant for the rapid motion

of the electrons, the nuclei are fixed in space.

Mathematically, this corresponds to the separation of the molecular wave function Ψ,

which is a function of all the electronic (ri) and nuclei (R) positions, into an electronic and

a nuclear factor, meaning

Ψ(r1, r2, ..., rN ,R) = ϕ(r1, r2, ..., rN )ψ(R) ≡ ϕ(r)ψ(R) (14)

The sum of the kinetic energies of electrons and nuclei and the interaction potential gives

the total Hamiltonian

H = Tn(R) + Tel(r) + V (R, r), (15)

from which follows the Schrödinger equation in the form

HΨ(r,R) = [Tn(R) + Tel(r) + V (R, r)]Ψ(r,R) = EΨ(r,R). (16)

The Born-Oppenheimer approximation is now applied to these equations. The electronic

part of the Hamiltonian at a fixed value of R is

H(el) = H − Tn(R) = Tel(r) + V (r;R) (17)

and the corresponding Schrödinger equation for the electronic part reads

Helϕγ(r;R) = [Tel(r) + V (r;R)]ϕγ(r;R) = Vγ(R)ϕγ(r;R), (18)

where now R is simply a parameter. The semicolon in the electronic wave function and the

potential is meant to emphasize this. Generally, there will be a set of solutions ϕγ(r;R)

indicated by γ, for this equation, which are the electronic quantum numbers. The electronic

energy Vγ(R) for each solution is a continuous function of R called the molecular potential.

In [4] a detailed calculation of the potentials is presented, by solving equation (18). The

solution will instead be presented directly in the next section.

3.3.2 Potential curves of H2

The most accurate way to obtain the potential curves is by experimental means. The

potential energy is measured for each R position and the curve is obtained. Alternatively,

one can experimentally measure the resonance energies and reconstruct the curves from the

energy positions.
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The equation for the Morse potential is now presented, which is the most used theoretical

model to describe the potential curves. Notice the physical significance of the parameters in

the expression

VM(R) = Edis[1− e−a(R−R0)], (19)

whereR is the inter-nuclei separation andR0 represents the equilibrium distance between the

nuclei. Edis represents the dissociation energy, meaning, the energy at which the molecule

does not stay bound any more. Lastly, the parameter a allows fitting the stiffness of the

potential. In fig.6 an example of a Morse potential is presented. It fits the experimental dots

very well. Note also that the harmonic approximation works quite well for the first vibrational

energy levels.

Figure 6: Example of a Morse potential to illustrate the parameters given in equation (19).

In this case, it corresponds to data for the ground level of the H2 molecule. The harmonic

approximation (dashed) is also plot in the image.

The H2 molecule is a homonuclear molecule, consisting of two atoms of hydrogen bound

together. The system is composed then by two nuclei and two electrons, and it’s the simplest

possible neutral molecule.

In fig.7 the potentials for the most important states of the H2 molecule are to see. The

equilibrium distance of H2 in the electronic ground state (X1Σ+
g ) is R0 = 0.07416 nm and the

dissociation Energy Edis = 4.476 eV. In the following section, the notation for the potential

curves will be explained.
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Figure 7: Potentials for the most important states of the H2 molecule (and H+
2 for compari-

son). The second plot is a zoomed version. The equilibrium distance of H2 in the electronic

ground state (X1Σ+
g ) is R0 = 0.07416 nm and the dissociation Energy Edis = 4.476 eV. The

relevant states for the current work are marked in yellow. Figure from [29].
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3.3.3 Notation and symmetries

In fig.7 one can see the names of the potentials make use of a specific notation, which

will be explained in the following section.

In contrast to atomic electrons, which move in a spherically symmetric potential, linear,

homonuclear molecules must be described using cylindrical coordinates, taking the molec-

ular axis as the z-axis. The assumption that the Hamiltonian does not depend on the polar

angle θ and commutes with the angular momentum operator L̂ does no longer hold, and the

angular momentum quantum number l is not a valid quantum number any more.

However, the projection of L̂ onto the molecular axis is still a conserved quantity, meaning

that the eigenvalues of L̂z, ml, are sensitive quantum numbers. Since the sign of ml has

in this case no influence on the energy, the new quantum number λ = |ml| is defined. λ

characterizes one-electron wave functions for diatomic molecules. Parallel to the atomic

designation (s, p, d...) the notation shown in table 1 is used.

Table 1: Notation for the quantum number for one-electron wave functions λ.

λ Notation

0 σ

1 π

2 δ

3 ϕ

... ...

Correspondingly, the z-component of the total orbital angular momentum is also con-

served, and it is defined as

L̂z =
∑
i

L̂zi with eigenvalues ML =
∑
i

mi. (20)

One can then characterize the total molecular state with several electrons with the quan-

tum number Λ = |ML| using capital Greek letters, as shown in table 2.
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Table 2: Notation for the quantum number for several electrons molecular state Λ.

Λ Notation

0 Σ

1 Π

2 ∆

3 Φ

... ...

The notation for the molecular states also refers to the total spin, S, defined as the sum of

the individual spin of the electrons as

Ŝ =
∑
i

Ŝi with
∣∣∣Ŝ∣∣∣ = √

S(S + 1)ℏ. (21)

Note that in this case the total spin is referred and not to the projection onto the molecular

axis. For the current case of the H2 molecule with two electrons, the sum of the two one-

electron spins Si = 1
2

can result on a singlet (S = 0) or a triplet (S = 1) for the total

molecular state.

One last important aspect to consider in the notation refers to the inversion of centre of

mass symmetry of homonuclear molecules. This transformation corresponds mathematically

to r→ -r, or in cylindrical coordinates, z → −z and ϕ→ ϕ+ π. Under this transformation,

the states can have even “g” or odd “u” parity, as follows

ϕg(r) = ϕg(-r)

ϕu(r) = −ϕu(-r). (22)

Summarizing all this information, molecular states are finally denoted as

2S+1Λg,u. (23)

For example, if one looks at the ground state of the hydrogen molecule, X1Σ+
g , one can

tell, according to equation (23), that it is a singlet state (S = 0) and has a total orbital angular

momentum of Λ = 1. Note, here the X indicates ground state. The following states also have

letters, which are alphabetically ordered with increasing energy. The + symbol here indicates

that this state has a positive total reflection symmetry, since it results from two 1sσ, which also
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have positive reflection symmetry. In the case of the Π states, positive and negative reflection

symmetric states are degenerate, and this symbol is therefore left out for simplicity.

The full name of the state as can be seen in fig.7 also includes the highest in energy

occupied electronic orbital of the electronic configuration (i.e. 1sσ for the ground state).

Since this part is not relevant for the current work, it will be left out for the rest of the text,

since the name of the states is already completely identifying the state.

Now that the molecular states have been categorized, one must also determine which

transitions induced by the laser systems are allowed. The symmetry selection rules for the

most probable vibrational transitions (the dipole transitions or E1 transitions) will be now

stated

∆Λ = 0,±1

∆S = 0. (24)

Note that, like in the atomic case, the total electron spin is conserved in the dipole tran-

sitions, meaning that transitions between singlet and triplet states are also forbidden. In

addition, the total parity of the system must be conserved. Since the photon interacting with

the electron has odd parity, electronic transitions that do not change their parity are not al-

lowed. Allowed transitions must then follow g → u or u→ g. This rule for centrosymmetric

molecules is known as the Laporte rule. Note however that a change in the quantum number

Λ does not cause a change in parity, since it constitutes the projection of the total angular

momentum onto the z-axis.

Taking all that into account, and considering that our system is prepared in the ground

state, the following electronic transitions are allowed

X1Σ+
g → B1Σ+

u

X1Σ+
g → C1Πu

X1Σ+
g → D1Πu

but

X1Σ+
g ↛ EF 1Σ+

g (25)

since no change of parity is produced in the last considered case. However, the EF 1Σ+
g states

can be accessed from the other excited states (like D1Πu) by interaction with NIR photons.
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Also of relevance is the vibrational nuclear quantum number ν. In the following sections,

it will often be included as a subindex. This quantum number quantifies the energy level

inside a potential curve, analogous to the number operator in the harmonic oscillator. In fig.7

(a), some energy levels for the ground state represented can be seen.

Note also that the rotational quantum number J is not included in this notation. Only the

most likely transitions are considered, therefore only one J was considered for each of the

potential curves. The most likely allowed transitions must have ∆J = ±1. In table 3 the

values for the J number for each considered state are summarized. In further research, the

whole collection of rotational transitions should be considered.

Table 3: Rotational quantum numbers considered for each electronic potential curve. This

decision is based on the selection rule for most likely transitions ∆J = ±1 . The ground

state is considered to be in the lowest energetic state, meaning J = 0. The B,C and D states

are accessed from the ground state, therefore, they have J = 1. For the EF states, it was

possible to select J = 0 or J = 2, and the first option was then considered.

X1Σ+
g J = 0

B1Σ+
u J = 1

C1Πu J = 1

D1Πu J = 1

EF 1Σ+
g J = 0

3.4 Fano theory for configuration interaction

The hydrogen molecule has many potential curves, which energy states might present

degeneracy. When a bound state is embedded in a continuum, the resonant line shape exhibits

the so-called Fano shape, as it will be explained in this section.

This project works with a model simulation, which aims to explain the physical phenom-

ena leading to line-shape changes in the H2 molecule by including only the most relevant

energy levels. The continuum was at first not introduced in the simulation. In this configu-

ration, given that no NIR light is present, the absorption lines will exhibit a Lorentzian line

shape, which corresponds to the Fourier transform of an exponential decay in time, as one

would expect for an excitation/de-excitation process. The interaction of the H2 molecule

with the NIR photons alters this line shape. Nevertheless, since the continuum is naturally

present in the system, discrepancies in the line shape between experiment and simulation are

observed, which is discussed in the results section. Therefore, the introduction of the NIR

pulse was not enough to explain all the details of the line shape. For this reason, configu-
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ration interaction is introduced in the simulation, which transforms the Lorentzian lines into

Fano lines. In this section, the most relevant theoretical concepts behind this configuration

interaction are presented; and the Fano line shapes, and their relation to the Fano phases, are

introduced later. This section consists of a summary of the works of Fano, [30].

Fano’s theory for the configuration interaction describes the features of a quantum sys-

tem, in which a bound state |ϕ⟩ is embedded within a set of continuum states |χE⟩, meaning

that the energy of the bound state Eϕ has a degeneracy with some energies of the contin-

uum spectrum. This degeneracy causes an interaction between the bound state |ϕ⟩ and the

continuum set of states that is not mediated by a laser field, but is instead part of the config-

uration of the system. This interaction causes that the states |ϕ⟩ and |χE⟩ are not eigenstates

of the complete Hamiltonian of the system, but can be chosen as the basis states into which

the eigenstates of the system will be expanded. The following statements hold then for the

Hamiltonian of the system,

⟨ϕ|H |ϕ⟩ = Eϕ, (26)

⟨χE|H |ϕ⟩ = VE,

⟨χE|H |χE′⟩ = E δ(E − E ′),

(27)

where VE is the configuration interaction off-diagonal matrix element which describes the

non-dipole-induced interaction between the bound state and the continuum.

Let now |ΨE⟩ be the eigenstates of the system. In the new basis, they can be expanded in

terms of the old basis as

|ΨE⟩ = aE |ϕ⟩+
∫
dE ′ bEE′ |χE′⟩ , (28)

where for the eigenstates |ΨE⟩ is assumed that

⟨ΨE|H |ΨE⟩ = E. (29)

The problem consist now in the evaluation of the expansion coefficients aE and bEE′ . The

solution involves a long algebraic calculation, for which Fano’s paper [30] can be used as a

reference. Fano inserts the expansion of the eigenstates given in equation (28) in equation

(29), which results in two equations including both coefficients aE and bEE′ , and also uses

the normalization condition
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⟨ΨE|ΨE′⟩ = δ(E − E ′). (30)

With this, he founds expressions for both coefficients, which are

aE =
sin∆E

πVE
, (31)

bEE′ =
VE′

πVE

sin∆E

E − E ′ − δ(E − E
′) cos∆E.

where ∆E is given by

∆E = −arctan
π|VE|2

E − Eϕ − F (E)
(32)

F (E) represents an energy shift, given by

F (E) = P
∫
dE ′ |VE′|2

E − E ′ , (33)

where P denotes the principal value of the integral, solving for the pole at E = E ′.

Putting all these results together, one finds that the eigenstates can be expressed as

|ΨE⟩ =
sin∆E

πVE
|Φ⟩ − cos∆E |χE⟩ , (34)

with the modified bound state being

|Φ⟩ = |ϕ⟩+ P
∫
dE ′ |VE′ |2

E − E ′ |χE′⟩ . (35)

For convenience, a dimensionless quantity is defined to be the argument of the arctan in

equation (32)

ϵ =
E − (Eϕ + F (E))

Γ/2
=
E − EΦ

Γ/2
, (36)

where

Γ = 2π|VE|2. (37)

As it can be derived from equation (35), the new basis mixes the modified bound |Φ⟩ and

the continuum |χE⟩ states of the original basis. Moreover, as it can be asymmetric from the
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definition of the reduced energy ϵ, its expression will cause a rapid change in the expansion of

the state |ΨE⟩ aroundE = EΦ within the range Γ. For this reason,E = EΦ can be interpreted

as the energy position of the modified bound state and Γ as its width in energy space. Note

that its centre is displaced with respect to the original bound state energy resonance. As the

sine and cosine functions of the reduced energy are even and odd respectively, the two states

modified and |χE⟩ interfere constructively and destructively on each side of the central energy

EΦ, which causes the lines to have an asymmetric line shape.

In order to parametrize this asymmetry, the so called q-parameter is introduced, which is

defined as

q =
⟨Φ| T̂ |g⟩

πV ∗
E ⟨χE| T̂ |g⟩

, (38)

where T̂ is the transition operator. The q-parameter corresponds to the ratio of the transition

into the modified bound state divided by πV ∗
E (corresponding to the first term in equation

(34)) and the continuum states |χE⟩ (corresponding to the second term in equation (34)).

The reason why the complex conjugate V ∗
E appears is because, in order to parametrize the

transition, the final bra ⟨ΨE| state is used.

The Fano line shape is then given by the following expression

σ(E) ∝

[(
q + 2(E−Er)

Γ

)2

1 +
(

2(E−Er)
Γ

)2 − 1

]
aE

q2 + 1
+ bEE′ (39)

and represented for different asymmetry parameters in fig.8. As it can be seen, when no

configuration interaction is included (VE = 0) and q tends to infinity, the lines follow a

Lorentzian line shape. On the other hand, a finite value of q leads to an asymmetry in the line

shape. Far from resonance (|ϵ| ≫ 1), the relative transition probability is approaching 1, and

therefore, both sides of the resonance line tend to the same value. The Fano line shape can

be measured in experiment, since it is proportional to the cross-section σ, which is the direct

observable in a XUV transient-absorption experiment, related to the OD (see equation (13)).
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Figure 8: Examples of Fano lines for increasing q-parameter with respect to the reduced

energy ϵ. A finite value of q leads to an asymmetry in the line shape. For q tending to infinity,

the Lorentzian line shape is recovered.
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4 Multi-level model simulation
In this section, the main features of the used simulational methods are presented. The

section is divided in two parts. The first part explains the working principle of the two codes,

nucfix and rovib trans [31, 32], which were provided to us by the Saenz group. nucfix is

used in order to get the energy levels, the eigenvectors and the nuclear wave functions for

given potential curves. rovib trans provides the transition probabilities between the different

energy levels, in our case, vibronic levels in the hydrogen molecule.

In the second part, these “basic ingredients” are used to model the experiment explained

in section 2. The fundamental quantum-mechanical concepts, the ansatz and the used ap-

proximations in the code are explained in the following.

4.1 nucfix and rovib trans

In order to simulate the Hydrogen molecule and its interaction with two laser pulses, a

deep understanding of the features of this molecule is needed, meaning the energy levels and

nuclear wave functions for each electronic state, and also the transition probabilities between

states.

The code nucfix solves numerically the nuclear part of the Schrödinger equation, in order

to obtain the eigenvalues and eigenvectors, which correspond to the energy levels and nuclear

wave functions, expanded on a grid of the nuclear separation variable, R.

From the Born-Oppenheimer approximation section, recall that the total wave function of

the system could be written as (see equation (14)),

Ψ(r1, r2, ..., rN ,R) = ϕ(r1, r2, ..., rN )ψ(R) ≡ ϕ(r)ψ(R).

As it was explained in that section, the total Schrödinger equation of the system could be

factorized in a nuclear and an electronic part, and each of them could be solved separately.

The equation for the electronic part was then obtained. Analogously, one can focus on the

nuclear part, which would read as follows

H(n)ψ(R) = [Tn(R) + Vγ(R)]ψ(R) = Eψ(R), (40)

and solve for the nuclear wavefunctions ψ(R) and the energy levels. In this case, R is of

course not a fixed parameter. Recall, γ here stands for the (many) different electronic states.

To solve this equation, a numerical grid expansion for the potential curves Vγ(R) was

needed. This would be equivalent to solve equation (18) before calculating the nuclear part.

Instead, values from literature are used, in particular, the ones provided by [33].
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nucfix solves equation (40) in a box using a decomposition in B-splines, which details

are beyond the scope of the project. A basis of 600 B-splines and a box of size 24 a.u. ∼
12 Å were used for the calculation. From it, the set of energy levels {Ei} and nuclear wave

functions {ψi(R)} needed to simulate the molecule are obtained. In fig.9 the results from

nucfix for different relevant energy levels are presented.

Figure 9: Graphical representation of the results given by nucfix. On the left, the first bound

levels for the ground and the C1Πu (C) potential curves are to see, as well as the nuclear wave

function for some of them; on the right, the bound energy levels of the D1Πu (D) states are

presented.

Using the results obtained in nucfix, the code rovib trans calculates the transition prob-

abilities between the energy levels. Let Ŵ be the transition operator. The transition matrix

element from an initial state to a final one is given by

Ti→f = ⟨Ψf (r,R)| Ŵ |Ψi(r,R)⟩ ≈ ⟨Ψf (r,R)| d̂ |Ψi(r,R)⟩ ≡ di→f , (41)

where the dipole approximation was applied, meaning that the transition operator corresponds

in first order to the dipole operator, d̂. The transition probability between two states is given

by the square of the matrix element,

Pi→f = |Ti→f |2 ≈
∣∣∣⟨Ψf (r,R)| d̂ |Ψi(r,R)⟩

∣∣∣2. (42)

Note, that the transition probability is calculated with the total wave function Ψ(r,R).

Inserting the Born-Oppenheimer approximation for the wave function, one arrives at
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di→f = ⟨ψf (R)| ⟨ϕf (r)| d̂ |ϕi(r)⟩ |ψi(R)⟩ , (43)

where the central part of the inner product ⟨ϕf (r)| d̂ |ϕi(r)⟩ ≡ Cif is called the couplings.

In this first integration, the dependency on r is removed, but the coupling is in general an

R-dependent quantity. Note, however, that nucfix only provides the nuclear wave functions.

Therefore, the calculation of the couplings, which made used of the electronic wave functions,

was not directly doable. Possible ways of addressing this problem are now presented.

One first option for getting around the calculation of the electronic wave functions is the

use of the Frack-Condon approximation. This assumes that the couplings are completely

independent of R and can be then taken out of the integration, as in the following equation

di→f = ⟨ϕf (r)| d̂ |ϕi(r)⟩ ⟨ψf (R)|ψi(R)⟩ = Cif ⟨ψf (R)|ψi(R)⟩ . (44)

This approximation consists in estimating the transition probability as the overlap be-

tween the nuclear wave functions of the involved levels, which is called the Franck-Condon

factor. The Franck-Condon approximation is, in general, a good approximation for the stud-

ied energy levels, since the excitation process involves vertical transitions, and it was done

at the beginning of the project. Later on, an improvement of the calculation of the transition

probabilities was implemented by including the dependency on R of the couplings, as shown

in equation (45). The values of the couplings were obtained from literature [34, 35], such that

di→f = ⟨ψf (R)|Cij(R) |ψi(R)⟩ . (45)

The result was not substantially different, but the transition probabilities from the ground

state to the excited states were slightly corrected, as it is shown for some potential curves in

fig.10. In the following, the presented results will make use of the R dependent electronic

couplings.
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Figure 10: Comparison of the transition probabilities from the ground state when using the

coupling elements in the Franck-Condon approximation and when including their R depen-

dency for the B, C and D states. As it can be seen, the R-dependency introduces a small

correction, and therefore, the corrected results are used in the following.

4.2 Model simulation of the experiment

Once the nuclear wave functions and the elements of the transition matrix between the

energy levels were calculated, the simulation of the experiment presented in section 2 could

be performed by implementing a multi level simulation.

4.2.1 Laser pulses

As mentioned in the experimental motivation section, the target is illuminated with two

laser pulses, one XUV pulse, coming at t = 0 and one NIR pulse, coming at t = τ , where τ

is the time delay, and can be positive or negative, as the two configurations shown in fig.11.

In this work, the transient coupling scheme will be the most relevant, but some results will

also be presented for negative time delay.
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Figure 11: Possible laser configurations depending on the relative time delay between the

NIR and XUV pulses. a)NIR arrives to the target earlier in time, in comparison to the XUV

pulse. b)The XUV pulse interacts with the target at t = 0 and at a later time t = τ , the NIR

pulse arrives.

The most relevant parameters of the laser pulses that were used in the simulation are

summarized in table 4. For the XUV energy, the value of 14 eV is chosen, since it is centred

in the middle of the considered energy range, and the duration is chosen to cover the energy

range. For the NIR energy, the duration (less than 5 fs) was characterized in a D-Scan setup

before and after the experiment, and conservative 5 fs taken into account. The photon energy

is selected to allow the transitions between the D- and the EF-bound states.

Table 4: Laser parameters. The energy and the shape of the pulses were kept constant for all

sections of this work. However, a time delay scan was realized, so this parameter varies in

the different sections.

XUV NIR

FWHM = 0.5fs FWHM = 5fs

E = 14eV E = 1.6eV

t = 0 t = τ

Using these parameters, the two Gaussian pulses in the simulation were generated as two

functions on a time grid, which represents the electric field for each t. In the following sec-

tion, the Hamiltonian of the system is presented, with its interaction part directly depending

on the presence of the laser electric fields.

4.2.2 Hamiltonian of the model system

The Hamiltonian of the system can be expressed as the sum of the free Hamiltonian H0

and the interaction Hamiltonian,Hint(t), which is time dependent.
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H(t) =

atomic energies

(diag.)︷︸︸︷
H0 +

laser interaction

(not diag.)︷ ︸︸ ︷
Hint(t) (46)

The free Hamiltonian can be represented, in the eigenstate basis, as a diagonal matrix,

which elements are the energy levels of the different electronic vibrational levels. The no-

tation used for the energy of a particular level would be Ecurveν , where ν is the vibrational

quantum number. The considered curves are represented only by the letter, but their name

would be completed with the full expressions written in equation (23).

The interaction Hamiltonian, Hint(t) introduces the non-diagonal terms responsible for

the transitions between the levels. It can itself be divided into the interactions coming from

the XUV and NIR pulses.

Hint = Hint, XUV +Hint, NIR (47)

These two laser pulses allow two types of states to be accessed. The so-called bright

states (B, C and D) are allowed transitions from the ground X state. As it can be seen in

fig.12 (example for the D state), the XUV pulse can provide the necessary energy for these

transitions.

The dark states (EF states, in our case) however cannot directly be accessed from the

ground state, due to the symmetry reasons explained above. The transition matrix elements

between ground and EF states are 0. They can however be accessed from the bright states

by interaction with the NIR pulse, as it is also shown in fig.12.
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Figure 12: Example of some of the previously mentioned allowed transitions. This scheme

with the X,D and EF levels is the one considered more often in the present work, and

therefore chosen for the clarification. The simulation starts with all the population in the

ground state. By illuminating the target with the XUV light, the bright states (in this case, the

D states) can be accessed. The NIR causes the population transfer to theEF states. The most

population is transferred from the ground state to the Dν=2, as it can be seen in the transition

probabilities from fig.10.

In general, the interaction Hamiltonian for dipole transitions it is defined as the product

of the dipole elements (obtained in equation (45)) with the electric field E(t) relevant for the

transition,

Hint,ij = di→jE(t). (48)

Therefore, the interaction Hamiltonian will have entries between transitions X → B, C,

D, but the entries vanish for transitions X → EF, as shown in equation (25). However, the

elementsB,C,D → EF are also, in general, non-zero. The transitions from the ground state

will be multiplied by the XUV electric field, EXUV (t) ≡ E(t), and the transitions from bright

to dark states will depend on the NIR electric field ENIR(t) ≡ E(t).

In equation (50), an example of a constructed Hamiltonian for the system is represented.

In this case, which is the case considered in most of the sections presented in chapter 5, the

simulation includes the following levels:

1. The ground X1Σ+
g (ν = 0) state.

2. The 18 bound D states.

3. The 34 bound EF states.
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Note, for clarity, the following colour code was used: blue for the diagonal elements of

the free Hamiltonian, violet for the XUV transitions included inHint,XUV and red for the NIR-

mediated transitions, which come from Hint,NIR. The non-allowed transitions correspond to

zeros in the corresponding interaction Hamiltonian matrix elements. The total Hamiltonian

is given by

H(t) = H0 +Hint, XUV +Hint, NIR, (49)

which when expanding its elements corresponds to

H(t) =



EX0 dXD0E(t) dXD1E(t) · · · 0 0 · · · · · · 0

dXD0E(t) ED0 0 · · · dD0EF0E(t) dD0EF1E(t) · · · · · · · · ·
dXD1E(t) 0 ED1 · · · dD1EF0E(t) dD1EF1E(t) · · · · · · · · ·

...
...

... . . . ...
...

...
...

...

0 dD0EF0E(t) dD1EF0E(t) · · · EEF0 0 · · · · · · 0

0 dD0EF1E(t) dD1EF1E(t) · · · 0 EEF1 0 · · · 0
...

...
...

...
...

... . . . ...
...

0 dD0EF34E(t) dD1EF34E(t) · · · 0 0 0 · · · EEF34


(50)

where the subindex of the states refers to the ν, but the full notation with the Greek letter

is omitted to save space.

The simulation should also include the lifetime of the states. In order to do so, one

possibility is to include an imaginary term in the free Hamiltonian energies. In the exponential

solution from the time-dependent Schrödinger Equation, which will be shown in details in the

next section, this imaginary term transforms into an exponential decay of the population. For

a lifetime of 1
Γ

, the corresponding transformation is

E ← E − iΓ
2
. (51)

The selected decay rate Γ will be different for different parts of the analysis, so the used

values will be later indicated. The ground state Xν=0 has no decay rate, since it would be

unphysical that it decays into another state.
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4.2.3 Solving the time-dependent Schrödinger Equation

In this section, the implementation of the solution of the time-dependent Schrödinger

equation is derived, following the work done by [36].

The goal of the multi-level simulation is to numerically solve the time-dependent Schrödinger

Equation for the wavefunctions, which in atomic units reads

H(t) |Ψ(t)⟩ = i
∂

∂t
|Ψ(t)⟩ . (52)

In order to solve it, a basis decomposition of the state vector |Ψ(t)⟩ was done. The chosen

basis is the free basis {| i ⟩}Ni=1, where N is the total number of considered states, which are

the eigenvectors of the free HamiltonianH0, meaning

H0 | i ⟩ = E0,i | i ⟩ . (53)

where E0,i is the energy of the molecular level. Therefore, it can be expressed as

|Ψ(t)⟩ =
N∑
i=0

ci(t) | i ⟩ . (54)

The ci(t) elements correspond therefore to the population coefficients, and its square

represents the probability of the system to be in a given state, i. The basis of the nuclear

states, {| i ⟩}Ni=1 is known from the nucfix results. One therefore must solve for the state

vector c⃗(t), defined as

c⃗(t) =


c0(t)

c1(t)
...

cN(t)

 . (55)

Solving equation (52) gives an exponential solution for the state vector, meaning, in

atomic units,

c⃗(t) = e−iH(t)·t c⃗(0), (56)

where c⃗(0) represents the state vector at t = 0. In the simulation, the system always starts

with the total population in the ground state, which means that
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c⃗(0) =


1

0
...

0

 . (57)

The solution of the TDSE is then the evolution of the system for a total lapse of time T

divided in steps ∆t, such that if tn = t0 + n∆t for n an integer number, one has, according

to equation

c⃗(tn)← e−iH(tn−1)·∆t c⃗(tn−1), (58)

or equivalently

|Ψ(tn)⟩ ← e−iH(tn−1)·∆t |Ψ(tn−1)⟩ . (59)

The diagonalization of the Hamiltonian is then required at each time step. However, cal-

culating it for the full matrix at each time step would be computationally very expensive.

Therefore, an approximation was done, by which to a second order precision the time propa-

gation can be decomposed in (see [17] for more details)

e−iH(t)·t = e−i(H0+Hint(t))·t ≈ e−iH0· t2 e−iHint(t)·t e−iH0· t2 . (60)

This solves part of the problem. Inserting the decomposition in equation (59), and since

the basis elements are eigenvalues of H0, the exponential part e−iH0· t2 is also a diagonal

matrix, and one can directly apply

|Ψ(tn)⟩ ← e−iH0· t2 e−iHint(t)·t e−iH0· t2 |Ψ(tn−1)⟩ , (61)

where the application of the half-time evolution of the free hamiltonian to the state vector

e−iH0·∆t
2 |Ψ(tn−1)⟩ is equivalent to the multiplication of each of the coefficients by its free

energy evolution e−iE0,i·∆t
2 ci(tn−1).

However, the diagonalization of the interaction Hamiltonian is still required. Again, an

approximation will be applied, which states that

e−iHint(t)·t = e−i
(
Hint,XUV (t)+Hint,NIR(t)

)
·t ≈ e−iHint,XUV (t)·t e−iHint,NIR(t)·t. (62)

Therefore, the interaction Hamiltonian for the XUV and NIR lasers can be propagated
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independently. This implies a great simplification, because the electric field can then be

factored out of each of the matrices, and the unitary eigenvectors of Hint,XUV and Hint,NIR

remain constant in time. Note that the eigenvalues do depend on the electric field, but just as

a multiplicative factor. The basis change is then calculated

HD
int,XUV(t) = T−1

XUVHint,XUV(t)TXUV, (63)

HD
int,NIR(t) = T−1

NIRHint,NIR(t)TNIR, (64)

where the matrixes TXUV and TNIR are time independent. The diagonalization must be carried

out just once, at the beginning of the simulation.

Applying now the time evolution induced from the interaction Hamiltonian and decom-

posed as in equation (62), the basis change is first applied to the Hint,XUV basis to the state,

as

∣∣ΨD
XUV (t)

〉
= T−1

XUV |Ψ(t)⟩ . (65)

Next, the time evolution is applied, where note that, as in the case of the free evolution,

now the exponential operator is also a diagonal matrix, which multiplies the states

∣∣ΨD
XUV (tn)

〉
← e−iHD

int,XUV(tn−1)·∆t
∣∣ΨD

XUV (tn−1)
〉
. (66)

Lastly, one must return to the original free Hamiltonian basis, which is achieved by the

transformation

|Ψ(t)⟩ = TXUV
∣∣ΨD

XUV (t)
〉
. (67)

The whole process is repeated, now with a basis change to theHint,NIR basis, as follows

∣∣ΨD
NIR(t)

〉
= T−1

NIR |Ψ(t)⟩ . (68)

The time evolution has now the form

∣∣ΨD
NIR(tn)

〉
← e−iHD

int,NIR(tn−1)·∆t
∣∣ΨD

NIR(tn−1)
〉
. (69)

and lastly one returns to the original basis by transforming back the state
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|Ψ(t)⟩ = TNIR
∣∣ΨD

NIR(t)
〉
. (70)

Following equation (60), the second half of the free-Hamiltonian time evolution must be

applied, that means, the state vector must once more be multiplied with the exponential of

H0

|Ψ(tn)⟩ ← e−iH0·∆t
2 |Ψ(tn−1)⟩ . (71)

Summarizing, the whole time evolution for each time step can be represented as

|Ψ(tn)⟩ = e−iH0·∆t
2 TNIR e

−iHD
int,NIR(tn−1)·∆t T−1

NIR TXUV e
−iHD

int,XUV(tn−1)·∆t T−1
XUV e

−iH0·∆t
2 |Ψ(tn−1)⟩ . (72)

4.2.4 Relevant quantities: the time-dependent dipole moment and the Optical Density

In addition to the state vector, the Time-Dependent Dipole Moment (TDDM) was com-

puted at every time step. The TDDM with respect to the ground state is defined as follows

d(t) = ⟨Ψ(t)| d̂ |Ψ(t)⟩ =
N∑
i=1

c∗0(t)ci ⟨ 0 | d̂ | i ⟩+ c.c. (73)

By using the time-dependent dipole moment, the cross-section can be calculated as ex-

pressed in equation (12). From it, the optical density can also be calculated, following equa-

tion (13).

The time-dependent dipole moment and the optical density are the two most relevant

experimental quantities that were compared with the simulation. In the following section, the

results obtained from the multi-level simulation will be presented.
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5 Results
In this chapter, the previously explained concepts and simulation schemes will be applied

to model the hydrogen molecule under the influence of external fields and compare the sim-

ulated results to the experimental data. Several aspects of the population transition process

are evaluated, including the creation of a nuclear wavepacket and its time evolution, the time-

dependent dipole moment and the absorption lines from the optical density. The following

subsections deliver details for each of those calculations.

In this part, the main focus is on the transition scheme represented in fig.13. Only the

ground state, the 18 D-bound states and the 35 EF-bound states are included in the calcula-

tion. As a starting point, all the molecules can be found in the ground state. By means of the

interaction with the XUV field, part of the ground-state population is excited and transferred

to the D states. After a time delay τ , the NIR pulse hits the target, and creates a population

transfer between the D and the EF states. The Hamiltonian of the system is exactly the one

given in equation (50), but including the mentioned decay rate, with a value of Γ = 1e−4 a.u..

(Of course, the ground level has no decay). Except for the section on configuration interac-

tion, where some continuum level will also be included, these will be the levels included in

the model system.

5.1 The nuclear wavepacket

One calculation of particular interest from the simulations is the construction of a nuclear

wavepacket, since it cannot directly be accessed from the experimental data. In our case, the

focus is on the wavepacket consisting of the superposition of the D eigenstates, since those

energy levels correspond to the most visible lines in the experimental results.

Let {|Ψi⟩}17i=0 be the eigenvectors of the free Hamiltonian corresponding to the D-states

(meaning {|Ψi⟩} ∈ {| i ⟩}). One can construct the corresponding wavepacket as

|ΨD(t)⟩ =
17∑
i=0

ci(t) |Ψi⟩ . (74)

Note that the square of the ci(t) coefficients correspond to the population fraction that

can be found at a given energetic level. Therefore, at t = 0, these coefficients correspond to

the transition probabilities from the ground state to the D state, obtained from the rovib trans

code. Using the results of fig.10, the wavepacket at t = 0, as represented in fig.13, is obtained.

In this picture, the Franck-Condon region was represented, which is defined as the region

of the final potential energy surface which is accessed by the vertical transition from the

initial state. Note that the wavepacket at t = 0 basically looks like a copy of the original
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ground state wave function, since indeed the coupling elements just calculate the fraction

of overlap of each excited level with the ground state. Outside the Franck-Condon region,

the XUV transition is very unlikely, since there is almost no overlap between the nuclear

wavefunctions of the involved levels.

Figure 13: Scheme of the energetic levels involved in the simulation. The ground state, the

18 D-bound states and the 34 EF-bound states are included in the calculation. Using the

transition probabilities from the ground to the excited states as obtained from nucfix, the

wavepacket of the D states at t = 0 could be obtained, which is represented in green in the

picture. The Franck-Condon region is also marked.

By using the simulation to model the time evolution, as explained in section 4, one could

calculate the state vector defined in equation (55) for every time step. Making use of these

coefficients, one could obtain the wavepacket at each time step, as given in equation (74).

The result of this calculation can be seen in fig.14, in this case, for time delay τ = 7.
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Figure 14: Time evolution of the D-states wavepacket. On top, one can see a longer time

range for no NIR light (left) and for a middle-to-strong intensity (right) of the NIR field,

which has a time delay of τ = 7 fs. Below, the zoomed versions around the revival time

(t ∼ 172 fs). The Franck-Condon region is also displayed in the figure.

As shown in fig.14, the wavepacket moves in space and time. If one compares the two

intensities at time t = τ = 7 fs, one can appreciate a distortion in the one including the NIR

field, indicating that the pulse kicks at this moment.

As expected from a time-evolving wavepacket, its components get out of phase with time,

and the nice and clear Gaussian shape that could be observed at the beginning of the time

evolution gets distorted. According to theory, however, a revival of the wavepacket when

the components get again in phase is expected to happen at around t ∼ 272 fs (see zoomed

pictures). One can indeed observe a nice revival in the case of the non-distorted by the NIR

wavepacket. When some NIR interacts with the target, it adds an additional phase to the time

evolution, which distorts the wavepacket revival, as it can be seen in the case including the

NIR. In the next section, further comments on this distortion, and other interesting effects on

the revival time created by the NIR field, will be presented.
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5.2 The wave-packet revival time

The next observable to be studied was the time-dependent dipole moment (TDDM), com-

puted as presented in section 4.2.4. This quantity can also be obtained from the experi-

mental data measured by Gergana D. Borisova. In that case, the OD is measured, and the

time-dependent dipole moment is reconstructed from the experimentally measured absorp-

tion spectra by Fourier transforming and invoking causality. More details on this procedure

can be found in [37]. On the contrary for the simulation, and as explained in the theory

section, the time-dependent dipole moment was calculated at each time step, and the OD is

proportional to its Fourier transform, as expressed in equation (13).

The experimental and simulated results for the time-dependent dipole moment are plotted

in fig.15. The evaluation of the experimental of the data is not part of this project, just the

results are stated here. Recalling equation (73), the time-dependent dipole moment can be

seen as a measure of the overlap between the D-states wavepacket with the original ground

state. As expected, it has clear oscillations for earlier times (0-20fs), when the wavepacket

still preserves the Gaussian form, and it loses regularity, as the components of the wavepacket

go out of phase and the defined wavepacket disappears. These earlier-time oscillations are

not to be seen in the experiment, due to the technique used to obtain the TDDM from the

experimental data.

The revival of the wavepacket is also visible in the TDDM at around t ∼ 272 fs, as

previously observed in the plots of the wavepacket’s time evolution. At this moment, the

wavepacket recovers its form and has a significant overlap with the ground state when trav-

elling through the Franck-Condon region. In the picture, these spatial oscillations of the

wavepacket can again be clearly seen in the region between the two vertical black lines, as

also clear oscillations of the TDDM.

Interestingly, the time of the revival seems to be shifted to an earlier moment with increas-

ing the intensity of the NIR field. This is due to the additional phase added by the interaction

with the NIR light to the free time evolution of the states. If a given state i has a coefficient

ci(t) which evolves as (see equation (56))

ci(t) = ci(0)e
−iEi·t, (75)

then, the NIR light changes the amplitude and adds an additional phase, which can be ex-

pressed as

ci(t) = ci(0)e
−iEi·taie

−i∆ϕi , (76)

where ai would be the factor indicating the change in amplitude and ∆ϕi, the additional
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phase.

Intuitively, one could say that this extra phase accelerates the process of the D-states

getting again in phase and causes the shifting of the revival to an earlier time. More on the

effects of the phase change caused from the NIR interaction will be presented in section 5.5.

In fig.16, the Optical Density measured in the experiment and calculated in the simulation

by using equation (13) is also shown. The agreement between experiment and simulation

for the position of the lines indicates that the calibration of the energy position, on the one

side, and the calculation of the energy levels and the nuclear wave functions, on the other,

were accurate enough. However, the line shape of the resonance lines varies a lot between

experiment and simulation. For example, if one looks at the lower NIR intensity case, the

experimental lines have a Fano shape, while the simulated ones are Lorentzian. This problem

will be addressed in the next section by the introduction of the configuration interaction, as a

coupling to the continuum states, the D lines (starting from Dν=3) are embedded in. Notice

also that the increasing of the NIR light reduces the definition of the revival, which has a

two-bump shape. This feature will be analysed in section 5.5.

Figure 15: Time-dependent dipole moment from experiment and simulation for increasing

(lighter to darker red) NIR Intensity. Due to the Fourier transform technique used to obtain

the experimental TDDM, the first time steps are not as clear as in the simulation. The two

vertical lines marked in both, experimental and simulated results, indicate the time when the

revival of the wavepacket is expected to take place. Moreover, a small shift in the revival time

with increasing NIR intensity can also be seen in both plots. One can also see how increasing

of the NIR light reduces the definition of the revival.
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Figure 16: Optical Density from experiment and simulation for increasing (lighter to darker

red) NIR Intensity. As it can be observed, the position of the lines agrees in both graphs.

However, the line shapes differ greatly, even with sign inversions. This problem will be

addressed in the following section.

Negative values for the optical density are valid for both, experiment and simulation. On

the one hand, and as mentioned in section 3.2, the experiment calculates the pseudo-optical

density, which uses a low-passed-filtered version of the signal as a reference. Therefore,

negative values for equation (1) can be obtained. On the other hand, no general absorption

procedure was included in the simulation. The only light-matter interaction which was in-

cluded are the before mentioned near-to-resonance transitions. No continuum was included

here. When no NIR photons are included in the simulation, the transitions are Lorentzian and

the optical density only has positive values. However, the lines lose their symmetry when the

molecules interact also with the NIR light, causing that in some energy positions, they could

actually exceed the reference on one of the sides, which would result in negative values for

the OD.

5.3 Treatment of the continuum in the model simulation

As mentioned in the previous section, when including only bound states in the model

system, there was a disagreement in the line shape between experiment and simulation. Ac-

cording to Fano theory, the continuum levels need to be included in the simulation in order to

get the Fano line shape observed in the experiment also in the case of no NIR light.

In order to improve the model, some continuum levels in the simulation are introduced

and their interaction with the bound states via a time-independent configuration interaction

is allowed, as explained in section 3.4. To demonstrate the effect, a toy-problem is first

implemented, which included very few levels. Afterwards, the whole desired system is im-

plemented. In the last part of this section, the problems of this approach are described, and

an alternative approach to the continuum model based on additional phases is presented.
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5.3.1 Few-level toy model

In order to demonstrate the effects of the configuration interaction, a very simple model

is implemented, in which only the ground state, one bound D-state and one continuum state,

considered to be one of the free states of the B potential curve, are included. The chosen states

include the Dν=3 bound state, since it is the first state lying above the dissociation continuum

and additionally the strongest resonance in the experimental data, and also a free B state

degenerate in energy with the bound state. A sketch of this interaction system is presented in

fig.17.

Figure 17: Sketch of the energy levels included in the toy model. It includes the ground state,

the Dν=3 bound state and also a free B state degenerate in energy with the D state.

The corresponding Hamiltonian for such a system would include the configuration inter-

action elements, VDB, in the non-diagonal elements describing the interaction between the B

and the D lines, as follows

H(t) =

 EX0 dXD0E(t) dXBcontE(t)
dXD0E(t) ED3 VDB

dXBcontE(t) VDB EBcont

 (77)

where the terms in green refer to the configuration interaction, the diagonal contains the free

energies and again the dipole interaction matrix elements with the XUV light are represented

in purple. Note that no EF levels are present in the simulation, therefore, no NIR-mediated

interaction takes place.

The effect of the introduction of the configuration interaction is shown in fig.18, in the

case of a relatively high VDB value. At t = 0, part of the population (initially fully in the

ground state) is transferred to both D and B states. Both of them are accessible from the

ground state. However, the dipole-matrix element between the ground and the D states is

bigger than the one between the ground and the B states, since the last one is a free state.
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Therefore, the population is more likely to be transferred to the D state than to the B, as it can

be observed in the figure.

Next, due to the configuration interaction, the population oscillates between the D and the

B states, which are now coupled. This coupling is static in time. The decay of the states is

due to the lifetime included in the simulation.

Figure 18: Population fraction evolution for the energy levels involved in the toy problem.

The population fraction has a value between 0 and 1. Note, he unity was subtracted from

the population of the ground state, to keep a readable scale for the plot. At t = 0, the XUV

pulse interacts with the system and part of the population is transferred to the excited B and

D states. The population oscillation between the two excited levels is caused by the static

configuration interaction.

The absorption lines also change due to the introduction of the configuration interaction.

As it can be seen in fig.19, the stronger configuration interaction causes that the lines start

repelling each other. This effect is a consequence of the non-diagonal hamiltonian that the

configuration interaction requires, which enforces a basis change. The eigenstates of the

hamiltonian do not correspond to the theoretical energy lines any more. While an infinite

number of states exist in nature, which repulsion effects can compensate, only one continuum

line was implemented in this toy problem. Therefore, by this mean, the experimental results

could not be recovered. Some work of fine-tuning with the interaction strength and sign was

carried on with no satisfying results. Therefore, a different approach will be proposed at the

end of this section.
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Figure 19: Optical density from the toy-problem simulation. In the figure on the left, a

stronger configuration interaction is implemented, therefore, the repulsion between the lines

is more pronounced and the B line is more present than in the figure on the right, with a

weaker coupling. The lines were fit to Fano lines and a finite q-value estimate was obtained,

however the change of the line shape is small and introduces an energy shift with respect to

the experimental lines.

The NIR interaction is now added to the toy problem, by letting that the 35 bound states

of the EF potential curve could be accessed through the NIR field. In fig.20, the population

fraction for this case is plot. Again, the XUV field excites the system at t = 0. At t = τ = 7fs,

the NIR pulse transfers some population to the EF levels. In this case, the VDB parameter was

chosen a bit smaller (VDB = 10−3 a.u.), which is closer to the rovib trans calculated values,

and the population oscillations between D and B states are not that pronounced.

If one now takes a look to the simulated optical density for this case, the line shape is

not Lorentzian any more. However, neither in this case it corresponds to the experimentally

measured lines, which usually had first the positive peak and afterwards the negative valley.

Moreover, the interaction with 35 energy levels includes too many variables and makes the

fine-tuning very difficult. A different approach, which will be presented in section 5.3.3, is

therefore discussed.
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Figure 20: Population fraction evolution for the energy levels, including the EF bound states.

The population fraction has a value between 0 and 1. At t = 0, the XUV pulse interacts

with the system and part of the population is transferred to the excited B and D states. At

t = τ = 7fs, the NIR pulse arrives and allows the coupling to the EF states. The EF states

with the highest coupling to the D states are the ones depicted for the illustration.

Figure 21: Optical density for the energy levels involved in the toy problem plus all the EF

bound levels. The line is not Lorentzian any more, but it is still not fitting the experimental

shape for this intensity. Moreover, in orange, it can be seen how many levels were needed to

produce this line shape. This amount of simulation parameters is too big for fine-tuning.
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5.3.2 Including all bound states

After considering the toy problem, the configuration interaction is introduced for a system

including all the D and EF bound levels and one continuum state. The continuum state has

now an energy of 17eV and a longer lifetime (ΓB = 2 a.u.), in order to get a broad continuum

line which would span in energy all the D bound-states energy levels. The result is plot in

fig.22. All the lines present the energy shift, which does not correspond to the experimentally-

measured results. The tuning of the VDB parameter did not solve the problem. Therefore, a

new approach for the problem was implemented, as it is described in the next section.

Figure 22: Simulated optical density when including all the EF and D bound levels. The en-

ergy shift that can be seen with respect to the expected line positions (dashed) is not matching

the experimental results.

5.3.3 Fano phases

The introduction of the configuration interaction model described in the theory section

leads to the desired Fano line shape for the simulation lines, needed for the results to agree

with the experimentally measured lines. However, when implementing the configuration in-

teraction, an energy shift in the energy of the lines appears. Mathematically, this is expressed

in equation (36), where one can see that the parameter ϵ depends not on the energy E, but on

the energy difference E − EΦ, being EΦ the energy of the modified bound state. With in-

creasing configuration interaction strength VE , the shift of the lines becomes more and more

pronounced. To proceed further with this approach, one must then shift the initial energy of

the states, to make then the resonances appear on the right positions. This, however, includes

a great fine-tuning work, which would become impossible when expanding further the model.
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Here, a different formalism is introduced, in which the effects described by Fano can be

achieved by adding an additional phase to the dipole moments. Here, the values for these

phases, such that they match the definition of the q-parameter given in equation (38), are just

stated. For a more formal description, previous papers of this group [10, 38, 39] are referred.

The desired transformation includes the Fano Phase ϕF , which is related to the q value by

ϕF = arg(q − i), (78)

and the desired transformation of the dipole moment is given by

di→f ← di→f e
ϕF i. (79)

With these changes, the Hamiltonian of the system, where all the bound levels for D and

EF are included reads

H(t) =



EX dXD0E(t)eiϕF dXD1E(t)eiϕF · · · 0 0 · · · · · · · · ·
dXD0E(t)eiϕF ED0 0 · · · dD0EF0E(t) dD0EF1E(t) · · · · · · · · ·
dXD1E(t)eiϕF 0 ED1 · · · dD1EF0E(t) dD1EF1E(t) · · · · · · · · ·

...
...

... . . . ...
...

...
...

...

0 dD0EF0E(t) dD1EF0E(t) · · · EEF0 0 · · · · · · · · ·
0 dD0EF1E(t) dD1EF1E(t) · · · 0 EEF1 0 · · · · · ·
...

...
...

...
...

... . . . ...
...

0 dD0EF34E(t) dD1EF34E(t) · · · 0 0 0 · · · EEF34



Note, however, that for the first three energy states of the D-potential curve, the value

ϕF = 0 was selected. Physically, these lines are lower in energy than the dissociation energy

of the B states, and therefore, they are technically not embedded in a continuum.

In order to get the desired shape, the experimental lines for the case of no NIR light are

fitted to Fano lines, to obtain an estimate of the q parameter. A plot and more details about

the fitting (fig.25) are presented in the following section, since to fit the experimental lines

one needs to consider the experimental resolution. After getting the estimated value for the

q parameter and implementing the transformation of the dipole elements as given in equation

(79), the optical density and the time-dependent dipole moment are calculated.

In fig.23, the experimental and simulated optical densities are presented. The results for

the line shape are in better agreement with the experiment. Of special relevance is the fact

45



that the fit of the experimental line shape to obtain the q-value is done only for the case of no

NIR light. When increasing the NIR light, the Fano phase was kept the same, and still the

lines are in good agreement, as long as they are visible in the experimental case.

In fig.24, the dipole moments are again compared between the experimental and the sim-

ulated results for completion. The revival is still observed and its shift due to the increasing

NIR light is still noticeable.

Figure 23: Optical Density from experiment and simulation for increasing (lighter to darker

red) NIR Intensity and including the Fano phases in the dipole used in the simulation. Again,

the position of the lines in both graphs is in great agreement. Moreover, the line shape is in

agreement for the experimental and simulated results, thanks to the implementation of the

Fano phases.

Figure 24: Time-dependent dipole moment for increasing (lighter to darker red) NIR Intensity

when including the Fano phases. The revival is still observed. Moreover, the loose in the

revival resolution is a bit more clear when introducing the Fano phases. This problem will be

addressed in section 5.5.
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Table 5: q values used in the simulation for the D-bound states. The first three energetic levels

were chosen to have a large q value, to keep their Lorentzian shape. For levels 3 ≤ ν < 8, the

q values were obtained by fitting the experimental lines to Fano lines. For higher levels, the

experimental lines could no longer be that well resolved, and the constant value of -9.3 used

in [40] was also used in this work.

ν q
0 104

1 104

2 104

3 -1.91
4 -2.72
5 -2.72
6 -2.62
7 -3.71

8-17 -9.3

5.4 Gaussian Convolution

In order to further improve the line shape from the simulation, and to correctly fit the

experimental lines to get an estimate for the q parameter, the introduction of the experimental

resolution was also needed. The implemented algorithm consists in convolving the simu-

lated signal with a Gaussian, which standard deviation corresponds to the expected from the

experimental resolution.

In order to account for the experimental resolution, the experimental data is fitted to a

Fano-line shape, as given in equation (39), convolved with a Gaussian function. This fit was

necessary to obtain the correct values of the q parameters used in the previous section. In the

fig.25, a fit of one of the experimental lines is shown. Two values for the q value are given:

one was calculated letting the experimental resolution σ fixed in the expected range of the

experimental resolution, and the other one let σ also be a free-fit parameter. The two results

are very similar. Each of the lines is fitted in order to get their individual q parameters in

the case of no NIR light. For the σ-parameter estimate, a fit of the Dν=3 line was chosen,

since is the most visible line in the experimental data, obtaining a value of σ = 0.0036 eV.

The expected range for σ from the experimental side was 1-5 meV, being the fitted value in

the accepted range. Therefore, all further analysis is performed with the convolution of the

simulated signal as estimated to be of value σ = 0.0036 eV.
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Figure 25: Example of fitting of the experimental data for the Dν=3 line. For the Fano-

parameter, two methods were used. The first q value presented corresponds to a fit with fixed

σ = 1 meV. The second q value is obtained by letting σ be also a free fit parameter. The two

results are almost identical. The fitted value of σ = 3.6 meV will be used in this section to

convolve the data with a Gaussian function.

Note, however, that the convolution could not be applied directly to the calculated optical

density. The correct procedure is to apply the convolution to the simulated signal, S, as

explained in more detail in [28]. The steps for this procedure are:

1. Calculate the non-convoluted optical density as usual from the simulation.

2. Following equation (1), calculate the signal as I(ω) = I0(ω)10
−OD(ω). For the reference

I0(ω), the spectrum of the XUV pulse is taken.

3. Get the convolved signal as Iconv(ω) = (I ∗ N (µ, σ2))(ω). Note that for the convolu-

tion, the central value of the Gaussian µ is not relevant.

4. Calculate the new optical density as ODconv = −log10
(

Iconv(ω)
I0(ω)

)
.

In fig.26, the results for the convoluted lines are presented. For low intensities of the NIR

light, the convolution shows the desired effect. It broadens the lines and reduces the intensity

of the first three lines, which line shape, recall, was not adapted with the Fano phase because

they are below the dissociation energy of the B states. For higher intensities of the NIR light,

the lines which had a Fano phase (with ν > 2) still look very much like in the experiment.

However, the simulated lower lines accumulate large populations and start emitting, which

is not corresponding to the experimental results. This effect indicates that, most likely, the

lifetime of those lines is too long for the correct functioning of the simulation. When trying to

increment their lifetime by broadening the lines, however, the time-dependent dipole moment
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did not decay until really long times. The decay of the dipole moment is necessary in order to

calculate the optical density as its Fourier transform. Tapering the dipole moment to perform

the Fourier transform is not providing satisfying results, as shown in fig.27 for a lifetime

of 2418 fs, 10 times bigger than before (corresponding to Γ = 1e−5 a.u.), and with the

tapering function being a flat function with squared cosine functions on the sides. For this

reason, it was decided to leave the simulated lines like that, since the first lines are also

not that visible in the experiment for lower NIR light, but it is important to keep in mind

this consideration when interpreting figure 26. Due to the too long lifetime included in the

simulation, population accumulates in those states and emission is to be seen in the simulated

results, which does not correspond to the experimental observations.

Figure 26: Optical Density from experiment and simulation for increasing (lighter to darker

red) NIR Intensity and including both the Fano phases and the Gaussian convolution. The

lines which included the Fano Phases (ν > 2) correspond now in position and also in line

width to the experimental results. For the lines in which no Fano Phase was included in the

simulation, emission is produced, which is a hint of a too long simulated lifetime.
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Figure 27: Time-dependent dipole moment when giving the first states a longer lifetime

(Γ = 1e−5 a.u.). The taper, which in this case is a flat function with squared cosine rising

and falling sides, is also shown. The taper ensures that the dipole goes to zero on the sides

in order to correctly perform a Fourier transform. However, the transformation is no longer

smooth. On the right, a zoomed version for the earlier times is shown, in order to clearly

show the squared cosine rising side. The falling side would be completely simetrical.

5.5 Time-Delay study

The time at which the NIR light interacts with the hydrogen molecule, the so-called time

delay, has an influence on the system evolution and on the revival quality. In the following

section, the results for a study with varying time delay, τ , and constant NIR intensity are

presented.

In fig.28, the time-dependent dipole moment is plot with respect to the real time in the

x-axis and the time delay at which the NIR light arrives to the H2 molecule in the y-axis.

In this case, the mid-strong value of 3.51̇012 W/cm2 was chosen for the NIR intensity. As

expected, no big changes are produced when the Time Delay (TD) is negative. This is due to

the fact, that the XUV light has not yet excited any population when the NIR light arrives, and

therefore, no interaction between levels is caused by the NIR light. This case is equivalent to

no NIR light. However, for positive time delays, a line of slope unity can be observed, as a

result of the system perturbation caused by the NIR light. This perturbation is more visible

in the zoomed picture on the right.
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Figure 28: Time-dependent dipole moment with respect to the real time (x-axis) and the TD

(y-axis). For negative time delays, the system does not suffer a perturbation caused by NIR

light. For positive time delays, the perturbation is to be seen as a line of slope one. The

picture on the right is a zoomed version, where this line can better be observed.

In fig.29, the zoomed picture focuses on the revival time. Here, a very interesting effect

occurs. For negative TD, again, the NIR has no influence on the system. However, for positive

TD, clear changes in the revival are observed. For small (but positive) τ , the revival has a

defined position. For later time delays, around 9 fs, the revival loses definition, and splits in

two bumps. This effect could already be seen in the previous section studying the effect of

the NIR light, since the time delay used there was τ = 7 fs. Moreover, for even longer time

delays (τ ∼ 18 fs), the definition of the revival is recovered.
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Figure 29: Zoomed version of the time-dependent dipole moment around the expected re-

vival time, with respect to the real time (x-axis) and the TD (y-axis). The revival, seen as

the recovery of regularity of the TDDM is to be observed, but its definition is different for

different TD. For small (but positive) TD, the revival has a defined position. For later time

delays, around 9fs, the revival loses definition, and splits in two bumps. And for even longer

time delays (t ∼ 18 fs), the definition of the revival is recovered.

In order to investigate these phenomena further, results from section 5.1 are recalled here.

By looking at fig.14, one can see how the wavepacket, after its creation, starts oscillating in

space. It is created exactly centred in the Franck-Condon region, but it travels until the two

nuclei are separated a distance of around 2Å, to then go back to the original position, followed

by further oscillations. One full oscillation back and forth in space takes the wavepacket

around 18 fs. As it can be seen in the fig.13, which shows the potential curves and the

wavepacket at t = 0 (when it is first created), the potential curve for the EF states, which

are the ones receiving population via the NIR coupling, has two wells. Therefore, it looks

very different in the Frack-Condon region, where it could be approximated by a simple well

potential, than at bigger nuclear separation coordinates, where the potential curve presents a

bump and the second well.

There is one remarkable feature about the wavefunctions of the EF energy levels. As it is

shown in fig.30, the lowest energy levels present wave functions that resemble very much the

ones that would be expected for a harmonic oscillator, and each of the levels has an increased

probability of belonging to either the first or the second well. So for example, the levels with

ν = 0 and 3 have a high probability density in the first well, whereas the levels ν = 1, 2, 4

and 5 could be said to belong to the second potential well. Since the first well is narrower,

its energy levels are further spaced in energy. For higher energy levels, like ν = 7, the wave

function has maxima in both wells. This is the case for all levels with ν > 7. Notice that
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some levels present a probability maxima on top of the bump of the potential curve, which is

specially relevant for levels ν =6 and 9. For higher ν > 10, a regular maxima and minima

structure is observed.

Figure 30: Wavefunctions of the lower energy levels of the EF-potential curve. The lowest

ones clearly belong to either the first or the second well of the potential, and resemble the

ones expected for a harmonic oscillator. For levels with ν = 7 or above, this separation in

one of the potential wells is no longer possible. Note, levels ν = 6 and 9 present a maxima

in the bump of the potential curve.
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With this structure of the wavefunctions in mind, fig.31 presents the wavepacket of the

EF energy states created for each time delay at t = τ , meaning, at the time when the EF

wavepacket is created, since the population can only access those levels when the NIR pulse

arrives. This wavepacket is equivalent to the one shown in previous sections, but refers to the

EF states and not to the D states. In the picture, the Frank-Condon region of the D states is

also shown, in order to situate where the initial wavepacket, which for the EF states is the D

wavepacket, is created around t = 0.

As it can be seen in this picture, for small time delays, 0 < τ < 3 fs, the EF-wavepacket is

created very close to the first potential-well minimum, around R = 1Å. For later time delays,

around τ ∼ 17fs, it can again be observed that the wavepacket has a Gaussian structure

around R = 1Å. However, for intermediate values of the time delay, a high population

density is observed around R = 1.5Å, closer to the EF-potential bump. The maximum

displacement takes place at τ = 9fs. Note as well that for τ ∼ 9fs and τ ∼ 17fs, the EF

wavepacket is specially populated. In a classical picture, this is due to the deceleration of

the D wavepacket at those specific times, which are the turning points on the wave-packet

oscillation. The D wavepacket has then no kinetic energy and the coupling to the EF states is

very efficient.
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Figure 31: Spatial representation of the EF wavepacket at its creation time, i.e., at t = τ

for different time delays. Note, that the time at which the wavepacket is plot varies then of

course with the TD. For small time delays (0 < τ < 3 fs) as well as for larger time delays

(around τ ∼ 17fs), the EF wavepacket is a defined Gaussian around the potential minimum

R = 1Å. For these time-delays, the revival of the wavepacket was well-defined. However, in-

between time delays, some population density appears nearer to the EF-potential maximum,

at around 1.5Å. The major revival distortion is given for time delay τ = 9fs, for which most

of the population is created away from the R = 1Å position. Notice also how the population

transfer is specially more efficient at τ = 9 and 17fs. These are the turning points of the D

wavepacket. The D wavepacket stays longer in the same position, which makes the coupling

to the EF states more efficient.

This effect can also be analysed by looking at the EF states which couple the most to

the D wavepacket, or in other words, which receive the most population. This is presented

in fig.32. It represents the square of the population coefficients for the EF states, meaning,

the probability that a particular state is populated. The coefficients are defined in equation

(55). In this plot, one can observe how the states with ν = 0 and 3 are the most populated

for all time delays. This makes sense, since the D wavepacket travels most of the time above

the first well, which favours the interaction with the levels that belong to the first well. The

levels that belong exclusively to the second well, like ν = 1, 2, 4 and 5 are barely populated.

No overlap of the nuclear wavefunctions of D and these levels takes place. Notice that the

population transfer is not instantaneous at t = τ , but that the NIR pulse has a time duration

of around 5fs.

Furthermore, two levels are of relevance in the central region of our time delays, the levels
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ν = 6 and 9. These two levels have a high population density on top of the EF-potential bump,

and the D-wavepacket is travelling around that position at those times. The fact that these two

levels get involved distorts the wavepacket of the EF states. Notice that these two levels also

have population probability densities in the second well. This causes, as observed in figure

31, a spreading of the EF wavepacket. The D and EF interaction loses regularity. And of

course, this affects the phases of the D states, causing the observed revival distortion.

Figure 32: Square of the population coefficient (i.e. population probability) for the different

EF states at t = τ for different time delays. The states of the first well (ν = 0, and 3) are

always populated by the NIR light, while the ones belonging almost exclusively to the second

well (ν = 1, 2, 4, and 5) are barely populated. Of particular interest are the states causing

the revival distortion for central time delays. One can observe that the states ν = 6 and 9 are

then more populated than when the D-wavepacket is in its Franck-Condon region. The fact

these EF states are populated causes the spreading of the EF packet and the distortion of the

D-wavepacket revival.

To conclude the time-delay study, some results about the added phase to the D-wavepacket

caused by the NIR light are presented. In fig.33, the accumulated phases for the bound levels

of the D potential curve are shown for NIR intensity of 3.5 × 1016W/cm2 . This phase ac-

cumulation is caused by the NIR pulse. In the picture, the accumulated phase of the natural

time evolution of the states is removed by subtracting the reference with no NIR light. For a

small time delay, when the two pulses come very close to each other, the less energetic a level

is, the more accumulated phase it becomes. The phase-addition induced by the NIR light is

56



what causes the revival time to be shifted to earlier times.

The regularity observed in the extra phase for lower time delays is lost for later time de-

lays. For time delays τ = 6 and 9 fs, one starts seeing how the ν = 1 level gets a greater added

phase than the ν = 0 level. Moreover, with increasing time delay, some of the levels start

getting positive added phase, which does not follow the previous trend any more. This shows

again the new interactions that start happening with other EF-levels when the D-wavepacket

is travelling outside its Franck-Condon region as the NIR pulse arrives, increasing the com-

plexity of the system. The loss in regularity on the accumulated phase distorts the revival

time, and as it was shown previously, the revival looses on definition for time delays around

τ = 9 fs.

At τ = 18 fs, the regularity is recovered for the lower levels, but some levels still have

inverted phase signs. However, since the lower levels are the ones contributing the most in

the creation of the wavepacket, the revival is again very well-defined.

Part of the intention when showing this picture is also to show the complexity of the phase

study. Many aspects of these plots raise questions that could be used to continue this research

in different directions. Some ideas for it will be presented in the following summarizing

section.

Figure 33: Accumulated phases of the first bound levels of the D wavepacket for different

time delays. The regularity of the earlier time delays, where the less energetic levels get

respectively a bigger (in absolute value) accumulated phase, is distorted when the NIR comes

at a later time. From τ = 12fs, some of the levels get a positive added phase, opposite

to the general tendency. For τ = 18fs, the regularity is not completely recovered. However,

attending to the previous results, it seems that the added phases still allow for a defined revival

to take place.
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6 Conclusions
The aim of this project was to perform multi-level simulations based on the quantum

theory for light-matter interaction in order to study an absorption experiment with two laser

pulses, one XUV and one NIR pulse, and molecular hydrogen as target. The simulations

were used to recreate experimental results, as well as to study further effects that could not

be directly measured.

The first steps consisted in gathering the required information on the energy levels and

the nuclear wavefunctions of the hydrogen molecule. For this, two external codes, nucfix and

rovib trans, were used. Using the potential curves obtained from literature, the codes solved

the time-independent Schrödinger Equation and delivered the desired information. Moreover,

the overlap between wavefunctions, taking into account the R−dependent couplings, was

also calculated, obtaining then the transition probabilities between the different levels.

After gathering these values, the simulations of the time evolution could be performed.

The wavepacket of the D-levels was calculated using the transition probabilities, and with

the time-dependent Schrödinger equation, also its time evolution could be computed. The

revival of the wavepacket at t ∼ 272fs was observed, very well-defined for the case when no

NIR light was acting on the system, and perturbed when some NIR light interacted with the

hydrogen target.

Two experimental variables were calculated in the simulation and compared with the ones

obtained from measured data: the time-dependent dipole moment and the optical density. In

both experimental and simulated results for the dipole moment, the very interesting phe-

nomenon of the revival time shift was observed. With increasing NIR intensity, the revival

was shifted to earlier time, due to the accumulated phase in the time evolution brought by

the NIR field. This feature could be a hint for revival time control, and it is one of the most

exciting results of the project.

For the optical density, experimental and simulated data were in good agreement for the

line position. However, the line shape of the experiment was not reproduced. The Fano

theory for bound states embedded in a continuum was introduced, in the equivalent form

of the theory which makes use of the so-called Fano phases. By fitting only the case with

no NIR light to the experimental results to get the appropriate values for the q-parameters,

the experimental line shape was recovered in the simulation also for higher NIR intensity

values. The simulated line shape was also corrected by convolving a Gaussian function,

which represented the limited experimental resolution.

Finally, a time-delay study with constant NIR intensity was also performed. One could

observe how the revival definition depended on the position of the D-wavepacket at the mo-
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ment of the NIR-pulse arrival. If the D-wavepacket was in the Franck-Condon region (mean-

ing also that it was far away from the second well of the EF potential), the revival is very

well-defined. However, when the wavepacket travels outside its Franck-Condon region, for

example at the turning point at t = 9 fs, the revival gets a splitting and loses resolution. By

studying the nuclear wavefunctions of the EF energy levels, it could be seen that several lev-

els that were present in both wells of the EF potential curve were more populated when the

D-wavepacket’s nuclear coordinate had a higher value at the interaction time, τ . On the con-

trary, when the D-wavepacket was in the Franck-Condon region, the EF-levels that interacted

the most were the ones which had the highest probability in the first potential well. To show

the difficulties of the problem, the NIR-added phase to the D levels for different time delays

was also plot. In this part of the study, one could see how the added phase lost regularity,

or even changed sign for increasing time delays. This aspect shows the complexity of the

problem. Further analysis on the topic could investigate more the effects of the NIR-added

phase.

Summarizing, the project explored many aspects of the strong-field effects on singly ex-

cited vibronic resonances in the hydrogen molecule. The experimental results could then be

compared with the theory, finding general agreement, and aspects that could not be recovered

from the measured data could also be studied.

Many experimental results could be recovered by using only the minimum number of

levels in the simulation, being this the goal of the project. Of course, there are still many

other aspects of the system that could further be studied. Significantly longer simulations

could be performed in order to be able to implement the longer lifetime needed to avoid

emission from the lowest levels, a problem that was left opened in section 5.3.3. In this

regard, other possible implementations of the taper could also be considered. The study of

the phases and its change due to the NIR interaction could further be analysed, for example,

looking at the extreme case of delta shaped pulses. Moreover, other potential curves and

their levels could be included in the simulation. Some absorption lines corresponding to C

levels are to see in the experimental results, so their inclusion would improve the simulation.

In conclusion, the field still offers many interesting research directions that could further be

explored.

59



References
1. Maiman, T. H. “Stimulated optical radiation in ruby”. Nature 187, 493–494 (1960).

2. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. “Proposed Experiment to Test

Local Hidden-Variable Theories”. Physical Review Letter 23, 880–884 (1969).

3. Aspect, A., Grangier, P. & Roger, G. “Experimental Realization of Einstein-Podolsky-

Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities”. Physical

Review Letter 49, 91–94 (1982).

4. Aspect, A., Dalibard, J. & Roger, G. “Experimental Test of Bell’s Inequalities Using

Time-Varying Analyzers”. Physical Review Letter 49, 1804–1807 (1982).

5. Giustina, M. et al. “Significant-Loophole-Free Test of Bell’s Theorem with Entangled

Photons”. Physical Review Letter 115, 250401 (2015).

6. Stooß, V., Hartmann, M., Birk, P., Borisova, G. D., Ding, T., Blättermann, A., Ott, C. &

Pfeifer, T. “XUV-beamline for attosecond transient absorption measurements featuring

a broadband common beam-path time-delay unit and in situ reference spectrometer for

high stability and sensitivity”. Review of Scientific Instruments 90, 053108 (2019).

7. Goulielmakis, E., Loh, Z.-H., Wirth, A., Santra, R., Rohringer, N., Yakovlev, V. S.,

Zherebtsov, S., Pfeifer, T., Azzeer, A. M., Kling, M. F. & et al. “Real-time observation

of Valence Electron Motion”. Nature 466, 739 (2010).

8. Mauritsson, J. et al. “Attosecond Electron Spectroscopy Using a Novel Interferometric

Pump-Probe Technique”. Physical Review Letter 105, 053001 (2010).

9. Holler, M., Schapper, F., Gallmann, L. & Keller, U. “Attosecond Electron Wave-Packet

Interference Observed by Transient Absorption”. Physical Review Letter 106, 123601

(2011).

10. Ott, C., Kaldun, A., Argenti, L., Raith, P., Meyer, K., Laux, M., Zhang, Y., Blättermann,

A., Hagstotz, S., Ding, T. & et al. “Reconstruction and control of a time-dependent two-

electron wave packet”. Nature 516, 374 (2014).
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A. & Küpper, J. “Molecular movie of ultrafast coherent rotational dynamics of OCS”.

Nature Communications 10, 3364 (2019).

23. Sussman, B. J., Townsend, D., Ivanov, M. Y. & Stolow, A. “Dynamic stark control of

photochemical processes”. Science 314, 278–281 (2006).

61



24. Peng, P., Mi, Y., Lytova, M., Britton, M., Ding, X., Naumov, A. Y., Corkum, P. B. &

Villeneuve, D. M. “Coherent Control of Ultrafast Extreme Ultraviolet Transient Ab-

sorption”. Nature Photonics 16, 45 (2022).

25. Vrakking, M. J. J., Villeneuve, D. M. & Stolow, A. “Observation of fractional revivals

of a molecular wave packet”. Physical Review A 54, R37–R40 (1996).

26. Ergler, T., Rudenko, A., Feuerstein, B., Zrost, K., Schröter, C. D., Moshammer, R. &
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angegebenen Quellen und Hilfsmittel benutzt habe.

Heidelberg, den 17.10.2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


	Introduction
	Experimental motivation
	Theoretical Framework
	Atomic Units
	Light-Matter interaction
	The Hydrogen molecule
	Born-Oppenheimer approximation
	Potential curves of H2
	Notation and symmetries

	Fano theory for configuration interaction

	Multi-level model simulation
	nucfix and rovib_trans 
	Model simulation of the experiment
	Laser pulses
	Hamiltonian of the model system
	Solving the time-dependent Schrödinger Equation
	Relevant quantities: the time-dependent dipole moment and the Optical Density


	Results
	The nuclear wavepacket
	The wave-packet revival time
	Treatment of the continuum in the model simulation
	Few-level toy model
	Including all bound states
	Fano phases

	Gaussian Convolution
	Time-Delay study

	Conclusions

