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Abstract

We evaluate the Average Null Energy Condition (ANEC) on momentum eigenstates generated by

the stress tensor in perturbative λφ4 and general spacetime dimension. We first compute the

norm of the stress-tensor state at second order in λ; as a by-product of the derivation we obtain

the full expression for the stress tensor 2-point function at this order. We then compute the

ANEC expectation value to first order in λ, which also depends on the coupling of the stress-tensor

improvement term ξ. We study the bounds on these couplings that follow from the ANEC and

unitarity at first order in perturbation theory. These bounds are stronger than unitarity in some

regions of coupling space.
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1 Introduction

The Average Null Energy Condition (ANEC) states that the integral of the null energy over a

complete null worldline is non-negative,

+∞∫
−∞

dz− T−−(z) ≥ 0 . (1.1)

This is a quantum statement, it holds true at operatorial level. It is satisfied in free theory [1],

it has been shown to hold for interacting unitary QFTs with a nontrivial UV fixed point using

field-theoretic methods [2], and more generally for any unitary QFT using entropy arguments [3].

The ANEC (1.1) is an inherently Lorentzian concept. In fact, the central ingredient in the proof

of [2] is causality, which more in general is crucial in the analytic conformal bootstrap programme,
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recently reviewed in [4, 5]. In this sense, studying the implications of the ANEC lies within the

broad program of determining the consequences of causality and unitarity for QFTs.

The ANEC was shown to encode important information about conformal field theories with the

derivation of the ‘conformal collider bounds’ [6], which are bounds on conformal anomalies. To

derive these, the ANEC operator is placed at null infinity, and its expectation values are taken on

a state |ψ〉 which generates some energy excitation,

〈E〉 =
1

〈ψ|ψ〉
lim

z+→∞

(z+

2

)d−2
〈ψ|

+∞∫
−∞

dz− T−−(z) |ψ〉 ≥ 0 . (1.2)

This then has the interpretation of the energy flux measured per unit angle in the transverse

directions at null infinity, which owing to (1.1) has to be non-negative.

The expectation value (1.2) is computed from 3-point correlators involving the stress tensor,

and their positivity translates into bounds on the quantities which such correlators depend on. In

a CFT, for a momentum eigenstate generated by the stress tensor itself, the expectation value in

d = 4 spacetime dimensions depends on the conformal anomalies a and c, and the ANEC translates

into a lower and an upper bound on their ratio a/c. The bounds thus obtained also happen to be

optimal, given that the ANEC operator commutes with the momentum operator at null infinity.

The ANEC has also been used to place bounds on conformal dimensions of operators [7, 8], in

some cases stronger than the unitary bounds. Furthermore, it has been shown [2,9] that the ANEC

is the first of a whole family of positivity conditions, which similarly follow from causality and

unitarity. These take the form of the positivity of light-ray operators [9–11], non-local operators

labeled by a continuous spin J , for which the J = 2 operator is precisely the ANEC operator. Their

positivity therefore generalises the ANEC to continuous spin.

Given how useful the ANEC has proven to be in the context of CFTs, it is natural to explore its

implications for generic QFTs. Since it follows from unitarity and causality, it is tempting to think

that the ANEC could encode interesting constraints on RG flows and be related to monotonicity

theorems. However, the lack of conformal symmetry makes it much more difficult to make general

statements on the correlators. It is therefore useful to start by studying a particular example.

In this paper, we continue the programme initiated in [12] by studying the implications of the

ANEC in the particular example of λφ4 in perturbation theory. This is an interacting theory with

a trivial fixed point in d = 4 dimensions and a Wilson-Fisher fixed point in d = 4 − 2ε, and it

is simple enough to allow one to explicitly compute the expectation value of the ANEC operator

at low perturbative orders. Concretely, here we consider a state generated by the stress-tensor,

thereby following the construction of [6] and deriving nontrivial constraints for the parameters of
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the theory. For practical purposes we focus on the case 2 < d ≤ 4, although some of the results

have a more general range of validity.

The constraints that we obtain from the ANEC depend on the spacetime dimension, the coupling

λ, the improvement-term coupling ξ, and the energy of the state; they are trivially satisfied in the

free case. The constraints are similar to the unitarity constraint that follows from demanding

positivity of the norm of the state. Setting the renormalization scale equal to the energy of the

state we obtain bounds for the couplings at such energy. The ANEC turns out to be in most cases

more stringent than unitarity. The evaluation of the norm of the state and of the ANEC correlator

is solid; however, the analysis of the bounds is more speculative given that they follow from the

edge of validity of perturbation theory, and require higher-order corrections to be confirmed.

The outline of the paper is as follows. In section 2 we compute the norm of the state generated

by the stress tensor up to order O(λ2), which follows from the Wightman 2-point stress-tensor

correlator. In section 3 we compute the ANEC expectation value on the same state up to order

O(λ), by first computing the Wightman 3-point correlator of the stress tensor and then turning it

into an expectation value of the ANEC operator at null infinity. Finally in section 4 we present and

discuss the resulting constraints, together with the unitarity constraint following from positivity of

the norm of the state. Several of the intermediate expressions for the correlators are listed in the

appendices, including the expression for the full stress-tensor 2-point function to O(λ2) and details

of the derivation of the Wightman function in momentum space from the Euclidean correlators. In

appendix E, we compare with the case of the free massive scalar.

2 Norm of the state

Our starting point is the Euclidean action in d = 4− 2ε dimensions

SE =

∫
ddxE

[1

2
(∂φ)2 +

1

4!
λφ4

]
, (2.1)

where subscripts E (L) indicates Euclidean (Lorentzian) signature. In the following we will drop

them whenever it is clear from the context.

The Euclidean stress-energy tensor derived from (2.1) reads

Tµν = ∂µφ∂νφ−
1

2
(∂φ)2 δµν − ξ

(
∂µ∂ν − δµν ∂2

)
φ2 − λ

4!
φ4 δµν . (2.2)

It includes the improvement term with a real parameter ξ. As we shall confirm with our calculation,

its addition is necessary to construct a renormalizable energy-momentum tensor at the quantum
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〈TµνTαβ〉(0) : 〈TµνTαβ〉(1) :

〈TµνTαβ〉(2) : a b c

d e f

Figure 1: Diagrams for the 2-point function. The thick dot represents a stress tensor insertion. The
left one has indices µν; the right one αβ. The arrow represents the flow of the external momentum
p.

level [13]. Tracelessness of the stress tensor (when λ = 0 or d = 4) is achieved when ξ = ξd := d−2
4(d−1) .

We want to evaluate the norm of the stress-tensor momentum eigenstate

|ε · T 〉 = εµν
∫
ddx e−i q x

0
Tµν(x) |0〉 , q > 0 (2.3)

on which we will evaluate the ANEC operator. This state has vanishing spatial momentum pi = ~0

and energy p0 = q > 0. We introduced also a complex symmetric polarization tensor ε. Conservation

of the stress tensor allows us to consider purely space-like polarization, ε0µ = 0. We write the norm

as

N = 〈ε · T |ε · T 〉

= ε∗µνεαβ
∫
ddx eiqx

0 〈Tµν(x)Tαβ(0)〉 = ε∗µνεαβ〈Tµν(q,~0)Tαβ(−q,~0)〉 ,
(2.4)

where the correlator involved is the Wightman 2-point function. In the second step we have dropped

a factor of the spacetime volume, since it cancels with an analogous contribution from the ANEC

3-point function in the expression for the normalized energy flux (1.2).

We start by constructing the Euclidean correlator,

〈Tµν(p)Tαβ(−p)〉
E

= 〈TµνTαβ〉E(0) + λ 〈TµνTαβ〉E(1) + λ2 〈TµνTαβ〉E(2) +O(λ3) , (2.5)

where the dependence on p in the rhs is understood. The Feynman diagrams to order O(λ2) are

shown in figure 1. Except for the eye diagram (2)f , all integrals in the other diagrams’ contributions

can be treated with two-propagator integral technology, summarized in appendix A. The eye diagram

is considerably more complicated, nonetheless it can be computed exactly; details are in appendix B.

For the purpose of this paper, we could disregard the terms with tensorial dependence on the

external momentum, since they vanish when contracted with the polarization tensor, εµνpν = 0

when pµ = (q,~0). However, we provide the result for the full Euclidean 2-point function with
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generic momentum in appendix C as an additional technical result.

Next, we need to rotate from Euclidean to Lorentzian signature and construct the Wightman

function. The Euclidean diagrams are all proportional to (p2)−α, with the exponent fixed by

dimensionality. The relevant Wightman function follows from the prescription

〈Tµν(x)Tαβ(0)〉 = lim
ε→0+

〈Tµν(xE)Tαβ(0)〉
E
, x0

E = ix0 + ε. (2.6)

Constructing the Wightman function in momentum space is less immediate than in position space,

and requires straightforward but tedious mathematical manipulations. In the case of the 2-point

function, the prescription (2.6) translates into the replacement (p2)−α → 2 sin(πα) Θ[p0−|~p |] |p2|−α,

where on the rhs the Lorentzian metric is used. The step function selects timelike momenta with

positive energy, consistent with our choice pµ = (q,~0), q > 0. We collect more details of the Wick

rotation in momentum space in appendix D.

Finally, the norm exhibits the form

N = a ε̃∗ij ε̃ij + b ε∗iiεjj , (2.7)

where ε̃ij and εii are the symmetric traceless part and the trace of the spacelike polarization tensor

εij = εkk
δij
d−1 + ε̃ij , and for the coefficients we find

a =
qd

2d+3 (4π)
d
2−

3
2 Γ[ 32 + d

2 ]
+

λ2q3d−8

(4π)
3d
2 −1

{
(2d− 3)(324− 434d+ 173d2 − 21d3) Γ[d2 − 1]4

6 (d− 4)(d− 3)(d+ 1) Γ[ 3d2 − 3] Γ[2d− 1]
(2.8)

−
4π (d− 6)(d− 2)Γ[3− d

2 ] Γ[3− 3d
2 ] Γ[d2 − 1]3

43 (d− 3)(d+ 1) Γ[d] Γ[3d2 + 1
2 ] Γ[ 12 −

3d
2 ]

+
(4π)4(d− 1)(2 cos(πd) + 1) csc(πd) Γ[3− 3d

2 ] Γ[d2 − 1]2

4
d
2+1 Γ[ 32 + d

2 ] Γ[2d− 3] Γ[3− d] Γ[1− d
2 ]

[
3F2

(
1 , 2−d , d−2

3−d , 1− d
2

∣∣∣ 1)
+

3(2d− 5)

(d− 3)
3F2

(
1 , 3−d , d−2

4−d , 2− d
2

∣∣∣ 1)+
3(d− 2)(2d− 5)(3d− 8)

2(d− 4)2(d− 1)
3F2

(
1 , 4−d , d−2

5−d , 3− d
2

∣∣∣ 1)]},

b =
qd (d2 − 1) (ξ − ξd)2

2d (4π)
d
2−

3
2 Γ[ 32 + d

2 ]

(
1− λ

q4−d
Υ(d)

)
(2.9)

+
λ2q3d−8

(4π)
3d
2 −1

{
Γ[d2 − 1]4

Γ[2d− 5] Γ[3d2 − 3]

[
2 (ξ − ξd)2

(d− 4)

(
1

3
+

(3d− 8)

(d− 4)
3F2

(
1 , 4−d , d−2

5−d , 3− d
2

∣∣∣ 1))

+
(d− 4)

3(d− 3)(d− 1)
ξ − (d− 4)(7d2 − 29d+ 28)

48(d− 3)(d− 1)2(2d− 5)

]

+ (ξ − ξd)2
[

Γ[d2 − 1]6 Γ[2− d
2 ]3

4 Γ[d− 2]3 Γ
(
4− 3d

2

)
Γ[ 3d2 − 3]

+
(3d− 8)

(d− 3)

Γ
(
d
2 − 1

)3
Γ[2− d

2 ]

Γ[ 3d2 − 3] Γ[d− 2]
2π cot

(
3πd

2

)]}
,
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with Υ(d) defined as

Υ(d) =
(d− 1) Γ[3− d

2 ] Γ[d2 − 1]

2d (4π)
d
2
− 3

2 (4− d) Γ[1
2 + d

2 ]2 Γ[1
2 −

d
2 ]
. (2.10)

The behaviour of this function is plotted in figure 2.

2 3 4
d

-1

1

Υ(d)

Figure 2: Υ(d) is negative for 2 < d < 3 and positive for 3 < d < 4, vanishes for d = 3 and has
poles for d = 2 and d = 4, increasing monotonically from Υ(2+) = −∞ to Υ(4−) = +∞

In d = 4 a finite result is obtained by adding the known renormalization counterterms1 [14],

which is a nontrivial consistency check of our general expression for the Euclidean 2-point function,

and in particular of the contribution coming from the eye diagram. After renormalization with

minimal subtraction, we obtain

a =
q4

120 (4π)

[
1− 5

36

λ2

(4π)4

]
,

b =
q4

4π

[
(ξ − 1

6)2 +
λ

(4π)2
(ξ − 1

6)2
(

log
q2

µ2
− 2− 1

3(6ξ − 1)

)
+

λ2

864(4π)4

[
− 10π2(1− 6ξ)2

+ 147 + 4ξ(1467ξ − 464) + 30(1− 6ξ)2 log2 q
2

µ2
− 12(6ξ − 1)(70ξ − 11) log

q2

µ2

]]
,

(2.12)

where the renormalization scale has been redefined as µ2 → µ2 eγE/4π .

The coefficient a does not receive O(λ) corrections and is finite at order O(λ2). The coefficient b

at first order in λ is zero at the conformal value ξ = ξ4 = 1
6 ; however, starting at second order in the

coupling, the corrections are nonvanishing, corresponding to the quantum breakdown of classical

conformal symmetry [13–15].

1Explicitly we write ξB = ξ + δξ , µd−4 λB = λ + δλ , µ2−d/2 φB =
√

1 + δZ φ, where the counterterms to the
relevant order read

δξ =
λ(ξ − 1

6
)

(4π)2(4− d)
+

2λ2(ξ − 1
6
)

(4π)4(4− d)2
−

5λ2(ξ − 7
30

)

12 (4π)4(4− d)
, δλ =

3λ2

(4π)2(4− d)
, δZ = − λ2

12(4π)4(4− d)
. (2.11)
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In a CFT, the term b |εii|2 is absent from the norm, and the coefficient a of |ε̃ij |2 is related to

the type-B trace anomaly coefficient c, as2 a = q4

180(4π)c, with c = 3/2 for the conformally-coupled

free scalar. This suggests a generalization of this anomaly coefficient along the RG flow, as

c =
3

2

(
1− 5

36

λ2

(4π)4

)
, (2.14)

matching the independent result of [16]. It would be interesting to extend the calculation to higher

orders and see the logarithmic dependence on the energy scale.

3 ANEC expectation value on the stress-tensor state

In this section we present the evaluation of the correlator of the energy flux operator in terms of

the Wightman 3-point function of stress-tensors,3

〈E〉 = lim
z+→∞

(z+

2

)d−2
+∞∫
−∞

dz−
∫
ddx e−iqxε∗µνεαβ 〈Tµν(x)T−−(z±)Tαβ(0)〉

= 2 ε∗µνεαβ lim
z+→∞

(z+

2

)d−2
∫

dd−1~p

(2π)d−1
e2ip1r 〈Tµν(q,~0 )T−−(−p1, ~p )Tαβ(p1 − q,−~p )〉 .

(3.1)

Following [17], for simplicity we inserted the ANEC operator at (z+ → ∞, z−, za = 0), where

z± = z1 ± z0, and za indicates the transverse directions a = 2, . . . , d.

We construct 〈E〉 starting from 〈Tµν(x)T (z)Tαβ(y)〉
E

where

T ≡ T−− = ∂−φ∂−φ (3.2)

is the component of the stress tensor in the Euclidean null direction. We ignore ξ terms in this

operator because they are total derivatives that vanish after the integration over z−. We write the

2The Euclidean 2-point function of the stress tensor has the form

ε∗
µν
εαβ 〈Tµν(q)Tαβ(−q)〉E =

q4

720π
c

(
2

4− d − log(
q2

µ2
) +O(4− d)

)
|ε̃ij |2 , (2.13)

where c is the trace anomaly 180(4π)2〈T 〉 = −aE4 + c Weyl2. After renormalizing the UV divergence by addition of
a gravitational counterterm, the Euclidean correlator is finite and the anomaly c is the coefficient of the logarithm.
When Wick rotating to Lorentzian signature to construct the Wightman 2-point function, the Euclidean correlator
gets multiplied by a factor of (Γ[2 − d/2] Γ[d/2 − 1])−1 = (4 − d)/2 + O(4 − d)2, which renders the Euclidean pole

finite and the logarithm disappears, ε∗µν εαβ 〈Tµν(q)Tkl(−q)〉 = q4

720π
c |ε̃ij |2.

3For an alternative method to compute expectation values of the ANEC (and more generically of detector opera-
tors), based on using Feynman rules within the in-in formalism, see [11].
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〈TµνTTαβ〉(0) :

1 3

2

〈TµνTTαβ〉(1) : a

1 3

2

b

1 3

2

Figure 3: Diagrams for the 3-point function. We did not include the third permutation of the first
order diagram because it does not contribute to the expectation value.

momentum-space perturbative expansion as

〈Tµν(p1)T (p2)Tαβ(p3)〉
E

= 〈TµνTTαβ〉E(0) + λ 〈TµνTTαβ〉E(1) +O(λ2). (3.3)

Diagrams with a 2-propagator subdiagram depending only on the momentum p2 can also be dis-

carded. This is justified because such integral is proportional to (p2−)2, which vanishes upon inte-

gration over z−. To slightly simplify the expressions we identify p2− = 0 = −p1− − p3− from the

start. The Feynman diagrams up to order O(λ1) are in figure 3. The Euclidean correlators read

〈TµνTTαβ〉E(0) = 8

∫
d̄dk

[(k − p1)−]2 Vµν(k, p1) Vαβ(k,−p3)

k2 (k + p3)2 (k − p1)2
,

〈TµνTTαβ〉E(1)a = 4
(ξ − ξd)Γ[d2 ]2 Γ[1− d

2 ]

(4π)
d
2 Γ[d− 1]

p1µp1ν − p2
1δµν

[(p1)2]2−d/2

∫
d̄dk

[(k − p1)−]2Wµναβ(k, p3)

k2 (k − p1)2 (k + p3)2
,

〈TµνTTαβ〉E(1)b = 〈TαβTTµν(p1 ↔ p3)〉E(1)a ,

(3.4)

where

Vαν(k, p) = kαkν − k(αpν) + ξ pαpν −
1

2
δαν(k2 − k · p+ 2ξ p2) ,

Wµναβ(k, p) = 2kαkβ − δαβk2 − δαβ k · p+ 2k(αpβ) + 2ξ(pαpβ − δαβp2) .

(3.5)

The Wightman function relevant to compute the expectation value is the one defined as

〈Tµν(x) T (z) Tαβ(0)〉 = lim
ε,ζ→0+

〈Tµν(xE)T (zE)Tαβ(0)〉
E
, x0

E = ix0 + ε , z0
E = iz0 + ζ , (3.6)

with ε > ζ. As opposed to the case of the 2-point function, where the momentum dependence

is particularly simple, here the analyticity properties of the momentum-space correlators are more

complicated and no simple prescription for the Wick rotation from Euclidean to Lorentzian signature

is available. One has to resort to a case-by-case analysis. We give further details of the Wick

rotations needed for (3.4) in appendix D; a complete discussion of the method used can be found

in [18,19].
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The resulting Lorentzian expressions read

〈TµνTTαβ〉(0) = 8 (2π)3

∫
d̄dk [(k − p1)−]2 V̂µν(k, p1) V̂αβ(k,−p3) δ̄[p1 − k] δ̇[p3 + k] δ̄[k] ,

〈TµνTTαβ〉(1)a =
(ξ − ξd)Γ[d2 ]2 Γ[1− d

2 ]

2(4π)
d
2
−3 Γ[d− 1]

p1µp1ν − p2
1ηµν

|(p1)2|2−d/2

∫
d̄dk [(k − p1)−]2 Ŵµναβ(k, p3) δ̇[p3 + k]×

×
[
cos
[πd

2

]
δ̄[k] δ̇[k − p1]− 1

π
sin
[πd

2

]
Θ[p01 − |~p1|]

(
δ̄[k]

(k − p1)2
+
δ̄[k − p1]

k2

)]
,

〈TµνTTαβ〉(1)b = 〈TαβTTµν(p1 ↔ −p3)〉(1)a ,

(3.7)

with V̂ and Ŵ the same as (3.5) but with the Lorentzian metric δ → η, and where we have used

the notation

δ̄[k] ≡ δ[k0 − |~k|]
k0 + |~k|

, δ̇[k] ≡ δ[k0 + |~k|]
−k0 + |~k|

. (3.8)

These expressions can be directly used to evaluate the correlator of the energy flux (3.1). The

delta function δ̇[p3 + k] can be used to integrate p1
3. The large-z+ limit can then be computed

rescaling of the transverse components pa3 → pa3/z
+, which makes manifest the falloff ∼ (z+)2−d of

the correlator, and the remaining integrals can be done relatively easily.4

The energy flux operator E breaks the SO(d−1) rotational invariance to SO(d−2) corresponding

to the rotations in the transverse directions. We can therefore further decompose the polarizations as

εij ' (ε11, ε1a, ε̃ab, εaa) corresponding to the scalar component 11, a vector, a symmetric traceless

tensor and the trace part in the transverse directions. The general tensor decomposition of the

correlator of the energy flux in terms of these polarizations is therefore

〈E〉 = â |εaa|2 + b̂ |ε11|2 + ĉ (ε11ε
∗
aa + ε∗11εaa) + ê ε∗a1εa1 + f̂ ε̃∗acε̃ac . (3.9)

To order O(λ1) we obtain the following expressions for these coefficients:

â =
qd+1 (4ξ − 1)2

16(4π)d−2

(
1− 4

(ξ − ξd)
(4ξ − 1)

λ

q4−dΥ(d)

)
, b̂ =

qd+1 ξ2

(4π)d−2

(
1− (ξ − ξd)

ξ

λ

q4−dΥ(d)

)
,

ĉ =
qd+1(4ξ − 1)ξ

4(4π)d−2

(
1− (ξ − ξd)(8ξ − 1)

2ξ(4ξ − 1)

λ

q4−dΥ(d)

)
, ê = 0 = f̂ ,

(3.10)

where Υ(d) is the one defined in (2.10). We note the relation ĉ2 = â b̂+O(λ2).

The case d = 4 is special because renormalization is required. Adding the appropriate countert-

4This type of calculations are described in detail in [19].
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erms (cf. footnote 1), the coefficients of the energy flux correlator become

â =
q5 (4ξ − 1)2

16(4π)2

[
1 +

λ

(4π)2

ξ − 1
6

ξ − 1
4

(
log

q2

µ2
− 2− 1

3(6ξ − 1)

)]
,

b̂ =
q5 ξ2

16(4π)2

[
1 +

λ

(4π)2

ξ − 1
6

ξ

(
log

q2

µ2
− 2− 1

3(6ξ − 1)

)]
, ĉ2 = â b̂+O(λ2) .

(3.11)

In these expressions we observe that the values ξ = 0, 1/4 emerge naturally. We will see how these

play a role below.

4 Positivity bounds

The ANEC demands the (normalized) expectation value,

〈E〉 =
〈E〉
N

, (4.1)

to be non-negative. Since the norm of the state N has to be positive by unitarity, the non-normalized

correlator 〈E〉, given by the energy flux correlator, is also non-negative.

Given the norm N = a |ε̃ij |2 + b |εii|2, unitarity translates into

a ≥ 0, b ≥ 0, (4.2)

whose expressions are given in (2.8) and (2.9) up to O(λ2). Given the complexity of the expressions,

we will consider the unitarity constrain at full O(λ2) only in d = 4. In 2 < d < 4 we will only

consider the expression at O(λ1), which is the order at which we evaluate the ANEC correlator.

The expectation value 〈E〉 is the energy flux for unit angle in the Sd−2 sphere, and therefore

reduces to the energy q when integrated over it. The general expression can therefore be written as

〈E〉 = K
[
a ε̃∗ij ε̃ij + b ε∗iiεjj + c (ε∗iiε11 + εiiε

∗
11 + c0) + e (ε∗1iε1i + e0) + f (ε∗11ε11 + f0)

]
,

K =
q

Vol[Sd−2]
, c0 = −2 ε∗iiεjj

d− 1
, e0 = −

ε∗ijεij

d− 1
, f0 = −

ε∗iiεjj + 2ε∗ijεij

d2 − 1
,

(4.3)

where a and b are the same as in the 2-point function (2.7) and the constants c0, e0, f0 are chosen

to make each term in round brackets vanish when integrated over the Sd−2 sphere. The overall

normalization K is chosen so that the first two terms have the same coefficients as in (2.7). Via the

11



decomposition εij ' (ε11, ε1a, ε̃ab, εaa) we match (4.3) with the decomposition (3.9), to find

â

K
=

1

(d− 1)(d− 2)
a+ b− 2

d− 1
c− 1

(d− 1)(d− 2)
e− d

d2 − 1
f ,

b̂

K
=
d− 2

d− 1
a+ b+

d− 2

d− 1
(2c+ e) +

d2 − 4

d2 − 1
f ,

ĉ

K
= − 1

d− 1
a+ b+

d− 3

d− 1
c− 1

d2 − 1
f ,

ê

K
= 2a+

d− 3

d− 1
e− 4

d2 − 1
f ,

f̂

K
= a− 1

d− 1
e− 2

d2 − 1
f .

(4.4)

It is easier to express the ANEC positivity constraints for the hatted coefficients,

â ≥ 0 , b̂ ≥ 0 , âb̂− ĉ2 ≥ 0 , ê ≥ 0 , f̂ ≥ 0 . (4.5)

In the particular case under consideration the situation is somewhat simpler. The coefficients

(3.10) of the tensor decomposition happen to satisfy the relation â b̂ = ĉ2 +O(λ2). This allows us

to write (3.9) as the manifestly-positive expression

〈E〉 =
∣∣∣√â εaa +

√
b̂ ε11

∣∣∣2 (4.6)

provided â ≥ 0 and b̂ ≥ 0. Any other sign configuration would result in manifestly non-positive

expressions, which are ruled out by the ANEC. Therefore, three of the five constraints (4.5) are

saturated.

We next spell out the constraints explicitly depending on the dimension. We write λ→ λµ4−d,

where µ is some energy scale (which in d = 4 becomes the renormalization scale) and λ is now

dimensionless.

We have computed the relevant 3-point correlators at first order. At this order, a violation

of the ANEC and unitarity inequalities corresponds to a breakdown of perturbation theory. To

proceed, we make the assumption that there is a ξ-independent range of λ small enough where the

first-order approximation is valid. To assess the reliability of the bounds derived, we would need to

go to the next order. The calculations involved for this lie at the boundary of current diagrammatic

technology, and we leave this for future work.

4.1 Case 2 < d < 4.

The ANEC constraints are

ξ − ξd
ξ − 1

4

λΥ(d)

(
µ

q

)4−d
≤ 1 ,

ξ − ξd
ξ

λΥ(d)

(
µ

q

)4−d
≤ 1 , (4.7)

12



at first order in perturbation theory.

Notice that if ξ = ξd the inequalities (4.7) are trivially satisfied. We therefore assume ξ 6= ξd.

From the left-hand side of the inequalities (4.7), it emerges that the values ξ = 0 and ξ = 1
4

play a distinguished role. We will see below that indeed these values flag forbidden ranges of the

parameter. One explanation for the origin of these values might be that for d > 2, the conformal

value ξd = (d−2)
4(d−1) ranges from ξd=2 = 0 to ξd→∞ = 1

4 . It would be good to better understand this

curious emergence.

To compare with the constraints from unitarity at this order, the latter reduce to only one con-

straint, since the coefficient a in (2.8) has no order O(λ1) correction and the tree-level contribution

is manifestly positive. We get

λΥ(d)

(
µ

q

)4−d
≤ 1 . (4.8)

This constraint does not depend on ξ.

We now set the arbitrary scale to µ = q (which sets the normalization of the dimensionless

λ) and derive the consequences for the couplings at this scale. We find it convenient to further

distinguish the cases of d smaller and bigger than d = 3, which correspond to opposite signs for

Υ(d). At d = 3, these bounds don’t constrain ξ or λ since Υ(3) = 0.

3 < d < 4. In this case Υ(d) > 0 (see figure 2), and 1
8 < ξd <

1
6 , both increasing monotonically

with d. The unitarity constraint (4.8),

0 < λ ≤ 1

Υ(d)
, (4.9)

puts an upper bound for the coupling λ, which disappears as d approaches d = 3.

This bound combined with the ANEC constraints limit the allowed range of ξ at fixed λ (recall

that 0 < ξd < 1/4):

ξ ≤ −Υ(d) ξd λ+O(λ2), 0 < ξ <
1

4
, ξ ≥ 1

4
+ Υ(d)

(
1

4
− ξd

)
λ+O(λ2), (4.10)

where the λ-dependent upper and lower bounds have been expanded to first order in λ. Two gaps in

the allowed range of ξ appear around ξ = 0, 1/4, see figure 4. The gaps increase with the dimension

d. At exactly d = 4, the bounds have to be analized separately because of renormalization.

Turning it around, we can derive bounds for λ at fixed ξ. For 0 < ξ < 1
4 , the unitarity bound

13



ξ

0 1
4−Υ(d) ξd λ

1
4 + Υ(d)

(
1
4 − ξd

)
λ

Figure 4: The ANEC bounds exclude two ranges of ξ, in red zig-zag lines, below ξ = 0 and above
ξ = 1/4 when 3 < d < 4.

(4.9) is the most stringent, while for other values of ξ, the ANEC constraints win:

ξ < 0 : λ ≤ 1

Υ(d)

ξ

ξ − ξd
, ξ >

1

4
: λ ≤ 1

Υ(d)

ξ − 1
4

ξ − ξd
. (4.11)

Again, these bounds become more stringent at d close to d = 4, where the upper bounds are small.

As d approaches d = 3, they become automatically satisfied.

2 < d < 3. In this case Υ(d) < 0, and 0 < ξd <
1
8 . The unitarity bound (4.8) is automatically

satisfied for any positive λ, in contrast to the previous case. The allowed regions for ξ are now

entirely due to the ANEC and read

ξ < 0, −Υ(d) ξd λ+O(λ2) ≤ ξ ≤ 1

4
+ Υ(d)

(
1

4
− ξd

)
λ+O(λ2), ξ >

1

4
, (4.12)

where again the λ-dependent upper and lower bounds have been expanded to first order. In writing

(4.12) we made the additional simplifying assumption Υ(d)λ > −1 to expand to first order, though

it is not required by the constraints. The bounds (4.12) are plotted in figure 5.

ξ

−Υ(d) ξd λ
1
4 + Υ(d)

(
1
4 − ξd

)
λ0 1

4

Figure 5: The ANEC bounds exclude two ranges of ξ, in red zig-zag lines, abovew ξ = 0 and below

ξ = 1/4 for 2 < d < 3.

Alternatively, for certain values of ξ, we obtain upper bounds for λ,

0 < ξ < ξd : 0 < λ ≤ 1

Υ(d)

ξ

ξ − ξd
, ξd < ξ <

1

4
: 0 < λ ≤ 1

Υ(d)

ξ − 1
4

ξ − ξd
. (4.13)

Again, these bounds become trivial as d approaches d = 3, where the upper bounds diverge.

4.2 Case d = 4.

Given the structure of (3.11) and (2.12), even though the constraints (4.7) and (4.8) diverge if we

simply evaluate them at d = 4 (because of Υ(d)), they are still formally valid under the replacements

14



ξd → 1
6 and Υ(d) (µq )4−d → 1

(4π)2

[
2 + 1

3(6ξ−1) − log q2

µ2

]
. Furthermore, we introduce λ̂ = λ/(4π)2,

which emerges as natural perturbative parameter. The ANEC constraints read

λ̂
ξ − 1

6

ξ − 1
4

(
2 +

1

3(6ξ − 1)
− log

q2

µ2

)
≤ 1, λ̂

ξ − 1
6

ξ

(
2 +

1

3(6ξ − 1)
− log

q2

µ2

)
≤ 1, (4.14)

and the unitarity one, at first order,

λ̂
(

2 +
1

3(6ξ − 1)
− log

q2

µ2

)
≤ 1. (4.15)

Looking back at the â and b̂ coefficients (3.11) from which (4.14) follow, the first one is multiplied by a

factor of (ξ− 1
4)2, and the second one is multiplied by a factor of ξ2. Therefore, the ANEC constraints

are saturated and automatically satisfied in these cases. Similarly, the unitarity constraint (4.15)

appears in fact multiplied by a factor of (ξ − 1
6)2 from the coefficient b in (2.12). Therefore, when

ξ = 1
6 , both in the free (conformal) λ = 0 case and in the interacting case at first order, the unitarity

inequality is saturated and trivially satisfied, and the pole in (4.15) is naturally avoided.

Setting the renormalization scale to µ = q, the logarithms disappear. The couplings λ and ξ

have an implicit dependence on the scale due to renormalization; the inequalities become therefore

conditions for the couplings evaluated at such value of the energy scale. However, the running of

λ starts at O(λ2), and the running of ξ starts at O(λ1) but it always appears multiplied by λ.

Therefore, since we work at first order in λ, our inequalities (4.14) do not capture the implicit

dependence on µ.

Unitarity bounds. Since we have computed the ANEC correlator at O(λ), we first consider the

unitarity constraints at the same perturbative order. A big difference with the 2 < d < 4 case, in

the d = 4 case the unitarity constraint depends on ξ. This allows in principle to set bounds on ξ

for fixed λ̂ from this condition.

Using (2.12), a > 0 is automatically satisfied at first order, and b > 0 gives

ξ ≤ 1

6
, ξ ≥ 1

6
+

λ̂

18
+O(λ̂2). (4.16)

This first order analysis seems to indicate that, at fixed λ̂, a finite range of ξ above ξ = 1
6 is forbidden

by unitarity.

Extending the analysis to O(λ2), there is now also the condition from a ≥ 0. Putting both

unitarity conditions a, b ≥ 0 together, the result that we find is that ξ is no longer constrained.

This is not a contradiction because the first-order bounds arise from the boundary of validity of
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perturbation theory. This is however a clear reminder that any of the bounds we derive need to be

analysed in view of the higher order contributions, which is outside the scope of this paper.

ANEC bounds. Combining the ANEC constraints (4.14) with the unitarity constraint (4.15),

at O(λ1), we obtain the following allowed regions for ξ at fixed λ̂:

ξ ≤ − 5

18
λ̂, 0 < ξ ≤ 1

6
,

1

6
+

λ̂

18
≤ ξ ≤ 1

4
, ξ ≥ 1

4
+

2

9
λ̂, (4.17)

where it has to be understood that all the λ̂-dependent bounds are only up to O(λ̂2). The bounds

(4.17) prescribe forbidden gaps in the allowed range of ξ below ξ = 0, above ξ = 1
6 , and above

ξ = 1
4 , see figure 6. The ANEC bounds appear therefore stronger than unitarity in sme regions of

parameter space. As opposed to the generic d case, at d = 4 three forbidden regions arise instead

of just two (see figures 4, 5); the reason for this is the ξ-dependence of the unitarity constraints in

this case.

ξ

0 1
4

1
6

− 5
18 λ̂

1
4 + 2

9 λ̂
1
6 + λ̂

18

Figure 6: The ANEC and unitarity bounds exclude certain ranges of ξ, in red zig-zag lines, below

ξ = 0, above ξ = 1/6, and above ξ = 1/4, when d = 4.

We can constrain the ANEC expectation value with the unitarity constraint at O(λ̂2). We get

ξ ≤ − 5

18
λ̂, 0 ≤ ξ ≤ 1

4
, ξ ≥ 1

4
+

2

9
λ̂, (4.18)

where again it has to be understood that all the λ̂-dependent bounds are only up to O(λ̂2). These

bounds look quite different from (4.17) due to the qualitative difference between the first and second

order unitarity constraint. Once again the ANEC appears to be stronger than unitarity.

5 Conclusions and Outlook

In this paper we have derived constraints following from the ANEC in the case of the λφ4 theory at

first order in the coupling. We have considered a state generated by the stress tensor and evaluated

the correlators in perturbation theory. We find nontrivial bounds for the parameters of the theory.

The ANEC and unitarity constraints (4.7), (4.8) (and the equivalent at d = 4, (4.14)) originally

depend on the dimensionless ratio between the energy of the state q and a reference (renormalization)

scale µ, which we then fix to the value µ = q. This would constrain the renormalized parameters at
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such energy scale, although the running in the case d = 4 is not captured by the perturbative order

at which we work. We observe that the values ξ = 0, 1
4 play a prominent role; the significance of

this is not yet clear.

As a technical result, we compute the 2-point function of the stress tensor to second oder in the

coupling. This allows us to identify a candidate for the c-anomaly coefficient under deformations,

in a complementary approach to that of [16]. Our method allows us to directly evaluate this term

and it is therefore easier to extend to higher orders.

Since we are using perturbation theory in the coupling λ only, this analysis is exact in ξ. However,

being this a perturbative analysis, the inclusion of higher order effects can dramatically affect the

results, as we demonstrated with the analysis of the unitarity constraint at d = 4. The technical

derivation of the correlators is solid, but the bounds derived stand on a less firm ground.

An immediate extension of the work presented here is the inclusion in the ANEC correlator of

the contributions of order O(λ2). Diagrammatically they are much more complicated than those

considered here, thus they require a more sophisticated technology in order to evaluate them in a

form that is useful for our purposes. The inclusion of higher orders would allow one to consider

the effect of the running of the couplings λ and ξ, thereby providing us with a working example

in which to understand the implications of the ANEC for renormalization group flows. This could

eventually lead to insights on the a-theorem, providing, for example, an interpolating function in

terms of the 3-point function of the stress tensor.

As a final note, we observe that λφ4, not having a UV limit, escapes the proof of [2]. It would

be interesting to understand how such proof might be generalised.
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A Conventions and formulae

We use the Lorentzian (−,+ ,+ ,+) signature. We define momentum measure as

d̄dp =
ddp

(2π)d
. (A.1)

Our momentum-space correlators correspond to

〈Tµν(x)Tαβ(y)〉 =

∫
d̄dp1 d̄

dp2 e
ip1x+ip2y (2π)d δ(d)[p1 + p2] 〈Tµν(p1)Tαβ(p2)〉 ,

〈Tµν(x)Tρσ(z)Tαβ(y)〉 =

∫
d̄dp1 d̄

dp2 d̄
dp3 e

ip1x+ip2z+ip3y×

× (2π)d δ(d)[p1 + p2 + p3] 〈Tµν(p1) Tρσ(p2)Tαβ(p3)〉 ,

(A.2)

which are defined for conserved momenta
∑
pi = 0.

Two-propagator loop integrals are given by

Idmn(p) =

∫
d̄dq

1

[q2]m[(q − p)2]n
=

(p2)d/2−m−n

(4π)d/2
Γ[m+ n− 1

2d] Γ[1
2d−m] Γ[1

2d− n]

Γ[d−m− n] Γ[m] Γ[n]
. (A.3)

Standard formulae to relate tensor to scalar integrals can be found e.g. in [19].

B Calculation of the eye diagram

In this appendix we explain the calculation of the eye-diagram (diagram (2)f in figure 1) contribution

to the stress-tensor two-point function. The contribution is given by the integral

〈Tµν(p)Tαβ(−p)〉E(2)f =

∫
d̄dk d̄dw d̄dq

Vµν(k, p)Vαβ(q, p)

k2 q2w2 (k + p)2 (q + p)2 (w − k + q)2
, (B.1)

Vαν(k, p) = kαkν − k(αpν) + ξ pαpν −
1

2
δαν(k2 − k · p+ 2ξ p2) . (B.2)

The inner loop can be computed using (A.3) and we are left with

〈Tµν(p)Tαβ(−p)〉E(2)f =
1

(4π)d/2
Γ[2− 1

2d]Γ[1
2d− 1]Γ[1

2d− 1]

Γ[d− 2]
Iµναβ(p),

Iµναβ(p) =

∫
d̄dk d̄dq

Vµν(k, p)Vαβ(q, p)

k2 q2 (k + p)2 (q + p)2[(k − q)2]2−d/2
.

(B.3)
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The tensorial integral has the general structure

Iµναβ =A1 δµν δαβ +A2 (δµα δνβ + δµβ δνα) +B1 (δαβ pµpν + δµνpαpβ)

+B2 (δνβpµpα + δµβpνpα + δµαpνpβ + δναpµpβ) + C pµpνpαpβ

(B.4)

with scalar coefficients. By contracting with δµν δρσ, pµpνpρpσ, . . . we obtain a system of equations

for the coefficients. In doing so, in the integrand numerator one obtains powers of the loop momenta,

powers of the external momenta, and mixed terms that can be rewritten in terms of the previous

two by completing the square. In turn, the contractions reduce to iterated two-propagator integrals

which can be computed exactly using (A.3), or to combinations of the scalar integral

Id∆(p) ≡
∫
d̄dk d̄dq

1

k2 q2 (k + p)2 (q + p)2[(k − q)2]∆
(B.5)

with ∆ = 2− d/2, 1− d/2 or −d/2. This scalar integral has been computed for generic ∆ in terms

of Gamma and hypergeometric functions [20,21], and is given by

Id∆(p) = (p2)3d/2−6 2

(4π)d
Γ
[d
2
− 1
]

Γ
[d
2
−∆− 1

]
Γ
[
3− d+ ∆

]
×

×

[ 2 Γ[d2 − 1] 3F2

(
1 , 2− d

2
+∆ , d−2

3− d
2

+∆ , 1+∆

∣∣∣∣ 1)
(d− 2∆− 4) Γ[1 + ∆] Γ[3

2d−∆− 4]
− π cot[π(d−∆)]

Γ[d− 2]

]
.

(B.6)

We finally get

A1 =
d2 − 2d− 2− 8(d− 2)(d+ 1)ξ + 16(d2 − 1)ξ2

16(d2 − 1)
p4Id

2− d
2
(p)

− p2

2(d− 2)(d2 − 1)
Id
1− d

2
(p)− 1

2(d− 2)(d2 − 1)
Id− d

2
(p)

−
(
36d5 − 294d4 + 817d3 − 830d2 + 101d+ 174− 32(d− 2)(d+ 1)(2d− 3)(3d2 − 15d+ 19)ξ

)
×

×
Γ[4− 3d

2 ] Γ[d2 − 1]2 Γ[d− 3]

12(4π)d(d+ 1) Γ[2− d
2 ] Γ[2d− 1]

(
p2
) 3d

2 −4

A2 =
p4

16(d2 − 1)
Id
2− d

2
(p) +

p2

4(d− 2)(d+ 1)
Id
1− d

2
(p) +

1

4(d− 2)(d+ 1)
Id−d/2(p)

−
(
85d3 − 480d2 + 853d− 486

)
Γ[3− 3d

2 ] Γ[d2 − 1]2 Γ[d− 3]

4(4π)d(d+ 1) Γ[1− d
2 ] Γ[2d− 1]

(
p2
) 3d

2 −4
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B1 = −d
2 − 2d− 2− 8(d− 2)(d+ 1)ξ + 16(d2 − 1)ξ2

16(d2 − 1)
p2Id

2− d
2
(p)

+
1

2(d− 2) (d2 − 1)
Id
1− d

2
(p)− 1

2(d− 2) (d2 − 1) p2
Id− d

2
(p)

−
(
15d5 − 128d4 + 372d3 − 407d2 + 90d+ 60− 4(d− 2)(d+ 1)(2d− 3)(9d2 − 49d+ 68)ξ

)
×

×
Γ[1− d

2 ]3 Γ[d2 ]3

23d−2(4π)d−1Γ[4− d] Γ[2− d
2 ]2 Γ[d− 1

2 ] Γ[d+3
2 ] Γ[3d2 − 2]

[
2 cos dπ2 + cos 3dπ

2

] (p2)
3d
2 −5

B2 = − p2

16(d2 − 1)
Id
2− d

2
− 1

4(d+ 1)(d− 2)
Id
1− d

2
(p) +

1

4(d− 2)(d+ 1)p2
Id− d

2
(p)

−
(d4 + 80d3 − 475d2 + 858d− 492) Γ[1− 3d

2 ] Γ[1− d] Γ[d] Γ[ 3d2 ] Γ[1− d
2 ] Γ[d2 ]

23+3d(4π)d−1Γ[4− d] Γ[2− d
2 ]2 Γ[d− 1

2 ] Γ[d+3
2 ] Γ[3d2 − 2]

(
p2
) 3d

2 −5

C =
d(d− 2)− 8(d− 2)(d+ 1)ξ + 16(d2 − 1)ξ2

16(d2 − 1)
Id
2− d

2
(p) +

1

2(d2 − 1)p2
Id
1− d

2
(p)− 1

2(d2 − 1)p4
Id− d

2
(p)

+
(
21d4 − 152d3 + 477d2 − 774d+ 480− 16(d− 3)(d+ 1)(2d− 3)(3d− 10)ξ

)
×

×
Γ[1− 3d

2 ]Γ[1− d] Γ[1− d
2 ] Γ[d2 ] Γ[d] Γ[ 3d2 ]

3 23d+1(4π)d−1Γ[4− d] Γ[2− d
2 ]2 Γ[d− 1

2 ] Γ[d+3
2 ] Γ[3d2 − 3]

(
p2
) 3d

2 −6

To compute the norm (2.7) we only need the coefficients A1 and A2, since we multiply the 2-point

function by the transverse polarization tensors, but we give the full result for completeness.

C Full Euclidean stress-tensor 2-point function to order O(λ2)

In this appendix we write the contributions of all the diagrams up to 2-loop (figure 1), of the 2-point

function, with the complete momentum dependence:

〈TµνTαβ〉E(0) =
Γ[2− d/2] Γ[d/2− 1]2

8(4π)d/2(d2 − 1) Γ[d− 2]

1

(p2)2−d/2 ×
[
(δανδβµ + δαµδβν)p4

+ δαβδµνp
4
(
d2(1− 4ξ)2 + d(8ξ − 2)− 2

(
8ξ2 − 8ξ + 1

))
+ pαpβpµpν

(
d2(1− 4ξ)2 + d(8ξ − 2)− 16(ξ − 1)ξ

)
− p2 (δαµpβpν + δβνpαpν + δανpβpµ + δβµpαpν)

− p2(δµνpαpβ + δαβpµpν)
(
d2(1− 4ξ)2 + d(8ξ − 2)− 2

(
8ξ2 − 8ξ + 1

)) ]
,

〈TµνTαβ〉E(1) = − (ξ − ξd)2 Γ[2− d/2]2 Γ[d/2− 1]4

(4π)d Γ[d− 2]2

(
p2δαβ − pαpβ

) (
p2δµν − pµpν

)
(p2)4−d ,
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〈TµνTαβ〉E(2)a = −
Γ[7− 3d

2 ] Γ[d2 − 1]4

9(4π)3d/2(d− 4)(3d− 10)(3d− 8)Γ[2d− 4]

1

(p2)4−3d/2
δµνδαβ ,

〈TµνTαβ〉E(2)b =
Γ[4− 3d

2 ]Γ[d2 − 1]4
[
(2d− 5)(8ξ − 1)p2δαβ + pαpβ(d(3− 16ξ) + 40ξ − 8)

]
(4π)3d/224(d− 3)Γ(2d− 4)(p2)5− 3

2
d

δµν ,

〈TµνTαβ〉E(2)c = 〈TαβTµν(p→ −p)〉
E(2)b ,

〈TµνTαβ〉E(2)d =
(d− 2)Γ[7− 3d

2 ]Γ[d2 − 1]4

(4π)3d/2 9(d− 4)2(d− 3)(3d− 10)(3d− 8)Γ[2d− 2]

1

(p2)6− 3d
2

×

×
[
p2 (pβpµδαν + pαpµδβν + pαpνδβµ + pβpνδαµ) (d2 − 6d+ 12)− (δανδβµ + δαµδβν) p4d

− δαβδµνp4 64(d− 3)(2d− 5)(2d− 3)

(
ξ2 − (d− 2)

2(2d− 5)
ξ +

4d3 − 22d2 + 33d− 12

64(d− 3)(2d− 5)(2d− 3)

)
− pαpβpµpν64(d− 3)(2d− 5)(2d− 3)

(
ξ2 − (d− 2)(3d− 10)

4(d− 3)(2d− 5)
ξ − d(3d− 10)(3d− 8)

64(d− 3)(2d− 5)(2d− 3)

)
+ p2 (pαpβδµν + pµpνδαβ) 64(d− 3)(2d− 5)(2d− 3)×

×
(
ξ2 − (d− 2)(5d− 16)

8(d− 3)(2d− 5)
ξ +

3(d− 2)(d2 − 4d+ 2)

32(d− 3)(2d− 5)(2d− 3)

)]
,

〈TµνTαβ〉E(2)e = − (ξ − ξd)2 25−3dΓ[1− d
2 ]3Γ[d2 ]3

(4π)
3
2
d− 3

2 Γ[d−1
2 ]3

(
p2δαβ − pαpβ

) (
p2δµν − pµpν

)
(p2)6− 3

2
d

,

with 〈TµνTαβ〉E(2)f given in the previous appendix.

D Wightman functions in momentum space

In this appendix we give some more detail on how we obtain the Wightman 2- and 3-point functions

in momentum space from the corresponding Euclidean expressions, by means of a Wick rotation

inside the Fourier transform. A complete discussion can be found in [18,19].

The starting point is the position space expression of a Wightman function, which follows

from its Euclidean expression by Wick rotating the time coordinate and using the iε prescription:

Lorentzian time of operators to the left in the correlator get a more negative imaginary part. The

prescriptions for the 2- and 3-point functions are given in (2.6) and (3.6). The idea is then to

implement this prescription in the Euclidean Fourier representation (A.2) of the correlator, and

further complexify the zeroth component of the momenta p0E = ip0 to obtain a Lorentzian Fourier

kernel. In this procedure one has to deform the contour of integration in a way compatible with the

limit ε→ 0, which is thereby made manifest. The redefinition of the contour of integration depends

on the analytic properties of the integrand, i.e. the Euclidean expression of the momentum-space
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correlator. It is in them that the information on causality is encoded and becomes correspondigly

reflected in the resulting Lorentzian expression.

Next we detail how we used this method to obtain the stress-tensor 2- and 3-point functions

used in the paper.

2-point function

The Euclidean correlator, given in appendix C, has a simple power-law dependence on the external

momentum, (p2
E)−α with α < 1. In this case the integrand presents a branch cut from p0E = +i|~p|

to +i∞ and a symmetric one from p0E = −i|~p| to −i∞, all branch points being simple and the cuts

going along the imaginary axis (additional positive integer powers of p2 do not change this fact).

The exponential in the (A.2) contains ip0Ex
0
E = p0E(x0− iε), ε > 0, therefore in the complex p0E plane

we close the contour of integration in the upper half. The integral over the real p0E line can be

therefore expressed in terms of an integral along the two sides of the upper branch cut multiplied

by a factor ∼ sinα. In terms of the Lorentian momentum p0 = −ip0E, this integral can be extended

over the whole real domain introducing a step function. Overall, and reintroducing all factors, we

obtain the formal substitution (p2
E)−α → 2 sin(πα) Θ[p0 − |~p |] |p2|−α mentioned in the main text.5

3-point function

For the 3-point function the dependence on the external momenta is more complicated. The Eu-

clidean expressions are given in (3.4).

We start with the free contribution, labelled as (0). We first consider p3E, which gives simple

poles in the complex p03E plane for p03E = −k0
E ± i|~p3 + ~k|. The exponential contains −ip03Ez

0
E =

p03E(−z0 + iζ), ζ > 0, which forces to close the contour of integration of p03E on the lower half

plane. The real p03E integral reduces to the residue of the pole with negative imaginary part. We

now turn to p1E, which gives simple poles for p01E = k0
E ± i|~p3 − ~k|. The exponential contains

ip03E(x0
E − z0

E) = p03E(x0 − z0 − i(ε − ζ)), ε > ζ, therefore we close the contour of p01E in the upper

half plane and the integral reduces to the residue of the pole with positive imaginary part. Finally

we consider kE, which gives the simple poles k0
E = ±i|~k|. k0

E appears in the exponential through the

residues of the external momenta as ik0
Eε, and since ε > 0 the contour is closed on the upper half

plane. The integral then is given by the residue on the pole k0
E = +i|~k|. Introducing the Lorentzian

components p0 = −ip0E for all three momenta we get the expression in (3.7).

We now turn to the first order term labelled as (1)a. The other one, (1)b, is analogous. We

start considering p3E, which goes like in the free case. Then, we consider the loop momentum

5For α > 1 and the branch points are not simple. Additional terms appear, see [19].

22



kE. We have simple poles at the values k0
E = ±i|~k| and k0

E = p01E ± i|~k − ~p1|. k0
E appears in the

exponential through the value of p03E as ik0
Eζ, therefore we close the contour of integration in the

upper half plane and the integral reduce to the sum of the two residues with positive imaginary part.

Finally we turn to p1E. Due to the factor (p2
1E)d/2−2, the zeroth component has a branch cut from

p01E = +i|~p1| to +i∞ and a symmetric one from p01E = −i|~p1| to −i∞, both along the imaginary

axis, as well as some simple poles. In the first term in the sum of the k0
E residues, we have poles for

p01E = i(|~k| ± |~k + ~p1|); the second term has simple poles for p01E = i(−|~k + ~p1| ± |~k|). p01E appears

in the exponent respectively as ip01E(ε− ζ) and ip01Eε, therefore we close both of them in the upper

half plane. The integral over real p01E is therefore expressed in terms of several contributions: the

integral along the branch cut (multiplied by ∼ sin πd
2 ), the isolated poles (giving a residue when they

lie on the upper half plane) and a pole lying on the branch cut (which contributes with a residue

multiplied by cos πd2 ). The contributions of the isolated poles cancel with each other. Rewriting in

term of Lorentzian components for all the momenta and extending it to an integral over the whole

real line we finally obtain result is as in (3.7).

E Massive free scalar

In this appendix we inspect the ANEC in the case of the massive free boson with generic conformal

coupling ξ, whose mass term brakes scale invariance already at the classical level. The calculation

proceeds as in the massless case, except for the fact that the propagator now exhibits the mass. We

only give the final expressions for the energy flux correlator,

〈E〉 =
qd+1 Θ[q − 2m]

2d+1(4π)d−2

(
1 +
√
r
)d−3 ∣∣4ξ(ε11 + εaa) + rε11 −

√
r(ε11 + εaa)

∣∣2
+
qd+1 Θ[q − 2m]

2d+1(4π)d−2

(
1−
√
r
)d−3 ∣∣4ξ(ε11 + εaa) + rε11 +

√
r(ε11 + εaa)

∣∣2 , (E.1)

where we have defined r := 1− 4m2/q2. When m = 0 (r = 1), only the first term in (E.1) survives,

and thus reproduces the result of the massless case, given by (4.6) and coefficients (3.10) with λ = 0.

The condition q > 2m stems from the fact that the state under consideration, generated by the

stress tensor and therefore quadratic in the field, is a combination of two-particle states, which has

a continuous spectrum above the mass threshold. This condition ensures that (E.1) is real, that

(1−
√
r) is non-negative, and therefore that the ANEC is satisfied.
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