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The shift of atomic energy levels due to hadronic vacuum polarization is evaluated in a semi-
empirical way for hydrogenlike ions and for muonic hydrogen. A parametric hadronic polarization
function obtained from experimental cross sections of e−e+ annihilation into hadrons is applied to
derive an effective relativistic Uehling potential. The energy corrections originating from hadronic
vacuum polarization are calculated for low-lying levels using analytical Dirac-Coulomb wave func-
tions, as well as bound wave functions accounting for the finite nuclear size. Closed formulas for the
hadronic Uehling potential of an extended nucleus as well as for the relativistic energy shift in case
of a point-like nucleus are derived. These results are compared to existing analytic formulas from
non-relativistic theory.

I. INTRODUCTION

The precision spectroscopy of hydrogen [1–4], hydro-
genlike and few-electron highly charged ions [5–13] allows
testing quantum electrodynamics (QED), a cornerstone
of the Standard Model of particles and interactions, in
unprecedented detail. For example, two-loop effects and
shifts due to nuclear structure have become accessible.
At such precision, level shifts due to other forces need
to be considered as well. This holds especially true for
muonic atoms, which recently became accessible by preci-
sion laser spectroscopy [14, 15]. Therefore, in this article,
the correction to the 1s, 2s and 2p states of hydrogenlike
ions due to virtual hadronic pair creation is studied.

FIG. 1: Feynman diagram depicting the leading hadronic vac-
uum polarization contribution. The double line represents a
bound electron that interacts with the Coulomb field of a nu-
cleus (the wavy line terminated by a cross) via a virtual pho-
ton, the propagator of which is modified by hadronic vacuum
polarization represented by the shaded loop.

We investigate vacuum polarization (VP) corrections,
whose largest contribution arises from virtual e−e+ pair
creation. This contribution is well understood and will
only be mentioned here due to its importance and as
reference for further corrections. The next most im-
portant VP effect is due to virtual µ−µ+ pair creation,
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the contribution of which is suppressed by the square
of the electron-to-muon mass ratio [16], i.e. by a factor
of 1/2072 ≈ 2 × 10−5. Apart from the different mass
of the virtual fermions, the description of the muonic
loop is equivalent to that of the electronic case. The
next one-loop contribution stems from several different
virtual hadronic states, which call for a completely dif-
ferent description since the virtual particles also inter-
act via the strong interaction. First treatments were re-
stricted to single hadrons, such as the ρ-meson [17], one
of the most important contributors to hadronic VP. An-
other approach is described in Ref. [18], in which the
hadronic VP is characterized by the total cross section
of hadron production via e−e+ annihilation. Such ex-
perimental studies were largely motivated by the long-
standing disagreement [19] of experiment and theory for
the muon g factor. These discrepancies also triggered
a range of perturbative and non-perturbative quantum
chromodynamic calculations (see e.g. [20, 21] and refer-
ences therein) of hadronic vacuum polarization correc-
tions. We employ a known parametric hadronic polar-
ization function for the photon propagator from [22] to
account for the complete hadronic contribution in a semi-
empirical manner. As we will see, the high-energy part of
the polarization function does not play a role when calcu-
lating shifts of atomic energy levels, therefore, perturba-
tive quantum chromodynamic results are not of relevance
in our context.

An effective potential can be constructed from the
parametrized VP function, called the hadronic Uehling
potential. The hadronic Uehling potentials of a point-like
and a finite-sized nucleus are given analytically, and rel-
ativistic treatments are presented for both cases. Subse-
quently, energy level shifts are calculated as a first-order
perturbation employing the analytical Dirac-Coulomb
wave function, as well as with the numerically calcu-
lated wave function accounting for an extended nucleus.
We note that such an approach assumes an infinitely
heavy nucleus, i.e. nuclear recoil effects are excluded
in our treatment. These results are compared to the
known non-relativistic approximation for a point-like nu-
cleus [17, 23, 24]. Results are given for a range of hy-
drogenlike systems from H to Cm95+, and for muonic
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hydrogen. The results for the different approaches will
then be discussed in their uncertainty and applicability.

We use natural units with ~ = c = 1 for the reduced
Planck constant and the speed of light, respectively, and
α = e2, where α is the fine-structure constant and e is the
elementary charge. Three-vectors are denoted by bold
letters. For brevity, we use the potential energy function
δV due to the Uehling potential and refer to this as the
Uehling potential, even though strictly speaking, it is the
potential multiplied by the elementary charge.

II. VACUUM POLARIZATION EFFECTS

The interaction of a photon with virtual charged parti-
cles leads to a modification of its propagator. This mod-
ified propagator can be described by the vacuum polar-
ization tensor Πλσ(q) and can be written as (see e.g. [25])

iDmod
µν (q) = iDµν(q) + iDµλ(q)

iΠλσ(q)

4π
Dσν(q) , (1)

with the unperturbed photon propagator Dµν(q) and the
four-momentum transfer q. Due to Lorentz and gauge
invariance, the polarization tensor can be cast into the
form [25]

Πλσ(q) = (q2ηλσ − qλqσ)Π(q2) , (2)

where ηλσ is the metric tensor [with diagonal elements
(1,−1,−1,−1)] and Π(q2) is the polarization function,
which is divergent. After regularization and charge renor-
malization, the divergent part of Π(q2) is isolated and
only the regular part ΠR(q2) enters into physical calcu-
lations.

These leading vacuum polarization effects modify a
static nuclear potential by the Uehling potential [25]

δV (x) =

∫
d3q

(2π)3
eiq·x

(
−4πe

q2

)
ρ̃(q) Re

[
ΠR
(
−q 2

)]
,

(3)

with the Fourier transform of the nuclear charge distri-
bution ρ̃(q) which is normalized to Ze. Nuclear recoil
corrections to vacuum polarization are not accounted for
in such an effective potential approach by construction.
For a spherically symmetric nuclear charge distribution
ρ(r), the angular integration in Eq. (3) can be carried
out, yielding

δV (r) = −2e

π

∫ ∞
0

dq j0(qr)ρ̃(q) Re
[
ΠR
(
−q2

)]
, (4)

with the spherical Bessel function of 1st kind jk(x) of
order k, and setting |q| = q and |r| = r from now on.
The Uehling potential leads to the leading perturbative
shift of atomic energy levels, given by

∆Enκm = 〈nκm| δV |nκm〉

=

∫ ∞
0

dr δV (r)
(
g2nκ(r) + f2nκ(r)

)
r2 , (5)

where n is the principal quantum number, κ is the rel-
ativistic angular momentum quantum number and m is
the magnetic quantum number. The functions gnκ(r)
and fnκ(r) are the large and small radial components,
respectively, of the relativistic bound wave function in
the coordinate representation:

ψnκm(r) = 〈r|nκm〉 =

(
gnκ(r)Ωκm(r/r)
ifnκ(r)Ω−κm(r/r)

)
, (6)

where the Ωκm(r/r) are spherical spinors [16].

A. Hadronic vacuum polarization

The leptonic polarization function is known analyti-
cally, and the corresponding VP shift can be calculated
analytically, as an expansion in powers of the nuclear
coupling strength Zα or in certain cases even exactly.
However, in the case of hadronic VP, the produced parti-
cles are strongly interacting, and a perturbative quantum
chromodynamic approach fails [26]. One possibility is a
semi-empirical approach to construct Re

[
ΠR

had

(
q2
)]

via
experimental e−e+ → hadrons collision data [18]. The
approach is summarized e.g. in [26, 27]. The main steps
are: The Kramers-Kronig relation enables to express the
real part of a complex polarization function in terms of its
imaginary part. Then the optical theorem links a mea-
surable total cross section σe−e+→hadrons to the forward
scattering amplitude, in this case the imaginary part of
the VP function. As a result, the cross section of the
hadrons created in the pair annihilation process enables
the construction of the hadronic polarization function.
This was performed e.g. in [18], where data from different
experiments and center-of-mass collision energy regions
were compiled to yield an approximate parameterization
of the polarization function:

Re
[
ΠR

had

(
q2
)]

= Ai +Bi ln
(
1 + Ci

∣∣q2∣∣) , (7)

with the constants Ai, Bi, Ci, which are given for differ-
ent regions of q2. For our evaluation, an updated version
of this parameterization with more energy regions will
be used, as given in [22]. The parameters are shown in
Table I for completeness.

The Uehling potential for this parameterization, as-
suming a spherically symmetric proton distribution, is
therefore given by

δV full
fns (r) = −2e

π

7∑
i=1

[ ∫ ki

ki−1

dq j0(qr)ρ̃(q) (8)

×
[
Ai +Bi ln(1 + Ciq

2)
]]
.

For our purposes, a good approximation for the full po-
larization function is to use the parameters of its first
momentum region up to infinity, i.e. only using the pa-
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Region Range [GeV] Ai Bi Ci [GeV−2]

k0 − k1 0.0 − 0.7 0.0 0.0023092 3.9925370

k1 − k2 0.7 − 2.0 0.0 0.0022333 4.2191779

k2 − k3 2.0 − 4.0 0.0 0.0024402 3.2496684

k3 − k4 4.0 − 10.0 0.0 0.0027340 2.0995092

k4 − k5 10.0 −mZ 0.0010485 0.0029431 1.0

k5 − k6 mZ − 104 0.0012234 0.0029237 1.0

k6 − k7 104 − 105 0.0016894 0.0028984 1.0

TABLE I: Values for the parameterization of the hadronic
polarization function in Eq. (7) as given in Ref. [22], with the
mass of the Z boson mZ .

rameters A1, B1 and C1. In this case, the Uehling po-
tential of a point-like nucleus (ρ̃(q) = Ze) simplifies to

δV approx
point (r) = −2Zα

π

∫ ∞
0

dq j0(qr)
[
B1 ln

(
1 + C1q

2
) ]

= −2Zα

r
B1E1

(
r√
C1

)
, (9)

with the exponential integral

En(x) =

∫ ∞
1

dt
e−xt

tn
. (10)

This approximation is physically well motivated because
the low-energy region is the most important one in atomic
physics, and the original range of applicability for the
parameters at 0.7 GeV should be sufficient for our appli-
cations. In fact we will show in Section III that at least
up to Z = 96, no difference between this approximation
and the full numerical result is observable for the calcu-
lated energy shifts within our level of uncertainty. The
analytical approximation reduces numerical errors and
speeds up the calculations. The analytical and numeri-
cal hadronic Uehling potentials of a point-like nucleus are
displayed in Fig. 2 and are compared to the well-known
muonic Uehling potential. The oscillations at low dis-
tances in the potential defined by Eq. (8) are due to the
upper momentum cut-off in the parameterized polariza-
tion function, and therefore not physical.

The energy shift for the 1s state and a point-like nu-
cleus in first-order perturbation theory is given by the
expectation value [28]

∆Eanalytical
rel., point(1s) = 〈1s|δV approx

point |1s〉

= −Zαλ(2λ
√
C1)2γB1

γ2
2F1

(
2γ, 2γ; 1 + 2γ;−2λ

√
C1

)
,

(11)

using the analytical Coulomb-Dirac wave function [16]
with the charge number Z, the hypergeometric function

2F1 (a, b; c; z) and

λ = Zαme, γ =
√

1− (Zα)2 . (12)
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FIG. 2: The numerical (8) and analytical (9) hadronic Uehling
potential compared to the muonic Uehling potential as a func-
tion of the radius, in units of the reduced Compton wave-
length λc/2π of the electron (adapted from Ref. [28]).

The Taylor expansion of this all-order result up to order
(Zα)6 is

∆Eanalytical
rel., point(1s) =− 4B1C1m

3
e(Zα)4

+
32B1C

3/2
1 m4

e(Zα)5

3

− 4B1C1m
3
e(Zα)6

×
[
1 + 6C1m

2
e − ln(2Zα

√
C1me)

]
+ . . . . (13)

A similar calculation may be performed for the 2s state,
yielding approximately

∆Eanalytical
rel., point(2s) =− 1

2
B1C1m

3
e(Zα)4

+
4B1C

3/2
1 m4

e(Zα)5

3
+ . . . . (14)

The very first terms of Eq. (13) and (14) agree with
the non-relativistic formula of Friar et al. [23] (see also
Ref. [24]) for the case of n = 1, 2, respectively.

While atomic wave functions with higher orbital angu-
lar momenta have a small overlap with the short-distance
region where the hadronic Uehling potential is significant,
for completeness, we also discuss the case of the 2p1/2 (i.e.
total angular momentum j = 1/2, κ = 1) orbital. Ex-
panding the resulting fully relativistic formula in powers
of Zα, we obtain

∆Eanalytical
rel., point(2p1/2) =− B1C1(3 + 4C1m

2
e)m3

e

32
(Zα)6

+
B1C

3/2
1 (5 + 24C1m

2
e)m4

e

60
(Zα)7

+ . . . . (15)

Let us note that the leading term in Zα may be also
obtained in a different way: To the lowest order, the large
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and small radial components of the Dirac wave function
can be approximated as

g2p1/2(r) = −
(
Zα

2

)1/2
(Zα)2r

2
√

3
exp

(
−Zαr

2

)
, (16)

f2p1/2(r) = −
(
Zα

2

)3/2
3Zα

2
√

3
exp

(
−Zαr

2

)
. (17)

(see e.g. [29]). By evaluating the integral (5) with these
functions and with the approximate potential (9) to the
leading order in Zα, one can reproduce the term of order
(Zα)6 in Eq. (15). Thus, the hadronic shift for this state
is suppressed by a small factor of (Zα)2 compared to
that of the s state, and its value is negligible, as we will
discuss in Section III.

For completeness, for the 2p3/2 (i.e. total angular mo-
mentum j = 3/2, κ = −2) orbital, we get the following
result:

∆Eanalytical
rel., point(2p3/2) =− B1C

2
1m

5
e

8
(Zα)6

+
2B1C

5/2
1 m6

e

5
(Zα)7

+ . . . . (18)

Interestingly, the expansion coefficients for this orbital
also appear in the expansion for the 2p1/2 state, see
Eq. (15).

B. Finite-Size Hadronic Uehling Potential

One possibility to model a finite-size nucleus is em-
ploying a spherical homogeneous charge distribution ρ(r)
with the effective radius R,

ρ(r) =
3Ze

4πR3
θ(R− r) , (19)

for which the momentum representation ρ̃ (q) can be eas-
ily found:

ρ̃ (q) = Ze
3j1(qR)

qR
, (20)

where the radius R is related to the root-mean-square
(rms) nuclear radius via R =

√
5/3〈r2〉. To calculate the

Uehling potential corresponding to this charge distribu-
tion one substitutes ρ̃ (q) into Eq. (8).

Alternatively to Eq. (8), the Uehling potential corre-
sponding to a finite-size nucleus can also be calculated by
convoluting the Uehling potential of a point-like nucleus
with a charge distribution ρ(x) in real space:

δV approx
fns (r) =

1

Ze

∫
d3x ρ(x) δV approx

point (r − x) . (21)

Using our approximated Uehling potential for a point-like
nucleus from Eq. (9) and a spherically symmetric charge

distribution, the formula simplifies to

δV approx
fns (r) =− 4πeB1

√
C1

r

∫ ∞
0

dx xρ(x)D−2 (r, x) ,

(22)

with

D±n (r, x) = En

( |r − x|√
C1

)
± En

( |r + x|√
C1

)
. (23)

This integral can be solved analytically for the homoge-
neously charged model, divided into two separate solu-
tions for the regions outside and inside of the nucleus:
r > R:

δV approx
fns,out (r) = −3ZαB1

√
C1

rR3

×
{√

C1RD
+
3 (r,R)− C1D

−
4 (r,R)

}
.

(24)

r ≤ R:

δV approx
fns,in (r) = −3ZαB1

√
C1

rR3

×
{√

C1r +
√
C1RE3

(
r +R√
C1

)
+ C1E4

(
r +R√
C1

)
− 1

6
e

r−R√
C1

(
2C1 +

√
C1(r + 2R) + (r −R)(r + 2R)

)
− (r −R)2(r + 2R)

6
√
C1

E1

(
R− r√
C1

)}
. (25)

III. RESULTS

In order to have a reference for the other approaches,
we calculate the hadronic energy shift in the non-

relativistic approximation ∆Eanalytical
non-rel., point, which corre-

sponds to the first term from Eq. (13). The result for
hydrogen is

∆Ehad. VP
non-rel., point(1s) = −1.395(17)× 10−11 eV

= 0.6647(81) ∆Emuonic VP
non-rel., point(1s) ,

(26)

with the energy shift due to muonic VP denoted by
∆Emuonic VP

non-rel. . This is in good agreement with the for-
mula

∆Ehad. VP
non-rel. = 0.671(15)∆Emuonic VP

non-rel. (27)

from [23], with the difference stemming from using more
recent experimental constants B1 and C1 in Eq. (13) as
compared to [23]. For regular and muonic H, our results
(see Tables II, III, IV) within this model agree well with
the recent results of Ref. [24] (see Table 2 therein).

The values for the hadronic energy shift with an ex-
tended nucleus were calculated numerically using two dif-
ferent methods, both yielding the same results. The first



5

Z Rrms [fm] ∆Eanalytical
non-rel., point [eV] ∆Eanalytical

rel., point [eV] ∆Eapprox
rel., fns [eV] ∆ELS [eV]

1 0.8783(86) −1.395(17)[−11] −1.396(17)[−11] −1.396(17)[−11] 3.3800262(7)(57)[−5]

14 3.1224(24) −5.361(67)[−7] −5.918(73)[−7] −5.756(72)[−7] 4.80447(18)(4)[−1]

20 3.4776(19) −2.233(28)[−6] −2.713(33)[−6] −2.560(32)[−6] 1.63263(6)(2)[0]

36 4.1884(22) −2.344(29)[−5] −4.270(50)[−5] −3.485(43)[−5] 1.18259(16)(3)[1]

54 4.7859(48) −1.187(15)[−4] −4.445(48)[−4] −2.706(34)[−4] 4.6920(18)(6)[1]

74 5.3658(23) −4.184(52)[−4] −5.098(46)[−3] −1.801(22)[−3] 1.5422(13)(2)[2]

82 5.5012(13) −6.309(79)[−4] −1.413(11)[−2] −3.693(46)[−3] 2.4440(26)(3)[2]

TABLE II: Hadronic vacuum polarization energy shifts using different approaches for the 1s ground state of the considered
hydrogenic systems: the non-relativistic approximation ∆Eanalytical

non-rel., point, the relativistic analytical formula for a point-like

nucleus ∆Eanalytical
rel., point, and the analytical finite-size Uehling potential with numerical finite-size wave functions ∆Eapprox

rel., fns. Powers
of 10 are enclosed in brackets, and uncertainties are indicated in parentheses. The root-mean-square nuclear charge radii in
the second column are taken from [30]. The last column shows for comparison the total Lamb shift contribution ∆ELS from
Ref. [31]. The values have two uncertainties given in round brackets: the second one is due to the error of the nuclear charge
radius, whereas the first one represents all other errors of individual theoretical contributions added quadratically.

Z ∆Eapprox
rel., fns(2s) [eV] ∆ELS(2s) [eV] ∆Eapprox

rel., fns(2p1/2) [eV] ∆ELS(2p1/2) [eV] ∆Eapprox
rel., fns(2p3/2) [eV] ∆ELS(2p3/2) [eV]

1 −1.745(22)[−12] 4.3218005(8)(72)[−6] −1.743(22)[−17] −5.30919(4)(0)[−8] −6.427(80)[−23] 5.177459[−8]

14 −7.262(91)[−8] 6.40329(23)(5)[−2] −1.431(19)[−10] −1.7316(4)(0)[−3] −4.168(52)[−15] 2.1808(4)(0)[−3]

20 −3.260(41)[−7] 2.21409(9)(2)[−1] −1.321(17)[−9] −6.2940(35)(0)[−3] −4.535(57)[−14] 9.6566(34)(0)[−3]

36 −4.631(58)[−6] 1.68814(25)(4)[0] −6.261(78)[−8] −3.4426(62)(1)[−2] −2.602(33)[−12] 1.2089(9)(0)[−1]

54 −3.887(49)[−5] 7.1723(27)(9)[0] −1.251(16)[−6] 6.0317(72)(36)[−1] −5.036(63)[−11] 7.413(10)(0)[−1]

74 −2.932(37)[−4] 2.5876(20)(4)[1] −1.957(24)[−5] 1.6390(33)(3)[0] −6.217(78)[−10] 3.1615(30)(0)[0]

82 −6.403(80)[−4] 4.2924(44)(4)[1] −5.541(69)[−5] 3.9045(72)(4)[0] −1.462(18)[−9] 5.1088(57)(0)[0]

TABLE III: Hadronic vacuum polarization energy shifts for the 2s and 2p excited states of the considered hydrogenic systems.
Notations and nuclear radii used are as in Table II.

method consists of solving the Dirac equation, with inclu-
sion of the potentials for an extended nucleus, using a B-
splines representation and extracting the corresponding
energy eigenvalues. As a consistency check, these results
were reproduced by calculating the expectation value of
the FNS hadronic Uehling potential with respect to the
semi-analytic wave functions belonging to a spherical nu-
cleus given in [32]. The results for the ground state of
hydrogenlike systems H, Si, Ca, Xe, Kr, W, Pb and Cm
are shown, and different methods of approximation are
contrasted in Table II. Results for n = 2 excited states
are presented in Table III, while values for muonic hy-
drogen are given in Table IV.

The errors given in Tables II and III are based on the
numerical convergence of the results, the uncertainty
of the nuclear root-mean-square radii and, dominantly,
the difference with respect to values obtained by using
another set of parameters to describe the polarization
function, stemming from [33]. Numeric values using
the approximated and the full Uehling potential always
match very well within the uncertainty given, with the
exception of hydrogen due to numerical difficulties in the
evaluation of the full Uehling potential. In particular for
this case, the result from the approximated analytical
formula should be correct due to the low Z value.

State ∆Eanalytical
non-rel., point [meV] ∆Efull

rel., fns [meV]

1s −1.234(15)[−1] −1.229(15)[−1]

2s −1.542(19)[−2] −1.53(5)[−2]

2p1/2 −1.631(22)[−7] −1.8(1)[−7]

TABLE IV: Results for muonic hydrogen within the non-
relativistic approach ∆Eanalytical

non-rel., point, i.e. using the analytical
formulas to the lowest order in Zα, and employing the ana-
lytical finite-size Uehling potential with numerical finite-size
wave functions ∆Efull

rel., fns. In both columns, nuclear recoil
effects are excluded.

In order to show the range of validity for our approxi-
mation, we computed the energy shift for Z = 96 with
Rrms = 5.85 fm. The approximated and full Uehling
potential evaluated with both numerical methods yield
all the same mean value: −1.2637 × 10−2 eV. We
conclude that the approximated analytical Uehling
potential incorporates all relevant information at least
up to Z = 96 and is therefore applicable in all practical
computations. Its use also reduces the numerical errors
and speeds up the calculations significantly, thus render-
ing it also the method of choice for further applications.
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We also observe that, except for hydrogen, the point-
like nucleus values all differ significantly from the finite-
size values. We conclude that one should always include
the effects of a finite-size nucleus in a relativistic ap-
proach. In order to estimate the error stemming from the
assumed nuclear model, we solved Eq. (22) for Z = 82
with the nuclear charge density modeled by a Fermi dis-
tribution with a skin thickness of 2.3 fm. The result for
the perturbative energy shift, −3.646 × 10−3 eV, differs
from the result assuming a homogeneous nuclear charge
distribution on the 1% level and is therefore negligible.

The highest hadronic VP energy shift for the ions con-
sidered is on the meV level; this is the case for the very
heavy element Pb. Such a small effect can not be re-
solved yet experimentally in a Kα x-ray transition (see
e.g. [8, 13]). Furthermore, the theoretical Lamb shift
values and their uncertainties [31] given for comparison
in Tables II and III show that uncertainties arising from
the nuclear charge distribution need to be improved by at
least one order of magnitude, and QED terms need to be
evaluated more accurately in future to render hadronic
VP observable. (For more recent Lamb shift results, see
e.g. Refs. [34–40].)

Therefore, we also consider another system that may
feature measurable shifts, namely, muonic hydrogen. In
Table IV, results for this system are shown, which can
be simply obtained by replacing in the above formulas
me by the muon mass mµ (note that generally, in our
approach we neglect nuclear recoil effects, and the use of
the reduced mass mµmp/(mµ +mp), with mp being the
proton mass, would not be appropriate in a relativistic
theory).

We also list results for the 2s and 2p1/2 states,
since these classical Lamb shift levels were involved
in the muonic hydrogen laser spectroscopic exper-
iments determining the radius of the proton [14,
15]. The uncertainty of the experimental muonic
Lamb shift, 49881.88(76) GHz [14] (or, more recently,
49881.35(65) GHz [15]) translates to 0.003 meV, which
would be in principle sufficient to resolve the hadronic
VP contribution, motivating an accurate evaluation of
the latter. However, currently the experimental value of
the muonic hydrogen Lamb shift is limited by the uncer-
tainty of the proton radius [14, 15].

For the hadronic VP shift of the 2s energy level we ob-
tain a value of −0.0153(5) meV including finite nuclear
size effects. This result agrees with the non-relativistic
approach for a point-like nucleus due to the smallness of
Zα. We note that in the non-relativistic theory, recoil
effects can be accounted for by replacing the muon mass
mµ with the reduced mass of the atom, reproducing the
literature value [41, 42] of −0.0112 meV (or the most
recent result of −0.01116(7) meV of Ref. [24]) for the
hadronic shift of the 2s state. As the Table also shows,
the hadronic VP correction to the 2p1/2 energy level is
negligible at the current level of experimental and theo-
retical uncertainties for muonic hydrogen.

IV. SUMMARY

The rising precision of experimental spectroscopic
measurements and theoretical predictions calls for more
detailed description of known effects. The muonic VP is
already an established part of theory [43]. In order to as-
sure that the hadronic VP does not limit the precision of
theory, a generalized approach is desirable. In this paper
we take into account relativistic effects and finite nuclear
size effects, which are relevant in highly charged ions.
Therefore, this paper is a contribution to understand and
diminish the theoretical uncertainty induced by hadronic
vacuum polarization in precision spectroscopy.

In this work, an effective potential was constructed by
using a parameterized hadronic function obtained from
experimental data. An analytic formula for the finite-size
Uehling potential was found, and it was shown to agree
with the numerical approach in all examined systems. Fi-
nally, energy shifts induced by the hadronic Uehling po-
tential were computed, including an analytical relativistic
formula and two different numerical methods. We would
like to note that hadronic VP diagrams, in which the nu-
cleus interacts strongly with the loop hadrons, are not
accounted for by this approach, nor are hadronic virtual
light-by-light scattering effects. The energy shifts were
determined for hydrogenlike systems ranging from Z = 1
up to Z = 96, and for muonic hydrogen. The results for
the energy shift induced by hadronic VP exhibit that for
our desired level of accuracy, it is sufficient to describe
hydrogen and light ions non-relativistically, and heav-
ier systems relativistically, using the analytical finite-size
Uehling potential. The main source of uncertainty is ex-
pected to stem from the applied nuclear model. This can
be improved by using more elaborate charge distribution
models [44] in Eq. (21), respectively Eq. (3), and taking
into account relativistic nuclear recoil effects. Another
main source of error is due to uncertainties in the param-
eterization of the empirical hadronic VP function. An
advanced parameterization, especially in the low-energy
region, could improve this area of precision science.

Nowadays, besides energies of transitions between
atomic levels, the g factors of few-electron ions can be
experimentally determined to high precision by means of
the continuous Stern-Gerlach effect in Penning trap se-
tups [45–49]. This motivates the extension of the calcu-
lation of hadronic vacuum polarization corrections to the
bound-electron g factor. Such calculations are currently
underway.
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Phys. Rev. Lett. 120, 183001 (2018).

[4] N. Bezginov, T. Valdez, M. Horbatsch, A. Marsman,
A. C. Vutha, and E. A. Hessels, Science 365, 1007 (2019),
ISSN 0036-8075.

[5] J. D. Gillaspy, C. T. Chantler, D. Paterson, L. T. Hud-
son, F. G. Serpa, and E. Takács, J. Phys. B 43, 074021
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et al., Phys. Rev. Lett. 123, 123001 (2019).
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