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A B S T R A C T   

Surface PM2.5 concentration is routinely observed at limited number of surface monitoring stations. To overcome 
its limited spatial coverage, space-borne monitoring system has been established. However, it also faces various 
challenges such as cloud contamination and limited vertical resolution. In this study, we propose a deep learning- 
based surface PM2.5 estimation method using the attentive interpretable tabular learning neural network (Tab
Net) with atmospheric gas species retrieved from the tropospheric monitoring instrument (TROPOMI). Unlike 
previous applications that primarily used decision tree-based algorithms, TabNet provides interpretable decision- 
making steps to identify dominant factors. By incorporating five TROPOMI products (i.e., NO2, SO2, O3, CO, 
HCHO), we have tested the system’s capability to produce surface PM2.5 concentration without aerosol optical 
property, which was used more traditionally. The proposed model successfully captures spatiotemporal varia
tions over Thailand in the period of 2018–2020, and it outperforms other leading machine learning models, 
particularly at high concentrations. The interpretable decision-making steps highlight that carbon monoxide is 
the most influential chemical component, which relates to the seasonal burning in southeast Asia. It is found that 
air quality impacts from fire are stronger in the northern part of Thailand and fires in neighboring countries 
should not be neglected. The proposed method successfully estimates surface PM2.5 concentration without 
aerosol optical property, implying its potential to advance monitoring air quality over remote regions.   

1. Introduction 

Ambient air pollution is a critical threat to public health, causing 
more than three million premature fatalities worldwide in 2012 (Or
ganization, 2016) as well as various environmental issues (Gurjar et al., 
2010). Among air pollutants, fine particulate matter (PM2.5), namely, 
ambient airborne particulates sized under 2.5 μm, is well known to 
damage human health seriously. Due to its microscopic size, PM2.5 can 

affect the respiratory and cardiovascular systems, causing or worsening 
major illnesses such as asthma, lung cancer and heart disease (Wei
chenthal et al., 2013). Rising public concern about air quality urges not 
only reductions in air pollutants, but also improvements to air quality 
monitoring at the ground level to assess the health and socioeconomic 
impacts. 

Annual mean PM2.5 concentrations in Thailand reached 21.4 μg/m3 

in 2020, making it the 34th most polluted country in the world.1 An 
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estimated 40,000 deaths annually in Thailand are attributable to 
ambient air pollution (Pinichka et al., 2017), resulting in 0.74–1.33 
million USD worth of economic costs (Vassanadumrongdee and Mat
suoka, 2005). Although air pollution exposure in Thailand temporarily 
improved during the recent COVID-19 pandemic (Rodríguez-Urrego and 
Rodríguez-Urrego, 2020; Stratoulias and Nuthammachot, 2020), it re
mains high due to widespread smoke emissions from agricultural 
burnings and forest fires (Punsompong et al., 2021). PM2.5 emissions 
from burning crop residue and forest fires are estimated to be 141,000 
and 5000 tons per year, respectively, mostly concentrated in the central 
and northern regions of Thailand (Junpen et al., 2013; Kanabkaew and 
Kim Oanh, 2011). However, the insufficient number of in-situ PM2.5 
measurements, especially for the provinces in the north and northeast of 
the country (Fig. 1a), limits monitoring air quality and establishing a 
national plan for its management. Given that considerable financial and 
time resources are required to increase the number of air quality 
monitoring stations, satellite remote sensing-based PM2.5 estimation is 
an alternative way to increase the limited spatial coverage. 

Two different methods have been developed and widely used to 

estimate surface PM2.5 concentration: Chemical Transport Models 
(CTMs) and statistical regression models. Based on physicochemical 
processes and atmospheric conditions, chemical transport models can 
approximate the quantity of air pollutants with continuous spatiotem
poral coverage (Liu et al., 2004; Van Donkelaar et al., 2010). However, 
uncertainties in emission inventories and limited representation of 
chemical reactions in the ambient atmosphere remain major concerns 
(Shin et al., 2020). Among statistical approaches, multiple linear 
regression has been the most commonly applied in the early stages (Chu 
et al., 2016). Also, geographically weighted regression, an extension of 
multiple linear regression, has been proposed to assign distance-based 
weights to reflect spatial variability and local effects to provide 
regional estimations (Brunsdon et al., 1998; Jiang et al., 2017; You et al., 
2016). Mixed-effect models adopt fixed and random effect terms to 
separate statistical relationship and variability by time and region 
(Kloog et al., 2012; Xie et al., 2015). In addition, the generalized addi
tive model has been proposed to consider the nonlinear characteristics 
between input and target variables (Sorek-Hamer et al., 2013; Zou et al., 
2017). 

Fig. 1. Spatial distribution of (a) PM2.5 observation sites and (b) averaged PM2.5 concentrations (μg/m3) from 2018 to 2020. The stations are divided into 5 regions 
in each direction: north (blue), northeast (red), central (green), east (yellow) and south (magenta). The bounding box zooms up the most densely distributed area, 
including the capital Bangkok (100.2–101.4◦E, 12.5–14.0◦N). 

Fig. 2. The quantile-quantile (Q–Q) plot for (a) PM2.5 and (b) the log transformed PM2.5. The red line is 1:1 line between theoretical quantiles and ordered values.  
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Machine learning (ML) algorithms have recently introduced as 
innovative developments in the bottom-up approaches to upscale data- 
driven in-situ models to spatially explicit gridded estimates. Random 
forest (RF), one of the most frequently applied algorithms, has further 
improved estimation accuracy and has higher interpretability at both 
national and regional scales (Chen et al., 2018; Hu et al., 2017; Wei 
et al., 2019). Elastic-net application has successfully expanded the 
spatiotemporal dimension with a large number of predictors (Xue et al., 
2019). Support vector machine (SVM) can enhance spatial resolution at 
a 100 m scale by being merged into multiple modeling stages (de Hoogh 
et al., 2018). Other ML models such as Bayesian maximum entropy 
(Jiang and Christakos, 2018), gradient boosting machine models (Chen 
et al., 2019; Wang et al., 2021) and RF combined with ordinary kriging 

Fig. 3. Model architecture diagram (Fig. 4 from Arık and Pfister, 2021). (a) TabNet encoder, which employed as main model structure in this study. (b) A block of 
attentive transformer, generating a feature selection mask at each decision step. 

Fig. 4. Density scatterplots of validating PM2.5 estimation (μg/m3) results for (a) all regions in Thailand and the five divided regions in Fig. 1: (b) north, (c) 
northeast, (d) central, (e) east and (f) south. The black solid diagonal line is the best-fit line from linear regression. The red line is estimated regression line shown in 
the topleft of each panel. 

Table 1 
Comparison of model performance on the testing dataset.   

R2 RMSE MAPE slope 

SVM 0.821 10.96 25.37 0.76 
Random Forest 0.829 10.70 22.74 0.74 
CatBoost 0.857 9.78 18.89 0.78 
XGBoost 0.867 9.44 19.10 0.79 
LightGBM 0.868 9.42 18.87 0.80 
TabNet 0.873 9.22 20.62 0.84  
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(Han et al., 2022) have also been employed to incorporate 
satellite-derived products into ground-level observations. 

As computing technology and resources have advanced, neural 
network-based approach has introduced deeper and wider layers, 
defined as deep learning (DL), and has begun to outperform classical ML 
models based on decision tree algorithms in various regression tasks 
(Devlin et al., 2018; He et al., 2016). DL based methods have also 
recently been attempted in remote sensing due to their high accuracy 
using large amounts of data (Ghahremanloo et al., 2021; Zhang et al., 
2020; Zhu et al., 2020). However, compared with decision trees, the 
usability of this cutting-edge approach is yet to be explored in-depth for 
PM2.5 satellite-based estimation. 

Thus, this study aimed to develop a DL-based model to estimate daily 
ground-level PM2.5 concentrations based in-situ observations in 
Thailand and satellite-derived atmospheric gas products. Regarding the 
DL network architecture, we implemented the Attentive Interpretable 
Tabular Learning neural network (TabNet) (Arık and Pfister, 2021), 
which is tailored for use with tabular datasets. We evaluated the model’s 
performance through five different regions in Thailand and compared it 
with other popular machine learning algorithms such as SVM, RF, 
XGBoost (Chen and Guestrin, 2016), LightGBM (Ke et al., 2017) and 
CatBoost (Prokhorenkova et al., 2018). Furthermore, to shed light on the 
critical characteristics of PM2.5 concentration in Thailand, we conduct 
an analysis of global/local feature selection and reasoning processes, as 
well as examined the impacts of fires on PM2.5 concentration. 

2. Study area and data 

2.1. Study area 

Thailand is located at the center of the Indochinese peninsula, has 
the 10th largest economy in Asia and hosts a population of almost 70 
million people (Long and Ascent, 2020). The country is divided into 76 
administrative provinces as primary local government units and the 
capital Bangkok. In this study, considering the meteorological division 
system in Thailand (https://www.tmd.go.th/en), we divided the coun
try into five regions to analyze regional characteristics: north, northeast, 
central, east and south (Fig. 1a). Despite the low air quality in Thailand, 

ground monitoring stations are sparse and mostly concentrated in the 
central region, which contains 29 of the 67 stations used in this study 
(green points in Fig. 1a). For the remaining regions, 15, 5, 11 and 7 
stations are distributed in the north (blue), northeast (red), east (yellow) 
and south (magenta), respectively. 

2.2. Ground-level PM2.5 observation 

The Pollution Control Department in the Air Quality and Noise 
Management Bureau provides national air quality monitoring records 
for approximately 84 stations (as of 2021). Considering the consistency 
of the data availability during the experimental period from January 
2018 to June 2021, we selected the daily measurements of PM2.5 con
centration from 67 stations (Fig. 1a) as the target dataset for the model 
training. The observed PM2.5 concentration pattern has an exponential 
quantile-quantile distribution (Fig. 2a). This asymmetry can hamper 
model training by blurring the variance in the pollution levels over 
different input conditions. To transform the data to be closely fitted by a 
normal distribution, we thus took logs of the PM2.5 values after adding 
one (Fig. 2b) and the results showed significantly higher R-squared co
efficients (R2) from 0.744 to 0.996. 

2.3. TROPOMI 

The Sentinel-5P mission is a precursor satellite measuring atmo
spheric chemical concentrations at high spatial and radiometric reso
lutions. The TROPOspheric Monitoring Instrument (TROPOMI) onboard 
Sentinel-5P is designed to record the reflectance of wavelengths using 
multispectral sensors. We utilized five TROPOMI products (Borsdorff 
et al., 2018; De Smedt et al., 2018; Garane et al., 2019; Theys et al., 
2017; Van Geffen et al., 2019): the tropospheric NO2 column (NO2), SO2 
vertical column density at the ground level (SO2), total atmospheric 
column of O3 (O3), vertically integrated column of CO (CO) and tropo
spheric formaldehyde column (HCHO); this was based on 354 of the 388 
wavelength pairs. TROPOMI Level 2 products are accessible from the 
Copernicus Open Access Hub website (https://s5phub.copernicus.eu), 
and we retrieved a daily Level 3 pre-processed dataset from the Google 
Earth Engine using the quality assurance values of 0.75 for NO2 and 0.5 

Fig. 5. (a–f) Monthly averaged spatial mapping of PM2.5 estimation and (g–l) observation for the year 2021.  

R. Son et al.                                                                                                                                                                                                                                      

https://www.tmd.go.th/en
https://s5phub.copernicus.eu


Atmospheric Pollution Research 14 (2023) 101875

5

for the other components except for O3 and SO2. Data points falling 
below the specified quality thresholds are considered as missing values 
and we exclude them from the model training and evaluation 
procedures. 

The Sentinel-5P images were co-located with the ground station data 
and the values of the pixel encompassing the point location of the 

ground station were extracted to train the model. When the spatial 
mapping of PM2.5 was inferred, the datasets were resampled to a 10 km 
grid to incorporate other auxiliary datasets. Subsequently, the variables, 
except for O3, were transformed into a logarithmic scale similar to 
PM2.5. Considering that the ranges of each variable varied, specified 
constants were multiplied and added before the log transform 
(Figs. S1a–d). 

2.4. Meteorological dataset 

ERA5-Land (Muñoz Sabater, 2019) provides a dataset for land 
components from ERA5, the fifth-generation climate reanalysis dataset 
provided by the Copernicus Climate Change Service at the European 
Centre for Medium-Range Weather Forecasts. Following previous 
studies (Chen et al., 2018; Wei et al., 2019), we adopted seven meteo
rological components from the reanalysis dataset: temperature and 
dew-point temperature at a 2 m height, total evaporation, surface 
pressure, precipitation and wind components at a 10 m height. We also 
approximated relative humidity and wind speed using Eqs. (1) and (2): 

relhumidity= 100 ×
e

17.625×Td
243.04+Td

e17.625×T
243.04+T

(1)  

windspeed =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
U2 + V2

√
(2)  

where T is temperature, Td is dew-point temperature, U is the horizontal 
wind component (U-wind) and V is the meridional wind component (V- 
wind). For precipitation and wind speed, the scaled log transform was 
applied as mentioned above (Figs. S1e and f). Furthermore, we consid
ered geographical factors such as elevation from ETOPO1 (Amante and 
Eakins, 2009) with a 1 arc-minute resolution to integrate the land 
topography and bathymetry and land cover classifications from Glob
Cover (Arino, 2010). These were categorized into 22 types based on 
observations from the ENVISAT satellite mission for 2009 with a spatial 
resolution of approximately 300 m. 

3. Methodology 

3.1. TabNet 

TabNet is a novel neural network architecture specifically developed 
to handle tabular datasets effectively (Arık and Pfister, 2021). Built upon 
an encoder/decoder architecture, the model proficiently converts 
high-dimensional features into a meaningful representation using 
trainable embedding layers, obviating the necessity for preliminary 
preprocessing procedures. For instance, the layers can map categorical 
features into a numerical format as well as handle raw numerical fea
tures without normalizing global features. One salient strategy of the 
TabNet is to employ the sequential attentive transformer architecture to 
select the importance features in decision steps (Fig. 3a). In each step, 
learnable masks search for a subset of the relevant features by quanti
fying the contribution of the decision. 

3.2. Interpretability 

The feature attribution mask M ∈ ℝB×D provides instance-wise 
interpretable insights for reasoning; B is the batch size and D is the 
dimension of the feature. At the ith decision step, the processed features 
from the preceding step a[i-1] ∈ RB×Na are given to an attentive trans
former block (Fig. 3b), which includes a fully connected layer and batch 
normalization as a trainable nonlinear processing hi. The mask is ob
tained through a sparse regulation function, which we set using 
α-entmax (Peters et al., 2019). The α-entmax is an extension of the 
softmax function, featuring an additional scalar parameter α that en
ables a continuous range of sparsity levels in the resulting probability 
distribution. When α is set to 1, the entmax function is equivalent to the 

Fig. 6. Daily variations of observation (black) and estimated PM2.5 concen
trations (blue) during the year 2021 in five parts of Thailand (Fig. 1a): (a) 
north, (b) northeast, (c) central, (d) east and (e) south. The scoring results are 
summarized in the topright of each panel. Gray shadings indicate one-sigma 
confidence interval based on monthly statistics. Red columns are marked for 
the period when sudden increase of fire radiative power (FRP) is detected for all 
the sub-regions from February 25th to March 2nd, 2021 (Figure S5-9). 

Fig. 7. Global feature importance assessment. The features are categorized in 
three group by colors: temporal and geospatial (orange), chemical (dark-red) 
and meteorological (blue) features. 
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softmax function. However, as the value of α increases, the entmax 
promotes sparsity in the output distribution, resembling the behavior of 
the sparsemax function (Martins and Astudillo, 2016) when α is set to 2. 
In this study, we adopt the α value of 1.5, which was validated for its 
efficacy in attention based sequence-to-sequence models (Peters et al., 
2019). The formulation of the feature attribution mask is described in 
Eq. (3): 

M[i] = entmax(P[i − 1]⨀ hi(a[i − 1])) (3) 

P[i] ∈ ℝB×D is the prior scale term to regulate the flexibility of feature 
selection in the multiple steps, as defined in Eq. (4): 

P[i] =
∏i

j=1
(γ − M[j]) (4)  

where γ is a parameter to control the level of constraint on feature se
lection in the mask. For instance, when γ is set to 1, each feature is 
limited to being used at only one decision step, while increasing γ allows 
for more flexibility to be selected at multiple decision steps. P[0] is 
initialized as all ones, 1B×D, indicating that none of the features are used 
at the beginning. As a feature is considered thoroughly, its scale term is 
reduced to focus on the other features in the next steps. The weights of 
the trained mask represent the relative importance of each step in all 
instances. For example, if Mb,j[i] = 0, then the jth feature should have no 
decision contribution in the ith step for the bth sample. Finally, the 
aggregated weights from the masks allow us to understand the impor
tance of each feature in terms of its global behavior. 

3.3. Training details 

The weather in Thailand has distinct seasonality; the rainy season, 
which usually lasts from June to October, can significantly affect the 
PM2.5 concentration in the atmosphere (Fig. S2). Moreover, the mapping 
of averaged PM2.5 displays a higher concentration in the northern area, 
above 40, than elsewhere (Fig. 1b). Considering these spatiotemporal 
characteristics, we added the observed month and geographical co
ordinates (longitude and latitude) of the station as input features. In 
total, 19 input variables were used in this study: NO2, SO2, O3, CO, 
HCHO, temperature, dew-point temperature, relative humidity, U-wind, 
V-wind, wind speed, precipitation, pressure, evaporation, elevation, 
land cover type, month, longitude and latitude. Regarding the categor
ical variables, specifically the month and land cover type, we assigned 

embedding dimensions of 6 and 17, respectively. 
Following convention, we randomly split the data from 2018 to 2020 

into training and testing datasets using an 80:20 ratio; the number of 
samples were 14,069 and 3518, respectively. We also evaluated the 
functionality of upscaled mapping using a 10 km resolution grid format 
of the input dataset for 2021. To ensure robust training, a 5-fold cross- 
validation was set, and the final PM2.5 estimation was calculated by 
averaging the results from the five trained models. The model was 
implemented using the pytorch_tabnet package (https://github.com/d 
reamquark-ai/tabnet) and trained with the Adam algorithm with 
weight decay using a 0.01 learning rate and a batch size of 64. Following 
the guidelines for hyperparameters (Arık and Pfister, 2021), we opti
mized the depth and width of TabNet based on grid search method 
(Table S1): Nd––Na = 24, Nsteps = 4, γ = 1.3 and λsparse = 0.001. 

4. Results 

4.1. Evaluation of general model performance 

Fig. 4 presents the accuracy of the validation results for the estimated 
PM2.5 concentration in Thailand as a whole and its five subdivided re
gions. For the entire study domain (Fig. 4a), three evaluation metrics 
show 0.873 of R2, 9.22 of root mean square error (RMSE) and 20.62 of 
the mean absolute percentage error (MAPE). When these results are 
compared with other state-of-the-art ML algorithms, R2 and RMSE of the 
proposed method show the best scores (Table 1). In terms of the linear 
relationship between the observations and estimated PM2.5 concentra
tions, all the models show slope coefficient values below 1. These results 
indicate a tendency for the ML models to underestimate the PM2.5 
concentration, consistent with previous studies (Ma et al., 2016; Wei 
et al., 2019). TabNet shows the highest slope coefficient value (0.84), 
suggesting its ability to partially mitigate this bias. 

A noticeable improvement is the enhanced accuracy in predicting 
high levels of PM2.5. Fig. S3 presents a comparison of prediction per
formances across various thresholds of high PM2.5 concentrations. 
TabNet consistently outperforms other ML models, achieving the high
est R2 scores and the lowest RMSE across all thresholds (Figs. S3a and b). 
TabNet also demonstrates the lowest MAPE for concentrations 
exceeding 75 μg/m3 (Fig. S3c). The performance gap between TabNet 
and other ML models becomes more pronounced as the degree of PM2.5 
pollution increases. Moreover, TabNet exhibits superior capability in 
addressing underestimation of high PM2.5 concentrations, as evidenced 

Fig. 8. Local feature importance assessment based on feature selection masks at each decision step. Top five important features are visualized with contribution 
ratios for (ad) all the period, (e–h) for dry season (January–March) and (i–l) for wet season (JulySeptember). The features are categorized in three group by colors: 
temporal and geospatial (orange), chemical (dark-red) and meteorological (blue) features. 
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Fig. 9. The mapping of FRP and PM2.5/chemical concentrations from February 25th to March 2nd, 2021. White color is for missing values.  
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by its higher values of the slope coefficient (Fig. S3d). 
When the scores of evaluation metrics are compared by region, the 

highest value of R2 (0.884) is observed in the north (Fig. 4b). These 
results are consistent with the mapping of R2 for each station showing 
higher than 0.8 of R2 in all the stations in the north, including the Chiang 
Mai and Lampang provinces (Fig. S4a). On the other hand, the scale of 
biases is larger than other regions with 13.44 of RMSE, due to its wider 
range of the PM2.5 concentration exceeding 300 μg/m3 as a maximum 
(Fig. 4b and S4b). Given that the PM2.5 concentrations in the north are 
generally higher (Fig. 1b) and extreme cases are more frequent due to 
agricultural burnings and forest fires (Punsompong et al., 2021), the 
large errors are typically caused by the underestimation mentioned 
previously, particularly for high concentration cases. When the regional 
differences in scale are diminished by considering the ration of the scale 
between the errors and actual values, some stations in Bangkok and 
neighbor cities show higher scores of MAPE (Fig. S4c). But the south 
region shows the lowest accuracy with 21.51 of MAPE and 0.507 of R2 

(Fig. 4f). The distinctively low slope coefficient in the south represents 
that its poor performance is mainly caused by underestimation 
(Fig. S4d). In the following section, we provide further discuss on the 
regional characteristics that are specific to the southern region. 

4.2. Application on high-coverage mapping 

One of the main purposes of employing remote sensing data is to 
enlarge the spatial coverage of PM2.5 monitoring. Fig. 5 illustrates the 
monthly averaged results of the PM2.5 estimation for 2021. The mapping 
results (Fig. 5a–f) generally agree with the observations (Fig. 5g–l) with 
respect to seasonal variation by region. In January, the central region of 
Thailand shows high levels of PM2.5 concentrations. In the north, the 
concentrations significantly increase from January and peak at over 60 
μg/m3 in March. The variation in peak timing of air pollutants across 
region can be attributed to the seasonal differences in agricultural ac
tivities, such as harvesting and residue burning, which are carried out at 
varying times in each specific region (Kanabkaew and Kim Oanh, 2011). 
As the rainy season approaches, a decrease in pollutant concentrations is 
observed across all regions. 

To evaluate the temporal variation of the PM2.5, we compare the 
daily variations in the observed and estimated PM2.5 over the five sub
divided regions of Thailand (Fig. 6). The northern area shows the 
highest performance scores (0.83, 12.58 and 19.81 for R2, RMSE and 
MAPE, respectively). The value of slope coefficient is almost 1 repre
senting a significant improvement in the underestimation for extreme 
levels of PM2.5, mostly within the one-sigma confidence interval for peak 
days during March and April. The other regions, except for the south, are 
also good fits with observation showing higher than 0.76 of R2. In the 
southern region, despite the scale of error (4.69 of RMSE) is relatively 
smaller, the overall underestimation indicated by the slope value of 0.38 
significantly undermines the performance across other skill scores. 

The south region’s extensive and encompassing coastlines contribute 
to its distinctive climate characteristics that differentiate it from other 
parts of Thailand. Firstly, the climate in the south is classified as mari
time, in contrast to the prevailing continental climate in the other areas 
(Torsri et al., 2013). Secondly, the region is influenced by two regional 
monsoons: the southwest monsoon from May to October and the 
northeast monsoon from November to February (Manisan, 1995). 
Additionally, it has been known that the long-range transport of PM 
from Indonesian forest fires significantly influences PM levels during the 
dry season in southern Thailand (Mahasakpan et al., 2023; Phairuang 
et al., 2020). However, our dataset is limited to only 7 out of the total 67 
stations in the southern region. This limitation appears to hinder prog
ress in capturing the divers regional characteristics and comprehending 
the underlying mechanisms involved in estimating PM concentrations in 
southern Thailand. 

5. Discussion 

5.1. Model interpretation 

Interpretability enables us to comprehend the behavior of the model 
at each learning step and identify important processes, thereby facili
tating a more practical application. However, there isn’t a perfect 
method to interpret ML and DL approaches, which is well recognized as 
a potential limitation. A major advantage of the TabNet is its attentive 
transformer structure, which provides post-hoc explanations by assess
ing the contribution of each feature from both global and local per
spectives. First, the global importance of each feature is illustrated in 
Fig. 7. The observed month displays the highest ratio of contribution 
with approximately 40% of importance, which is expected according to 
the seasonality of PM2.5 in Thailand (see Fig. S2). Among the 
geographical features, the land cover type, coordinates, and elevation 
sequentially demonstrate their respective importance. In terms of 
chemical components, NO2 and SO2, which are commonly known as 
precursors in the secondary formation of PM2.5 (Baker and Scheff, 2007; 
Tucker, 2000), rank relatively low among all the features; SO2 shows 
almost zero contribution to the estimation. Instead, CO accounts for 
about 20% of the contribution. We also compare R2 scores between the 
chemical predictors, and CO shows the highest values for all regions 
(Table S3). Considering that CO is a by-product of carbon-containing 
fuel combustion, these results agree with the scenario that vehicular 
emissions and fires have a greater impact on the variation in air quality 
in Thailand than industrial emissions (ChooChuay et al., 2020). 

Fig. 8 illustrates the top five important features on each decision step 
as the aspect of local feature importance. Consistent with the global 
perspective, the observed month, CO and land cover type are ranked as 
the most determining factors in all the steps, regardless of season. 
Interestingly, the second step displays different composition of impor
tance, especially for meteorological features, by season. The importance 
of wind speed and relative humidity are relatively lower for dry season 
ranking fourth and fifth (Fig. 8f), while they are selected as the second 
and third most important features in wet season (Fig. 8j). Some other 
meteorological factors, such as pressure, evaporation and dew-point 
temperature, are also displayed in other steps, in spite of their low 
contribution (less than 5%). Considering that windy and humid weather 
can reduce pollution levels, the trained model locally employs weather 
information to identify the ideal conditions for lower PM2.5 
concentrations. 

5.2. Impacts of fire on PM2.5 concentration in Thailand 

To investigate the impact of fire on the air quality in Thailand, we 
analyze spatial distribution of fire radiative power (FRP) from the Global 
Fire Assimilation System (GFAS) in the Copernicus Atmosphere Moni
toring Service (CAMS) and chemical components (Fig. 9) for a period 
when all the sub-regions show the rise of PM2.5 concentration (from 
February 25th to March 2nd, 2021, red columns in Fig. 6). During the 
specific period, the central region of Thailand and the border areas in the 
northern and eastern parts, which are in close proximity to neighboring 
countries, such as Myanmar, Laos and Cambodia, exhibited high levels 
of FRP. Concurrently, there was an increase in the concentrations of 
PM2.5 and major chemical components near fire hotspots, particularly 
during the detection of high FRP in the central-western region of 
Thailand on March 1st. However, in contrast to the satellite images, the 
in-situ measurements indicate an overall decreasing trend in PM2.5 
concentration within the central area, despite occasional sudden in
creases observed during the period (Fig. 6c). This inconsistency could be 
attributed to the spatially unbalanced distribution of in-situ measure
ments, which are primarily focus on the coastal region near Bangkok, 
the capital city of Thailand (Fig. 1). Unfortunately, no monitoring sta
tion exists in the central-western area where the high levels of FRP were 
observed, thereby imposing limitations on accurate PM2.5 estimation. 
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The presence of statistically significant correlation between FRP and 
PM2.5 suggests that fires play a critical role in explaining air quality 
variations throughout Thailand (Figs. S5–9). The increase in PM2.5 
concentration, accompanied by notably elevated levels of FRP, were 
particularly prominent in the northern and eastern regions, showing 
correlations exceeding 0.4. Nevertheless, it is important to acknowledge 
with care that the occurrence of fires alone cannot be regarded as the 
sole factor responsible for high PM2.5 concentrations. For instance, there 
was a period of high PM2.5 concentration observed from March 10th to 
April 2nd, despite low levels of FRP (Fig. S5). 

The dispersion of fire emission across the neighbor countries can be 
another contributing factor leading to a significant increase in PM2.5 
concentration. For instance, when many hotspots were detected in the 
territory of Myanmar and Laos on February 26th and Marth 1st, the 
chemical and PM2.5 concentrations distinctly increased in the north and 
northeast parts of Thailand the next day. Although U and V-wind com
ponents and wind speed show relatively smaller importance (Fig. 6), 
wind system across Southeast Asia also plays a crucial role on the pattern 
of emission propagation. The northeasterly wind is generally dominant 
in Thailand under the influence of the trade winds. However, two 
different monsoon systems in South Asia, such as the northeast and the 
southwest monsoon, cause seasonal changes in the wind direction and 
speed (Inthacha, 2011). Also, their variabilities are known to be 
modulated by the El Niño Southern Oscillation (Kirtphaiboon et al., 
2014). 

5.3. Potential further improvements 

Traditionally, aerosol optical depth (AOD) has been played as an 
essential factor to estimate the surface level of PM2.5 concentrations. 
However, the presence of cloud and snow along with the limited vertical 
resolution causes unfeasibility for archive reliable AOD limiting its 
spatial coverage (Hsu et al., 2013; Levy et al., 2007). Our approach 
based on atmospheric gas composition offers a viable alternative to 
address the spatial limits. To validate the PM2.5 estimation skill without 
aerosol information, we conducted a comparison of skill scores by 
incorporating blue band (at 0.47 μm) and green band (at 0.55 μm) AOD 
from the Moderate Resolution Imaging Spectroradiometer (MODIS) 
Terra and Aqua combined level 2 product (MCD19A2 version 6.1). 
Fig. S10 depicts the comparable level of prediction performance, even 
slightly inferior to our model in some regions. However, it is important 
to note that due to higher frequency of missing values in the AOD 
dataset, the size of training dataset is significantly reduced, and the 
evaluation dataset cannot be identical. As an alternative, we also 
examined the inclusion of ultraviolet aerosol index, which the TROPOMI 
provides instead of AOD (Fig. S11). The results show almost equivalent 
performance supporting that surface PM2.5 can be accurately estimated 
only with atmospheric trace gases. When comparing to recent studies 
using AOD as a predictor, our model shows better prediction skills, 
although evaluation period and regression models are different 
(Amnuaylojaroen, 2022; Peng-In et al., 2022). Nevertheless, the spatial 
constraints still remain in this study due to excluding data below the 
quality threshold. For instance, we only could collect less than 5 days of 
the predictors over the majority of the southern part of Thailand during 
January 2021 (Fig. S12a). As the rainy season approaches, the frequency 
of missing data tends to rise, resulting in nearly all regions experiencing 
a lack of data for more than 10 days in June 2021 (Fig. S12f). Thus, our 
future work will focus on the development of a model to handle the 
low-quality data aiming to achieve more reliable full coverage for PM2.5 
estimation. 

While there have been prior attempts to apply DL-based modeling to 
estimate PM2.5, its performance is lower than that of other algorithms 
(Chen et al., 2022; Pu and Yoo, 2021; Wong et al., 2021). Importantly, 
these results could be linked to their simple model structures, which 
mostly consist of a series of fully connected hidden layers with nonlinear 
activation functions. In the current study, we showcase how by fusing 

TROPOMI data with other geospatial sources and incorporating an 
advanced DL algorithm to provide an accurate representation of PM2.5 
concentration; consequently, an air pollution indicator can be devel
oped. Previous studies have reported the potential of DL algorithms such 
as CNN and LSTM to improve estimation performance (Chen et al., 2021; 
Lu et al., 2021), and our results also support this by adopting a 
state-of-the-art DL algorithm. Numerous advanced DL methods have 
recently been developed and have achieved remarkable progress in 
diverse fields (Devlin et al., 2018; He et al., 2016); however, applying DL 
to estimate PM2.5 concentration has not yet been widely explored. Thus, 
monitoring air quality by implementing DL approaches has considerable 
room for improvement. 

6. Conclusion 

Estimating ground-level PM2.5 concentration is crucial for air quality 
monitoring and management. In this study, we introduced a data driven 
PM2.5 estimation model based on a novel DL algorithm, called TabNet 
with atmospheric gases from the TROPOMI on the Sentinel-5P. Our 
model also considers meteorological variabilities and land properties as 
predictors, and targets 67 station records across Thailand. 

The main findings of this study are as follows: 1) our model dem
onstrates statistically robust performance, achieving competitive skill 
scores (e.g. 0.873 of R2) when compared to other state-of-the-art ML 
algorithms; 2) the spatially upscaled mappings exhibit good agreement 
with the observed data in terms of spatio-temporal variations; 3) the 
decision process in TabNet accounts for importance of each predictor, 
eliminating the need for additional post-processing steps typically 
required by other ML algorithms. 

The evaluation of the predictor importance indicate that monthly 
variation is the leading predictor in PM2.5 estimation. Geospatial char
acteristics, such as land cover type and latitude, also show a notable 
contribution from a global perspective. Among the chemical compo
nents from TROPOMI, we found that CO has the highest degree of 
importance, indicating that emissions from biomass burning and trans
port from neighboring countries exert a substantial influence on air 
quality in Thailand. The enhanced estimation capability and findings 
through its application are expected to not only boost other air quality 
studies, but also contribute to air quality management by providing 
advanced monitoring and evaluation techniques. 
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