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Abstract

Gravitational waves from compact binary coalescences are valuable for testing theories of gravity in the strong
field regime. By measuring neutron star tidal deformability using gravitational waves from binary neutron stars,
stringent constraints were placed on the equation of state of matter at extreme densities. Tidal Love numbers in
alternative theories of gravity may differ significantly from their general relativistic counterparts. Understanding
exactly how the tidal Love numbers change will enable scientists to untangle physics beyond general relativity
from the uncertainty in the equation of state measurement. In this work, we explicitly calculate the fully relativistic
l� 2 tidal Love numbers for neutron stars in scalar-tensor theories of gravitation. We use several realistic equations
of state to explore how the mass, radius, and tidal deformability relations differ from those of general relativity. We
find that tidal Love numbers and tidal deformabilities can differ significantly from those in general relativity in
certain regimes. The electric tidal deformability can differ by ∼200%, and the magnetic tidal deformability differs
by ∼300%. These deviations occur at large compactnesses (C=M/r 0.2) and vary slightly depending on the
equation of state. This difference suggests that using the tidal Love numbers from general relativity could lead to
significant errors in tests of general relativity using the gravitational waves from binary neutron star and neutron
star black hole mergers.

Unified Astronomy Thesaurus concepts: Neutron stars (1108); Non-standard theories of gravity (1118); Gravitation
(661); Gravitational wave astronomy (675)

1. Introduction and Motivation

Compact objects such as neutron stars and black holes are
essential for testing general relativity (GR) in the strong field
regime. Gravitational waves (GWs) emitted by compact objects
by LIGO-Virgo have improved our understanding of gravity in
the strong field regime. The LIGO/Virgo collaboration has
detected almost one-hundred compact binary coalescences to
date: two binary neutron star mergers, two neutron star black
hole mergers, and more than eighty binary black hole mergers
(Abbott et al. 2019a, 2021a, 2021c). An independent analysis
of the available data found even more events (Nitz et al.
2020, 2021a, 2021b). Previous analyses of these events have
already placed limits on possible deviations from GR (Abbott
et al. 2019b, 2021b; Wang et al. 2021, 2022; Mehta et al.
2022). Recently, waveforms for various alternate theories of
gravity have been developed and applied to parameter
estimation. These waveforms allow for stringent tests of
various theories of gravity. They also enable more general
tests for physics beyond GR such as placing limits on the
existence of scalar and tensor propagation modes (Mirshekari
& Will 2013; Nair et al. 2019; Chatziioannou et al. 2021).

Neutron stars are also unique laboratories for studying
nuclear physics at ultra-high densities. Information about
neutron star matter is encoded in GWs from binary neutron
star and neutron star black hole mergers (Hebeler et al.
2010, 2013; Özel & Freire 2016). Neutron stars contain vital
information needed to understand phases of matter encountered
in quantum chromodynamics. The tidal deformability encodes
information about the nuclear equation of state in GWs

(Hinderer 2008; Binnington & Poisson 2009; Damour &
Nagar 2009). Studies of binary neutron star merger GW170817
have improved our knowledge of the nuclear equation of state
(Abbott et al. 2018; Radice & Dai 2019; Capano et al. 2020;
Raaijmakers et al. 2021). Despite this, the nuclear equation of
state is still unknown. Studying neutron stars in alternative
theories of gravity is challenging because deviations in neutron
star properties caused by non-GR effects are of the same order
of magnitude as the uncertainty in the equation of state.
Understanding how the mass–radius–tidal deformability rela-
tionships deviate from GR is essential to untangling these
differences.
Tidal deformability connects GWs and the nuclear equation

of state. Tidal deformabilities and the associated tidal Love
numbers relate an applied external tidal field to the induced
internal multipole moment, measuring the magnitude of
deformation under a given tidal force. Love numbers were
initially defined in Newtonian gravity (Love 1909; Shida 1912)
and then expanded to GR by Flanagan & Hinderer (2008),
Hinderer (2008). The concept was further expanded and made
more concrete in several follow-up papers, including Binning-
ton & Poisson (2009), Damour & Nagar (2009).
This work focuses on scalar-tensor theory, one of the most

natural and best studied alternate theories of gravity. The theory
was initially motivated partly by Mach’s principle (Brans &
Dicke 1961) and partly in an attempt to expand GR to five
dimensions (Jordan 1955). However, it is still of interest today.
Scalar degrees of freedom are critical for string theory,
superstring theory, and other supergravity theories (Fujii &
Maeda 2003). Therefore, scalar-tensor theories can sometimes
be used as a phenomenological proxy for more complex
extensions of GR. Furthermore, scalar fields have been
proposed as an alternative solution to the dark energy problem
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(Garcí-Bellido & Quirós 1990; Boisseau et al. 2000; Clifton
et al. 2012).

Scalar-tensor theories add a massless scalar field (j) to the
standard GR metric (gμν). The metric and the scalar field are
coupled into an effective metric g A g2 j=mn mn˜ ( ) . The earliest
versions of this theory were presented more than half a century
ago by Fierz (1956), Jordan (1955), and Brans & Dicke (1961).
In the simplest scalar-tensor theory, known as FJBD (Fierz,
Jordan, and Brans and Dicke), the scalar field is coupled to the
metric by the coupling function A(j)= eαj. Solar system
experiments have placed stringent constraints on the value of α
(Shapiro 1990). These constraints also significantly limit the
strong-field behavior. Damour and Esposito-Ferèse discovered
the “spontaneous scalarization” effect, which allows large
deviations from GR in the strong field regime without violating
the strict solar system constraints. Damour and Esposito-Ferèse
defined A e 22j = bj( ) and found that scalarization occurs for
β− 4.5 (Damour & Esposito-Farèse 1993). A follow-up study
showed that scalarization occurs for β− 4.35 (Harada 1998).

In this work, we calculate the tidal Love numbers of neutron
stars in scalar-tensor theories of gravity, focusing on the
spontaneous scalarization case. Section 2 presents the equili-
brium configuration for neutron stars in scalar-tensor theory.
Section 3 discusses the first-order linear time-independent
perturbations upon which the tidal deformabilities depend.
Section 4 details the method for deriving the various tidal Love
numbers. Section 5 presents the results and demonstrates how
the Love numbers in scalar-tensor theories differ from those in
GR. The paper concludes with Section 6, which discusses the
results.

2. Neutron Stars in Scalar-tensor Theory

Scalar-tensor theories are straightforward alternatives to GR.
They depend on both a metric tensor (gμν) and a massless
scalar field (j) and are typically expressed in one of two
conformal frames: the Einstein frame and the Jordan frame.
Historically, there has been much debate over the correct
choice of frame (Deruelle & Sasaki 2011), but it is now agreed
that experiments measure Jordan frame quantities even though
the field equations simplify in the Einstein frame (Barausse
et al. 2013; Doneva et al. 2013; Palenzuela et al. 2014; Pani &
Berti 2014; Crisostomi et al. 2018).

In the Jordan frame, the action is

S
G

g R g d x

S g
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m m
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w f
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where the tilde denotes Jordan frame quantities, f is the Jordan
frame scalar field, gmn˜ is metric, R̃ is the Ricci scalar, ω(f) is a
function of the scalar field that characterizes a specific scalar-
tensor theory, and λ(f) is the scalar potential. Sm denotes the
action of the matter, which is a function of the matter fields Ψm

and the Jordan metric gmn˜ . Due to the Rf ˜ term, the gravitational
constant G becomes a function of the scalar field, i.e.,
G G f=˜ ( ). Throughout this work, we will continue to denote
Jordan frame quantities with a tilde.

The Jordan frame is the physical frame, but the field
equations are typically expressed in the Einstein frame, where
the metric and scalar decouple. A conformal transformation

relates the two frames:

g A g . 22 j=mn mn˜ ( ) ( )

Using this transformation, the action can be rewritten in a way
that resembles the Einstein–Hilbert action:
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where all quantities are related to the Einstein metric gμν. j is
the Einstein frame scalar field, R is the scalar curvature, and G*
is the bare gravitational coupling constant, which is set to 1,
along with c, from here on. This paper will focus on the λ

(j)= 0 case.
The Jordan (f) and Einstein (j) frame scalar fields are

related by the following equation (Palenzuela et al. 2014):

e . 4
2f = bj- ( )

Much of the work presented here is applicable for any A(j),
but when necessary, the spontaneous scalarization coupling
function (Damour & Esposito-Farèse 1993) is used:

A e . 522j = bj( ) ( )

The modified field equations, derived from the Einstein frame
action, have the form

*G G T T8 ; 6ap= +mn mn mn
j ( )( )

*G T4 , 6bj p a j= - ( ) ( )

where d A dlna j j jº( ) ( ) . Tmn
j( ) can be considered the

stress-energy of the massless scalar field and has the form

T g g2 . 7j j j jº ¶ ¶ - ¶ ¶mn
j

m n mn
ab

a b ( )( )

Tμν is the stress-energy tensor in the Einstein frame, and T is
the contracted stress-energy tensor T T g T= =m

m mn
mn. Tμν is

related to the Jordan frame stress-energy tensor (Tmn˜ ) in the
following manner

T
g

S

g
A T

2
. 8m 6d

d
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mn

mn

∣ ∣
( ) ˜ ( )

Note setting α(j) to zero retrieves the GR field equations.
We model neutron stars as static, spherically symmetric,

nonrotating objects and assume that neutron star matter can be
described as a perfect fluid. The stress-energy tensor for a
perfect fluid is defined in the physical frame as

T p u u pg 9r= + -mn m n mn
˜ ( ˜ ˜ ) ˜ ˜ ˜ ˜ ( )

where um˜ is the four-velocity of the fluid, and r̃ and p̃ are the
energy density and pressure in the Jordan frame. We assume that
p̃ and r̃ are related by some barotropic equation of state so that

d

dp
p , 10dr

r
d=˜ ˜

˜
˜ ( )

where pd ˜ and dr̃ are the Eulerian fluid perturbations. As the star
is static, only the t component of the four-velocity is nonzero:

u e , 0, 0, 0 . 112=m n( ) ( )

Conservation of energy and momentum is defined in the
physical or Jordan frame, i.e., T 0 =m n

m˜ ˜ . Transforming to the
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Einstein frame gives

T T . 12a j j = n m
n

m( ) ( )

The metric for a static, spherically symmetric, self-gravitating
object is

ds g dx dx e dt e dr r d dsin
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where ν and λ are functions of r and e−λ= 1− 2μ(r)/r.
The modified Tolman–Oppenheimer–Volkoff (TOV) or

structure equations, which can be derived from the field
equations and the equation for conservation of energy, have the
form
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where μ is the mass function. ψ= ∂rj is used throughout this
paper for improved readability.

3. Stationary Perturbations

In this section, we compute the linear, time-independent
scalar and spacetime perturbations following the method
initially laid out by Thorne & Campolattaro (1967). The
complete system of time-dependent perturbations in scalar-
tensor theory was calculated in Sotani & Kokkotas (2005), and
the perturbation equations in this section have been cross
checked with the extant results.

We use the Regge–Wheeler gauge (Regge & Wheeler 1957),
which separates the metric perturbation hμν into its even and
odd parity components h h h= +mn mn mn

+ - . Sotani & Kokkotas
(2005) demonstrated that the metric in both frames can be
written in the Regge–Wheeler gauge using the proper
redefinition of the metric components between frames.

For this analysis, as we are interested in time-independent
perturbations, all perturbations (H0, H2, K, h0, and h1) are
functions of r only. Furthermore, the tr term (H1) that is
typically present in the Regge–Wheeler gauge vanishes.

The Einstein metric can be written in the following way:
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where Yℓm(θ, f) is the spherical harmonic function for l, m, and
sym indicates that the metric is symmetric.
The explicit form of the conformal transformation between

the Jordan and Einstein frame perturbation (h hmn mn˜ ) is
needed to determine the Jordan frame tidal deformability. The
conformal transformation is obtained by perturbing
Equation (2) and substituting in the Regge–Wheeler metric
(Sotani & Kokkotas 2005). This gives

h
A

h
A

g A
1 2

18
2 j j

d= -mn mn mn( )
˜

( )
( )

where δA is the variation of the conformal factor; it is a
function of the scalar field perturbation δj= δj(r). The
relationship between δA and δj depends on the functional
form of the conformal factor. In the case of spontaneous
scalarization δA= βA(j)jδj. The explicit relationships
between the individual metric perturbations are>

H A H A A2 ; 19a0
2

0j j d= -˜ ( ) ( ) ( )

H A H A A2 ; 19b2
2

2j j d= +˜ ( ) ( ) ( )

K A K A A2 ; 19c2 j j d= +˜ ( ) ( ) ( )

h A h . 19d0,1
2

0,1j=˜ ( ) ( )

We dropped the ℓm subscripts from H0, H2, K, h0, and h1 for
readability and will continue to do so throughout this work.
The complete set of perturbation equations needed to

calculate the tidal deformability are laid out in Appendix B.
In GR, the full system of time-independent perturbed

equations can be reduced to one differential equation for each
parity: one for the even parity tensor perturbation (H) and one
for the odd parity tensor perturbation (h). Scalar-tensor theories
have an additional equation for the scalar field, which is of even
parity. The metric and the scalar field are decoupled in the
Einstein frame; therefore, the equations for H and δj decouple.
The Jordan frame perturbation H̃ depends on both H and δj.

4. Neutron Star Tidal Deformability

We derive and compute the scalar-tensor tidal Love numbers
and tidal deformabilities using the method developed by
Hinderer (2008) and extended in Binnington & Poisson (2009),
Damour & Nagar (2009).
Tidal deformabilities (e.g., λ) relate an applied external tidal

field ( ij k... ) to the induced multipole moment (Qij...k). To linear
order in ij k... , the tidal deformability is a proportionality
constant between the two (Hinderer 2008), i.e.,

Q . 20ij k ij k... ...l= - ( )
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Both ij k... and Qij...k can be decomposed into tensor harmonics
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m ℓ

ℓ
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where Y ,ij k
ℓm
... q f( ) are the even parity tensor spherical harmonics

defined by Thorne (1980). This means that the tensor relation in
Equation (20) can be expressed as a scalar relation

Q . 23m ml= - ( )

To calculate λ, it is sufficient to calculate one nonvanishing m
(Hinderer 2008).

A scalar tidal deformability λ(j) is defined analogously, i.e.,

Q 24ij k ij k... ...l= -j j j ( )( ) ( ) ( )

where Qij k...
j( ) and ij k... j( ) are the scalar tidal and multipole terms.

The external tidal field and the induced multipole moment
affect spacetime in and around the neutron star. Outside the star,
the large r behavior of the metric can be written in terms of ij and
Qij (Thorne 1998; Hinderer 2008). For example, the metric
expansion for a spherically symmetric star of mass μ in a
quadrupolar tidal field ij for large r is

25
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where n i is the unit radial vector.

4.1. Electric Type Love Numbers

In GR, the electric or even parity Love numbers are calculated
from the g g htt tt tt

0= +( ) component of the metric and are based
on a single, second-order linear differential equation, for
H=H0=H2. However, in scalar-tensor theory, there are two
types of even parity perturbations: scalar and tensor. The even
parity metric tidal Love numbers kℓ define how the body responds
to a change in the metric. The scalar tidal Love numbers κℓ define
how the body responds to a change in the applied scalar field. As
the scalar field and the metric are not coupled in the Einstein

frame, a change in the matter field does not induce a scalar
perturbation, and vice versa.3 The perturbation equations for the
tidal Love number calculation must be derived carefully to the
first order in either the scalar perturbation or the metric
perturbation but not both. This approach differs from previous
approaches in Yazadjiev et al. (2018), Pani & Berti (2014).
There are two master equations: one second-order linear

differential equation for the tensor perturbation H=H0=H2,
which comes from the perturbation of the field Equation 6(a),
and one for the scalar perturbation δj, which comes from the
scalar wave equation (Equation 6b(b)).
While the differential equation for j can be derived directly

from the scalar wave equation (see Equation (B26)), the
differential equation for H is derived from the a system of
Equations (B20) to (B25) and is obtained by the following
steps (which have been widely used in GR Hinderer 2008;
Binnington & Poisson 2009; Damour & Nagar 2009):

1. Equation (B20) ⟶H0=H2≡H;
2. Equation (B21) K H Hn¢ = ¢ + ¢⟶ ;
3. Equation (B22) K H H Hn n =  + ¢ ¢ + ⟶ ;
4. Equation (B24) p p H1

2
d r= +⟶ ( ) ;

5. Equation (B25) H c H c H 0.1 2 + ¢ + =⟶

This gives

where a prime (′) denotes the derivative with respect to r and
λ refers to the metric function and not the tidal deformability.
In the case of spontaneous scalarization, Equation (27)
becomes

External to the star, Equations (26) and (28), reduce to
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3 We thank Gastón Creci for his insights on this issue.
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Equation (29(a)) depends on the ψ and so is coupled to the
scalar wave Equation 6b(b). As long as ψ> 0, there is no
analytical solution to Equation (29(a)). Only approximate
solutions exist at the surface of the star (p 0=˜ ) because ψ≠ 0.
Since j asymptotically approaches a constant value j∞, the
derivative ψ vanishes at large r. In this regime,
Equation (29(a)) has an exact solution. The solutions to
Equations 29(a), (b) are
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where Pℓ
m and Qℓ

m are the associated Legendre functions of the
first and second kind.

In order to determine c1, c2, d1, and d2, we match the
asymptotic behavior of the two solutions, i.e.,
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to the expansion of the gtt and the scalar field component of the
metric (Equation (25)) respectively.

This gives us c1, c2, d1, and d2 in terms of the tensor tidal
deformability λ and the scalar tidal deformability λ(j)

respectively. For example, in the ℓ= 2 case, we have
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By requiring continuity of the logarithmic derivatives
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and thus of H, δj, and their derivatives at the surface of the
star, it is possible to determine λ and λ(j) in terms of μ, r, and
either y or w respectively. This is done by substituting
Equations (32) and (30(a)) or Equations (33) and (30(b)) into
Equation (34) and solving for λ or λ(j).

The tidal Love numbers are connected to the tidal
deformabilities by the following equations
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Lastly, we can define the dimensionless tidal deformabilities:
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While this approach is sufficient to define λ, some difficulty
arises when numerically calculating λ and kℓ because
Equation (30(a)) is only a solution to Equation (29(a)) in the large
r limit. It is not a solution near the surface of the star where
numerical matching is typically done. In this region, an exact
solution does not exist. While there is not an exact solution, an
approximate series solution to Equation (29(a)) can be constructed
order by order in powers of r/μ. The leading order behavior ofH is
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However, the leading order solution alone is not accurate
enough for our purposes. The solution to Equation (29(a)) is a
linear superposition of the growing and diminishing solutions
with two coefficients aℓ and a−(ℓ+1), which are determined by
the boundary conditions.
To create a more accurate solution, we construct two series

solutions by adding higher order terms. There is one growing
and one diminishing solution that correspond to the two terms
in Equation (37). From there, higher order terms are added to
construct a solution with the form

For numerical purposes, the series is truncated at order n= 13.
This ensures the series has converged within 0.5%.
Note that H has only two degrees of freedom (aℓ, a−(ℓ+1)).

All other constants, α+ and α−, are functions of these two. The
constants are determined by substituting one series solution,
either growing or decaying, into Equation (29(a)) and solving
for the coefficients order by order.
Lastly, by matching aℓ and a−(ℓ+1) to Equation (25) and then

substituting Equation (38) into Equation (34), the approximate
tidal deformability λ can be derived in the same method
described above.

4.2. Magnetic Type Love Numbers

The odd parity or magnetic Love numbers jℓ and their
associated tidal deformabilities σℓ are functions of the odd
parity metric perturbation h h h,0 1mn

- ( ). The odd parity metric
perturbations h0 and h1 (Equation (17)) are coupled only to the
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explicit fluid velocity perturbation U(r)Yℓm:

The odd parity metric perturbations can be constrained by three
equations, which come from the tf, rf, and θf components of
the perturbation equations (see Equations (B27) to (B29)).
There are multiple approaches to the magnetic Love number in
the literature, but two are worthy of note (Pani et al. 2018). The
earliest two publications on magnetic tidal deformabilities
(Binnington & Poisson 2009; Damour & Nagar 2009) have
approaches that are fundamentally different and whose results
do not agree. The first approach developed by Binnington and
Poisson (Binnington & Poisson 2009) assumes a strictly static
fluid, i.e., h0t= h1t=U= 0. The second approach from
Damour and Nagar (Damour & Nagar 2009) assumes an
irrotational fluid. Instead of initially setting h0t= h1t=U= 0,
this approach calculates the Regge–Wheeler equation and then
takes the static limit (ω→ 0). Note that these approaches seem
equivalent at a surface level but do not lead to the same answer
because the irrotational approach picks up a nonvanishing term
from the fluid velocity perturbation. This section lays out both
approaches and clarifies the subtle differences between them.

4.2.1. Static Approach

In this section, we apply the static method derived in
Binnington & Poisson (2009) to scalar-tensor theory; we assume
that the perturbations are strictly static, i.e., h0t= h1t=U= 0, and
consider the odd parity perturbation Equations (B27) to (B29).
Under this assumption, Equation (B28) becomes

h 0, 401 = ( )

and Equation (B29) becomes independent of h0 and constrains
only h1.

The final remaining equation, Equation (B27), yields a
second-order differential equation for h0

e h rA p e r h
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This equation is consistent with Equation (B7) in Sotani &
Kokkotas (2005).

In the region exterior to the star, μ(r)= μ, and p 0r= =˜ ˜ ,
and Equation (41) takes on a simpler form

e h
l l

r r
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This equation differs from the GR equation by the factor of
−2e−λψ2 (Binnington & Poisson 2009). Equation (42) is now
coupled to the scalar wave from Equation (6) and no longer has

an exact solution. This result differs from the f (R) results
(Yazadjiev et al. 2018). The coupling functions A(j) differ
between the two theories. Additionally, in f (R) theories, j
approaches zero as r→∞ , whereas in the theories considered
here j approaches a constant, nonzero value. Rather than
matching solutions at the surface, Yazadjiev et al. (2018)
matches the numerical solution to an analytical solution at
some rmatch, beyond which the ψ term can be neglected. rmatch

is defined by the Compton wavelength of the scalar field.
Since Equation (42) is true for all r> rs, where rs is the

surface of the star, including the large r regime where r? rs
and ψ→ 0, there is an exact solution in the large r limit. This is
sufficient to define the tidal Love numbers.
However, as was the case with the electric tidal deform-

ability, there is no analytical solution at the surface of the star.
Furthermore, the static approach is considered less physically
relevant than the irrotational approach.
While an approximate solution to the static case could be

constructed using the method laid out in Section 4.1 or a
method similar to that used in the f (R) case by Yazadjiev et al.
(2018), this work focuses on the irrotational case because it is
more realistic and has an analytical solution (Shapiro 1996;
Landry & Poisson 2015; Pani et al. 2018).

4.2.2. Irrotational Approach

In the irrotational approach, which was initially presented in
Damour & Nagar (2009), it is assumed that the perturbations
have a standard e− iω t time dependence, i.e., hi(r, t)= hi(r)e

− iω t.
Previous authors (Cunningham et al. 1978; Kojima 1992;

Andrade & Price 1999; Damour & Nagar 2009) have noted that
Equation (B29) can be solved for h0 in terms of h1 unless one
assumes that h0t= 0 (for that case, see Section 4.2.1).
Under this assumption, Equation (B29) can be rewritten as

h e r ; 43t0
2= Y ¢n l- ( ) ( )( )

where Ψ is defined such that

h e r. 441
2= Yl n- ( )( )

Assuming that h0(r, t)= h0(r)e
− iω t, Equation (43) can be used

to define h0:

h
i

e r . 450
2

w
= Y ¢n l- ( ) ( )( )

It is evident from this equation that h0 is not well defined in the
ω→ 0 limit (Pani et al. 2018). Substituting Equations (45) and
(44) into Equation (B27) gives the following master equation:

This agrees with Equation (40) in Sotani & Kokkotas (2005).
Since it is assumed that the neutron star is static, we are

interested in the ω→ 0 limit. The master equation becomes
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Outside of the star, this equation simplifies further:

e
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Interestingly, this equation, unlike the static master equation
(Equation (41)), does not depend explicitly in j or ψ.
Therefore, external to the star, the solution to Equation (47)
is known and identical to the GR solution. All non-GR effects
arise from matching the internal and external solutions at the
surface of the star.

We briefly demonstrate the difference in the static and
irrotational solutions in scalar-tenor theory. The method
presented in Pani et al. (2018) is applied to the scalar-tensor
problem.

Using the axial component of the stress-energy tensor
conservation Equation (Equation (12)) and assuming ω≠ 0,
one finds that

U r A p e h4 . 493
0p j r= - + n-( ) ( )( ) ( )

Substituting Equation (49) into Equation (B27) and then taking
the ω→ 0 limit, the following differential equation for h0 is
obtained
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There is a sign change in the 8πA4(j)(p+ ρ) term between
Equation (41) and Equation (50). The difference occurs
because U(r)= 0 for the static approach and U(r)≠ 0 in the
irrotational case. So, while there is irrotational fluid motion in
one case, the other has a completely static fluid. As a result of
this difference, the irrotational tidal Love numbers are negative
while the static Love numbers are positive.

Returning to the main goal of this work, calculating jℓ, σℓ,
and Σℓ, we use the similarity between the irrotational master
equation and its GR counterpart to define the ℓ= 2 solution.
Equation (48) has an exact solution of the form

where R= r/μ, and F is a hypergeometric function. For ℓ= 2,
F is expressible in terms of simple functions.

bq and bp are determined by the boundary conditions at the
surface of the star. Since both ψ and y¢ are required to be

continuous at the surface of the star, the logarithmic derivative
y rodd y y= ¢ must also be continuous at the surface of the star.

jℓ, σℓ, and Σℓ are therefore defined to be

j C
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, 52ℓ
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54ℓ ℓ
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where Rs= rs/μ, and C is the compactness.
jℓ and σℓ are, at a glance, identical to their GR counterparts,

but the scalar-tensor and GR values differ because all non-GR
effects are contained in the value of yodds calculated by
integrating Equation (47) along with the modified TOV
Equations (14a) to (14e) inside the star.

5. Results

5.1. Electric Love Numbers

This section presents the electric tidal Love numbers and the
associated tidal deformabilites and compares them to the GR
results. There are two degrees of freedom needed to define a
specific case of spontaneous scalarization: β and j∞. β is
constrained by binary pulsar experiments to β<− 5 at the 1σ
level (Freire et al. 2012). In this work, we use several values of
β to demonstrate the results: β=− 4.5, − 5, − 5.5, − 6.
Generally, the figures compare only β=− 4.5 and β=− 6.
This gives two sets of results, one conservative and one
optimistic. The value of the scalar field at infinity, j∞, is
tightly constrained by the Cassini experiment (Bertotti et al.
2003). That experiment directly constrains the Brans–Dicke
parameter ωBD to be >4× 104. The value of the scalar field at
infinity is related to the Brans–Dicke parameter by the equation

2

3 2
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This constrains j∞ to <2.7× 10−3 and <2.0× 10−3 for
β=− 4.5, and β=− 6 respectively. We use j∞= 10−3 for all
results presented. Changing j∞ to 2.0× 10−3 increases the
deviation from GR. Conversely, changing j∞ to 10−4
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decreases the deviation from GR. These differences grow with
increasing compactness but are less than 1% for the values
considered.

Using Equation (30(a)) and Equation (35), it is possible to
define the tidal Love number in the large r limit. The scalar
tidal Love number can be similarly calculated.

The ℓ= 2 tidal Love numbers are defined as follows

where y rH H= ¢ , and w rdj dj= ¢ .
y is traditionally evaluated at the star’s surface for numerical

applications. However, Equation (56(a)) is not valid when
r= rs. Close to the star ψ≠ 0, and the solution to
Equation (29(a)) can only be approximated. After constructing
a series solution that is accurate to better than 0.5% for even the
largest values of ψ considered (see Section 4.1), we compared
values from the exact solution (Equation (56(a))) evaluated at
the surface to the values of k2 calculated from the approximate
solution. The tidal deformabilities agreed to better than 3.7%
for all equations of state and values of β explored. The percent
difference between the approximate and the exact values is
strongly dependent on the compactness and increases with
increasing compactness. For the vast majority of the parameter
space explored, the difference between scalar-tensor theory and
GR is larger than the difference between approximate and exact
solutions. Exceptions occur for β=− 6 where the scalar-tensor
theory and GR curves intersect. This can be seen in Figure 1.

Figure 1 shows how the electric tidal Love numbers and tidal
deformabilities differ in scalar-tensor theory and GR. Three
different equations of state are considered: FPS, SLy, and MS1.
These equations of state cover a wide range of stiffness and
support a maximum mass of >1.8Me. FPS and SLy are both
within constraints from analyses of GW170817 (Abbott et al.
2017; Capano et al. 2020). However, as NICER results favor
stiffer equations of state, we include MS1 (Bogdanov et al.
2019a, 2019b; Raaijmakers et al. 2020, 2021).

Figure 1 plots the physical or Jordan frame values, which are
related to their Einstein frame counterparts by Equations (C18)
and (C19). In Figures 1(a), (b), and (c), the observables 2l̃ , 2L̃ ,
and k2

˜ are plotted against the neutron star’s compactness (C̃), in
this case defined as the Jordan frame TOV mass (M̃) over the
Jordan frame radius rs̃. In Figures 1(d), (e), and (f), the percent
difference between scalar-tensor theory and GR is shown, also
as a function of compactness. Note that Figures 1(e) and (f) are
essentially identical. This is due to the definition of the
dimensionless tidal deformability (Equation (36)). As kℓ and ℓL
are related by a factor of C3

2
5˜ and C̃ is the x-axis variable, the

factors of C3

2
5˜ cancel out. This can easily be shown by

substituting the definition of the tidal Love number into the

equation for the percent difference and forcing C CGR = ˜ . This
same phenomenon appears in Figure 3.
It is clear that the spontaneous scalarization effect can lead to

significant deviations from the GR tidal deformabilities. It is
also clear that the deviations are strongly dependent on the
objects' compactness and the coupling constant. For the case
where β=− 6, the tidal Love number and dimensionless tidal
deformability differ at most by ∼25%, and the tidal

deformability differs by up to ∼200%. The peak occurs around
C 0.25»˜ for the tidal deformability and ≈1.9 for the Love
number, with the exact value varying by equation of state. In
the more conservative case where β=−4.5, this reduces to
∼15% for the tidal Love number and ∼20% for the tidal
deformability, and the peaks occur around C 0.3»˜ and ≈2.3
respectively.
The tidal deformability curve for scalar-tensor theories has a

different shape than those in GR: a second peak appears. This
peak is small for the weak coupling case, but for more negative
coupling constants, the second peak is clear. This second peak
is caused by the spontaneous scalarization effect, which causes
large deviations from GR in conditions with strong gravita-
tional fields (Damour & Esposito-Farèse 1993, 1996).
As the difference between scalar-tensor theory and GR is

much greater than the difference between the two methods of
calculating kℓ, we consider Equation (56(a)) evaluated at the
surface of the star to be sufficiently accurate for GW parameter
estimation with current detectors.
We show the Jordan frame ℓ= 2 scalar tidal Love numbers

and tidal deformabilities in Figure 2. Scalar tidal Love numbers
will effect scalar GW emission (Bernard 2020). We find that
scalar tidal deformabilities are much smaller than the electric
tidal deformabilities, around 2 orders of magnitudes smaller
even for strongly scalarized cases. Additionally, the scalar tidal
deformabilites and tidal Love numbers depend strongly on the
coupling constant, with strong scalarization leading to negative
scalar tidal Love numbers.
The ℓ= 3, 4 tidal Love numbers are in Appendix D.

5.2. Magnetic Love Numbers

This section presents the magnetic tidal Love number and
the associated tidal deformabilites in scalar-tensor theory and
compares them to the GR results.
The exact equations for the magnetic tidal Love numbers jℓ

and tidal deformabilities (σℓ and ℓS ) can be determined by
substituting Equation (51) into Equations (52), (53), and (54).
The explicit equation for the ℓ= 2 or quadrupolar tidal Love

number is

56ak
C C C y y

C C y y C y C y C y C C y y C

8 2 1 2 2 1

5 2 6 26 22 3 4 1 3 8 5 6 4 3 1 2 2 2 1 ln 1 2
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where C= μ/rs is the Einstein frame compactness, and
y y r rs s

odd= = Y¢ Y( ) is the logarithmic derivative at the
surface.

Figure 3 shows the Jordan frame ℓ = 2 Love numbers, tidal
deformabilities, and the difference between the GR and scalar-
tensor tidal effects. The Jordan frame values are related to their

Einstein frame counterparts by Equations (C10(a)–(b)). The
conformal transformations are derived in Appendix C.
It is clear that tidal Love numbers and tidal deformabilities

differ between GR and scalar-tensor theory. For the optimistic
case where β=− 6, the tidal Love number has a maximum
deviation of ∼17%, and the tidal deformability has a maximum

Figure 1. Panel (a) shows the ℓ = 2 Jordan frame tidal deformability in cgs units, (b) shows the ℓ = 2 Jordan frame dimensionless tidal deformability, (c) shows the
ℓ = 2 tidal Love number, (d) shows the percent difference between the cgs tidal deformability in scalar-tensor theory and GR, (e) shows the percent difference between
the dimensionless tidal deformability in scalar-tensor theory and GR, and (f) shows the percent difference between the tidal Love numbers in scalar-tensor theory and
GR. All are shown as a function of the Jordan frame compactness. The value of the scalar field at infinity j∞ for all cases presented here is 10−3. Three realistic
nuclear equations of state (SLy, FPS, and MS1) are shown in black, blue, and red respectively. The results for β = − 6, and β = − 4.5 are shown with dashed–dotted
and dotted line styles. The purple lines in (d), (e), and (f) indicate the percent difference between the analytical and approximate approaches to calculating the tidal
Love number and tidal deformability.

57j
C C y

C y C y C y C y C y C y C
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5 2 12 1 2 3 2 3 3 3 3 9 3 2 1 3 ln 1 2
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deviation of ∼300%. This maximum deviation occurs at
C 0.2»˜ for the Love number and ≈0.24 for the tidal
deformability. In the more conservative case where
β=− 4.5, the peak occurs at C 0.23»˜ for all tidal properties,
and the deviation changes to ∼2.5% and ∼15% for j2 and σ2
respectively.

In GR, empirical relationships between the ℓ= 2 dimension-
less magnetic and electric tidal deformabilities have been found
(Forteza et al. 2018). The dimensionless magnetic tidal
deformability Σ2 and the dimensionless electric tidal deform-
ability Λ2 have a quasi equation of state independent relation-
ship:

aln ln . 58
n

n
n

2
0

5

2å-S = L
=

( ) ( ) ( )

We find that the scalar-tensor tidal deformabilities can be fit
to a similar relationship, with the coefficients (written in
Table 1) depending on the value of β. This relationship is
shown for several values of β in Figure 4. Regardless of
equation of state, R2> 0.99 for all cases.

There does not appear to be a similar relationship between
the scalar deformability and the electric tidal deformability. The
scalar tidal deformability depends strongly on β and Λ(j)/Λ
can take on different shapes that are equation of state
dependent.

6. Discussion

This work presents the electric, magnetic, and scalar tidal
Love numbers and tidal deformabilities. We find that the
electric and magnetic tidal effects may differ significantly from
their general relativistic counterparts (∼200 and ∼300 for
electric and magnetic respectively). These large deviations
occur at larger compactnesses (2) and are caused by the
spontaneous scalarization effect. The exact deviation and the

compactness where this maximum deviation occurs are
equation of state dependent.
This paper approaches tidal effects through the lens of GW

parameter estimation. The mass–radius–tidal deformability
relationships explored in this paper can be applied directly to
GW parameter estimation of GWs from binary neutron star and
neutron star black hole systems. The ℓ= 2 dimensionless
electric tidal deformability is the leading order tidal effect for
GWs. Given that this number can vary by ∼25 between scalar-
tensor theory and GR, it may be necessary to take modified
tidal effects into account when doing tests of GR using GWs
from systems with neutron stars.
We present an analytical expression for the magnetic tidal

Love numbers in scalar-tensor theory for the first time. The
results establish that the magnetic Love numbers are only
implicitly dependent on the scalar field and have an analytical
solution. This is in agreement with Sotani & Kokkotas (2005),
which shows that the time-dependent perturbation equation is
only implicitly dependent on the scalar field. However, this was
discussed only in the context of perturbations and not of tidal
Love numbers.
The magnetic Love numbers in this paper can be compared

to their f (R) counterparts because f (R) theory and scalar-tensor
theory are mathematically similar. Differences arise when
calculating the tidal Love numbers in part due to the behavior
of the scalar field at infinity. In f (R) theory, the scalar field and
its derivative go to zero at infinity, and the tidal deformability
can be evaluated at some distance away from the neutron star
where both the scalar field and its derivative are sufficiently
small. This is different from the scalar-tensor theories
considered in this paper where the scalar field asymptotically
approaches a constant. Additionally, the coupling function
differs between theories with A(j)∝ eαj in f (R). Despite this,
the perturbation equations inside the star should agree when the
correct substitutions for A(j) and α(j) have been made
because they are mathematically similar. However, our

Figure 2. Panel (a) shows the ℓ = 2 Jordan frame scalar tidal deformability in cgs units, (b) shows the ℓ = 2 Jordan frame dimensionless scalar tidal deformability, (c)
shows the scalar tidal Love number. All are shown as a function of the Jordan frame compactness. The value of the scalar field at infinity j∞ for all cases presented
here is 10−3. Three realistic nuclear equations of state (SLy , FPS, and MS1) are shown in black, red, and blue respectively. The results for β = − 6, and β = − 4.5 are
shown with dashed–dotted and dotted line styles.
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perturbation equation differs from Equation (23) in Yazadjiev
et al. (2018) by a negative sign. Comparing the tidal Love
numbers themselves, shown in Figure 3, with the results from
Yazadjiev et al. (2018), it is clear that the qualitative features
are consistent, with the deviation from GR increasing with
compactness. However, the difference between GR and scalar-
tensor theory are smaller than those between GR and f (R), at
least for physically allowed values of β and j∞.

This paper also includes the even parity tidal Love numbers
and tidal deformabilities. The ℓ= 2 electric tidal Love numbers
in scalar-tensor theory were initially presented in Pani & Berti
(2014) in the context of the so-called “I-Love-Q” relations. The
methods in this paper differ significantly from those in Pani &
Berti (2014).

To begin, Pani & Berti (2014) use the most general
stationary axisymmetric metric that includes first-order
rotation terms rather than the stationary Schwarzshield metric
used in this paper. In addition to this, there is a fundamental
difference between the definitions of the tidal Love numbers
and tidal deformabilities between this work and theirs. This is
based on the way that the even parity perturbation equations
are treated. There are both metric and scalar perturbations in
the even parity case, and the relationship between them is not
trivial. In the Einstein frame, the metric tensor and the scalar
field are not coupled. As a change in the metric should not
affect the scalar field and vice versa, it is important to
construct two independent first-order perturbation equations,
one for the metric perturbation and one for the scalar. This

Figure 3. Panel (a) shows the ℓ = 2 Jordan frame tidal deformability in cgs units, (b) shows the ℓ = 2 Jordan frame dimensionless tidal deformability, (c) shows the
tidal Love number, (d) shows the percent difference between the cgs tidal deformability in scalar-tensor theory and GR, (e) shows the percent difference between the
dimensionless tidal deformability in scalar-tensor theory and GR, and (f) shows the percent difference between the tidal Love numbers in scalar-tensor theory and GR.
All are shown as a function of the Jordan frame compactness. The value of the scalar field at infinity j∞ for all cases presented here is 10−3. Three realistic nuclear
equations of state (SLy, FPS, and MS1) are shown in black, red, and blue respectively. The results for β = − 6, and β = − 4.5 are shown with dashed–dotted and
dotted line styles.
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differs from the approach in Pani & Berti (2014), where the
two even parity equations are coupled. It is unsurprising,
then, that Equations (26) and (27) are different from the
equations presented in Pani & Berti (2014). The resulting
tidal Love numbers must also differ. The definition for the
scalar tidal Love number in this paper also differs from that in
Pani & Berti (2014). Pani & Berti (2014) does not include a
source term in their definition of the scalar tidal Love
number, and we do. This is because they are considering the
perturbation in the scalar field produced by a change in the
metric rather than by a change in the scalar field. This paper
also includes the ℓ= 3, 4 even parity Love numbers and tidal
deformabilities in Appendix D, which have not been
presented before.

The results demonstrate that tidal Love numbers and tidal
deformabilities can differ significantly between scalar-tensor
theory and GR. This is consistent with other results in the
literature, which show that tidal Love numbers in f (R) theory
and scalar-Gauss–Bonnet gravity (Yazadjiev et al. 2018; Saffer
& Yagi 2021) also differ significantly from their general
relativistic counterparts. As GWs emitted by neutron stars
depend on the tidal deformability, it is essential to take the
changes in the mass, radius, and tidal deformability into
account when studying GWs from neutron stars in theories
beyond GR. The allowed deviations from GR in the GWs are
smaller than or similar to the uncertainty in the tidal
deformability measurements from binary neutron star and
neutron star black hole mergers. By taking the modified tidal

deformability into account, the small deviations from GR in the
waveform can be more accurately determined.
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Appendix A
Numerical Methods

This section lays out the numerical techniques used to
calculate the mass, radius, and tidal deformability relations
shown in Section 5, Figures 1–2.
First, the structure equations presented in Section 2 are

solved numerically using Scipy’s solve_ivp with the
“DOP853” option, which is an eighth-order Runge–Kutta
method. To validate the results, the “DOP853” results are
compared to those from the older odeint solver and solve_ivp’s
“RK45” option, which is a Runge–Kutta solver that uses a
fifth-order accurate formula but calculates the accuracy using
the fourth-order method (Virtanen et al. 2020). Next, the
perturbation equations are added to the TOV solver, and the
tidal deformabilities and Love numbers are calculated from
Equations (52), (56(a)), and (56(b)).
As discussed in Section 2, in scalar-tensor theories, the

structure equations can be expressed in either the Jordan frame
or the Einstein frame. The code takes advantage of the relative
simplicity of the Einstein frame structure equations to
numerically construct the neutron star model. The Jordan
frame quantities are calculated at the end of the code, using the
Einstein frame values and the conformal transformations in
Appendix C.

A.1. Background Configuration

For numerical integration, the equations need to be posed as
first-order ordinary differential equations of the form

y x f x y y, , ; A1i i i¢ = ¢( ) ( ) ( )

where x= r is the independent variable, and y=M, ν, j, ψ,
and p are the dependent variables.
It is important to consider that the values of r, M, ν, ψ, and p

may vary greatly in magnitude, which can lead to numerical
errors and instabilities. Codes often use scale factors to mitigate
the numerical errors. In Manolidis (2014), it is claimed that by
choosing 0r r r= ˆ , p p0r= ˆ, M r M0= ˆ , and r r r0= ˆ the form
of the modified TOV equations remains unchanged so long as

r 10 0
2r = . However, this is not the case.

Table 1
Fit Coefficients

Theory a0 a1 a2 a3 a4 a5

GR −1.99 4.51 × 10−1 1.60 × 10−2 6.51 × 10−4 −1.07 × 10−4 3.74 × 10−6

β = − 4.5 1.13 −3.29 1.68 −3.48 × 10−1 3.48 × 10−2 −1.34 × 10−3

β = − 5 −2.53 7.44 × 10−1 −7.85 × 10−2 3.39 × 10−2 −6.07 × 10−3 3.61 × 10−4

β = − 5.5 −4.24 2.53 −7.60 × 10−1 1.56 × 10−1 −1.60 × 10−2 6.41 × 10−4

β = − 6 −3.55 1.76 −3.80 × 10−1 6.73 × 10−2 −6.08 × 10−3 2.10 × 10−4

Figure 4. Quasiuniversal relations between the Jordan frame dimensionless
magnetic quadrupolar tidal deformability (Σ2) and the Jordan frame
dimensionless electric quadrupolar tidal deformability Λ2. Only the irrotational
magnetic tidal deformability is shown in this figure. Three equations of state
(SLy, FPS, and MS1) are shown in different line styles, but they are
indistinguishable. The color of the lines corresponds to different values of β.
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This code uses a new set of scale factors. Specifically, we
scale only r̃ and p̃ and not M or r. With 0r r r= ˜ ˆ , and
p p p0= ˜ ˆ, we are able to lay out the structure equations used in
the code:

*
d

dr
G r A r r4

1

2
2 ; A2a2 4

0
2m

p j r r m y= + -( ) ˜ ˆ ( ) ( )

*
d

dr
G

r A p p

r
r

r r
8

2

2

2
; A2b

2 4
0 2n

p
j

m
y

m
m

=
-

+ +
-

( ) ˜ ˆ
( )

( )

d

dr
; A2c

j
y= ( )

In order to solve these equations, the numerical solver
requires initial conditions. In this case, the initial conditions are
defined near the center of the star (r≈ 0). Due to numerical
instabilities at r= 0, the code starts at some small, but finite
radius (e.g., r0= 10−5 m). We used a convergence test to
ensure that r0 was sufficiently small and would not effect the
final results.

We know that

r 0 0; A3am = =( ) ( )

r 0 0; A3bn = =( ) ( )
r 0 0; A3cy = =( ) ( )

and the initial pressure p̃ varies. However, the scalar field is
defined at infinity j(∞ )= j0, and not at r= 0. The shooting
method is employed to convert the boundary value problem
into an initial value problem.

The process begins with an initial guess for j(r= 0)= jc.
The system of equations is then integrated outward to the star’s
surface, which is defined to be where the pressure vanishes
p 0=( ˜ ). The code then calculates the value of the scalar field
at infinity j∞ using the relationship between js, the value of j
at the surface, and j∞. The connection between js and j∞ can
be found by solving the scalar wave equation outside of the star
and matching the interior and exterior solutions:

r

2

4
arctanh

4

2
, A4s

s

s s

s s

s s2 2

2 2

j j
y

n y

n y
n

= +
¢ +

¢ +

¢ +¥
⎛

⎝
⎜

⎞

⎠
⎟ ( )

where subscript s indicates values evaluated at the surface, and
the prime (′) denotes derivative with respect to r.

The code then compares the calculated value of the scalar
field at infinity j∞ to the actual value of the scalar field at

infinity j0. The parameter Δj= j∞− jc is calculated, and if
Δj is greater than some tolerance (here, Δj� 10−5), then the
value of jc is updated, and the process is repeated. The process
is repeated until j∞ agrees with j0 within some tolerance. For
a more in depth discussion on the shooting method, see, for
instance, Press et al. (2007).
In order to solve the TOV equations, it is necessary to

provide an equation of state p r˜ ( ˜ ), which relates the Jordan
frame pressure and density. In this work, we consider a variety
of equations of state. All equations of state are defined in the
physical frame. In order to include realistic equations of state,
our code takes in equation of state data from external data files.
The code obtains the density at any point by taking the given
pressure and the data from the file and interpolating.

The SLy (Douchin & Haensel 2001), FPS (Friedman &
Pandharipande 1981), and MS1 (Müller & Serot 1996)
equation of state are considered because they are commonly
used in literature and useful for comparison with previous
results (Lattimer & Prakash 2001; Read et al. 2009).

A.2. Tidal Deformability

The definitions of the tidal deformabilites were derived in
Section 5, and now, we focus on calculating them. First, we
must integrate the perturbation equations for H, Ψ, and δj
along with the scalar-tensor TOV equations. The initial value
problem solver requires that we recast the second-order
differential Equations (26), (28), and (47) into first-order
differential equations. There are two ways to do this. One,
any second-order differential equation can be recast as a
system of two first-order differential equations. Two, a single
first-order differential equation for the logarithmic derivative
(e.g., y rH H= ¢ ) can be obtained from the original equation.
As the definitions of the tidal deformabilities and tidal Love
numbers from Equations (52), (56(a)–(b)) depend on the
logarithmic derivative, we recast Equations (26), (28), and
(47) into first-order differential equations for the logarithmic
derivative. These equations now have form:

dy r

dr r
y r y r F r r Q r

1
. A52 2= - + +

( ) ( ( ) ( ) ( ) ( )) ( )

For the magnetic perturbations,

F r
r r

A r p1
2 2

4 1;

A6a

1
4 2m m

p j r= - + - -
-

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ( ˜ ˜ )
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*
d
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p p r p p
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r r
4

2
3

2

2
; A2d

4

0 0 0 0
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A6b

r Q r
r

ℓ ℓ

r
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2 1
4 6 .2

1
4 2m m

p j r= -
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For the even parity tensor perturbations,

F r
r

A r p1
2

1 4 ; A7a
1

4 2m
p j r= - + -
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⎛
⎝

⎞
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For the scalar perturbations,

F r
r

A r p1
2

1 4 ; A8a
1

4 2m
p j r= - + -

-
⎛
⎝

⎞
⎠

( ) ( ( ) ( ˜ ˜ )) ( )

The initial conditions are

y r 0 2; A9aeven = =( ) ( )
y r 0 2; A9bscalar = =( ) ( )
y r 0 3. A9codd = =( ) ( )

The values of yodd, yeven, and yscalar at the surface are then
determined, and the Love numbers can be calculated. Lastly,
the Jordan frame values are calculated using then conformal
transformations derived in Appendix C.

Appendix B
Perturbation Equations

B.1. Perturbed Energy-momentum Tensor

In this section of the appendix, the exact forms of the fluid
stress-energy tensor perturbations are given. Subscripts are
used to denote derivatives.

The pressure and density perturbations are defined in the
physical frame to be p r Yℓmd ˜ ( ) and r Yℓmdr̃( ) . The fluid velocity
and its perturbations are also written in the Jordan frame. In the
case of static tides, the fluid velocity perturbation is generally a
function only of the metric perturbations and does not have
explicit velocity perturbations. Furthermore, as the tides are
static, the total perturbed four-velocity has the following form:

u u u u , 0, 0, 0 B10d= + =m m mˆ ( ˆ ) ( )

where the tilde has been dropped for readability. The time
component of umˆ differs from uμ because the perturbed metric
differs from the unperturbed metric.

The even parity velocity perturbations are

u
A

e H Y
1

2
; B2at

ℓm
2

0d
j

= n-˜
( )

( )

u i0, 1, 2, 3. B2bid = =˜ ( )
While time-independent perturbations do not depend

explicitly on fluid velocity perturbations, the time-dependent
equations do. The two methods presented in Section 4.2 differ

in the way that the fluid velocity term U(r) is treated. In both
cases, the explicit dependence vanishes, but their results differ
because of how they treat this term. The time-dependent odd

parity velocity perturbations are

u
e U r e

A p
Y

4
csc ; B3a

i t

ℓm

2

4
d

p j r
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+
¶f

n w

q

-
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( )( ˜ ˜ )
( )

u 0, 0, 1, 2. B3bd n= =n˜ ( )

The components of umˆ are calculated by lowering the contra-

variant four-velocity umˆ with the total metric g g h0= +mn mn mn( ).
Additionally, the perturbed matter stress-energy tensor

depends on the Eulerian fluid perturbations: r Yℓmdr̃( ) and
p r Yℓmd ˜ ( ) respectively. We assume a barotropic equation of
state, and so

p
p . B4dr

r
d=

¶
¶

˜ ˜
˜

˜ ( )

Using these definitions and assuming that by symmetry
∂fYℓm= 0, the nonzero components of the perturbed matter
stress-energy tensor are as follows:
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T A p h Ysin ; B11r ℓm
4

1d j q= ¶f
q( ) ˜ ( )

T A p A A p Y4 . B12ℓm
3 4d j d j d= +f

f ( ( ) ˜ ( ) ˜ ) ( )

The nonzero components of the perturbed energy-momen-
tum tensor for the scalar field Tmn

j( ) have the following form:

T e H Y2 ; B13ℓm00
2d y ydj= - - ¢j n l- [ ] ( )( )

T e h Ysin ; B14ℓm03
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0d y q= - ¶j l
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B.2. Equations for Even Parity

The following equations are derived from the even parity
metric perturbation equations. The first six come from
perturbing the Einstein equation (Equation (6)):

1. Equation (B20) is *G G G T T82
2

3
3

2
2

3
3d d p d d- = - +( )

T T2
2

3
3d d-j j( )( ) ( ) ;

2. Equation (B21) is *G G T T81
2

1
2

1
2d p d d= + j( ) ;

3. Equation (B22) is *G G T T8r 1
2

1
2

1
2d p d d¶ = + j( )( ) ;

4. Equation (B23) is *G G T T81
1

1
1

1
1d p d d= + j( ) ;

5. Equation (B24) is *G G G T T82
2

3
3

2
2

3
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T T2
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3
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6. Equation (B25) is *G G G T T80
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The equation for the scalar perturbation δj is derived by
perturbing scalar wave equation Equation (B26)).

B.3. Equations for Odd Parity

The static and irrotational methods used in this paper differ
in their treatment of time derivatives. Even though the tidal
Love numbers themselves are time-independent, we present the
time-dependent equations in this section.
Combining the δGμν with the matter stress-energy tensor and

scalar stress-energy tensor terms results in the following three
equations:

1. Equation (B27) is G T T8t t td pd= +f f f
j( );

2. Equation (B28) is G T T8r r rd pd= +f f f
j( );

3. Equation (B29) is G T T8d pd= +qf qf qf
j( ).
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Appendix C
Conformal Transformations

The tidal Love numbers in this paper were derived in the
Einstein frame; however, as experiments measure Jordan frame
quantities, it is necessary to obtain the Jordan frame quantities
using a conformal transformation. We assume here that the
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Jordan frame metric gmn˜ is related to the Einstein frame metric
gμν by a conformal factor A(j):

g A g , C12 j=mn mn˜ ( ) ( )

where A e
1
2

2j = bj( ) . By construction, the Einstein frame
metric is asymptotically flat. This implies that

g A C22 j hmn mn˜ ( ) ( )

where ημν= diag(− 1, 1, 1, 1) is the Minkowski metric. As the
Jordan frame metric is also asymptotically flat or Minkowskian,
the r̃ and t̃ components must be related to their Einstein frame
counterparts in the following way: r A rj=˜ ( ) , and t A tj=˜ ( ) .
Furthermore, the effective gravitational constant G̃ is no longer
a constant in the Jordan frame and is not necessarily equal to
the bare gravitational constant G, which appears in the Einstein
frame equations. The relationship between the two is known
(Palenzuela et al. 2014):

G e G
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¥
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We need the conformal transformations for the perturbations
between the two frames to transform the tidal Love numbers
and tidal deformabilities from the Einstein frame to the Jordan
frame. These are presented in Section 3.

C.1. Odd Parity

The odd parity perturbation in the Einstein frame h0 is
related to the odd parity perturbation in the Jordan frame by

h A h . C40
2

0j=˜ ( ) ( )

To see how Ψ transforms, it is easiest to start with the definition
of Ψ given in Damour & Nagar (2009):

r
h

r
rh h2 . C5r

3 0
2 0 0Y = ¶ = ¢ -⎛

⎝
⎞
⎠

( )

From this definition of Ψ, it is straightforward to show that it
transforms as

r A r . C62 jY = Y˜ ( ˜) ( ) ( ) ( )

To properly define the magnetic tidal deformability in the
Jordan frame, Ỹ must have the same leading order behavior as
Ψ, i.e.,

R b R b R ; C7ext
p

ℓ
q

ℓ1Y = ++ -˜ ( ˜) ˜ ˜ ˜ ˜ ( )

where R r A r2m j m= =˜ ˜ ˜ ( ) . Equations (C7) and (C6) can be
used to relate bq p,

˜ to their Einstein frame counterparts:

b A b b A b; . C8p
ℓ

p q
ℓ

q
2 2 2j j= =- +˜ ( ) ˜ ( ) ( )

The Jordan frame tidal Love number jℓ̃ is defined to be

j C
b

b
. C9ℓ

ℓ q

q

2 1= +˜ ˜
˜
˜ ( )

From Equations (C8) and (C9), it follows that

j j ; C10aℓ ℓ=˜ ( )

A . C10bℓ
ℓ

ℓ
2 2 1s j s= ¥

+˜ ( ( )) ( )

C.2. Even Parity

To transform the scalar Love number between frames, it is
only necessary to know the relationship between the scalar field
in the Einstein (j) and Jordan frames (f)

e . C11
2f = bj- ( )

By perturbing this equation, the relationship between the
Jordan frame tidal deformability λ(f) and its Einstein frame
counterpart λ(j) can be derived:

A . C12ℓ2 1l j l=f j
¥

+( ( )) ( )( ) ( )

The tidal Love numbers are related by

. C13k k=f j ( )

In the case of the even parity tensor tidal Love number, the
transformation between frames is more complex due to mixing
of the scalar and tensor perturbations. The relationship between
the even parity metric perturbations in the two frames is
constrained by the choice of gauge. Taking the equation
relating the time–time component of the metric perturbation in
the Jordan frame H̃ to the Einstein frame metric perturbation H
and the Einstein frame scalar perturbation δj from Section 3,
we have

H A H A A2 . C142 j j d= -˜ ( ) ( ) ( )

In the spontaneous scalarization case, this becomes

H A H 2 . C152 j bjdj= -˜ ( )( ) ( )

Combining this with the leading order behavior of the
perturbations, which are known to be

H r r
Q

r
r

r r
r

r

3

3
, C16

ij
ij

ij
ij

2
3

4

2
3

4

  

 



l

=- + + +

=- + - +

-

-

( ) ( )

( ) ( ) ( )

it is possible to define the Jordan frame tidal deformabilty Jl̃ :

A 2

2
C17J

ℓ
E ij

E
ij

ij
E

ij

2 1  

 
l

j l bj l

bj
=

-

-

j j

j

+
¥ ¥

¥

˜ ( )( )
( )

( )

where E denotes Einstein frame tensor quantities, and j
denotes Einstein frame scalar quantities. From this equation, it
is clear that the Jordan frame tidal deformability is related
linearly to the even parity scalar and tensor tidal deformabil-
ities. The exact relationship is

A . C18J
ℓ

E
2 1l j l l= + j+

¥
˜ ( )( ) ( )( )

Finally, we determine the tidal Love numbers to have the
following relationship

k k . C19ℓ ℓ ℓk= +˜ ( )

Appendix D
Higher Order Love Numbers

Using Equations (30(a)–(b)), and the methods presented in
Section 4.1, we determine the equations for the ℓ= 3, 4 tidal
Love numbers and tidal deformabilities at large r.
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The ℓ= 3, 4 even parity tensor tidal Love numbers are
defined as

and the scalar tidal Love numbers are
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