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Understanding the nature of quantum chromodynamics (QCD) matter is important but
challenging due to the presence of non-perturbative dynamics under extreme conditions. We
construct a holographic model describing the gluon sector of QCD at finite temperatures in the
non-perturbative regime. The equation of state as a function of temperature is in good accordance
with the lattice QCD data. Moreover, the Polyakov loop and the gluon condensation, which are
proper order parameters to capture the deconfinement phase transition, also agree quantitatively
well with the lattice QCD data. We obtain a strong first-order confinement/deconfinement phase
transition at Tc = 276.5MeV that is consistent with the lattice QCD prediction. Based on
our model for a pure gluon hidden sector, we compute the stochastic gravitational waves and
primordial black hole (PBH) productions from this confinement/deconfinement phase transition in
the early Universe. The resulting stochastic gravitational-wave backgrounds are found to be within
detectability in the International Pulsar Timing Array and Square Kilometre Array in the near
future when the associated productions of PBHs saturate the current observational bounds on the
PBH abundances from the LIGO-Virgo-Collaboration O3 data.
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I. INTRODUCTION

The early Universe before the big bang nucleosynthesis is opaque to electromagnetic waves. Thanks to the recent
gravitational-wave detections, future observations of stochastic gravitational wave backgrounds (SGWBs) would reveal
the new physics [1–4] from the early Universe, including various first-order phase transitions (FOPTs) beyond the
standard model of particle physics (see [5] and references therein for a model summary). It was recently found that the
FOPT not only associates with SGWBs but also produces primordial black holes (PBHs) in general [6, 7] (see also [8]
for an explicit example from the electroweak phase transition), regardless of the specific particle physics model for
realizing the FOPTs (see also [9–13] for other specific mechanisms of PBH productions during some particular kinds
of FOPTs). In particular, for the FOPT around the QCD scale, the associated SGWBs can be probed by the Pulsar
Timing Array (PTA) and Square Kilometre Array (SKA) observations, and the associated PBH abundance could
be constrained by the LIGO-Virgo-Collaboration (LVC) network. While the QCD phase transition in the standard
model at small baryon chemical potentials is cross-over, the pure gluon case features a confinement FOPT. This is a
minimal scenario among many extensions of the standard model and is ideal as a benchmark model. Therefore, we
will study pure gluons in this work for a realization of the FOPT around the QCD scale with associated productions of
SGWBs and PBHs. Note here that the large density perturbations required to form PBHs from FOPTs are generated
during FOPTs in the radiation era. This is totally different from other popular PBH production mechanisms with the
large density perturbations induced from the large curvature perturbations originated from the inflationary period,
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for example, in the non-minimal curvaton models [14, 15].
On the other hand, investigating the pure gluon system is important to understand the nature of hot and dense

QCD matter formed in the early Universe and the laboratory. In particular, the gluon dynamics is dominant during
10−5 seconds into the expansion of the early Universe [16–19] and an extremely rapid thermalization [20–22] in
nucleus-nucleus collisions. On the theoretical side, the thermodynamics of the pure-gauge sector can be relevant
to capture the essential qualitative features of the deconfinement, which is characterized by center symmetry and
shows all the infrared difficulties of QCD. Due to the strong coupling, non-perturbative approaches are necessary
for quantitative studies of its dynamics. In addition to the lattice QCD that relies on massive computing power, an
alternative non-perturbative approach is to employ the gauge/gravity correspondence [23–25] that provides a powerful
way to study strongly coupled non-Abelian gauge theories (see also [26–30] for earlier studies on the pure gluon system
from holography).

In this work, we provide a bottom-up holographic QCD model for the pure gluon QCD system. The equation of
state (EoS) quantitatively matches the pure gluon system in lattice QCD [31, 32]. The confinement phase transition
in gauge theory is characterized by the Polyakov loop operator ⟨P⟩ which is finite in the deconfined phase and
becomes vanishing in the confined phase for pure gluon [33, 34]. The temperature dependence of ⟨P⟩ from our model
matches the lattice simulation [35] perfectly, and the predicted critical temperature Tc = 276.5MeV agrees with the
expectation in the literature [31, 36]. Moreover, another important quantity characterizing the deconfinement phase
transition in a pure gluon system is the gluon condensation, which can be computed to be quantitatively consistent
with the trace anomaly [31]. The strong FOPT in the early Universe is also a potentially important source for the
production of SGWBs and PBHs. Our present model provides a reliable scenario for generating gravitational waves
from a FOPT of a pure SU(3) Yang-Mills sector. The resulting gravitational wave signals could be detected in the
upcoming International PTA (IPTA) and SKA observations for the associated PBH abundance saturating the current
observational bounds from the LVC constraints.

II. MODEL

We now build up a holographic model for the SU(3) pure gluon system with the action of the following form.

S =
1

2κ2
N

∫
d5x

√
−g

[
R− 1

2
∇µϕ∇µϕ− V (ϕ)

]
(1)

with the minimal cost of degrees of freedom to capture the essential dynamics. The gravitational theory includes only
two fields: the spacetime metric gµν , and a real scalar ϕ with its profile breaking conformal invariance that can be
understood roughly as the running coupling of QCD. In addition to κ2

N that is the effective Newton constant, the
potential V (ϕ) will be fixed by matching to the lattice QCD data.

The black hole with non-trivial scalar hair reads

ds2 = −f(r)e−η(r)dt2 +
dr2

f(r)
+ r2dx2

3, ϕ = ϕ(r) , (2)

with dx2
3 = dx2+dy2+dz2 and r the holographic radial coordinate. Denoting rh as the location of the event horizon

where f(rh) = 0, the temperature reads T = f ′(rh)e
−η(rh)/2/4π. Other thermodynamic quantities can be obtained

straightforwardly using the standard holographic dictionary, see the Supplemental Material [37] for more details. The
next goal is to find a potential V that can reproduce the EoS of Nc = 3 pure gluon QCD. It comes as a nice surprise
that the simple potential

V (ϕ) =

(
6γ2 − 3

2

)
ϕ2 − 12 cosh(γϕ) (3)

with γ = 0.735 can reproduce the thermodynamics of lattice data for the pure gluon QCD [31, 32, 35] as shown in
Fig. 1. Remarkably, although the error bars of the up-to-date lattice simulation [32] are tiny, our theoretical results
for EoS in the left panel are almost within these error bars. It is obvious from the free energy density F that a strong
FOPT takes place at the temperature Tc = 276.5 MeV. We also compare the speed of sound cs in the right panel of
Fig. 1. Since cs is not provided in [32], we use the early data from lattice QCD [31] and find good agreement.

To understand the nature of the FOPT, we compute the expectation value of the Polyakov loop operator ⟨P⟩ [38–
41], which is a good order parameter to the deconfinement phase transition for pure gluon system [42]. Surprisingly,
⟨P⟩ by our holographic model quantitatively agrees with the lattice data [35] above Tc and it quickly drops to zero
below Tc, see the right panel of Fig. 1. It suggests that the FOPT from our model is a confinement/deconfinement

phase transition. Remarkably, the temperature dependence of the gluon condensation δ
〈

β(g)
2g G2

〉
T

capturing the
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FIG. 1: The comparison between the lattice data (with error bar) of the pure gluon thermodynamics and our holographic
calculations (solid curves) on various thermodynamic quantities. Discontinuous changes at the first-order phase transition are
represented by dashed lines. Left panel: The temperature dependence of the energy density ϵ, the entropy density s, the
pressure P , and the trace anomaly I = (ϵ − 3P ) [32]. Right panel: The squared speed of sound c2s ≡ dP/dϵ [31] and the
Polyakov loop ⟨P⟩ [35] in function of temperature. Insert: The free energy density F with respect to the temperature from
our model. There is a first-order confinement/deconfinement phase transition at Tc = 276.5MeV.
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FIG. 2: The temperature dependence of the gluon condensation δ
〈

β(g)
2g
G2

〉
T

of our pure gluon model, where β(g) is the

β-function with g the QCD gauge coupling. The data with error bar denotes the trace anomaly I = (ϵ − 3P ) from lattice
QCD [31, 32].

deconfinement phase transition is computed in our holographic model and is found to coincide with the trace anomaly
ϵ−3p from EoS [43, 44], see Fig. 2. Therefore, at Tc, we can then read off some essential quantities that are important
to compute the SGWB and PBH productions associated with our FOPT. The SGWBs generated in cosmological
FOPTs were considered in other holographic models, see e.g. [45–49].
Independent of details of any specific particle physics model, the PBH production is a universal consequence of the

FOPT [6]. Due to the stochastic nature of bubble nucleations during FOPTs, the progress of populating true-vacuum
bubbles in the false-vacuum background is an asynochronized process. There is always a non-vanishing probability to
find some Hubble-sized regions to stay in the false vacuum for a slightly longer period of time than average. Since the
radiation energy density should be rapidly diluted relative to the vacuum energy density in an expanding Universe,
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these Hubble-size regions would eventually accumulate enough overdensities in total energy density to finally reach the
threshold of PBH productions. What is remarkable for this general mechanism of PBH productions during FOPTs is
that the probability to find such Hubble-sized regions with postponed vacuum-decay progress can be made of particular
observational interest for both detections from gravitational waves and PBHs, which will be briefly described shortly
below and detailed in the Supplemental Material [37].

III. GRAVITATIONAL WAVE PRODUCTIONS

From the behavior of the free energy density in the insert of the right panel of Fig. 1, it clearly indicates the
occurrence of a first-order confinement/deconfinement phase transition around the critical temperature Tc = 276.5
MeV, which could be a potentially important source for gravitational waves in the early Universe. The cosmological
FOPT proceeds with stochastic nucleations of true vacuum bubbles in the false vacuum environment followed by the
rapid expansion until percolations via bubble collisions. The bubble wall collision and plasma fluid motion including
sound waves and magnetohydrodynamic (MHD) turbulences would generate the corresponding SGWBs with broken
power-law shapes in their energy density spectra.

Given the expansion history a(t) and vacuum decay rate of form Γ(t) ≡ A(t)e−B(t) per unit time and unit volume,
the fraction of spatial regions that are still staying at the false vacuum at time t can be estimated by [50, 51]

F (t; ti) = exp

[
−4π

3

∫ t

ti

dt′ Γ(t′)a(t′)3r(t, t′)3
]
, (4)

where ti is the earliest possible time for the nucleation of the first bubble ever, and r(t, t′) =
∫ t

t′
dt̃/a(t̃) is the comoving

radius of a bubble at time t nucleated from an earlier time t′. It is obvious that all regions are in the false vacuum
before time ti, namely F (t < ti; ti) = 1. With the help of F (t; ti), the percolation time t∗ for the gravitational
wave spectra from the FOPT is then conventionally defined by F (t∗; ti) = 0.7 [52], around which the decay rate
can be expanded linearly in time for its exponent as Γ(t) = A(t∗)e

−B(t∗)+β(t−t∗) ≡ Γ0e
βt [53][54]. In this study,

we will simply approximate the percolation temperature by the critical temperature Tc = 276.5 MeV from previous
holographic computations. See [55] for a potential estimation on the effective potential and subsequent nucleation
rate as well as the associated percolation temperature, which will be reserved for more detailed work in future.

The energy density spectra for the prementioned threes sources of SGWBs from a cosmological FOPT are given as
follows. The uncollided part of bubble wall envelopes [56–60] admits an analytic form [60–62] for the gravitational
wave spectrum as

h2Ωenv = 1.67×10−5

(
100

gdof

) 1
3
(
H∗

β

)2(
κϕα

1 + α

)2
0.48v3w

1 + 5.3v2w + 5v4w
Senv(f), (5)

where the shape factor is given by

Senv(f) =
1

cl

(
f

fenv

)−3

+ (1− cl − ch)
(

f
fenv

)−1

+ ch

(
f

fenv

) (6)

with cl = 0.064 and ch = 0.48, and the peak frequency is given by

fenv = 1.65× 10−5 Hz
(gdof
100

) 1
6

(
T∗

100GeV

)
0.35(β/H∗)

1 + 0.069vw + 0.69v4w
. (7)

Here the efficiency factor κϕ characterizes the amount of released vacuum energy into the kinetic energy of bubble
walls. The dominant contribution to the fluid motions comes from the sound waves [63–65], whose gravitational wave
spectrum is given by

h2Ωsw = 2.65×10−6

(
100

gdof

) 1
3
(
H∗

β

)(
κswα

1 + α

)2
77/2vw(f/fsw)

3

(4 + 3(f/fsw)2)7/2
Υ, (8)

with the peak frequency

fsw = 1.9× 10−5 Hz
(gdof
100

) 1
6

(
T∗

100GeV

)(
1

vw

)(
β

H∗

)
. (9)

Here the efficiency factor κsw characterizes the amount of released vacuum energy into the kinetic energy of fluid
motions, and the suppression factor Υ ≡ 1− (1+2τswH∗)

−1/2 [66] accounts for the finite lifetime of sound waves from
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FIG. 3: The predictions for SGWB (left) and PBH (right) productions from our holographic pure gluon model. In the left
panel, the gravitational wave contributions from bubble walls (blue curve), sound waves (red curve), and MHD turbulences
(green curve) are obtained for the associated largest PBH abundance allowed by the current observational constraints shown
in the right panel. In the right panel, the current PBH constraints [68] are updated by including the constraints from LVC O3a
data [69] and O3b data [70, 71] (see [72] for a more recent constraint), and the insert zooms in the predicted PBH abundance
regions.

the onset timescale of turbulences, τswH∗ ≈ (8π)1/3vw/(β/H∗)/Ūf with the root-mean-squared fluid velocity given
by Ū2

f = 3κswα/[4(1+α)]. After the time scale τsw, the turbulences would eventually develop with gravitational wave

spectrum analytically given by [67]

h2Ωtur = 3.35× 10−4

(
100

gdof

) 1
3
(
H∗

β

)(
κturα

1 + α

) 3
2

vwStur(f) , (10)

where the efficiency factor κtur characterizes the amount of released vacuum energy into the turbulences, while the
shape factor is given by

Stur(f) =
(f/ftur)

3

[1 + (f/ftur)]
11
3 (1 + 8πf/h∗)

(11)

with the Hubble rate h∗ at T∗ given by

h∗ = 1.65× 10−5 Hz
(gdof
100

) 1
6

(
T∗

100GeV

)
, (12)

and the peak frequency is given by

ftur = 2.7× 10−5 Hz
(gdof
100

) 1
6

(
T∗

100GeV

)(
1

vw

)(
β

H∗

)
. (13)

For our holographic approach, the critical temperature T∗ = 276.5 MeV, the strength factor α ≡ ∆V/ρr = 0.939,

and the effective number of degrees of freedom gdof ≡ ρr/
π2

30T
4
∗ = 3.64 are all fixed by the holographic thermodynamics,

while the phase transition duration β/H∗, the bubble wall velocity vw, and the efficiency factors κϕ, κsw, and κtur are
free parameters. To further fix some of the above parameters, we then consider two cases: (i) the envelope contribution
would dominate the total gravitational wave spectrum for runaway walls (acceleration without termination at a
constant velocity), however, runaway behavior has been recently argued [73–76] to be improbable due to the growing
friction force that eventually balances the driving force to reach a terminal wall velocity. Nevertheless, if the friction
force is growing so slowly that most bubbles collide with each other before they even ever have a chance to reach the
terminal velocity, the envelope contribution could still dominate the total gravitational wave spectrum [77]. In this
case, we can set the bubble wall velocity at collisions to be vw = 1 and the efficiency factors κϕ = 1, κsw = 0, and
κtur = 0 for a simple illustration. (ii) if most bubbles collide with each other at a constant terminal wall velocity, then
the total gravitational wave spectrum is dominated by the fluid motions consisting of both sound waves and MHD
turbulences. Hence, we can set the terminal wall velocity vw = 0.95 for a simple illustration. The efficiency factor
κsw = α/(0.73 + 0.083

√
α + α) for a relativistic wall velocity is originally obtained for a bag equation of state [78],

but it changes insignificantly for a relativistic wall velocity and a large α even beyond a bag equation of state as
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shown in Fig.7 of Ref. [79] with a varying sound speed. We further set the efficiency factor κtur = 0.1κsw since some
numerical simulations [64, 80] seem to suggest that only at most 5% − 10% of fluid motions is turbulent. While we
are not able to compute β/H∗ from the first principle, it can be constrained by the PBH abundance associated with
the FOPT. The SGWB spectra from our holographic model are shown in the left panel of Fig. 3 for case (i) (blue
curve) and case (ii) (gray curve consisting of red and green dashed curves), where the expected sensitivity curves of
future gravitational wave observatories are included. One can find that the SGWBs are within the reach of IPTA and
SKA when the associated PBH abundance saturates the current observational bound from LVC constraints.

IV. PBH PRODUCTIONS

We then turn to the PBH productions. To evaluate the probability for the postponed vacuum decay, note that
the differential probability for a Hubble-sized region VH(t) = 4

3πH(t)−3 not to decay at time t reads dP (t) =
1 − Γ(t)VH(t)dt ≈ exp [−Γ(t)VH(t)dt], then the probability for this Hubble volume not to decay until time tn is
obtained as

P (tn) =

tn∏
t=ti

dP (t) = exp

[
−
∫ tn

ti

dt VH(t)Γ(t)

]
. (14)

P (tn) is nothing but the PBH abundance ΩPBH at PBH formations if the overdensity in these Hubble volumes with
postponed decay reaches the PBH formation threshold δc,

δ(tPBH) =
ρr(tPBH; tn) + ρv(tPBH; tn)

ρr(tPBH; ti) + ρv(tPBH; ti)
− 1 = δc . (15)

Here the vacuum energy densities inside and outside these Hubble volumes are estimated by ρv(t; tn) = F (t; tn)∆V
and ρv(t; ti) = F (t; ti)∆V , respectively, and the radiation energy densities inside and outside these Hubble volumes
are solved from

d

dt
ρr(t; tn) + 4H(t; tn)ρr(t; tn) = − d

dt
ρv(t; tn) , (16)

d

dt
ρr(t; ti) + 4H(t; ti)ρr(t; ti) = − d

dt
ρv(t; ti) , (17)

respectively, where the Hubble parameters inside and outside these Hubble volumes are defined by 3M2
PlH(t; tn)

2 =
ρr(t; tn)+ ρv(t; tn) and 3M2

PlH(t; ti)
2 = ρr(t; ti)+ ρv(t; ti), respectively. We adopt the analytic estimation [81] on the

PBH threshold δc = sin2[π
√
w/(1 + 3w)] = 0.1786 with the EoS w ≡ P/ϵ = 0.0219 evaluated from our holographic

model for the dominant component at PBH formations.
Finally, the PBH abundance at matter-radiation equality is estimated by

fPBH ≡ (aeq/aPBH)ΩPBH/ΩDM(aeq) , (18)

and the PBH mass is estimated as MPBH = 4πγPBHM
2
Pl/HPBH with usual PBH formation efficiency factor γPBH =

0.2 [82]. The PBH mass function fPBH(MPBH) is shown in the right panel of Fig. 3 with respect to current PBH
constraints. It is worth noting that for PBH formations, apart from other phase transition parameters T∗, α, and
gdof given by the holographic computations, the inverse of the phase transition duration β is the only free parameter
from our holographic approach, which could be constrained as β/H∗ > 8.59 from the current GWTC-3 data by
fPBH < 0.00045 in the mass range [1M⊙, 3M⊙] [71]. Higher values for β/H∗ are certainly allowable like those in
Refs. [83, 84] but with much more negligible PBH abundances and higher peak frequency and lower peak amplitude
in the SGWBs that would be of less interest from both PBH and SGWB observations.

V. CONCLUSION AND DISCUSSION

We have built up a holographic model for a pure gluon system to quantitatively confront the lattice data of
U(3) thermodynamics. It provides an effective model to capture the main feature of QCD matter, for which non-
perturbative effects could be effectively adopted into the model parameters by matching with up-to-date lattice QCD
(see also [45, 85] for 2+1 flavors and [86] for 2 flavors). The resulting Polyakov loop operator and gluon condensation
quantitatively match the lattice simulation, suggesting that there is a first-order confinement/deconfinement phase
transition. The transition temperature is Tc = 276.5MeV as expected in lattice QCD literature. We have shown the
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gravitational wave energy spectrum and PBHs productions associated with the FOPT. With the most optimistic case
constrained by the current PBH abundance, the energy spectrum of SGWBs could be potentially detectable within
the sensitivity ranges of IPTA and SKA in the near future. Since finite volume effects in the lattice data have the
tendency to smooth out the transition, our precise fitting to the lattice data might lead to an underestimate of the
strength of the phase transition. Moreover, it is interesting to constrain our phase transition by the recently claimed
common-spectrum red noise from PTA observations [87–90] (see e.g. [46]).
Since our holographic model can quantitatively capture the characteristic properties of the strong first-order con-

finement/deconfinement phase transition in a pure gluon system, one can study the transport properties in pure gluon
and glueball gas to confirm the transition from a hydrodynamical point of view. It is worth considering real-time
dynamics far from equilibrium, which is beyond the scope of lattice QCD. Moreover, it is an interesting direction
to set up a holographic glueball action to compare the resulting glueball spectra with more experimental and lattice
data. By appropriately tuning the scalar potential V (ϕ) to match the lattice data offered by [28], our setup could
in principle be applied to model a strongly coupled SU(N) dark sector (see [91] for a recent study on hot SU(N)).
Lacking a top-down string embedding, the precisely meaning of the operator dual to the bulk scalar ϕ is not clear.
Nevertheless, our findings for the pure gluon in the present work as well as the (2+1)-flavor [45, 85] and 2-flavor [86]
cases suggest that the dual operator with dimension 3 could play an important role in describing QCD dynamics in
the non-perturbative regime. It would be interesting to find out this operator in benchmark effective theories and low-
energy models of QCD. Furthermore, the present results, particularly those regarding the confinement/deconfinement
phase transition, should be embedded into the framework of a general and hybrid QCD phase diagram, including,
e.g., an external magnetic field and a rotation.
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Appendix A: Thermodynamics and model parameters fixing

We start from the following 5-dimensional gravitational action.

S =
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2κ2
N

∫
d5x

√
−g

[
R− 1
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∇µϕ∇µϕ− V (ϕ)

]
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The gravitational theory includes only two fields: the spacetime metric gµν , and a real scalar ϕ. In addition, κ2
N is

the effective Newton constant and the V (ϕ) is the scalar potential.
The black hole with non-trivial scalar hair reads

ds2 = −f(r)e−η(r)dt2 +
dr2

f(r)
+ r2dx2

3, ϕ = ϕ(r) , (A2)

with dx2
3 = dx2 + dy2 + dz2 and r the holographic radial coordinate. Substituting the ansatz (A2), we obtain the
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following independent equations of motion (EoM).

ϕ′′ +

(
f ′

f
− η′

2
+

3

r

)
ϕ′ − 1

f
∂ϕV = 0 ,

η′

r
+

1

3
ϕ′2 = 0 ,

2

r

f ′

f
− η′

r
+

2

3f
V +

4

r2
= 0 ,

(A3)

where the prime denotes the derivative with respect to r. In what follows we will specify V (ϕ) as

V (ϕ) =

(
6γ2 − 3

2

)
ϕ2 − 12 cosh(γϕ) , (A4)

where γ is the only free parameter. Note, however, that to fit the EoS for (2+1)-flavor QCD at zero baryon density,
one has to introduce two free parameters [45] and three free parameters [92] in V (ϕ).
Near the AdS boundary r → ∞ where ϕ → 0, one has

V (ϕ) = −12− 3

2
ϕ2 +O(ϕ4) . (A5)

Therefore, the cosmological constant is given by Λ = −6 (the AdS radius L = 1) and the scaling dimension of the
dual scalar operator is ∆ = 3. We then obtain the following asymptotic expansion:

ϕ(r) =
ϕs

r
+

(
γ4 − 1/6

)
ϕ3
s ln r + ϕv

r2
+ ... ,

η(r) =
ϕ2
s

6r2
+

(1− 6γ4)(1− 12 ln r)ϕ4
s + 72ϕsϕv

144r4
+ ...,

f(r) = r2 +
ϕ2
s

6
+

2fv − ϕ4
s(1− 6γ4) ln r

12r2
+ ... ,

(A6)

where we have taken the normalization such that η(r → ∞) = 0. ϕs is the source of the scalar operator of the
boundary theory, which essentially breaks the conformal symmetry and plays the role of the energy scale.

To read off the physical observables, we incorporate the holographic renormalization by adding the boundary terms
that are given as [93]

S∂ =
1

2κ2
N

∫
dx4

[
2K − 6− ϕ2

2
−
(
b+

6γ4 − 1

12
ln r

)
ϕ4

]
(A7)

at the AdS boundary r → ∞. Here hµν is the induced metric and Kµν is the extrinsic curvature defined by the
outward pointing normal vector to the boundary.

The energy-momentum tensor of the dual boundary theory reads

Tµν = lim
r→∞

2 r2√
−h

δ(S + S∂)on−shell

δhµν

=
1

2κ2
N

lim
r→∞

r2
[
2(Khµν −Kµν − 3hµν)−

(
1

2
ϕ2 +

6c41 − 1

12
ϕ4 ln r + b ϕ4

)
hµν

]
.

(A8)

Inserting the UV expansion (A6), we obtain

ϵ ≡ Ttt =
1

2κ2
N

(
−3fv + ϕsϕv +

1 + 48b

48
ϕ4
s

)
,

P ≡ Txx =
1

2κ2
N

(
−fv + ϕsϕv +

3− 48b− 8γ4

48
ϕ4
s

)
,

I ≡ ϵ− 3P =
1

2κ2
N

(
−2ϕsϕv −

1− 24b− 3γ4

6
ϕ4
s

)
.

(A9)
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The temperature and entropy density are given by

T =
1

4π
f ′(rh)e

−η(rh)/2, s =
2π

κ2
N

r3h , (A10)

where rh is the location of the event horizon.
The free energy density F is identified as the temperature T times the renormalized action in the Euclidean

signature.

F =
T

V
(S + S∂)

Euclidean
on−shell =

1

2κ2
N

(
fv − ϕsϕv −

3− 48b− 8γ4

48
ϕ4
s

)
. (A11)

with V =
∫
dxdydz. Taking advantage of radially conserved quantity

Q =
1

2κ2
N

r5eη/2
(

f

r2
e−η

)′

, (A12)

and then evaluating at both horizon r = rh and UV boundary r → ∞, we obtain the expected thermodynamic relation

F = ϵ− T s = −P . (A13)

After obtaining the thermodynamic quantities, one can also compute some important transport coefficients, such
as the speed of sound cs =

√
dP/dϵ. These quantities are compared to the lattice results for pure gluon [31, 32, 35].

Then all free parameters of our holographic model can be fixed to be

γ = 0.735, κ2
N = 9.76π, ϕs = 1.523GeV, b = 0.06777 .

The last parameter b that appears in the boundary term (A7) corresponds to P (T = 0) = 0. The fitting results are
presented in Fig. [1] in the main text, from which there is a first-order phase transition (FOPT) at Tc = 276.5MeV.

Appendix B: Computations of gluon condensation

To study the gluon condensation in our pure gluon model, we adopt a probe scalar field χ(r) on the background (A2).
The action reads

S =
1

2κ2
N

∫
d5x

√
−gse−

√
3
8ϕ

[
−1

2
∇µχ∇µχ− 1

2
m2

χχ
2

]
. (B1)

Here gs is the determinant of the metric in the string frame with

gsµν = e
√

2
3ϕgµν , (B2)

where gµν is the metric in the Einstein frame used in the previous section.
Then, the EoM of χ(r) is given by

χ′′ +
1

4

(
12

r
+

4f ′

f
− 2η′ +

√
6ϕ′
)
χ′ − e

√
2
3ϕ

f
m2

χχ = 0 . (B3)

One considers the regular boundary condition on the IR:

χ(r) = c0 + c1(r − rh) + c2(r − rh)
2 + . . . , (B4)

The UV expansion shows

χ(r) = χ0r
∆−4 + · · ·+ χ4r

−∆ + . . . . (B5)

The source χ0 will be fixed to be a constant so as to fit the lattice data. The holographic renormalized gluon
condensation reads

χ4 =
〈
G2
〉
. (B6)
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On the other hand, the subtracted gluon condensation δ
〈

β(g)
2g G2

〉
T
is related to the trace anomaly [43, 44]

δ

〈
β(g)

2g
G2

〉
T

≡
〈
β(g)

2g
G2

〉
T

−
〈
β(g)

2g
G2

〉
0

= ϵ− 3P , (B7)

where the coefficient β(g) is the β-function of QCD and
〈

β(g)
2g G2

〉
0
is determined by the exploration value of

〈
β(g)
2g G2

〉
T

from finite temperature. For simplicity, we directly call δ
〈

β(g)
2g G2

〉
T
as physical gluon condensation in the main text.

Following [26], we choose the renormalized dimension of the gluon operator ∆ = 3.93, which in turn determines the
mass of bulk scalar via m2

χ = ∆(∆− 4).
The β-function to 3-loop reads

β(g) = −β0g
3 − β1g

5 − β2g
7 +O(g9) . (B8)

Therefore, the coefficient in (B7) are given by

β(g)

2g
= −

(
2πβ0αs + 8π2β1α

2
s + 32π3β2α

3
s

)
, (B9)

with [96]

αs(T ) =
1

4πβ0Q

[
1− β1

β2
0

lnQ

Q
+

β2
1

β4
0Q

2

(
(lnQ)

2 − lnQ− 1 +
β0β2

β2
1

)]
, (B10)

where Q = ln(T 2/Λ2
QCD) and

β0 =
1

(4π)2

(
11− 2

3
Nf

)
, β1 =

1

(4π)4

(
102− 38

3
Nf

)
,

β2 =
1

(4π)
6

(
2857

2
− 5033

18
Nf +

325

54
N2

f

)
. (B11)

The cutoff ΛQCD gives the effective range of energy scale for αs(T ) which means αs(T ) only works for T > ΛQCD. The

temperature dependent gluon condensation is shown in Fig.[2] with ΛQCD = 0.14GeV and χ0 = −2.97×10−10GeV4−∆.
The data for the trace anomaly from lattice QCD [31, 32] is included. It is clearly that our results match the lattice
data pretty well.

Appendix C: Polyakov Loop

With the gravitational background (A2), one can extract the expectation value of the Polyakov loop operator [38]
in terms of the holographic dictionary. For simplicity, one makes the coordinate transformation z = 1

r and field

redefinition f(r) = F (z)
z2 , η(r) = Σ(z), ϕ(r) = Φ(z). The background (A2) now becomes

ds2 =
1

z2

[
−F (z)e−Σ(z)dt2 +

dz2

F (z)
+ dx2

3

]
. (C1)

The world-sheet action for the Polyakov loop [39, 95] in the string frame reads

SNG =
1

2παp

∫
d2ξ e

√
2
3Φ(z)

√
det[gMN (∂aXM )(∂bXN )] , (C2)

where gMN is the target spacetime metric and gab is the induced metric. Here α′ is the effective string tension.
Without loss of generality, we choose the static gauge condition ξ0 = t, ξ1 = x, z = z(x), from which

gab =

(
−F (z)e−Σ(z)

z2 0

0 1
z2

(
z′(x)2

F (z) + 1
) ) . (C3)
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Thus, the action (C2) becomes

SNG =
1

2παp

∫
dt

∫ r̄
2

− r̄
2

dx
e
√

2
3Φ(z)−Σ(z)

2

z2

√
F (z) + z′(x)2 ,

=
1

παpT

∫ 0

− r̄
2

dx
e
√

2
3Φ(z)−Σ(z)

2

z2

√
F (z) + z′(x)2 ,

(C4)

with the boundary conditions

z(x = 0) = z0, z′(x = 0) = 0, z(x = ± ℓ

2
) = 0 . (C5)

Here ℓ is the endpoint of the string on the boundary. The equation of motion is given by

z′(x)2 = F (z)

(
e−Σ(z)+Σ(z0)+2

√
2
3 (Φ(z)−Φ(z0))(

z0
z
)4

F (z)

F (z0)
− 1

)
. (C6)

Plugging it into (C4) and introducing the coordinate transformation v = z
z0
, we obtain

SNG =
1

παpT

∫ z0

0

dz
e
√

2
3Φ(z)−Σ(z)

2

z′(x)z2

√
F (z) + z′(x)2 ,

=
1

παpz0T

∫ 1

0

dv
e−

1
2Σ(vz0)+

√
2
3Φ(vz0)

v2 τ(v)
,

(C7)

where τ(v) is

τ(v) =

√
1− e−Σ(z0)+Σ(vz0)−2

√
2
3 (−Φ(z0)+Φ(vz0))v4F (z0)

F (vz0)
. (C8)

The on-shell renormalized free energy for the Polyakov loop operator is given by

Fp =
1

παpz0

[
−1 +

∫ 1

0

dv

v2

(
e−

1
2Σ(vz0)+

√
2
3Φ(vz0)

τ(v)
− 1

)]
. (C9)

Then the expectation value of the Polyakov loop operator shows [39]

⟨P⟩ = eCp−
F∞
p
2T (C10)

with F∞
p the maximum of Fp [40] and Cp the normalization constant [94, 95].

The expectation value of Polyakov loop operator ⟨P⟩ is a good order parameter to the deconfinement PT for pure
gluon system [42]. The computation of Polyakov loops in holography was given in [94]. Note that here we adopt
the effective string tension αp = 17.5 and the renormalization constant Cp = 0.11 [95]. Surprisingly, as shown in
the right panel of Fig. 1 in the main text, the temperature dependence of ⟨P⟩ from our model quantitatively agrees
with the lattice data [35] above Tc and drops to zero below Tc, suggesting that the FOPT from our model is a
confinement/deconfinement phase transition (PT).

Appendix D: Computations of GWs and PBHs

We fill in some details for the PBH and SGWB productions associated with a FOPT and in particular for our
holographic gluon model. The process of bubble nucleations and collisions mixed with PBH productions is highly
inhomogeneous, therefore, a rigorous treatment would require for numerical simulations. A convenient approximation
to the background evolution is close to the radiation-dominated era with a(t) ∝ t1/2, which will be checked and
confirmed later as a good approximation for the parameter space we consider. We also normalize all dimensional

quantities with the dimensional input Γ
1/4
0 , such as t̄ ≡ Γ

1/4
0 t, β̄ ≡ β/Γ

1/4
0 , and ᾱ ≡ ∆V/(3M2

PlΓ
1/2
0 ).
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FIG. 4: The time evolution for the spatial fraction of false vacuum regions (top), the radiation and vacuum energy density
fractions (bottom left) and the radiation and vacuum energy densities normalized by the total energy density at some time
t̄0 = 1/2 (bottom right). In all panels, t̄i = 0.2 and t̄n = 0.6 denote the normal decay channel and delayed decay channel,
respectively.

During the asynochronized progress of PT, the fraction of spatial regions that are still staying at the false vacuum
at time t is now computed as

F (t̄; t̄i, β̄) = exp

[
−4

3
π

∫ t̄

t̄i

dt̄′8eβ̄t̄
′
(√

t̄t̄′ − t̄′
)3]

. (D1)

Without loss of generality, we can choose the true vacuum as the zero point of the potential energy so that the
vacuum energy in the normal decay regions and delayed decayed regions are estimated by ρv(t̄; t̄i) = F (t̄; t̄i)∆V and
ρv(t̄; t̄n) = F (t̄; t̄n)∆V , respectively. The time evolution for the spatial fraction of false vacuum regions in the normal
(solid curves) and delayed (dotted curves) decay channels is shown in the top panel of Fig. 4. For a larger value of β̄,
the PT proceeds more abruptly. For a smaller value of β̄, the PT proceeds more slowly.
However, the rest of energy density does not evolve exactly as radiations due to the interrupt of the PT process

and associated PBH productions. Nevertheless, the radiation evolution could be effectively solved from

dρ̄r
dt̄

+ 4ρ̄r
√
ρ̄r + ρ̄v = −ᾱ

dF

dt̄
, (D2)

with abbreviations ρ̄r ≡ ρr/(3M
2
PlΓ

1/2
0 ) and ρ̄v ≡ ρv/(3M

2
PlΓ

1/2
0 ) = Fᾱ. Note that Γ0 naturally defines a time t0

in such a way that H(t0) = Γ
1/4
0 . Our assumption for radiation dominance requires t̄0 = H(t0)t0 = 1/2. Then the

initial condition is chose as ρ̄r(t̄0) = 1− ρ̄v(t̄0). For given ᾱ and β̄, Eq. D2 can be solved for the normal and delayed
decay channels respectively with t̄n > t̄i. It can be checked numerically that, as long as ᾱ < 0.5, our assumption for
the radiation dominance is valid throughout the whole process of PT as shown in the bottom left and bottom right
panels of Fig. 4 for the radiation/vacuum energy density fractions and radiation/vacuum energy densities normalized
by the total energy density at the time t̄0 = 1/2, respectively. The normal decay time t̄i = 0.2 and delayed decay
time t̄n = 0.6 as well as ᾱ = 0.3 and β̄ = 7 are chose for illustration.
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With the full solutions for the radiation and vacuum energy densities in the normal and delayed decay regions, the
overdensity of total energy density in the delayed decay regions can be directly evaluated by

δ(t̄) =
ρ̄r(t̄; t̄n) + F̄ (t̄; t̄n)ᾱ

ρ̄r(t̄; t̄i) + F̄ (t̄; t̄i)ᾱ
− 1 . (D3)

The time evolution of δ(t̄; t̄i, t̄n, ᾱ, β̄) is first increasing due to the gradual accumulation of energy density in false
vacuum and then decreasing due to the rapid declination of volume fraction in false vacuum. For given t̄i, ᾱ and
β̄, when the maximal overdensity exactly saturates a given PBH threshold δc, we can solve for the required delayed
decay time t̄n, from which the PBH formation time is then solved from δ(t̄PBH; t̄i, t̄n, ᾱ, β̄) = δc. Although suffered
from large uncertainties of numerical simulations, we can adopt the analytic estimation [81] on the PBH threshold
via δc = sin2[π

√
w/(1 + 3w)] with the EoS w evaluated from the dominant component at PBH formation.

The PBH mass produced from our postponed decay mechanism is almost monochromatic since the numerical
simulations for the gravitational collapse of over-dense regions with sub-horizon size are still missing. We therefore
only focus on the PBH mass collapsed from the over-dense Hubble volumes with postponed decay,

MPBH

M⊙
= 4πγPBH

(
MPl

M⊙

)(
MPl/Γ

1/4
0

HPBH/Γ
1/4
0

)
, (D4)

where γPBH = 0.2 [82], MPl/M⊙ = 2.182 × 10−39, and H̄PBH ≡ HPBH/Γ
1/4
0 =

√
ρ̄tot(t̄PBH; t̄n). The other factor

MPl/Γ
1/4
0 can be roughly estimated as

Γ
1/4
0

MPl
=

(
π2

90
gdof

)1/2(
T∗

MPl

)2

e−
β

8H∗ (D5)

by noting that the percolation time defined by F (t∗; ti) = 0.7 is usually close to the time when the bubble nucleation
rate balances the Hubble expansion rate Γ(t∗) ≈ H(t∗)

4, thus, Γ0 ≈ H4
∗e

−βt∗ followed by the replacements of
3M2

PlH
2
∗ = (π2/30)gdofT

4
∗ and H∗t∗ = 1/2 due to the radiation dominance.
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The PBH abundance fPBH = (aeq/aPBH)ΩPBH/Ω
eq
DM normalized to the dark matter fraction Ωeq

DM = 0.42 at the
matter-radiation equality is then estimated by

ΩPBH = exp

−4

3
π

∫ t̄n

t̄i

dt̄ eβ̄t̄

(√
t̄/t̄PBH

H̄PBH

)3
 , (D6)

where the redshift factor aeq/aPBH = TPBH/Teq with Teq ≈ 0.75 eV can be estimated by inserting 3M2
PlH

2
PBH =

(π2/30)gdofT
4
PBH after replacing HPBH = H̄PBHΓ

1/4
0 with previously computed H̄PBH and Γ

1/4
0 , namely,

TPBH = T∗
√
H̄PBHe

− β
16H∗ . (D7)

Note that the gdof -dependence in TPBH and Γ0 cancels out, leaving no dependence on gdof for the PBH abundance.
Finally, in computing both PBH mass and abundance, the inverse duration is determined by β/H∗ = β̄/

√
ρ̄tot(t̄∗; t̄i).

For our holographic model of gluodynamics, β is the only free parameter since one can further fix ᾱ from matching
the strength factor α = ᾱ/ρ̄r(t̄∗; t̄i) to the value 0.939 obtained from holographic calculations. The other inputs from
holographic calculations include the PT temperature T∗ = 276.5 MeV, the effective degrees of freedom gdof = 3.64
and the PBH threshold δc = 0.1786 from the EoS w ≡ P/ϵ = 0.0219 of the dominant component in the unbroken
phase [81]. The final results are summarized in Fig. 5. In the first panel, all the characteristic time scales, such as the
delayed decay time tn, the percolation time t∗, and the PBH formation time tPBH, are shown with respect to β/H∗
after normalized to the normal decay time ti. In the second panel, the time evolution of the overdensity within the
delayed decay regions are shown to exactly saturate the PBH formation threshold. In the third and last panels, the
parameter space for ᾱ, β/H∗, fPBH, and MPBH are shown with respect to the input free parameter β̄. It is worth
noting that the current constraint from the current GWTC-3 data [71] on the PBH abundance fPBH < 0.00045 in the
mass range [1M⊙, 3M⊙] would constrain β/H∗ > 8.59.
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