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a b s t r a c t 

Age-related cortical atrophy, approximated by cortical thickness measurements from magnetic resonance 

imaging, follows a characteristic pattern over the lifespan. Although its determinants remain unknown, mounting 

evidence demonstrates correspondence between the connectivity profiles of structural and functional brain net- 

works and cortical atrophy in health and neurological disease. Here, we performed a cross-sectional multimodal 

neuroimaging analysis of 2633 individuals from a large population-based cohort to characterize the association 

between age-related differences in cortical thickness and functional as well as structural brain network topol- 

ogy. We identified a widespread pattern of age-related cortical thickness differences including “hotspots ” of pro- 

nounced age effects in sensorimotor areas. Regional age-related differences were strongly correlated within the 

structurally defined node neighborhood. The overall pattern of thickness differences was found to be anchored 

in the functional network hierarchy as encoded by macroscale functional connectivity gradients. Lastly, the iden- 

tified difference pattern covaried significantly with cognitive and motor performance. Our findings indicate that 

connectivity profiles of functional and structural brain networks act as organizing principles behind age-related 

cortical thinning as an imaging surrogate of cortical atrophy. 
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. Introduction 

Understanding the neurobiological processes underlying aging is a

ritical challenge given the increasing average age of societies and

rowing incidence of age-related neurological impairments worldwide

 Beard et al., 2016 ). Over the lifespan, changes in brain structure and

unction accrue, leading to reduced performances in multiple cogni-

ive and motor domains ( Baciu et al., 2015 ; López-Otín et al., 2013 ;

romp et al., 2015 ). Collectively, these changes affect well-being, psy-

hosocial functioning and independence in advancing age. 

Magnetic resonance imaging (MRI) provides an avenue to investi-

ate changes in brain structure and function during aging in vivo. MRI-

ased reconstruction of cortical morphology enables the assessment of

ortical thickness. Cortical thinning is established as a valuable imaging

arker of age-related grey matter atrophy linked to decline in cognitive

nd motor functions ( Clark and Taylor, 2011 ; Pacheco et al., 2015 ). As

emonstrated by previous epidemiological studies, age-related thinning
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f the cerebral cortex follows a nonuniform trajectory, the determinants

f which are not well understood ( Frangou et al., 2021 ). Cortical thick-

ess reaches its peak within the first decade of life, followed by a dy-

amic trajectory of thinning starting off with a steeper decline during

he first three life decades, which finally decelerates over the remain-

ng lifespan ( Frangou et al., 2021 ; Walhovd et al., 2017 ). Intriguingly,

ge-dependent thinning of the cerebral cortex does not occur in a ho-

ogeneous pattern: initially occurring primarily in association cortices,

oci of cortical thinning appear to shift towards primary sensorimotor

reas during later stages of aging ( Appleton et al., 2020 ; Davis et al.,

009 ; Douaud et al., 2014 ; Frangou et al., 2021 ). 

Brain network analysis, commonly referred to as “connectomics ”,

as proven insightful in elucidating the underlying mechanisms of

ge-related cortical thinning ( Fornito et al., 2015 ; Fornito and Bull-

ore, 2015 ). Previous reports indicate that during late adulthood, in-

reased cortical thinning preferentially occurs in regions connected by

hite matter tracts that demonstrate increased age-related structural
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isintegration ( Storsve et al., 2016 ). Moreover, resting-state functional

onnectivity changes have been shown to co-occur with cortical thin-

ing ( Schulz et al., 2022 ; Vieira et al., 2020 ). Although there is evidence

or interactions between brain network connectivity (i. e., the connec-

ome) and cortical morphology in general, investigations of age-related

ortical thinning in association with connectome topology are scarce. 

Amassing evidence from joint MRI and clinical investigations demon-

trates a strong link between disease-related alterations of the cere-

ral cortex and connectome topology: for example, brain areas with

rominent cortical atrophy in primarily neurodegenerative forms of de-

entia appear to be strongly structurally and functionally connected

 Savard et al., 2022 ; Seeley et al., 2009 ). Moreover, these conditions

ppear to preferentially affect brain areas located at the associative-

ransmodal regions, highlighting the relevance of the functional net-

ork hierarchy in pertaining pathomechanisms ( Greicius et al., 2004 ;

u et al., 2022 ). In patients with schizophrenia, cortical thinning is

rimarily observed in “neighborhoods ” of functionally and structurally

ighly interconnected brain regions ( Shafiei et al., 2020 ). Subcortical

troke induces cortical thinning in remote, yet connected brain regions

 Cheng et al., 2019 ; Mayer et al., 2020 ). Lastly, network hubs – i.e, nodes

eaturing high connectivity and prominent location within a network –

re preferentially targeted in manifold diseases due to their topological

entrality and high metabolic demands ( Crossley et al., 2014 ). 

Based on this evidence, we hypothesized that the pattern of age-

elated interindividual cortical thickness differences – as a cross-

ectional proxy of age-related cortical thinning – is associated with

rincipal aspects of functional and structural connectome topology. To

ddress this hypothesis, we assessed if the effect of age on cortical thick-

ess occurs (1) preferentially in network hubs; (2) in highly intercon-

ected network neighborhoods and (3) if the age-related pattern of

ortical thickness differences follows the constraints imposed by the

unctional network hierarchy as encoded in macroscale functional con-

ectivity gradients ( Margulies et al., 2016 ). For this purpose, we con-

extualized the pattern of age-related cortical thickness differences and

onnectome measures in a surface-based spatial correlation analysis in

RI data from participants of a large-scale, single-center, population-

ased cohort study (Hamburg City Health Study) ( Jagodzinski et al.,

019 ). Supplementing our analysis of imaging data, we characterized

he association between age-related cortical thickness differences and

linical phenotypes, specifically cognitive and motor functions. With

his work we aimed to contribute to the understanding of the funda-

ental principles underlying age-related structural brain changes and

heir clinical phenotypes. 

. Materials and methods 

.1. Study population - the Hamburg city health study 

Here, we investigated cross-sectional clinical and imaging data from

 subgroup of the first 10,000 participants from the Hamburg City

ealth Study (HCHS). As described previously HCHS is an ongoing,

ingle-center, prospective cohort study examining randomly selected cit-

zens of the city of Hamburg, Germany, aged 45 to 74 years at time of

election ( Jagodzinski et al., 2019 ). Participants were enrolled between

016 and 2018 and underwent an in-depth multi-organ baseline exami-

ation with emphasis on imaging to identify risk factors, prevalence and

rognostic factors for major chronic diseases. All baseline evaluations

ncluded standardized neuropsychological examinations by specifically

rained medical professionals, while brain MRI was conducted in a sub-

roup of 2,657 participants. Hence, we analyzed data of those 2,657

articipants. 

.2. Ethics approval 

The local ethics committee of the Landesärztekammer Hamburg

State of Hamburg Chamber of Medical Practitioners, PV5131) approved
2 
he study and written informed consent was obtained from all partic-

pants. Good Clinical Practice (GCP), Good Epidemiological Practice

GEP) and the Declaration of Helsinki were the ethical guidelines that

overned the conduct of the study ( Petersen et al., 2020 ). 

.3. MRI acquisition 

Images were acquired using a 3-T Siemens Skyra MRI scanner

Siemens, Erlangen, Germany). Measurements were performed with

 protocol as described in previous work ( Petersen et al., 2022 ;

chlemm et al., 2022 ). In detail, for singleshell diffusion-weighted imag-

ng (DWI), 75 axial slices were obtained covering the whole brain with

radients (b = 1000 s/mm2) applied along 64 noncollinear directions

ith the following sequence parameters: repetition time (TR) = 8500

s, echo time (TE) = 75 ms, slice thickness (ST) = 2 mm, in-plane res-

lution (IPR) = 2 × 2 mm, anterior–posterior phase-encoding direction,

 b0 volume. For 3D T1-weighted anatomical images, rapid acquisi-

ion gradient-echo sequence (MPRAGE) was used with the following

equence parameters: TR = 2500 ms, TE = 2.12 ms, 256 axial slices,

T = 0.94 mm, and IPR = 0.83 × 0.83 mm. 125 resting-state functional

RI volumes were measured with the following sequence parameters:

R = 2500 ms, TE = 25 ms, flip angle = 90 degrees, matrix = 64 × 64,

lices = 49, slice thickness = 3 mm, slice gap = 0 mm, IPR 2.66 × 2.66

m 

2 . 

.4. Data preprocessing 

For the sake of comparability and reproducibility image preprocess-

ng was standardized based on preconfigured and containerized neu-

oimaging pipelines. 

.4.1. Estimation of age-related cortical thickness differences 

Structural preprocessing harnessed the CAT12 surface-based mor-

hometry pipeline (CAT12.7 r1743; https://github.com/m-wierzba/

at-container ) for surface reconstruction and cortical thickness mea-

urement building upon a projection-based thickness estimation method

 Dahnke et al., 2013 ; Gaser et al., 2022 ; Yotter et al., 2011 ; Yotter et al.,

011 ). Cortical thickness was chosen over voxel-based morphometry

ecause of its higher sensitivity to age effects on cortical morphology

 Hutton et al., 2009 ). Cortical thickness measures were normalized from

ndividual to 32k fsLR surface space (conte69) to ensure vertex corre-

pondence across subjects. The age-related cortical thickness alteration

attern was statistically assessed by applying a general linear model

hich related age and cortical thickness on a vertex-level while correct-

ng for sex and years of education. Resulting surface maps of standard-

zed 𝛽 estimates of the relationship between age and cortical thickness

ncoded the trajectory of thickness increases (positive 𝛽) or reductions

negative 𝛽) with advancing age across all individuals. Consequently,

urface maps of standardized 𝛽 estimates were interpreted as age-related

hickness alteration patterns in this work. Vertex-wise p-values were cor-

ected for multiple comparisons based on false-discovery rate. 

.4.2. Functional and structural connectomes 

Cortical thickness information derived from HCHS structural data

as contextualized with group-averaged Schaefer-parcellated structural

nd functional connectomes from the HCHS as well as the Human

onnectome Project (HCP) Young Adult dataset ( Glasser et al., 2016 ;

chaefer et al., 2018 ). We opted for the Schaefer atlas (x7, version

) as it enables assessment of results within macroscale intrinsic func-

ional networks and facilitated sensitivity analysis across different atlas

esolutions ( Thomas Yeo et al., 2011 ). Structural HCHS connectomes

ere reconstructed employing QSIprep (version 0.14.2) ( Cieslak et al.,

021 ). Group-representative structural connectomes were obtained

ia distance-dependent consensus thresholding ( Betzel et al., 2019 ).

pon preprocessing of resting-state functional MRI data with fMRIPrep

version 20.2.6) HCHS functional connectomes were computed with

https://github.com/m-wierzba/cat-container
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cpEngine (version 1.2.3) with denoising based on global signal re-

ression and ICA-AROMA ( Ciric et al., 2017 ; Esteban et al., 2019 ;

ruim et al., 2015 ). Negative correlations within functional connec-

omes were set to zero and connectomes were z-scored before group

veraging. Detailed descriptions for HCHS connectome reconstructions

an be found in the supplementary materials ( supplementary texts S1 and

2 ). HCP connectomes are openly accessible and were downloaded as

art of the ENIGMA toolbox ( Larivière et al., 2021 ). The reconstruction

pproaches for the HCP connectomes have been reported previously and

onsiderably overlap with processing choices applied to the HCHS data

 Larivière et al., 2020 ). Put briefly, upon the HCP minimal preprocess-

ng of structural and functional images ( Glasser et al., 2016 ), the struc-

ural connectomes were reconstructed via application of the canonical

Rtrix3 pipeline and functional connectomes were derived by calculat-

ng Pearson correlations between ROI-wise time series ( Glasser et al.,

016 ; Tournier et al., 2019 ). As our work aims to draw conclusions on

he age-related cortical thinning pattern from a physiologically config-

red brain network, we decided to report results based on the analysis

f HCP-derived connectomes coming from a considerably younger sam-

le (207 subjects, 22-26 years) in the main analysis. Analyses based on

CHS-derived functional and structural connectomes are presented as

art of the sensitivity analysis. To avoid bias by an arbitrary threshold

he analysis was based on non-thresholded subject-level connectomes. 

.5. Statistical analysis 

.5.1. Spatial correlations 

To assess how the age-related cortical thickness alterations pat-

ern corresponds with the brain connectivity profile, we related the

arcel-wise 𝛽 map to connectivity information via spatial correlations

Spearman correlation, 𝑟 𝑠𝑝 ) on a group-level ( Fig. 2 ). For every spa-

ial correlation we performed spin permutations (n = 10.000) to address

he problem of spatial smoothness leading to inflated significance levels

hen relating two brain maps ( Alexander-Bloch et al., 2018 ). Thereby,

ermutation is performed by projecting nodal information onto a sphere

hich is randomly rotated. After rotation information is projected back

n the surface a permuted 𝑟 𝑠𝑝 is computed. Significance is assessed by

elating the observed 𝑟 𝑠𝑝 to the permuted distribution. 

.6. Connectivity profiling 

Node-wise information from pre-selected concepts of functional and

tructural brain network connectivity were exploited to contextual-

ze age-related cortical thickness alterations: hub ranks, neighborhood

hickness alteration, and the functional network hierarchy as encoded

n macroscale functional connectivity gradients. The main analysis was

ompletely based on connectivity indices derived from Schaefer 400 × 7

CP connectomes. Analysis based on alternative brain network parcel-

ation schemes are described in the supplement. 

.6.1. Hub ranks 

Hubs are commonly defined as network nodes with high intermod-

lar connectivity – then called connector hubs – or high intramodular

onnectivity – then called provincial hubs. To capture these topologi-

al properties, we quantified hubs as a joint measure of two common

ubness metrics, the weighted degree ( 𝑘 ) and participation coefficient

 𝑃 𝐶) ( van den Heuvel and Sporns, 2013 ). The degree of a node 𝑖 was

omputed as the sum of all of its connection weights ( Rubinov et al.,

015 ): 

 𝑖 = 

∑
𝑗∈𝑁 𝑖 

𝑤 𝑖𝑗 

here 𝑗 is one of the connected nodes 𝑁 𝑖 and 𝑤 is the weight of the

orresponding connection. 

The participation coefficient of a node 𝑖 was calculated as: 

 𝐶 𝑖 = 1 − 

∑
𝑚 ∈𝑀 

( 

𝑘 𝑖𝑚 

𝑘 𝑖 

) 2 
3 
here 𝑚 is one of the macroscale intrinsic functional networks 𝑀 , 𝑘 𝑖𝑚 is

he sum of all connectivity weights between 𝑖 and network 𝑚 and 𝑘 𝑖 be-

ng the degree as described above ( Thomas Yeo et al., 2011 ). A 𝑃 𝐶 close

o 1 signifies a node that is equivalently connected to all subnetworks of

, whereas a node with a value close to 0 is primarily connected to a sin-

le subnetwork ( Power et al., 2013 ). Connector hubness was defined as

he ranked sum degree and PC ranks. Therefore, a high connector hub-

ess rank (low number) indicated high general connectivity and high

ntermodular connectivity. Provincial hubness rank was defined as the

ombination rank of the degree and the inverted PC with a high rank

ndicating a high general connectivity and intramodular connectivity. 

.6.2. Neighborhood thickness alteration 

The concept of neighborhood thickness alteration ( 𝐴 ) of a node 𝑖

epresents a summary measure of morphometric properties (i.e. cortical

hickness) in the node neighborhood as defined by functional or struc-

ural brain network connectivity ( Shafiei et al., 2020 ). In our study, the

rofile of age-related thickness alterations ( 𝛽𝑗 ) in nodes 𝑗 connected to

ode 𝑖 is averaged and weighted by their respective functional or struc-

ural seed connectivity ( 𝑤 𝑖𝑗 ): 

 𝑖 = 

1 
𝑁 𝑖 

∑
𝑗∈𝑁 𝑖 

𝛽𝑗 𝑤 𝑖𝑗 

here 𝑗 represents one of the connected nodes 𝑁 𝑖 , 𝛽𝑗 is its thinning pro-

le and the corresponding connection weight 𝑤 𝑖𝑗 . The correction term

/Ni is added to correct for node degree by normalizing by the number

f connections. In summary, a pronounced negative 𝐴 𝑖 represents strong

onnectivity to nodes of pronounced age-related thinning. 

.6.3. Functional network hierarchy 

Non-linear dimensionality reduction with diffusion map embedding

f the functional connectivity matrix was performed using BrainSpace

nabling localization of nodes in the functional cortical hierarchy

 Margulies et al., 2016 ; Mesulam, 1998 ; Vos de Wael et al., 2020 ). The

wo components with the highest explained variance - i.e., highest eigen-

alues - were propagated to further analysis as the principal and sec-

ndary functional connectivity gradient and nodewise gradient scores

ere extracted for each. A functional connectivity gradient can be un-

erstood as a spatial axis of connectivity variation spanning the cortical

urface. Nodes of similar connectivity profiles are more closely located

n these axes and nodes with less resemblance farther apart. 

.6.5. Sensitivity analysis 

To ensure that our results were not biased by a single null model,

mpirical correlations were compared to those derived from two fur-

her null models. To account for the influence of the edge topology on

ur results in a more direct manner, we applied network null mod-

ls preserving the degree sequence, connection weight distribution,

he Euclidean distance between nodes and the distance-weight rela-

ionship ( Betzel and Bassett, 2018 ). Furthermore, a variogram-based

ull model preserving spatial autocorrelation which is implemented in

he brainSMASH toolbox was applied ( https://github.com/murraylab/

rainsmash ) ( Burt et al., 2020 ). To further account for spatial autocor-

elation contributing to our findings, we implemented an alternative ap-

roach to the neighborhood alteration. We recalculated the functional

nd structural neighborhood alteration with the modification of the

ode neighborhood being defined as regions that are two steps away –

.e., to get from one node to the other, two edges need to be crossed. This

ay, we aimed to address the phenomenon of structural connectomes

eing biased towards short-range connections probably connecting spa-

ially autocorrelating regions. The step count was computed with the

findwalks ” function implemented in bctpy (v. 0.5.2). As this function

s computationally demanding for dense connectomes, the group-level

unctional connectivity matrix was thresholded to only include the 10%

trongest connections. We refer to this measure as 2nd step neighbor-

ood alteration. Lastly, to further assess the robustness of our results,

https://github.com/murraylab/brainsmash
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Table 1 

Descriptive statistics. 

Median (IQR) / percentage 

n = 2633 

Age (years) 65 (14) 

Sex at birth (% female) 0.44 

Years of education 13 (4) 

TMT A score (seconds) 37 (17) 

TMT B score (seconds) 82 (42) 

Animal Naming Test score 24 (9) 

Wortliste Recall Sum 8 (2) 

Mini Mental State Exam 28 (2) 

Geriatric Depression Scale 1 (3) 

PHQ9 (% medium or severe depressive symptoms) 0.26 

Hand Grip Strength R (kilograms) 34.4 (17) 

Hand Grip Strength L (kilograms) 32.35 (16.36) 

Time Timed Up And Go Test (seconds) 7 (2) 

Chair Rising Test (% passed) 0.97 

Tandem Test (% passed) 0.95 

Cortical thickness (milimeters) 2.5 (0.13) 
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patial correlations were repeated with group-averaged connectomes

erived from all investigated HCHS subjects as well as for HCP con-

ectomes of Schaefer atlas resolutions 100 × 7 and 200 × 7. 

.6.6. Partial least squares correlation 

To analyze the correspondence of cortical thickness measures with

henotypical data in individuals from the HCHS, we performed a partial

east squares (PLS) correlation analysis using pyls ( https://github.com/

markello/pyls ). A detailed methodological description can be found

n the supplementary materials ( supplementary figure S3 and text S4 ).

n brief, PLS identifies covariance profiles relating two sets of vari-

bles - here, node-wise cortical thickness (absolute values), as well

s cognitive functioning (Trail Making Test A and B, Animal Naming

est, Word List Recall, Mini Mental State Exam) and motor test perfor-

ances (Hand Grip Strength, Timed Up And Go Test, Chair Rising Test

nd Tandem Test), age, sex and years of education ( Bowie and Har-

ey, 2006 ; Campagna et al., 2017 ; Folstein et al., 1975 ; Moms et al.,

989 ; Podsiadlo and Richardson, 1991 ). Cortical thickness measures

ere randomly permuted (n = 5000) to assess statistical significance

f latent variables. Subject-specific PLS factor scores were computed,

here higher scores signify stronger expression of the identified covari-

nce profile. Bootstrap ratios and corresponding confidence intervals

ere computed to quantify the node-wise contribution to the thickness-

henotypical relationship. Resulting node-wise bootstrap ratios were

patially correlated with the 𝛽 map to probe for a potential association

f covariance profiles identified by PLS and age-related cortical thick-

ess alterations from our initial analysis. Overall model robustness was

ssessed via a 10-fold cross-validation ( Rahim et al., 2017 ). 

. Results 

.1. Sample characteristics 

Quality checked data from 2633 subjects were included in this anal-

sis. Table 1 provides an overview of demographic and phenotypical

ata. Median age was 65 years (IQR = 14), 44% of participants were fe-

ale and median years of education were 13 (IQR = 4). Median cortical

hickness was 2.5 mm (IQR = 0.13). Demographic information across the

ge ranges is provided in supplementary table S5. 

.2. Age-related interindividual cortical thickness differences 

Cortical thickness and age across individuals were related in an ad-

usted general linear model, revealing a widespread pattern of lower

ortical thickness with advancing age as represented by negative 𝛽 esti-

ates ( Fig. 1 ). This effect was strongest within primary somatosensory
4 
nd motor cortices as well as the superior temporal lobe. Linear rela-

ionships were neutral to positive in the anterior and posterior cingulate

ortex as well as the inferior temporal lobe. 

.3. Spatial contextualization of age-related cortical thinning 

We investigated patterns of age-related cortical thickness differences

n relation to three network topological concepts: hub ranks, neighbor-

ood thickness alteration and macroscale functional connectivity gradi-

nts. Therefore, surface-based spatial correlations were performed be-

ween 𝛽 estimates and measures of structural and functional connectiv-

ty derived from group-level connectomes of the Human Connectome

roject Young Adult dataset ( Fig. 2 ). 

.3.1. Hub ranks 

Nodes with highest connector hub ranks in functional connectivity

i.e. nodes with a ranking < 100) were identified as medial and supe-

ior frontal, precuneal, temporo-occipital and occipital areas. Functional

rovincial hubs were preferentially located in precental, postcentral and

ccipital areas. Highest ranking structural connector hub nodes were in

uperior and medial frontal, posterior cingulate, inferior parietal as well

s temporal cortices and structural provincial hub nodes in superior-

rontal, anterior cingulate, pericentral and occipital areas (node metric

esults can in general be found as a supplementary csv-file and all met-

ics involved in hubness computation are visualized in supplementary fig-

re S6 ). Age-related cortical thickness differences showed no consistent

ignificant correlations with functional connector hubness ( 𝑟 𝑠𝑝 = -0.119,

 𝑠𝑝𝑖𝑛 = 0.200, 𝑝 𝑠𝑚𝑎𝑠ℎ = 0.320, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.646, Fig. 3 a), structural connector

ubness ( 𝑟 𝑠𝑝 = 0.029, 𝑝 𝑠𝑝𝑖𝑛 = 0.395, 𝑝 𝑠𝑚𝑎𝑠ℎ = 0.838, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 < 0.001, Fig. 3 b),

unctional provincial hubness ( 𝑟 𝑠𝑝 = 0.275, 𝑝 𝑠𝑝𝑖𝑛 = 0.028, 𝑝 𝑠𝑚𝑎𝑠ℎ = 0.046,

 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.834, Fig. 3 c) and structural provincial hubness ( 𝑟 𝑠𝑝 = 0.225,

 𝑠𝑝𝑖𝑛 = 0.043, 𝑝 𝑠𝑚𝑎𝑠ℎ = 0.044, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.536, Fig. 3 d). 

.3.2. Neighborhood thickness alteration 

Nodes in primary sensorimotor brain areas showed most pronounced

tructural neighborhood thickness alteration – i.e., these nodes were

ighly structurally connected to other nodes with pronounced nega-

ive age effects. Nodes in cingulate and parietal brain areas showed

ess strong negative age effects. A positive and significant association

f neighborhood thickness alteration with age-related cortical thick-

ess differences was found ( 𝑟 𝑠𝑝 = 0.642, 𝑝 𝑠𝑝𝑖𝑛 < 0.001, 𝑝 𝑠𝑚𝑎𝑠ℎ < 0.001,

 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.002, Fig. 3 f), indicating lower cortical thickness at higher age

n brain areas highly connected to other brain areas exhibiting similar

ge-effects. 

Primary sensorimotor and visual nodes showed most pronounced

unctional neighborhood thickness alteration. A positive, association

ith age-related cortical thickness differences only significant if com-

ared with rewired null models was found ( 𝑟 𝑠𝑝 = 0.234, 𝑝 𝑠𝑝𝑖𝑛 = 0.112,

 𝑠𝑚𝑎𝑠ℎ = 0.160, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.026, Fig. 3 e). 

.3.3. Macroscale functional connectivity gradients 

Nodes were embedded in the intrinsic functional cortical hier-

rchy along the first and second macroscale functional connectiv-

ty gradients ( Fig. 3 g and h, brain surfaces): Gradient 1 spanned

he sensorimotor-associative axis whereas the ends of gradient 2

ere anchored in sensorimotor as well as visual cortices, analo-

ous to previous reports ( Margulies et al., 2016 ). A scree plot of

he respective eigenvalues is shown in the supplementary materi-

ls ( supplementary figure S7 ). Scores of both, the first and second

unctional connectivity gradient, were significantly spatially corre-

ated with the pattern of age-related cortical thickness differences

 𝑟 𝑠𝑝 = 0.341, 𝑝 𝑠𝑝𝑖𝑛 = 0.003, 𝑝 𝑠𝑚𝑎𝑠ℎ = 0.010, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.008, Fig. 3 e; 𝑟 𝑠𝑝 = 0.436,

 𝑠𝑝𝑖𝑛 < 0.001, 𝑝 𝑠𝑚𝑎𝑠ℎ < 0.001, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.002, Fig. 3 f). This indicates that the

ge-related differences ( 𝛽 estimates) within our sample gradually differ

long the axes of the functional gradients. In fact, brain regions of lower

ortical thickness at higher age were located in primary and unimodal

https://github.com/rmarkello/pyls
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Fig. 1. Age-related cortical thickness differ- 

ences across all individuals. Negative 𝛽 val- 

ues correspond to lower cortical thickness with 

higher age, whereas positive 𝛽 values denote 

higher cortical thickness. Negative 𝛽 values 

were most pronounced in the primary motor 

and sensory cortices and the superior temporal 

lobe. The anterior cingulate cortex, precuneus 

and inferior temporal lobe showed a neutral 

to positive linear association between cortical 

thickness and age. Abbreviations: 𝛽 age - 𝛽

estimate describing the linear relationship 

between age and cortical thickness. 

Fig. 2. Methodological approach for contextualization of age-relaged cortical thinning with network concepts. In the main analysis, nodes were defined according 

to the Schaefer400 × 7 parcellation. For each node multimodal structural and connectivity information was derived: functional connectivity information from 

resting-state functional MRI (upper stream); age-related cortical thickness change from surface-based morphometric analysis (middle stream); structural connectivity 

information from diffusion-imaging based quantitative tractography (lower stream). Nodal measures derived from multimodal neuroimaging data were reconciled 

within a spatial correlation analysis to assess correspondence between age-related cortical thickness differences 𝛽 and network characteristics. Abbreviations: DWI 

– diffusion-weighted magnetic resonance imaging, rs-fMRI - resting-state functional magnetic resonance imaging, 𝛽 age - nodewise standardized estimate from the 

general linear model relating age and cortical thickness. 
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ensorimotor regions. To illustrate differential age effects relative to gra-

ient space, nodes were plotted according to their gradient scores and

olored by their 𝛽 estimates in a scatter plot ( Fig. 4 ). The top 10 percent

f nodes with the most negative 𝛽 values had median gradient 1 and 2

cores of 18.44 and -7.88, respectively ( Fig. 4 , red arrow). On the other

nd of the distribution of 𝛽 values, brain regions of higher cortical thick-

ess at higher age were located in associative-transmodal regions. Top

0 percent of nodes with most positive 𝛽 values had median gradient 1

nd 2 scores of -5.99 and -0.77 respectively (see Fig. 4 , blue arrow ). 

.5. Sensitivity analysis 

We were able to replicate the neighborhood alteration results

erforming the 2 nd step neighborhood alteration analysis with the

xception of p-values derived from rewiring null models (func-

ional: 𝑟 𝑠𝑝 = 0.349, 𝑝 𝑠𝑝𝑖𝑛 = 0.023, 𝑝 𝑠𝑚𝑎𝑠ℎ = 0.016, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.792; structural:

 𝑠𝑝 = 0.569, 𝑝 𝑠𝑝𝑖𝑛 < 0.001, 𝑝 𝑠𝑚𝑎𝑠ℎ < 0.001, 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 = 0.428; supplementary table

8 ). Across differing cortical parcellation schemes derived from HCHS

nd HCP connectomes, the structurally-defined neighborhood thickness
5 
lteration and the functional connectivity gradient score 1 maintained a

ignificant relationship to age-related cortical thickness differences ( 𝛽)
n line with results from our main analysis ( Fig. 3 j, supplementary table

9 ). Of note, the second functional connectivity gradient derived from

he Schaefer100 × 7-parcellated HCP-connectome spanned from visual

ortices to associative-transmodal instead of sensorimotor cortices, po-

entially obscuring the spatial correlation of 𝛽 and the gradient 2 score

n this particular correlation. 

.6. Association between cortical thickness, age and clinical phenotypes 

Partial least squares analysis identified 3 significant latent variables

elating age, sex, education, neuropsychological test scores, motor test

cores and nodewise cortical thickness measures. The first latent vari-

ble explained the majority (85.10%) of the shared covariance and was

hus chosen for subsequent analysis ( Fig. 5 a ; supplementary table S10 ).

esults regarding the second and third significant latent variables are

resented in the supplementary materials ( supplementary figure S11 ).

pecifically, the first latent variable represented a predominant covari-
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Fig. 3. Spatial correlations of age-related cortical thickness differences ( 𝛽 age) and brain network connectivity measures (red: structural connectivity, blue: functional 

connectivity). Scatter plots displaying the spatial relationship are supplemented by surface maps for anatomical localization. a) functional and b) structural connector 

hubness rank. c) functional and d) structural provincial hubness rank. Lighter colors represent a higher hubness ranking. e) functional and f) structural neighborhood 

thickness alteration. g) & h) Intrinsic functional network hierarchy represented by functional connectivity gradient scores 1 and 2. Averaged 𝛽 estimates with respect 

to the intrinsic functional networks. j) Results of sensitivity analyses. Correlation results and significance are demonstrated for analysis pipelines including group- 

averaged Schaefer400 × 7 connectomes from HCHS subjects as well as Schaefer100 × 7, Schaefer200 × 7 and Schaefer400 × 7 connectomes from HCP subjects. 

Abbreviations: 𝛽 age - 𝛽 estimate describing the linear relationship between age and cortical thickness; 𝑟 𝑠𝑝 - Spearman correlation coefficient; 𝑝 𝑠𝑚𝑎𝑠ℎ - p-value derived 

from brainSMASH surrogates ( Burt et al., 2020 ); 𝑝 𝑠𝑝𝑖𝑛 - p-value derived from spin permutation results ( Alexander-Bloch et al., 2018 ); 𝑝 𝑟𝑒𝑤𝑖𝑟𝑒 - p-value derived from 

rewired network null models ( Betzel and Bassett, 2018 ). 6 
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Fig. 4. Age effect foci localized in gradient 

space. Nodes represented by dots are plotted 

according to their location in gradient space as 

indicated by their functional connectivity gra- 

dient scores. Here, visual areas are located at 

the top, associative areas at the lower right and 

sensorimotor areas at the bottom left. Nodes 

are color-coded by their respective linear rela- 

tionship between age and cortical thickness ( 𝛽), 

where negative values indicate a lower cortical 

thickness at higher age. 𝛽 values are also plot- 

ted on the cortical surface for anatomical local- 

ization. Colored arrow heads indicate median 

gradient scores of the nodes with 10 percent of 

strongest negative (red) and strongest positive 

(blue) 𝛽-values. 
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nce profile consisting of younger age and better performance both in

europsychological (e.g., shorter times to complete the Trail Making

est) as well as motor tests (e.g., shorter Timed Up and Go interval;

ig. 5 b). Of note, age showed the strongest contribution among all vari-

bles to the covariance profile as indicated by highest loading to the

rst latent variable. 

Bootstrapping was performed to identify nodes that contributed rel-

vantly to the covariance profile of the chosen first latent variable. Cor-

ical thickness in sensorimotor areas contributed highest to the shared

ovariance of the first latent variable as indicated by a strong positive

ootstrap ratio. That indicates that lower cortical thickness in sensori-

otor regions corresponds with higher age, worse cognitive and motor

est performances and vice versa. 

Individual cortical thickness and phenotypical component scores for

atent variable 1 were computed. These scores represent the degree by

hich an individual expresses the corresponding covariance profiles re-

arding either cortical thickness or phenotype. As per definition, scores

ere significantly correlated ( 𝑟 𝑠𝑝 = 0.34, 𝑝 < 0.005, Fig. 5 d) indicating that

ndividuals matching the phenotypical covariance profile also expressed

he cortical thickness pattern. This correlation was robust across cross-

alidation folds ( supplementary figure S12) . The bootstrap ratio was sig-

ificantly spatially correlated with age-related cortical differences ( 𝑟 𝑠𝑝 = -

.23, 𝑝 𝑠𝑝𝑖𝑛 = 0.001, 𝑝 𝑠𝑚𝑎𝑠ℎ = 0.002; Fig. 5 e). Thus, a correspondence be-

ween age-related cortical thickness differences and the identified co-

ariance profiles could be established visually as well as statistically.

bovementioned results remained stable in a supplementary analysis if

ge, sex and years of education were excluded from the phenotypical

ariables ( supplementary figure S13 ). If cognitive and motor scores were

econfounded for age, phenotypical loadings were close to zero ( supple-

entary figure S14 ). 

. Discussion 

In this work, we link principal organizational aspects of structural

nd functional brain networks with age-related cortical thickness differ-
7 
nces based on MRI data from a large, population-based epidemiologi-

al study. We report three main findings: (1) The pattern of age-related

ortical thickness differences is conditioned by the brain network archi-

ecture, specifically structural connectivity to brain areas with shared

ge-effects, i.e., neighborhood thickness alteration. (2) Patterns of age-

ependent cortical thickness differences correspond well with the intrin-

ic macroscale cortical organization expressed by functional connectiv-

ty gradients. (3) Age effects on cortical thickness were strongest in brain

egions associated with clinical phenotypes of worse neuropsychological

nd motor performance. 

Relating age and cortical thickness in a general linear model re-

ealed a widespread pattern of negative 𝛽 values which were most

ronounced in primary sensorimotor regions ( Fig. 1 ). As there is con-

ensus that cortical thickness decreases with advancing age, we in-

erpret the cross-sectionally-derived negative 𝛽 values formally indi-

ating age-related cortical thickness differences as age-related cortical

hinning ( Frangou et al., 2021 ; Raz et al., 1997 ; Storsve et al., 2014 ;

alhovd et al., 2017 ). In doing so, we comply with previous cross-

ectional studies of age effects on brain morphometry ( Frangou et al.,

021 ; Lemaitre et al., 2012 ; Salat et al., 2004 ; Vieira et al., 2020 ). The

hickness of the anterior cingulate cortex, precuneus and inferior tem-

oral cortex remained relatively preserved during aging. These find-

ngs correspond well with previous results from epidemiological, cross-

ectional and longitudinal studies ( Appleton et al., 2020 ; Frangou et al.,

021 ; Salat et al., 2004 ; Storsve et al., 2014 ; Wierenga et al., 2022 ). 

Hubs are brain network nodes characterized by high general connec-

ivity and consequently high metabolic needs ( Alexander-Bloch et al.,

013 ; Liang et al., 2013 ; Tomasi et al., 2013 ; van den Heuvel and

porns, 2013 , 2011 ). Due to this special configuration, hubs exhibit

istinct susceptibility to pathology according to the “nodal stress ” hy-

othesis ( Crossley et al., 2014 ). We hypothesized that this configuration

lso makes them prone to age effects such as oxidative stress or ham-

ered axonal transport being ultimately reflected in cortical morpho-

etric changes ( Ionescu-Tucker and Cotman, 2021 ; Milde et al., 2015 ).

o quantify hubness, we leveraged an aggregated score of two common
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Fig. 5. Results from partial least squares analysis. a) Explained variance and significance levels of identified latent variables. The first significant latent variable 

explaining 85.10% of variance was used for subsequent analysis. b) Phenotypical covariance profile of the first latent variable. c) Covarying cortical thickness pattern 

represented by the bootstrap ratio with higher ratios indicating larger contribution of brain areas to the overall covariance profile d) Correlation of individual 

phenotypical as well as cortical thickness scores. Higher scores represent more pronounced expression of the covariance profile as exemplified by age-wise coloring. 

e) Spatial relationship of the bootstrap ratio to the pattern of age-related cortical thickness differences. In the scatterplot dots represent Schaefer400 × 7 parcels. 

Dots are colored by the respective bootstrap ratio. 
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etrics for hub identification, the weighted degree and participation

oefficient. Cortical maps for the weighted degree as well as participa-

ion coefficients agreed with those previously reported ( supplementary

gure S6 ) ( Larivière et al., 2020 ; Power et al., 2013 ; van den Heuvel

nd Sporns, 2013 ; Warren et al., 2014 ). Of note, although the functional

egree pattern matched that from another study using the exact same

unctional connectomes ( Larivière et al., 2020 ), it differed from relevant

ther works by highlighting unimodal instead of default mode network

reas as hubs ( Buckner et al., 2009 ; Cole et al., 2010 ). Although specula-

ive, this difference might be explained by differing image preprocessing

pproaches ( Botvinik-Nezer et al., 2020 ). 

Spatial correlations of hubness scores revealed that brain areas with

igh intramodular functional and structural centrality – i.e., provincial

ubs – were only inconsistently associated with increased age-related

ortical thinning across conducted analyses ( Fig. 3 c, d and i). Connec-

or hubs showed no association with age effects ( Fig. 3 a and b). Taken
8 
ogether our findings were not in line with the hypothesis of high-

entrality brain areas receiving the largest impact of age-related cortical

isintegration. The relatively small effect sizes regarding functional and

tructural provincial hubs as well as no or inconsistent effects regarding

ll investigated hub types might indicate an at best subordinate role of

ubness in explaining age effects on cortical thickness. 

Previous reports suggest that during late adulthood, cortical thin-

ing preferentially occurs in regions connected by white matter

racts that demonstrate increased age-related structural disintegration

 Storsve et al., 2016 ). We therefore tested whether age-related cortical

hinning relates to thickness alterations in the functionally and struc-

urally defined neighborhood. We could establish a substantial corre-

ation between age-related cortical thinning in individual brain areas

ith the collective age-related cortical thinning of their neighborhood

efined by structural connectivity ( Fig. 3 f). In contrast, this association

as not found to be significant for neighborhoods defined by functional



M. Petersen, F.L. Nägele, C. Mayer et al. NeuroImage 264 (2022) 119721 

c  

t  

s  

s  

r  

c  

i  

w  

a  

fi  

a  

s

 

t  

l  

t  

v  

f  

(  

g  

n  

(  

a  

B  

a  

e  

t  

h  

w  

i

 

p  

o  

r  

s  

a  

h  

e  

a  

s  

H  

p  

c  

m  

i  

–  

g  

f

 

t  

e  

f  

a  

fi  

c  

g  

c  

l  

a  

i  

u  

t  

t  

m  

a  

t  

r  

a

 

h  

c  

c  

H  

i  

a  

a  

t  

t  

a  

h  

a  

m  

t  

e  

a  

(  

t  

c  

t  

s  

l  

m  

t  

t  

r  

g  

l  

o  

t  

a  

f

 

s  

t  

m  

s  

a  

l  

w  

a  

t  

m

 

c  

b  

m  

c  

a  

2  

W  

t  

a  

c  

e  

T  

b

5

 

l  

O  
onnectivity. Therefore, our findings indicate that white matter fiber

racts – as the main histological correlate of structural connectivity as-

essed by MRI tractography – exceed functional connectivity in con-

training age-related neurodegeneration. Notably, these effects could be

eproduced if only nodes being 2 steps away were considered during the

omputation of neighborhood alteration. Yet, the effects were not signif-

cant if tested with rewiring null models ( supplementary figure 8 ). Thus,

e cannot completely rule out, that the neighborhood analysis results

re explained by spatial autocorrelation. Collectively, we interpret our

ndings as evidence for a strong interrelation between a brain regions’

ge-dependent morphometric change (i.e., thinning) and its underlying

tructural connectivity profile. 

Multiple mechanisms might explain how structural connectivity de-

ermines the observed pattern of cortical atrophy beyond localized cel-

ular aging processes ( López-Otín et al., 2013 ). Similar to patterns of cor-

ical atrophy observed in primary neurodegenerative diseases or acute

ascular brain injury, white matter fiber tracts may provide a scaf-

old for propagating age-related cortical atrophy across the network

 Agosta et al., 2015 ; Cheng et al., 2019 ). Although speculative, de-

eneration of cortical neurons might be caused by hampered commu-

ication via excitotoxicity, diminished excitation and metabolic stress

 Saxena and Caroni, 2011 ), ultimately resulting in dysfunctionality

nd structural disintegration of connected brain regions ( Feeney and

aron, 1986 ). In addition, previous longitudinal work has shown that

ge-related white matter alterations might lead to remote degenerative

ffects in the connected gray matter areas ( Storsve et al., 2016 ). Thus,

he occurrence of age-related cortical thinning in connected neighbor-

oods might be explained by the degree of white matter dysconnectivity

hich neighboring nodes typically share due to their shared connectiv-

ty profile. 

Beyond giving rise to phenomena like propagation of cortical atro-

hy and dysconnectivity, network connectivity might be a reflection of

verarching organizational principles that also determine cortical at-

ophy during the lifespan. A large body of recent literature demon-

trates that a multitude of cortical properties follows a sensorimotor-

ssociation axis ( Sydnor et al., 2021 ): extremes of functional network

ierarchy represented by the principal functional connectivity gradient,

volutionary hierarchy as denoted by expansion during phylogeny, and

natomical hierarchy encoded in myelination degree span from sen-

orimotor to associative brain regions ( Glasser and Van Essen, 2011 ;

ill et al., 2010 ; Margulies et al., 2016 ). The general organizational

aradigm captured by this axis is thought to reflect effective hierarchi-

al information processing in the brain: regions of lower rank - uni-

odal regions like primary sensory and motor cortices - are involved

n externally-oriented tasks like perception, whereas higher-rank areas

associative-transmodal regions like the default mode network - inte-

rate collected information to contribute to internally-focused mental

aculties of higher order ( Mesulam, 1998 ). 

In our work, we tested the hypothesis that the observed overall pat-

ern of cortical thinning adheres to the functional network hierarchy as

ncoded in the first and second functional connectivity gradients. The

ormer can be considered as a proxy for the canonical sensorimotor-

ssociation axis of brain organization. We successfully recovered the

rst and second functional connectivity gradients from HCP and HCHS

onnectomes. Over the whole sample, age-dependent cortical thinning

enerally followed a sensorimotor-fugal pattern with highest effects lo-

ated in the primary sensory and motor cortices ( Fig. 1 ). Spatial corre-

ations revealed that thinning gradually changed along both, the first

nd second functional connectivity gradient ( Fig. 3 g and h), peaking

n sensorimotor areas ( Fig. 4 , red arrow). Less pronounced thinning or

nchanged thickness values across age were localized to associative-

ransmodal and visual cortices ( Fig. 4 , blue arrow). Anatomical, func-

ional and genomic factors influencing age-related neurodegeneration

ight be differentially distributed along the sensorimotor-association

xis, which could explain the corresponding pattern of age-related cor-

ical thinning. Taken together, our findings underline the fundamental
9 
ole of functional network hierarchy and consequently the sensorimotor-

ssociation axis for cortical atrophy in aging. 

Cognitive and motor functions, such as complex information

andling, executive functions, memory, mobility and overall mus-

le strength, are known to deteriorate during the aging pro-

ess ( Bohannon and Williams Andrews, 2011 ; Dodds et al., 2014 ;

edden and Gabrieli, 2004 ). We leveraged multivariate machine learn-

ng in form of a partial least squares analysis (PLS) to probe for an age-

ssociated covariance profile relating cortical thickness and cognitive

nd motor scores in the HCHS sample. We successfully identified a la-

ent variable explaining the substantial amount of 85.10% of variance in

he cortical thickness and phenotypical information from all individu-

ls included in our study ( Fig. 5 a). According to this latent variable,

igher cortical thickness in primary sensorimotor areas and younger

ge covaried with better performance in cognitive and motor assess-

ents. Of all factors, age was identified as the most highly weighted in

he phenotypical covariance pattern ( Fig. 5 b) which indicates that age

ffects contribute considerably to the identified latent variable and its

ssociated covariance profile. Therefore, higher age corresponded with

lower) cortical thickness and lower performance in cognitive and motor

ests ( Fig. 5 d). Consistency of out-of-sample PLS score correlations indi-

ated the across sample generalizability of these results ( supplementary

ables S12 ). The observation that deconfounding cognitive and motor

cores for age before applying PLS resulted in respective phenotypical

oadings close to zero, further underlined the central role of age ( supple-

entary figure S14 ). In accordance with this, the thickness profile iden-

ified by PLS spatially overlapped with the map of age-related cortical

hinning identified by the general linear model ( Fig. 5 f). Therefore, our

esults suggest that aging processes might lead to atrophy in the re-

ions that contribute to good motor and cognitive function and hence

ate-life functionality. Coming back to our initial analysis, the pattern

f age-related cortical thinning is therefore not only meaningfully con-

extualizable in the framework of network topology, but may also serve

s a structural substrate of age-related decline in cognitive and motor

unctions. 

The strengths of this work include the large sample size increasing

tatistical power for finding associations between imaging and pheno-

ypical variables ( Marek et al., 2022 ), the availability of high quality

ultimodal imaging and phenotypical data in the HCHS including a

tate-of-the art, robust and reproducible pipeline for image processing,

nd additional sensitivity analysis accounting for differing atlas parcel-

ation schemes. Notably, the investigated age range appears particularly

ell suited for investigating associations between imaging markers of

ge-related structural brain changes and clinical phenotypes, as it cap-

ures the age interval where these clinical manifestations of aging accu-

ulate ( Buckner, 2004 ; Dodds et al., 2014 ). 

Several limitations should be noted: first, our analysis is based on

ross-sectional data. In comparison, a longitudinal study design can

e considered superior when investigating the age-related trajectory of

orphometric brain changes. Nevertheless, the identified age-related

ortical thinning pattern agrees with results from existing cross-sectional

nd longitudinal imaging studies of a similar age range ( Appleton et al.,

020 ; Frangou et al., 2021 ; Salat et al., 2004 ; Storsve et al., 2014 ;

ierenga et al., 2022 ). The practical constraints for conducting a longi-

udinal study of similar scope are considerable, both regarding human

nd technical resources. As a second limitation, our investigation en-

ompasses participants aged from 45 to 80 years at time of the baseline

xamination, i.e., mainly the second half of the lifespan is represented.

o investigate the trajectory of aging foci across the lifespan it would

e of interest to investigate younger subjects as well. 

. Conclusion 

We identified functional and structural brain network properties

inked with age-related cortical thinning in a population-based sample.

ur work highlights structural interconnectedness, and functional con-
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ectivity gradients as relevant determinants of the interplay between

he connectome architecture and morphometric changes during aging.

y identifying an age-related covariance pattern relating cortical thick-

ess and cognitive and motor performance, our results further elucidate

he complex pathophysiological substrates of functional decline in older

ge. Collectively, our results promote the notion of age-related cortical

trophy being determined by fundamental aspects of brain network ar-

hitecture. 
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