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ARTICLE INFO ABSTRACT

Keywords: Age-related cortical atrophy, approximated by cortical thickness measurements from magnetic resonance
MRI imaging, follows a characteristic pattern over the lifespan. Although its determinants remain unknown, mounting
Aging evidence demonstrates correspondence between the connectivity profiles of structural and functional brain net-

Cortical thickness
Structural connectomics
Functional connectomics

works and cortical atrophy in health and neurological disease. Here, we performed a cross-sectional multimodal
neuroimaging analysis of 2633 individuals from a large population-based cohort to characterize the association
between age-related differences in cortical thickness and functional as well as structural brain network topol-
ogy. We identified a widespread pattern of age-related cortical thickness differences including “hotspots” of pro-
nounced age effects in sensorimotor areas. Regional age-related differences were strongly correlated within the
structurally defined node neighborhood. The overall pattern of thickness differences was found to be anchored
in the functional network hierarchy as encoded by macroscale functional connectivity gradients. Lastly, the iden-
tified difference pattern covaried significantly with cognitive and motor performance. Our findings indicate that
connectivity profiles of functional and structural brain networks act as organizing principles behind age-related
cortical thinning as an imaging surrogate of cortical atrophy.

of the cerebral cortex follows a nonuniform trajectory, the determinants
of which are not well understood (Frangou et al., 2021). Cortical thick-

1. Introduction

Understanding the neurobiological processes underlying aging is a
critical challenge given the increasing average age of societies and
growing incidence of age-related neurological impairments worldwide
(Beard et al., 2016). Over the lifespan, changes in brain structure and
function accrue, leading to reduced performances in multiple cogni-
tive and motor domains (Baciu et al., 2015; Lopez-Otin et al., 2013;
Tromp et al., 2015). Collectively, these changes affect well-being, psy-
chosocial functioning and independence in advancing age.

Magnetic resonance imaging (MRI) provides an avenue to investi-
gate changes in brain structure and function during aging in vivo. MRI-
based reconstruction of cortical morphology enables the assessment of
cortical thickness. Cortical thinning is established as a valuable imaging
marker of age-related grey matter atrophy linked to decline in cognitive
and motor functions (Clark and Taylor, 2011; Pacheco et al., 2015). As
demonstrated by previous epidemiological studies, age-related thinning

ness reaches its peak within the first decade of life, followed by a dy-
namic trajectory of thinning starting off with a steeper decline during
the first three life decades, which finally decelerates over the remain-
ing lifespan (Frangou et al., 2021; Walhovd et al., 2017). Intriguingly,
age-dependent thinning of the cerebral cortex does not occur in a ho-
mogeneous pattern: initially occurring primarily in association cortices,
foci of cortical thinning appear to shift towards primary sensorimotor
areas during later stages of aging (Appleton et al., 2020; Davis et al.,
2009; Douaud et al., 2014; Frangou et al., 2021).

Brain network analysis, commonly referred to as “connectomics”,
has proven insightful in elucidating the underlying mechanisms of
age-related cortical thinning (Fornito et al., 2015; Fornito and Bull-
more, 2015). Previous reports indicate that during late adulthood, in-
creased cortical thinning preferentially occurs in regions connected by
white matter tracts that demonstrate increased age-related structural
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disintegration (Storsve et al., 2016). Moreover, resting-state functional
connectivity changes have been shown to co-occur with cortical thin-
ning (Schulz et al., 2022; Vieira et al., 2020). Although there is evidence
for interactions between brain network connectivity (i. e., the connec-
tome) and cortical morphology in general, investigations of age-related
cortical thinning in association with connectome topology are scarce.

Amassing evidence from joint MRI and clinical investigations demon-
strates a strong link between disease-related alterations of the cere-
bral cortex and connectome topology: for example, brain areas with
prominent cortical atrophy in primarily neurodegenerative forms of de-
mentia appear to be strongly structurally and functionally connected
(Savard et al., 2022; Seeley et al., 2009). Moreover, these conditions
appear to preferentially affect brain areas located at the associative-
transmodal regions, highlighting the relevance of the functional net-
work hierarchy in pertaining pathomechanisms (Greicius et al., 2004;
Hu et al., 2022). In patients with schizophrenia, cortical thinning is
primarily observed in “neighborhoods” of functionally and structurally
highly interconnected brain regions (Shafiei et al., 2020). Subcortical
stroke induces cortical thinning in remote, yet connected brain regions
(Cheng et al., 2019; Mayer et al., 2020). Lastly, network hubs - i.e, nodes
featuring high connectivity and prominent location within a network —
are preferentially targeted in manifold diseases due to their topological
centrality and high metabolic demands (Crossley et al., 2014).

Based on this evidence, we hypothesized that the pattern of age-
related interindividual cortical thickness differences — as a cross-
sectional proxy of age-related cortical thinning — is associated with
principal aspects of functional and structural connectome topology. To
address this hypothesis, we assessed if the effect of age on cortical thick-
ness occurs (1) preferentially in network hubs; (2) in highly intercon-
nected network neighborhoods and (3) if the age-related pattern of
cortical thickness differences follows the constraints imposed by the
functional network hierarchy as encoded in macroscale functional con-
nectivity gradients (Margulies et al., 2016). For this purpose, we con-
textualized the pattern of age-related cortical thickness differences and
connectome measures in a surface-based spatial correlation analysis in
MRI data from participants of a large-scale, single-center, population-
based cohort study (Hamburg City Health Study) (Jagodzinski et al.,
2019). Supplementing our analysis of imaging data, we characterized
the association between age-related cortical thickness differences and
clinical phenotypes, specifically cognitive and motor functions. With
this work we aimed to contribute to the understanding of the funda-
mental principles underlying age-related structural brain changes and
their clinical phenotypes.

2. Materials and methods
2.1. Study population - the Hamburg city health study

Here, we investigated cross-sectional clinical and imaging data from
a subgroup of the first 10,000 participants from the Hamburg City
Health Study (HCHS). As described previously HCHS is an ongoing,
single-center, prospective cohort study examining randomly selected cit-
izens of the city of Hamburg, Germany, aged 45 to 74 years at time of
selection (Jagodzinski et al., 2019). Participants were enrolled between
2016 and 2018 and underwent an in-depth multi-organ baseline exami-
nation with emphasis on imaging to identify risk factors, prevalence and
prognostic factors for major chronic diseases. All baseline evaluations
included standardized neuropsychological examinations by specifically
trained medical professionals, while brain MRI was conducted in a sub-
group of 2,657 participants. Hence, we analyzed data of those 2,657
participants.

2.2. Ethics approval

The local ethics committee of the Landesdrztekammer Hamburg
(State of Hamburg Chamber of Medical Practitioners, PV5131) approved
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the study and written informed consent was obtained from all partic-
ipants. Good Clinical Practice (GCP), Good Epidemiological Practice
(GEP) and the Declaration of Helsinki were the ethical guidelines that
governed the conduct of the study (Petersen et al., 2020).

2.3. MRI acquisition

Images were acquired using a 3-T Siemens Skyra MRI scanner
(Siemens, Erlangen, Germany). Measurements were performed with
a protocol as described in previous work (Petersen et al., 2022;
Schlemm et al., 2022). In detail, for singleshell diffusion-weighted imag-
ing (DWI), 75 axial slices were obtained covering the whole brain with
gradients (b = 1000 s/mm?2) applied along 64 noncollinear directions
with the following sequence parameters: repetition time (TR) = 8500
ms, echo time (TE) = 75 ms, slice thickness (ST) = 2 mm, in-plane res-
olution (IPR) = 2 x 2 mm, anterior-posterior phase-encoding direction,
1 b0 volume. For 3D T1-weighted anatomical images, rapid acquisi-
tion gradient-echo sequence (MPRAGE) was used with the following
sequence parameters: TR = 2500 ms, TE = 2.12 ms, 256 axial slices,
ST = 0.94 mm, and IPR = 0.83 x 0.83 mm. 125 resting-state functional
MRI volumes were measured with the following sequence parameters:
TR = 2500 ms, TE = 25 ms, flip angle = 90 degrees, matrix = 64 x 64,
slices = 49, slice thickness = 3 mm, slice gap = 0 mm, IPR 2.66 x 2.66
mm?,

2.4. Data preprocessing

For the sake of comparability and reproducibility image preprocess-
ing was standardized based on preconfigured and containerized neu-
roimaging pipelines.

2.4.1. Estimation of age-related cortical thickness differences

Structural preprocessing harnessed the CAT12 surface-based mor-
phometry pipeline (CAT12.7 rl1743; https://github.com/m-wierzba/
cat-container) for surface reconstruction and cortical thickness mea-
surement building upon a projection-based thickness estimation method
(Dahnke et al., 2013; Gaser et al., 2022; Yotter et al., 2011; Yotter et al.,
2011). Cortical thickness was chosen over voxel-based morphometry
because of its higher sensitivity to age effects on cortical morphology
(Hutton et al., 2009). Cortical thickness measures were normalized from
individual to 32k fsLR surface space (conte69) to ensure vertex corre-
spondence across subjects. The age-related cortical thickness alteration
pattern was statistically assessed by applying a general linear model
which related age and cortical thickness on a vertex-level while correct-
ing for sex and years of education. Resulting surface maps of standard-
ized p estimates of the relationship between age and cortical thickness
encoded the trajectory of thickness increases (positive f) or reductions
(negative f) with advancing age across all individuals. Consequently,
surface maps of standardized f estimates were interpreted as age-related
thickness alteration patterns in this work. Vertex-wise p-values were cor-
rected for multiple comparisons based on false-discovery rate.

2.4.2. Functional and structural connectomes

Cortical thickness information derived from HCHS structural data
was contextualized with group-averaged Schaefer-parcellated structural
and functional connectomes from the HCHS as well as the Human
Connectome Project (HCP) Young Adult dataset (Glasser et al., 2016;
Schaefer et al., 2018). We opted for the Schaefer atlas (x7, version
1) as it enables assessment of results within macroscale intrinsic func-
tional networks and facilitated sensitivity analysis across different atlas
resolutions (Thomas Yeo et al., 2011). Structural HCHS connectomes
were reconstructed employing QSIprep (version 0.14.2) (Cieslak et al.,
2021). Group-representative structural connectomes were obtained
via distance-dependent consensus thresholding (Betzel et al., 2019).
Upon preprocessing of resting-state functional MRI data with fMRIPrep
(version 20.2.6) HCHS functional connectomes were computed with
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xcpEngine (version 1.2.3) with denoising based on global signal re-
gression and ICA-AROMA (Ciric et al., 2017; Esteban et al., 2019;
Pruim et al., 2015). Negative correlations within functional connec-
tomes were set to zero and connectomes were z-scored before group
averaging. Detailed descriptions for HCHS connectome reconstructions
can be found in the supplementary materials (supplementary texts S1 and
$2). HCP connectomes are openly accessible and were downloaded as
part of the ENIGMA toolbox (Lariviére et al., 2021). The reconstruction
approaches for the HCP connectomes have been reported previously and
considerably overlap with processing choices applied to the HCHS data
(Lariviere et al., 2020). Put briefly, upon the HCP minimal preprocess-
ing of structural and functional images (Glasser et al., 2016), the struc-
tural connectomes were reconstructed via application of the canonical
MRtrix3 pipeline and functional connectomes were derived by calculat-
ing Pearson correlations between ROI-wise time series (Glasser et al.,
2016; Tournier et al., 2019). As our work aims to draw conclusions on
the age-related cortical thinning pattern from a physiologically config-
ured brain network, we decided to report results based on the analysis
of HCP-derived connectomes coming from a considerably younger sam-
ple (207 subjects, 22-26 years) in the main analysis. Analyses based on
HCHS-derived functional and structural connectomes are presented as
part of the sensitivity analysis. To avoid bias by an arbitrary threshold
the analysis was based on non-thresholded subject-level connectomes.

2.5. Statistical analysis

2.5.1. Spatial correlations

To assess how the age-related cortical thickness alterations pat-
tern corresponds with the brain connectivity profile, we related the
parcel-wise # map to connectivity information via spatial correlations
(Spearman correlation, r,,) on a group-level (Fig. 2). For every spa-
tial correlation we performed spin permutations (n=10.000) to address
the problem of spatial smoothness leading to inflated significance levels
when relating two brain maps (Alexander-Bloch et al., 2018). Thereby,
permutation is performed by projecting nodal information onto a sphere
which is randomly rotated. After rotation information is projected back
on the surface a permuted r,, is computed. Significance is assessed by
relating the observed r;, to the permuted distribution.

2.6. Connectivity profiling

Node-wise information from pre-selected concepts of functional and
structural brain network connectivity were exploited to contextual-
ize age-related cortical thickness alterations: hub ranks, neighborhood
thickness alteration, and the functional network hierarchy as encoded
in macroscale functional connectivity gradients. The main analysis was
completely based on connectivity indices derived from Schaefer 400 x 7
HCP connectomes. Analysis based on alternative brain network parcel-
lation schemes are described in the supplement.

2.6.1. Hub ranks

Hubs are commonly defined as network nodes with high intermod-
ular connectivity — then called connector hubs — or high intramodular
connectivity — then called provincial hubs. To capture these topologi-
cal properties, we quantified hubs as a joint measure of two common
hubness metrics, the weighted degree (k) and participation coefficient
(PC) (van den Heuvel and Sporns, 2013). The degree of a node i was
computed as the sum of all of its connection weights (Rubinov et al.,
2015):
k; = Z w;;

JEN;

where j is one of the connected nodes N; and w is the weight of the
corresponding connection.

The participation coefficient of a node i was calculated as:

ko\2
PC,-=1—Z<k'—'">

meM i
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where m is one of the macroscale intrinsic functional networks M, k,,, is
the sum of all connectivity weights between i and network m and k; be-
ing the degree as described above (Thomas Yeo et al., 2011). A PC close
to 1 signifies a node that is equivalently connected to all subnetworks of
‘M, whereas a node with a value close to 0 is primarily connected to a sin-
gle subnetwork (Power et al., 2013). Connector hubness was defined as
the ranked sum degree and PC ranks. Therefore, a high connector hub-
ness rank (low number) indicated high general connectivity and high
intermodular connectivity. Provincial hubness rank was defined as the
combination rank of the degree and the inverted PC with a high rank
indicating a high general connectivity and intramodular connectivity.

2.6.2. Neighborhood thickness alteration

The concept of neighborhood thickness alteration (A4) of a node i
represents a summary measure of morphometric properties (i.e. cortical
thickness) in the node neighborhood as defined by functional or struc-
tural brain network connectivity (Shafiei et al., 2020). In our study, the
profile of age-related thickness alterations (ﬂj) in nodes j connected to
node i is averaged and weighted by their respective functional or struc-
tural seed connectivity (w; j):

A= NL z Bjw;

I jEN;
where j represents one of the connected nodes N;, §; is its thinning pro-
file and the corresponding connection weight w;;. The correction term
1/Ni is added to correct for node degree by normalizing by the number
of connections. In summary, a pronounced negative A, represents strong
connectivity to nodes of pronounced age-related thinning.

2.6.3. Functional network hierarchy

Non-linear dimensionality reduction with diffusion map embedding
of the functional connectivity matrix was performed using BrainSpace
enabling localization of nodes in the functional cortical hierarchy
(Margulies et al., 2016; Mesulam, 1998; Vos de Wael et al., 2020). The
two components with the highest explained variance - i.e., highest eigen-
values - were propagated to further analysis as the principal and sec-
ondary functional connectivity gradient and nodewise gradient scores
were extracted for each. A functional connectivity gradient can be un-
derstood as a spatial axis of connectivity variation spanning the cortical
surface. Nodes of similar connectivity profiles are more closely located
on these axes and nodes with less resemblance farther apart.

2.6.5. Sensitivity analysis

To ensure that our results were not biased by a single null model,
empirical correlations were compared to those derived from two fur-
ther null models. To account for the influence of the edge topology on
our results in a more direct manner, we applied network null mod-
els preserving the degree sequence, connection weight distribution,
the Euclidean distance between nodes and the distance-weight rela-
tionship (Betzel and Bassett, 2018). Furthermore, a variogram-based
null model preserving spatial autocorrelation which is implemented in
the brainSMASH toolbox was applied (https://github.com/murraylab/
brainsmash) (Burt et al., 2020). To further account for spatial autocor-
relation contributing to our findings, we implemented an alternative ap-
proach to the neighborhood alteration. We recalculated the functional
and structural neighborhood alteration with the modification of the
node neighborhood being defined as regions that are two steps away —
i.e., to get from one node to the other, two edges need to be crossed. This
way, we aimed to address the phenomenon of structural connectomes
being biased towards short-range connections probably connecting spa-
tially autocorrelating regions. The step count was computed with the
“findwalks” function implemented in betpy (v. 0.5.2). As this function
is computationally demanding for dense connectomes, the group-level
functional connectivity matrix was thresholded to only include the 10%
strongest connections. We refer to this measure as 2nd step neighbor-
hood alteration. Lastly, to further assess the robustness of our results,
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Table 1
Descriptive statistics.

Median (IQR) / percentage

n=2633
Age (years) 65 (14)
Sex at birth (% female) 0.44
Years of education 13 (4)
TMT A score (seconds) 37.(17)
TMT B score (seconds) 82 (42)
Animal Naming Test score 24 (9)
Wortliste Recall Sum 8(2)
Mini Mental State Exam 28 (2)
Geriatric Depression Scale 13

PHQ9 (% medium or severe depressive symptoms) 0.26
Hand Grip Strength R (kilograms) 34.4(17)
Hand Grip Strength L (kilograms) 32.35 (16.36)

Time Timed Up And Go Test (seconds) 7 (2
Chair Rising Test (% passed) 0.97
Tandem Test (% passed) 0.95

Cortical thickness (milimeters) 2.5(0.13)

spatial correlations were repeated with group-averaged connectomes
derived from all investigated HCHS subjects as well as for HCP con-
nectomes of Schaefer atlas resolutions 100 x 7 and 200 x 7.

2.6.6. Partial least squares correlation

To analyze the correspondence of cortical thickness measures with
phenotypical data in individuals from the HCHS, we performed a partial
least squares (PLS) correlation analysis using pyls (https://github.com/
rmarkello/pyls). A detailed methodological description can be found
in the supplementary materials (supplementary figure S3 and text S4).
In brief, PLS identifies covariance profiles relating two sets of vari-
ables - here, node-wise cortical thickness (absolute values), as well
as cognitive functioning (Trail Making Test A and B, Animal Naming
Test, Word List Recall, Mini Mental State Exam) and motor test perfor-
mances (Hand Grip Strength, Timed Up And Go Test, Chair Rising Test
and Tandem Test), age, sex and years of education (Bowie and Har-
vey, 2006; Campagna et al., 2017; Folstein et al., 1975; Moms et al.,
1989; Podsiadlo and Richardson, 1991). Cortical thickness measures
were randomly permuted (n=5000) to assess statistical significance
of latent variables. Subject-specific PLS factor scores were computed,
where higher scores signify stronger expression of the identified covari-
ance profile. Bootstrap ratios and corresponding confidence intervals
were computed to quantify the node-wise contribution to the thickness-
phenotypical relationship. Resulting node-wise bootstrap ratios were
spatially correlated with the § map to probe for a potential association
of covariance profiles identified by PLS and age-related cortical thick-
ness alterations from our initial analysis. Overall model robustness was
assessed via a 10-fold cross-validation (Rahim et al., 2017).

3. Results
3.1. Sample characteristics

Quality checked data from 2633 subjects were included in this anal-
ysis. Table 1 provides an overview of demographic and phenotypical
data. Median age was 65 years (IQR=14), 44% of participants were fe-
male and median years of education were 13 (IQR=4). Median cortical
thickness was 2.5 mm (IQR=0.13). Demographic information across the
age ranges is provided in supplementary table S5.

3.2. Age-related interindividual cortical thickness differences

Cortical thickness and age across individuals were related in an ad-
justed general linear model, revealing a widespread pattern of lower
cortical thickness with advancing age as represented by negative f esti-
mates (Fig. 1). This effect was strongest within primary somatosensory

Neurolmage 264 (2022) 119721

and motor cortices as well as the superior temporal lobe. Linear rela-
tionships were neutral to positive in the anterior and posterior cingulate
cortex as well as the inferior temporal lobe.

3.3. Spatial contextualization of age-related cortical thinning

We investigated patterns of age-related cortical thickness differences
in relation to three network topological concepts: hub ranks, neighbor-
hood thickness alteration and macroscale functional connectivity gradi-
ents. Therefore, surface-based spatial correlations were performed be-
tween f estimates and measures of structural and functional connectiv-
ity derived from group-level connectomes of the Human Connectome
Project Young Adult dataset (Fig. 2).

3.3.1. Hub ranks

Nodes with highest connector hub ranks in functional connectivity
(i.e. nodes with a ranking <100) were identified as medial and supe-
rior frontal, precuneal, temporo-occipital and occipital areas. Functional
provincial hubs were preferentially located in precental, postcentral and
occipital areas. Highest ranking structural connector hub nodes were in
superior and medial frontal, posterior cingulate, inferior parietal as well
as temporal cortices and structural provincial hub nodes in superior-
frontal, anterior cingulate, pericentral and occipital areas (node metric
results can in general be found as a supplementary csv-file and all met-
rics involved in hubness computation are visualized in supplementary fig-
ure S6). Age-related cortical thickness differences showed no consistent
significant correlations with functional connector hubness (r,,=-0.119,
Pspin=0-200, py,,5=0.320, p,,,,,=0.646, Fig. 3a), structural connector
hubness (r,,=0.029, p,,;,=0.395, P,,44=0.838, Pyyire<0.001, Fig. 3b),
functional provincial hubness (r;,=0.275, p;,;,=0.028, p,,,,,;,=0.046,
Prewire=0-834, Fig. 3¢) and structural provincial hubness (r,,=0.225,
Pepin=0.043, D104 =0.044, D, 11re=0.536, Fig. 3d).

3.3.2. Neighborhood thickness alteration

Nodes in primary sensorimotor brain areas showed most pronounced
structural neighborhood thickness alteration - i.e., these nodes were
highly structurally connected to other nodes with pronounced nega-
tive age effects. Nodes in cingulate and parietal brain areas showed
less strong negative age effects. A positive and significant association
of neighborhood thickness alteration with age-related cortical thick-
ness differences was found (r,,=0.642, p,,,<0.001, p,,, <0.001,
Drewire=0-002, Fig. 3f), indicating lower cortical thickness at higher age
in brain areas highly connected to other brain areas exhibiting similar
age-effects.

Primary sensorimotor and visual nodes showed most pronounced
functional neighborhood thickness alteration. A positive, association
with age-related cortical thickness differences only significant if com-
pared with rewired null models was found (r,,=0.234, p,,,=0.112,
Pomasn=0-160, P o1ire=0.026, Fig. 3e).

3.3.3. Macroscale functional connectivity gradients

Nodes were embedded in the intrinsic functional cortical hier-
archy along the first and second macroscale functional connectiv-
ity gradients (Fig. 3g and h, brain surfaces): Gradient 1 spanned
the sensorimotor-associative axis whereas the ends of gradient 2
were anchored in sensorimotor as well as visual cortices, analo-
gous to previous reports (Margulies et al., 2016). A scree plot of
the respective eigenvalues is shown in the supplementary materi-
als (supplementary figure S7). Scores of both, the first and second
functional connectivity gradient, were significantly spatially corre-
lated with the pattern of age-related cortical thickness differences
(r;=0.341, p;,;,=0.003, p,,,5,=0.010, p,,,;,,=0.008, Fig. 3e; r,=0.436,
Pipin<0.001, p05,<0.001, oy, =0.002, Fig. 3f). This indicates that the
age-related differences (f estimates) within our sample gradually differ
along the axes of the functional gradients. In fact, brain regions of lower
cortical thickness at higher age were located in primary and unimodal
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Fig. 1. Age-related cortical thickness differ-
ences across all individuals. Negative g val-
ues correspond to lower cortical thickness with
higher age, whereas positive § values denote
higher cortical thickness. Negative g values
were most pronounced in the primary motor
and sensory cortices and the superior temporal
lobe. The anterior cingulate cortex, precuneus
and inferior temporal lobe showed a neutral
to positive linear association between cortical
thickness and age. Abbreviations: f age - f
estimate describing the linear relationship
between age and cortical thickness.

Functional
connectivity

Spatial correlation

B age

Structural
connectivity

7

Network measures

Fig. 2. Methodological approach for contextualization of age-relaged cortical thinning with network concepts. In the main analysis, nodes were defined according
to the Schaefer400 x 7 parcellation. For each node multimodal structural and connectivity information was derived: functional connectivity information from
resting-state functional MRI (upper stream); age-related cortical thickness change from surface-based morphometric analysis (middle stream); structural connectivity
information from diffusion-imaging based quantitative tractography (lower stream). Nodal measures derived from multimodal neuroimaging data were reconciled
within a spatial correlation analysis to assess correspondence between age-related cortical thickness differences g and network characteristics. Abbreviations: DWI
- diffusion-weighted magnetic resonance imaging, rs-fMRI - resting-state functional magnetic resonance imaging, § age - nodewise standardized estimate from the

general linear model relating age and cortical thickness.

sensorimotor regions. To illustrate differential age effects relative to gra-
dient space, nodes were plotted according to their gradient scores and
colored by their g estimates in a scatter plot (Fig. 4). The top 10 percent
of nodes with the most negative # values had median gradient 1 and 2
scores of 18.44 and -7.88, respectively (Fig. 4, red arrow). On the other
end of the distribution of g values, brain regions of higher cortical thick-
ness at higher age were located in associative-transmodal regions. Top
10 percent of nodes with most positive f values had median gradient 1
and 2 scores of -5.99 and -0.77 respectively (see Fig. 4, blue arrow).

3.5. Sensitivity analysis

We were able to replicate the neighborhood alteration results
performing the 2" step neighborhood alteration analysis with the
exception of p-values derived from rewiring null models (func-
tional: r,,=0.349, p,,;,=0.023, P44, =0.016, P,¢,;,,=0.792; structural:
r;=0.569, p,,;,<0.001, p,,,<0.001, p,,,,,,=0.428; supplementary table
$8). Across differing cortical parcellation schemes derived from HCHS
and HCP connectomes, the structurally-defined neighborhood thickness

alteration and the functional connectivity gradient score 1 maintained a
significant relationship to age-related cortical thickness differences (f)
in line with results from our main analysis (Fig. 3j, supplementary table
S9). Of note, the second functional connectivity gradient derived from
the Schaefer100 x 7-parcellated HCP-connectome spanned from visual
cortices to associative-transmodal instead of sensorimotor cortices, po-
tentially obscuring the spatial correlation of # and the gradient 2 score
in this particular correlation.

3.6. Association between cortical thickness, age and clinical phenotypes

Partial least squares analysis identified 3 significant latent variables
relating age, sex, education, neuropsychological test scores, motor test
scores and nodewise cortical thickness measures. The first latent vari-
able explained the majority (85.10%) of the shared covariance and was
thus chosen for subsequent analysis (Fig. 5a; supplementary table S10).
Results regarding the second and third significant latent variables are
presented in the supplementary materials (supplementary figure S11).
Specifically, the first latent variable represented a predominant covari-
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ance profile consisting of younger age and better performance both in
neuropsychological (e.g., shorter times to complete the Trail Making
Test) as well as motor tests (e.g., shorter Timed Up and Go interval;
Fig. 5b). Of note, age showed the strongest contribution among all vari-
ables to the covariance profile as indicated by highest loading to the
first latent variable.

Bootstrapping was performed to identify nodes that contributed rel-
evantly to the covariance profile of the chosen first latent variable. Cor-
tical thickness in sensorimotor areas contributed highest to the shared
covariance of the first latent variable as indicated by a strong positive
bootstrap ratio. That indicates that lower cortical thickness in sensori-
motor regions corresponds with higher age, worse cognitive and motor
test performances and vice versa.

Individual cortical thickness and phenotypical component scores for
latent variable 1 were computed. These scores represent the degree by
which an individual expresses the corresponding covariance profiles re-
garding either cortical thickness or phenotype. As per definition, scores
were significantly correlated (r,,=0.34, p<0.005, Fig. 5d) indicating that
individuals matching the phenotypical covariance profile also expressed
the cortical thickness pattern. This correlation was robust across cross-
validation folds (supplementary figure S12). The bootstrap ratio was sig-
nificantly spatially correlated with age-related cortical differences (r;,=-
0.23, p,;,=0.001, p,,,,,=0.002; Fig. 5e). Thus, a correspondence be-
tween age-related cortical thickness differences and the identified co-
variance profiles could be established visually as well as statistically.
Abovementioned results remained stable in a supplementary analysis if
age, sex and years of education were excluded from the phenotypical
variables (supplementary figure S13). If cognitive and motor scores were
deconfounded for age, phenotypical loadings were close to zero (supple-
mentary figure S14).

4, Discussion

In this work, we link principal organizational aspects of structural
and functional brain networks with age-related cortical thickness differ-
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Fig. 4. Age effect foci localized in gradient
space. Nodes represented by dots are plotted
according to their location in gradient space as
indicated by their functional connectivity gra-
dient scores. Here, visual areas are located at
the top, associative areas at the lower right and
sensorimotor areas at the bottom left. Nodes
are color-coded by their respective linear rela-
tionship between age and cortical thickness (),
where negative values indicate a lower cortical
thickness at higher age. p values are also plot-
ted on the cortical surface for anatomical local-
ization. Colored arrow heads indicate median
gradient scores of the nodes with 10 percent of
0.0 strongest negative (red) and strongest positive
(blue) p-values.

0.1

B age

=0.1

ences based on MRI data from a large, population-based epidemiologi-
cal study. We report three main findings: (1) The pattern of age-related
cortical thickness differences is conditioned by the brain network archi-
tecture, specifically structural connectivity to brain areas with shared
age-effects, i.e., neighborhood thickness alteration. (2) Patterns of age-
dependent cortical thickness differences correspond well with the intrin-
sic macroscale cortical organization expressed by functional connectiv-
ity gradients. (3) Age effects on cortical thickness were strongest in brain
regions associated with clinical phenotypes of worse neuropsychological
and motor performance.

Relating age and cortical thickness in a general linear model re-
vealed a widespread pattern of negative p values which were most
pronounced in primary sensorimotor regions (Fig. 1). As there is con-
sensus that cortical thickness decreases with advancing age, we in-
terpret the cross-sectionally-derived negative g values formally indi-
cating age-related cortical thickness differences as age-related cortical
thinning (Frangou et al., 2021; Raz et al., 1997; Storsve et al., 2014;
Walhovd et al., 2017). In doing so, we comply with previous cross-
sectional studies of age effects on brain morphometry (Frangou et al.,
2021; Lemaitre et al., 2012; Salat et al., 2004; Vieira et al., 2020). The
thickness of the anterior cingulate cortex, precuneus and inferior tem-
poral cortex remained relatively preserved during aging. These find-
ings correspond well with previous results from epidemiological, cross-
sectional and longitudinal studies (Appleton et al., 2020; Frangou et al.,
2021; Salat et al., 2004; Storsve et al., 2014; Wierenga et al., 2022).

Hubs are brain network nodes characterized by high general connec-
tivity and consequently high metabolic needs (Alexander-Bloch et al.,
2013; Liang et al., 2013; Tomasi et al., 2013; van den Heuvel and
Sporns, 2013, 2011). Due to this special configuration, hubs exhibit
distinct susceptibility to pathology according to the “nodal stress” hy-
pothesis (Crossley et al., 2014). We hypothesized that this configuration
also makes them prone to age effects such as oxidative stress or ham-
pered axonal transport being ultimately reflected in cortical morpho-
metric changes (Ionescu-Tucker and Cotman, 2021; Milde et al., 2015).
To quantify hubness, we leveraged an aggregated score of two common
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metrics for hub identification, the weighted degree and participation
coefficient. Cortical maps for the weighted degree as well as participa-
tion coefficients agreed with those previously reported (supplementary
figure S6) (Lariviere et al., 2020; Power et al., 2013; van den Heuvel
and Sporns, 2013; Warren et al., 2014). Of note, although the functional
degree pattern matched that from another study using the exact same
functional connectomes (Lariviére et al., 2020), it differed from relevant
other works by highlighting unimodal instead of default mode network
areas as hubs (Buckner et al., 2009; Cole et al., 2010). Although specula-
tive, this difference might be explained by differing image preprocessing
approaches (Botvinik-Nezer et al., 2020).

Spatial correlations of hubness scores revealed that brain areas with
high intramodular functional and structural centrality - i.e., provincial
hubs — were only inconsistently associated with increased age-related
cortical thinning across conducted analyses (Fig. 3¢, d and i). Connec-
tor hubs showed no association with age effects (Fig. 3a and b). Taken

together our findings were not in line with the hypothesis of high-
centrality brain areas receiving the largest impact of age-related cortical
disintegration. The relatively small effect sizes regarding functional and
structural provincial hubs as well as no or inconsistent effects regarding
all investigated hub types might indicate an at best subordinate role of
hubness in explaining age effects on cortical thickness.

Previous reports suggest that during late adulthood, cortical thin-
ning preferentially occurs in regions connected by white matter
tracts that demonstrate increased age-related structural disintegration
(Storsve et al., 2016). We therefore tested whether age-related cortical
thinning relates to thickness alterations in the functionally and struc-
turally defined neighborhood. We could establish a substantial corre-
lation between age-related cortical thinning in individual brain areas
with the collective age-related cortical thinning of their neighborhood
defined by structural connectivity (Fig. 3f). In contrast, this association
was not found to be significant for neighborhoods defined by functional
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connectivity. Therefore, our findings indicate that white matter fiber
tracts — as the main histological correlate of structural connectivity as-
sessed by MRI tractography — exceed functional connectivity in con-
straining age-related neurodegeneration. Notably, these effects could be
reproduced if only nodes being 2 steps away were considered during the
computation of neighborhood alteration. Yet, the effects were not signif-
icant if tested with rewiring null models (supplementary figure 8). Thus,
we cannot completely rule out, that the neighborhood analysis results
are explained by spatial autocorrelation. Collectively, we interpret our
findings as evidence for a strong interrelation between a brain regions’
age-dependent morphometric change (i.e., thinning) and its underlying
structural connectivity profile.

Multiple mechanisms might explain how structural connectivity de-
termines the observed pattern of cortical atrophy beyond localized cel-
lular aging processes (Lopez-Otin et al., 2013). Similar to patterns of cor-
tical atrophy observed in primary neurodegenerative diseases or acute
vascular brain injury, white matter fiber tracts may provide a scaf-
fold for propagating age-related cortical atrophy across the network
(Agosta et al., 2015; Cheng et al., 2019). Although speculative, de-
generation of cortical neurons might be caused by hampered commu-
nication via excitotoxicity, diminished excitation and metabolic stress
(Saxena and Caroni, 2011), ultimately resulting in dysfunctionality
and structural disintegration of connected brain regions (Feeney and
Baron, 1986). In addition, previous longitudinal work has shown that
age-related white matter alterations might lead to remote degenerative
effects in the connected gray matter areas (Storsve et al., 2016). Thus,
the occurrence of age-related cortical thinning in connected neighbor-
hoods might be explained by the degree of white matter dysconnectivity
which neighboring nodes typically share due to their shared connectiv-
ity profile.

Beyond giving rise to phenomena like propagation of cortical atro-
phy and dysconnectivity, network connectivity might be a reflection of
overarching organizational principles that also determine cortical at-
rophy during the lifespan. A large body of recent literature demon-
strates that a multitude of cortical properties follows a sensorimotor-
association axis (Sydnor et al., 2021): extremes of functional network
hierarchy represented by the principal functional connectivity gradient,
evolutionary hierarchy as denoted by expansion during phylogeny, and
anatomical hierarchy encoded in myelination degree span from sen-
sorimotor to associative brain regions (Glasser and Van Essen, 2011;
Hill et al., 2010; Margulies et al., 2016). The general organizational
paradigm captured by this axis is thought to reflect effective hierarchi-
cal information processing in the brain: regions of lower rank - uni-
modal regions like primary sensory and motor cortices - are involved
in externally-oriented tasks like perception, whereas higher-rank areas
- associative-transmodal regions like the default mode network - inte-
grate collected information to contribute to internally-focused mental
faculties of higher order (Mesulam, 1998).

In our work, we tested the hypothesis that the observed overall pat-
tern of cortical thinning adheres to the functional network hierarchy as
encoded in the first and second functional connectivity gradients. The
former can be considered as a proxy for the canonical sensorimotor-
association axis of brain organization. We successfully recovered the
first and second functional connectivity gradients from HCP and HCHS
connectomes. Over the whole sample, age-dependent cortical thinning
generally followed a sensorimotor-fugal pattern with highest effects lo-
cated in the primary sensory and motor cortices (Fig. 1). Spatial corre-
lations revealed that thinning gradually changed along both, the first
and second functional connectivity gradient (Fig. 3g and h), peaking
in sensorimotor areas (Fig. 4, red arrow). Less pronounced thinning or
unchanged thickness values across age were localized to associative-
transmodal and visual cortices (Fig. 4, blue arrow). Anatomical, func-
tional and genomic factors influencing age-related neurodegeneration
might be differentially distributed along the sensorimotor-association
axis, which could explain the corresponding pattern of age-related cor-
tical thinning. Taken together, our findings underline the fundamental
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role of functional network hierarchy and consequently the sensorimotor-
association axis for cortical atrophy in aging.

Cognitive and motor functions, such as complex information
handling, executive functions, memory, mobility and overall mus-
cle strength, are known to deteriorate during the aging pro-
cess (Bohannon and Williams Andrews, 2011; Dodds et al., 2014;
Hedden and Gabrieli, 2004). We leveraged multivariate machine learn-
ing in form of a partial least squares analysis (PLS) to probe for an age-
associated covariance profile relating cortical thickness and cognitive
and motor scores in the HCHS sample. We successfully identified a la-
tent variable explaining the substantial amount of 85.10% of variance in
the cortical thickness and phenotypical information from all individu-
als included in our study (Fig. 5a). According to this latent variable,
higher cortical thickness in primary sensorimotor areas and younger
age covaried with better performance in cognitive and motor assess-
ments. Of all factors, age was identified as the most highly weighted in
the phenotypical covariance pattern (Fig. 5b) which indicates that age
effects contribute considerably to the identified latent variable and its
associated covariance profile. Therefore, higher age corresponded with
(lower) cortical thickness and lower performance in cognitive and motor
tests (Fig. 5d). Consistency of out-of-sample PLS score correlations indi-
cated the across sample generalizability of these results (supplementary
tables S12). The observation that deconfounding cognitive and motor
scores for age before applying PLS resulted in respective phenotypical
loadings close to zero, further underlined the central role of age (supple-
mentary figure S14). In accordance with this, the thickness profile iden-
tified by PLS spatially overlapped with the map of age-related cortical
thinning identified by the general linear model (Fig. 5f). Therefore, our
results suggest that aging processes might lead to atrophy in the re-
gions that contribute to good motor and cognitive function and hence
late-life functionality. Coming back to our initial analysis, the pattern
of age-related cortical thinning is therefore not only meaningfully con-
textualizable in the framework of network topology, but may also serve
as a structural substrate of age-related decline in cognitive and motor
functions.

The strengths of this work include the large sample size increasing
statistical power for finding associations between imaging and pheno-
typical variables (Marek et al., 2022), the availability of high quality
multimodal imaging and phenotypical data in the HCHS including a
state-of-the art, robust and reproducible pipeline for image processing,
and additional sensitivity analysis accounting for differing atlas parcel-
lation schemes. Notably, the investigated age range appears particularly
well suited for investigating associations between imaging markers of
age-related structural brain changes and clinical phenotypes, as it cap-
tures the age interval where these clinical manifestations of aging accu-
mulate (Buckner, 2004; Dodds et al., 2014).

Several limitations should be noted: first, our analysis is based on
cross-sectional data. In comparison, a longitudinal study design can
be considered superior when investigating the age-related trajectory of
morphometric brain changes. Nevertheless, the identified age-related
cortical thinning pattern agrees with results from existing cross-sectional
and longitudinal imaging studies of a similar age range (Appleton et al.,
2020; Frangou et al., 2021; Salat et al., 2004; Storsve et al., 2014;
Wierenga et al., 2022). The practical constraints for conducting a longi-
tudinal study of similar scope are considerable, both regarding human
and technical resources. As a second limitation, our investigation en-
compasses participants aged from 45 to 80 years at time of the baseline
examination, i.e., mainly the second half of the lifespan is represented.
To investigate the trajectory of aging foci across the lifespan it would
be of interest to investigate younger subjects as well.

5. Conclusion
We identified functional and structural brain network properties

linked with age-related cortical thinning in a population-based sample.
Our work highlights structural interconnectedness, and functional con-
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nectivity gradients as relevant determinants of the interplay between
the connectome architecture and morphometric changes during aging.
By identifying an age-related covariance pattern relating cortical thick-
ness and cognitive and motor performance, our results further elucidate
the complex pathophysiological substrates of functional decline in older
age. Collectively, our results promote the notion of age-related cortical
atrophy being determined by fundamental aspects of brain network ar-
chitecture.
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