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S1: Functional processing stream of HCHS data 

Results included in this manuscript come from preprocessing performed using fMRIPrep 
20.2.61,2 , which is based on Nipype 1.7.03. 

Anatomical data preprocessing 
A total of 1 T1-weighted (T1w) images were found within the input BIDS dataset.The T1-
weighted (T1w) image was corrected for intensity non-uniformity (INU) with 
N4BiasFieldCorrection4, distributed with ANTs 2.3.3  (https://github.com/ANTsX/ANTs), 
and used as T1w-reference throughout the workflow. The T1w-reference was then skull-
stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), 
using OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid 
(CSF), white-matter (WM) and gray-matter (GM) was performed on the brain-extracted 
T1w using fast5. Brain surfaces were reconstructed using recon-all6 [FreeSurfer 6.0.1], and 
the brain mask estimated previously was refined with a custom variation of the method to 
reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter 
of Mindboggle7. Volume-based spatial normalization to two standard spaces 
(MNI152NLin6Asym, MNI152NLin2009cAsym) was performed through nonlinear 
registration with antsRegistration (ANTs 2.3.3), using brain-extracted versions of both T1w 
reference and the T1w template. The following templates were selected for spatial 
normalization: FSL’s MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 
Stereotaxic Registration Model [RRID:SCR_002823; TemplateFlow ID: MNI152NLin6Asym], 
ICBM 152 Nonlinear Asymmetrical template version 2009c [RRID:SCR_008796; 
TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing 
For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 
preprocessing was performed. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. A deformation field to correct for 
susceptibility distortions was estimated based on fMRIPrep’s fieldmap-less approach. The 
deformation field results from co-registering the BOLD reference to the same-subject T1w-
reference with its intensity inverted8. Registration was performed with antsRegistration 
(ANTs 2.3.3), and the process was regularized by constraining deformation to be nonzero 
only along the phase-encoding direction, and was modulated with an average fieldmap 
template. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar 
imaging) reference was calculated for a more accurate co-registration with the anatomical 
reference. The BOLD reference was then co-registered to the T1w reference using 
bbregister (FreeSurfer) which implements boundary-based registration9. Co-registration 
was configured with six degrees of freedom. Head-motion parameters with respect to the 
BOLD reference (transformation matrices, and six corresponding rotation and translation 
parameters) were estimated before any spatiotemporal filtering using mcflirt10. BOLD runs 
were slice-time corrected to 1.21s (0.5 of slice acquisition range 0s-2.42s) using 3dTshift 
from AFNI 2016020711. The BOLD time-series were resampled onto the following surfaces 
(FreeSurfer reconstruction nomenclature): fsnative, fsaverage, fsaverage5. The BOLD time-
series (including slice-timing correction when applied) were resampled onto their original, 
native space by applying a single, composite transform to correct for head-motion and 



susceptibility distortions. These resampled BOLD time-series will be referred to as 
preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series were 
resampled into several standard spaces, correspondingly generating the following 
spatially-normalized, preprocessed BOLD runs: MNI152NLin6Asym, 
MNI152NLin2009cAsym. First, a reference volume and its skull-stripped version were 
generated using a custom methodology of fMRIPrep. Grayordinates files12 containing 91k 
samples were also generated using the highest-resolution fsaverage as intermediate 
standardized surface space. Automatic removal of motion artifacts using independent 
component analysis13 was performed on the preprocessed BOLD on MNI space time-series 
after removal of non-steady state volumes and spatial smoothing with an isotropic, 
Gaussian kernel of 6mm FWHM (full-width half-maximum). Corresponding “non-
aggressively” denoised runs were produced after such smoothing. Additionally, the 
“aggressive” noise-regressors were collected and placed in the corresponding confounds 
file. Several confounding time-series were calculated based on the preprocessed BOLD: 
framewise displacement (FD), DVARS and three region-wise global signals. FD was 
computed using two formulations following Power (absolute sum of relative motions14) 
and Jenkinson (relative root mean square displacement between affines10). FD and DVARS 
were calculated for each functional run, both using their implementations in Nipype 
[following the definitions by 14]. The three global signals were extracted within the CSF, the 
WM, and the whole-brain masks. Additionally, a set of physiological regressors were 
extracted to allow for component-based noise correction [CompCor15]. Principal 
components were estimated after high-pass filtering the preprocessed BOLD time-series 
(using a discrete cosine filter with 128s cut-off) for the two CompCor variants: temporal 
(tCompCor) and anatomical (aCompCor). tCompCor components were then calculated from 
the top 2% variable voxels within the brain mask. For aCompCor, three probabilistic masks 
(CSF, WM and combined CSF+WM) were generated in anatomical space. The 
implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 
pixels on BOLD space, the aCompCor masks were subtracted by a mask of pixels that 
contains a volume fraction of GM. This mask was obtained by dilating a GM mask extracted 
from the FreeSurfer’s aseg segmentation, and it ensured that components were not 
extracted from voxels containing a minimal fraction of GM. Finally, these masks were 
resampled into BOLD space and binarized by thresholding at 0.99 (as in the original 
implementation). Components were also calculated separately within the WM and CSF 
masks. For each CompCor decomposition, the k components with the largest singular 
values were retained, so that the retained components’ time series were sufficient to 
explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or 
temporal). The remaining components were dropped from consideration. The head-motion 
estimates calculated in the correction step were also placed within the corresponding 
confounds file. The confound time series derived from head motion estimates and global 
signals were expanded with the inclusion of temporal derivatives and quadratic terms for 
each16. Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised DVARS were 
annotated as motion outliers. All resamplings could be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion 
transform matrices, susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 
performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 



minimize the smoothing effects of other kernels. Non-gridded (surface) resamplings were 
performed using mri_vol2surf (FreeSurfer). 

Many internal operations of fMRIPrep use Nilearn17 0.6.2, mostly within the functional 
processing workflow. For more details of the pipeline, see the section corresponding to 
workflows in fMRIPrep’s documentation. 

 

Copyright waiver 

The above boilerplate text was automatically generated by fMRIPrep with the express 
intention that users should copy and paste this text into their manuscripts unchanged. It is 
released under the CC0 license. 

  

%5Bhttps:/fmriprep.readthedocs.io/en/latest/workflows.html%5D(https:/fmriprep.readthedocs.io/en/latest/workflows.html)
%5Bhttps:/fmriprep.readthedocs.io/en/latest/workflows.html%5D(https:/fmriprep.readthedocs.io/en/latest/workflows.html)
%5Bhttps:/creativecommons.org/publicdomain/zero/1.0/%5D(https:/creativecommons.org/publicdomain/zero/1.0/)


S2: Structural processing stream of HCHS data 

Preprocessing was performed using QSIPrep 0.14.2, which is based on Nipype 1.6.13. 

Anatomical data preprocessing 
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) using 
N4BiasFieldCorrection4 [ANTs 2.3.1], and used as T1w-reference throughout the workflow. 
The T1w-reference was then skull-stripped using antsBrainExtraction.sh (ANTs 2.3.1), using 
OASIS as target template. Spatial normalization to the ICBM 152 Nonlinear Asymmetrical 
template version 2009c was performed through nonlinear registration with antsRegistration 
[ANTs 2.3.1, https://github.com/ANTsX/ANTs], using brain-extracted versions of both 
T1w volume and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-
matter (WM) and gray-matter (GM) was performed on the brain-extracted T1w using FAST5 

[FSL 6.0.3:b862cdd5]. 

Diffusion data preprocessing 
Any images with a b-value less than 100 s/mm^2 were treated as a b=0 image. MP-PCA 
denoising as implemented in MRtrix3’s dwidenoise18 was applied with a 5-voxel window. 
After MP-PCA, Gibbs unringing was performed using MRtrix3’s mrdegibbs19. Following 
unringing, B1 field inhomogeneity was corrected using dwibiascorrect from MRtrix3 with 
the N4 algorithm4. After B1 bias correction, the mean intensity of the DWI series was 
adjusted so all the mean intensity of the b=0 images matched across each separate DWI 
scanning sequence. 

FSL (version 6.0.3:b862cdd5)’s eddy was used for head motion correction and Eddy 
current correction20. Eddy was configured with a 𝑞-space smoothing factor of 10, a total of 
5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first level model 
and a linear second level model were used to characterize Eddy current-related spatial 
distortion. 𝑞-space coordinates were forcefully assigned to shells. Field offset was 
attempted to be separated from subject movement. Shells were aligned post-eddy. Eddy’s 
outlier replacement was run. Data were grouped by slice, only including values from slices 
determined to contain at least 250 intracerebral voxels. Groups deviating by more than 4 
standard deviations from the prediction had their data replaced with imputed values. Final 
interpolation was performed using the jac method. 

A deformation field to correct for susceptibility distortions was estimated based on 
fmriprep’s fieldmap-less approach. The deformation field is resulting from co-registering 
the b0 reference to the same-subject T1w-reference with its intensity inverted8. 
Registration was performed with antsRegistration (ANTs 2.3.1), and the process regularized 
by constraining deformation to be nonzero only along the phase-encoding direction, and 
modulated with an average fieldmap template. Based on the estimated susceptibility 
distortion, an unwarped b=0 reference was calculated for a more accurate co-registration 
with the anatomical reference. Several confounding time-series were calculated based on 
the preprocessed DWI: framewise displacement (FD) using the implementation in Nipype 
[following the definitions by 14]. The head-motion estimates calculated in the correction 
step were also placed within the corresponding confounds file. Slicewise cross correlation 



was also calculated. The DWI time-series were resampled to ACPC, generating a 
preprocessed DWI run in ACPC space with 2mm isotropic voxels. 

MRtrix3 Reconstruction 
Multi-tissue fiber response functions were estimated using the dhollander algorithm. FODs 
were estimated via constrained spherical deconvolution21 (CSD) using an unsupervised 
multi-tissue method22,23. A single-shell-optimized multi-tissue CSD was performed using 
MRtrix3Tissue (https://3Tissue.github.io), a fork of MRtrix324 FODs were intensity-
normalized using mtnormalize25. 

Many internal operations of QSIPrep use Nilearn17 and Dipy26. For more details of the 
pipeline, see the section corresponding to workflows in QSIPrep’s documentation.  

https://3tissue.github.io/
%5Bhttps:/qsiprep.readthedocs.io/en/latest/workflows.html%5D(https:/qsiprep.readthedocs.io/en/latest/workflows.html)


S3: Illustration partial least squares analysis 

 

Figure S3: Partial least squares methodology. Please refer to S4 for a detailed description of 
the approach. This figure is a modification from figure 1 of Zeighami et al., 201927.  



S4: Detailed explanation partial least squares analysis 

Thickness and phenotypical data were arranged in two matrices 𝑋𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠×𝑛𝑛𝑜𝑑𝑒𝑠  and 

𝑌𝑛𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝑠×𝑛𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 , z-scored and the thickness-phenotypical correlation matrix 

was then calculated which encompassed the correlation of all nodal cortical thickness 
values and phenotypical measures across subjects. Upon that singular value decomposition 
was performed on the correlation matrix resulting in a set of mutually orthogonal latent 
variables (LVs). The number of latent variables is determined by the smaller dimension of 
the covariance matrix - i.e., its rank; here the number of phenotypical variables. A latent 
variable consists of a left singular vector, a right singular vector and a singular value. 
Singular value decomposition results in matrices of left (𝑈𝑛𝑛𝑜𝑑𝑒𝑠×𝑛𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) and 

right (𝑉𝑛𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠×𝑛𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) singular vectors as well as a diagonal matrix 

of singular values (𝛥𝑛𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠×𝑛𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠). A singular vector weights the 

corresponding original variables so that their covariance is maximized. The weighted nodal 
values can be understood as maximally covarying thickness patterns and their 
corresponding manifestation phenotypical data. Each pairing of left and right singular 
vector is connected by a singular value which is propotional to the covariance of both. The 
explained covariance of a latent variable was assessed as the ratio of the squared singular 
value to the sum of the other squared singular values. Significance of a latent variable was 
assessed by comparing the observed explained variance to a non-parametric distribution of 
permuted values via permutation (n=5000) of the subject-order in 𝑋. To measure to which 
extent a covariance pattern represented by a latent variable is manifested within a subject, 
participant-specific scores were calculated by projecting 𝑈 on 𝑋 for a thickness score 

𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 𝑠𝑐𝑜𝑟𝑒 = 𝑈𝑋 

and 𝑉 on 𝑌 for a phenotypical score 

𝑃ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑠𝑐𝑜𝑟𝑒 = 𝑉𝑌 

which can be thought of as a component or factor weighting in principal component 
analysis or factor analysis, respectively. Bootstrap resampling was used to identify nodes 
with a considerable contribution to the thickness-phenotypical relationship. For that, 
participants were randomly sampled with replacement from 𝑋 and 𝑌 (n=5000) which 
results in a set of resampled covariance matrices propagated to singular value 
decomposition. This yields a sampling distribution for each node enabling the computation 
of a bootstrap ratio as the ratio of its singular vector weight and the corresponding 
standard error as estimated from bootstrapping. The bootstrap ratio is used to measure a 
node’s contribution to the observed covariance pattern represented by a latent variable as 
relevant nodes exhibit a high singular vector weight and have a small standard error which 
means they are stable across subjects. The bootstrap ratio pattern was spatially correlated 
with the thickness 𝛽-map to assess whether the age-related cortical thinning pattern 
corresponds with the nodes contributing to the covariance pattern.  

  



S5: Demographics of age ranges  

45-50 50-55 55-60 60-65 65-70 70-75 75-80 

n 150 286 366 407 543 602 220 

Age, median (IQR) 48.00 (2) 52.00 (2) 57.00 (2) 62.00 (2) 67.00 (2) 72.00 (2) 76.00 (2) 

Sex, % female 46.00% 50.00% 46.00% 41.00% 39.00% 43.00% 46.00% 

Years of education, median (IQR) 14.00 (4) 15.00 (4) 14.00 (5) 13.50 (5) 13.00 (4) 13.00 (3) 13.00 (3) 

  



S6: Hubness measures 

 

 

Figure S6: Surface plots displaying all metrics relevant for the hubness analysis. 

  



S7: Scree plot for explained variance of functional gradients 

 

Figure S7: Scree plot of respective eigenvalues of derived functional gradients. High 
eigenvalues denote high explained variance. 

  



S8: Sensitivity analysis: functional and structural 2nd step neighborhood 
alteration 

 

 

 

 

 

 

Figure S8: Scatter plots as well as surface visualizations of the functional (red) and 
structural (blue) 2nd step neighborhood alteration. 

  



S9: Sensitivity analysis: different connectomes and Schaefer parcellations 

 

 
  

 
Functional 
Connector 
Hubness 

Structural 
Connector 
Hubness 

Functional 
Provincial 
Hubness 

Structural 
Provincial 
Hubness 

Functionally-
defined 

Neighborh. 

Structurally-
defined 

Neighborh. 

Functional 
Gradient 1 

Functional 
Gradient 2 

Structure-
function 
Coupling 

rsp 
Schaefer400 

HCHS 
 -0.07 -0.007 -0.02 0.26 0.41 0.44 0.25 0.47 -0.25 

Pspin 
Schaefer400 

HCHS 
 0.294 0.431 0.46 0 0.007 0 0.042 0 0.069 

rsp 
Schaefer100 

HCP 
 -0.054 0.221 0.11 0.41 0.13 0.45 -0.33 0.05 -0.1 

Pspin 
Schaefer100 

HCP 
 0.370 0.062 0.308 0.004 0.292 0.033 0.049 0.408 0.177 

rsp 
Schaefer200 

HCP 
 -0.152 0.017 0.22 0.24 0.16 0.48 -0.32 0.46 -0.17 

Pspin 
Schaefer200 

HCP 
 0.100 0.432 0.115 0.037 0.225 0.003 0.01 0 0.085 

rsp 
Schaefer400 

HCP 
 -0.119 0.029 0.27 0.22 0.23 0.64 -0.34 0.44 -0.16 

pspin 
Schaefer400 

HCP 
 0.2 0.395 0.029 0.047 0.118 0 0.005 0 0.123 



S10: Partial least squares analysis: latent variable statistics 

Latent variable Explained variance (%) p-value 

0 85.096707 0.000200 

1 9.171140 0.000400 

2 1.516065 0.039992 

3 0.832268 0.188562 

4 0.689248 0.729054 

5 0.620280 0.434513 

6 0.521711 0.733253 

7 0.443405 0.677465 

8 0.361422 0.926415 

9 0.297952 0.972006 

10 0.199595 0.668666 

11 0.191003 0.999800 

12 0.059203 0.956809 

 

  



S11: Partial least squares analysis: remaining significant latent variables of the 
partial least squares analysis  

  

Figure S11. Partial least squares analysis results of the significant latent variables 2 (a) and 
3 (b)  

  



S12: Partial least squares analysis: Cross-validation results 

 

Out-of-sample correlation between cortical thickness and phenotypical scores 

 

 

 

   

CV folds Spearman r FDR-corrected p 

0 0.332502 0.000166 

1 0.334353 0.000166 

2 0.392078 1.44E-05 

3 0.423133 2.93E-06 

4 0.143506 0.106086 

5 0.33646 0.000166 

6 0.331384 0.000166 

7 0.379984 2.42E-05 

8 0.538506 5.51E-10 

9 0.299848 0.00065 



S13: Partial least squares analysis without age, sex and education 

 

Figure S13. Partial least squares analysis results without consideration of age, sex and 
education as phenotypical variables. Subplot order matches that in figure 5 of the main text. 

  



S14: Partial least squares analysis after deconfounding cognitive and motor 
scores for age 

 

Figure S14. Partial least squares analysis results after deconfounding cognitive and motor 
scores for age. Subplot order matches that in figure 5 of the main text. 

  



S15: Code availability 

Analysis step Code URL 

DWI preprocessing 

with QSIPrep 
https://github.com/csi-

hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec5

69b838/pipelines/qsiprep/qsiprep.sh 
fMRI preprocessing 

with fMRIPrep 
https://github.com/csi-

hamburg/CSIframe/blob/main/pipelines/fmriprep/fmriprep.sh 

Functional connectome 

reconstruction 
https://github.com/csi-

hamburg/CSIframe/blob/main/pipelines/xcpengine/xcpengine.sh 

Spatial correlations, 

partial least squares 

analysis 

https://github.com/csi-

hamburg/2022_petersen_aging_ct_connectivity 

Structural processing 

with CAT 
https://github.com/csi-

hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec5

69b838/pipelines/cat12/cat12.sh 

 

  

https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/qsiprep/qsiprep.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/qsiprep/qsiprep.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/qsiprep/qsiprep.sh
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/fmriprep/fmriprep.sh
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/fmriprep/fmriprep.sh
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/xcpengine/xcpengine.sh
https://github.com/csi-hamburg/CSIframe/blob/main/pipelines/xcpengine/xcpengine.sh
https://github.com/csi-hamburg/2022_petersen_aging_ct_connectivity
https://github.com/csi-hamburg/2022_petersen_aging_ct_connectivity
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/cat12/cat12.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/cat12/cat12.sh
https://github.com/csi-hamburg/CSIframe/blob/709275c816b7746bf7168f69b652b2aec569b838/pipelines/cat12/cat12.sh
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