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Abstract
Loop acceleration can be used to prove safety, reachability, runtime bounds, and (non-)termination of programs. To this end,
a variety of acceleration techniques have been proposed. However, so far all of them have been monolithic, i.e., a single loop
could not be accelerated using a combination of several different acceleration techniques. In contrast, we present a calculus
that allows for combining acceleration techniques in a modular way and we show how to integrate many existing acceleration
techniques into our calculus. Moreover, we propose two novel acceleration techniques that can be incorporated into our
calculus seamlessly. Some of these acceleration techniques apply only to non-terminating loops. Thus, combining them with
our novel calculus results in a new, modular approach for proving non-termination. An empirical evaluation demonstrates the
applicability of our approach, both for loop acceleration and for proving non-termination.

Keywords Loop acceleration · Non-termination · Integer transition systems · Program verification · Static analysis

1 Introduction

In the last years, loop acceleration techniques have suc-
cessfully been used to build static analyses for programs
operating on integers [3,10,22,27,29,44]. Essentially, such
techniques extract a quantifier-free first-order formula ψ

from a single-path loop T, i.e., a loop without branching in
its body, such that ψ under-approximates (or is equivalent
to) T. More specifically, each model of the resulting formula
ψ corresponds to an execution of T (and vice versa). By
integrating such techniques into a suitable program analysis
framework [4,22,27,29,38], whole programs can be trans-
formed into first-order formulas which can then be analyzed
by off-the-shelf solvers. Applications include proving safety
[38] or reachability [38,44], deducing bounds on the runtime
complexity [27], and proving (non-)termination [10,22].
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However, existing acceleration techniques apply only if
certain prerequisites are in place. So the power of static anal-
yses built upon loop acceleration depends on the applicability
of the underlying acceleration technique.

In this paper, we introduce a calculus which allows
for combining several acceleration techniques modularly
in order to accelerate a single loop. This not only allows
for modular combinations of standalone techniques, but
it also enables interactions between different acceleration
techniques, allowing them to obtain better results together.
Consequently, our calculus can handle classes of loopswhere
all standalone techniques fail. Moreover, we present two
novel acceleration techniques and integrate them into our
calculus.

One important application of loop acceleration is proving
non-termination. As already observed in [22], certain prop-
erties of loops—in particular monotonicity of (parts of) the
loop condition w.r.t. the loop body—are crucial for both loop
acceleration and proving non-termination. In [22], this obser-
vation has been exploited to develop a technique for deducing
invariants that are helpful to deal with non-terminating as
well as terminating loops: For the former, they help to prove
non-termination, and for the latter, they help to accelerate the
loop.

In this paper, we take the next step by also unifying the
actual techniques that are used for loop acceleration and for
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proving non-termination. To this end, we identify loop accel-
eration techniques that, if applied in isolation, give rise to
non-termination proofs. Furthermore, we show that the com-
bination of such non-termination techniques via our novel
calculus for loop acceleration gives rise to non-termination
proofs, too. In this way, we obtain a modular framework for
combining several different non-termination techniques in
order to prove non-termination of a single loop.

In the following, we introduce preliminaries in Sect. 2.
Then, we discuss existing acceleration techniques in Sect. 3.
In Sect. 4, we present our calculus to combine acceleration
techniques and show how existing acceleration techniques
can be integrated into our framework. Section 5 lifts existing
acceleration techniques to conditional acceleration tech-
niques, which provides additional power in the context of
our framework by enabling interactions between different
acceleration techniques. Next, we present two novel accel-
eration techniques and incorporate them into our calculus in
Sect. 6. Then, we adapt our calculus and certain accelera-
tion techniques for proving non-termination in Sect. 7. After
discussing related work in Sect. 8, we demonstrate the appli-
cability of our approach via an empirical evaluation in Sect. 9
and conclude in Sect. 10.

A conference version of this paper was published in [23].
The present paper provides the following additional contri-
butions:

• Wepresent formal correctness proofs for all of our results,
which were omitted in [23] for reasons of space.
• We present an improved version of the loop accelera-
tion technique from [27, Thm. 3.8] and [28, Thm. 7] that
yields simpler formulas.
• We prove an informal statement from [23] on using
arbitrary existing acceleration techniques in our setting,
resulting in the novel Lemma 1.
• The adaptation of our calculus and of certain accelera-
tion techniques for proving non-termination (Sect. 7) is
completely new.
• We extend the empirical evaluation from [23] with
extensive experiments comparing the adaptation of our
calculus for proving non-termination with other state-of-
the-art tools for proving non-termination (Sect. 9.2).

2 Preliminaries

We use the notation �x , �y, �z,…for vectors. Let C (�z) be the
set of closed-form expressions over the variables �z. So C (�z)
may, for example, be defined to be the smallest set containing
all expressions built from �z, integer constants, and binary
function symbols {+,−, ·, /, exp} for addition, subtraction,
multiplication, division, and exponentiation. However, there
is no widely accepted definition of “closed forms”, and the

results of the current paper are independent of the precise
definition of C (�z) (which may use other function symbols).
Thus, we leave its definition open to avoid restricting our
results unnecessarily. We consider loops of the form

while ϕ do �x ← �a (Tloop)

where �x is a vector of d pairwise different variables that
range over the integers, the loop condition ϕ ∈ FOQF(C (�x))
(which we also call guard) is a finite quantifier-free first-
order formula over the atoms {p > 0 | p ∈ C (�x)}, and
�a ∈ C (�x)d such that the function1 �x �→ �a maps integers to
integers. Loop denotes the set of all such loops.

We identify Tloop and the pair 〈ϕ, �a〉. Moreover, we iden-
tify �a and the function �x �→ �a, where we sometimes write
�a(�x) to make the variables �x explicit. We use the same
convention for other (vectors of) expressions. Similarly, we
identify the formula ϕ(�x) (or just ϕ) with the predicate
�x �→ ϕ. We use the standard integer–arithmetic semantics
for the symbols occurring in formulas.

Throughout this paper, let n be a designated variable rang-
ing over N = {0, 1, 2, . . .} and let:

�a :=
( a1

...
ad

)
�x :=

( x1
...
xd

)
�x ′ :=

(
x ′1
...
x ′d

)
�y :=

( �x
n
�x ′

)

Intuitively, the variable n represents the number of loop
iterations and �x ′ corresponds to the values of the program
variables �x after n iterations.

Tloop induces a relation −→Tloop on Z
d :

ϕ(�x) ∧ �x ′ = �a(�x) ⇐⇒ �x −→Tloop �x ′

3 Existing acceleration techniques

In the following (up to and including Sect. 6), our goal is to
accelerate Tloop, i.e., to find a formula ψ ∈ FOQF(C (�y))
such that

ψ ⇐⇒ �x −→n
Tloop �x

′ for all n > 0. (equiv)

To see why we use C (�y) instead of, e.g., polynomials, con-
sider the loop

while x1 > 0 do
( x1
x2

)←
(
x1−1
2·x2

)
. (Texp)

Here an acceleration technique synthesizes, e.g., the formula

(
x ′1
x ′2

)
=

(
x1−n
2n ·x2

)
∧ x1 − n + 1 > 0, (ψexp)

1 i.e., the (anonymous) function that maps �x to �a.
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where
(
x1−n
2n ·x2

)
is equivalent to the value of

( x1
x2

)
after n iter-

ations, and the inequation x1 − n + 1 > 0 ensures that Texp
can be executed at least n times. Clearly, the growth of x2
cannot be captured by a polynomial, i.e., even the behavior
of quite simple loops is beyond the expressiveness of poly-
nomial arithmetic.

In practice, one can restrict our approach toweaker classes
of expressions to ease automation, but the presented results
are independent of such considerations.

Some acceleration techniques cannot guarantee (equiv),
but the resulting formula is an under-approximation of Tloop,
i.e., we have

ψ 
⇒ �x −→n
Tloop �x

′ for all n > 0. (approx)

If (equiv) holds, then ψ is equivalent to Tloop. Similarly, if
(approx) holds, then ψ approximates Tloop.2

Definition 1 (AccelerationTechnique) Anacceleration tech-
nique is a partial function

accel : Loop⇀FOQF(C (�y)).

It is sound if the formula accel(T ) approximates T for all T ∈
dom(accel). It is exact if the formula accel(T ) is equivalent
to T for all T ∈ dom(accel).

We now recall several existing acceleration techniques. In
Sect. 4, we will see how these techniques can be combined
in a modular way. All of them first compute a closed form
�c ∈ C (�x, n)d for the values of the program variables after n
iterations.

Definition 2 (Closed Form) We call �c ∈ C (�x, n)d a closed
form of Tloop if

∀�x ∈ Z
d , n ∈ N. �c = �an(�x).

Here, �an is the n-fold application of �a, i.e., �a0(�x) = �x and
�an+1(�x) = �a(�an(�x)).

To find closed forms, one tries to solve the system of recur-
rence equations �x (n) = �a(�x (n−1)) with the initial condition
�x (0) = �x . In the sequel, we assume that we can represent
�an(�x) in closed form. Note that one can always do so if
�a(�x) = A�x + �b with A ∈ Z

d×d and �b ∈ Z
d , i.e., if �a is

linear. To this end, one considers the matrix B :=
(

A �b
�0T 1

)

and computes its Jordan normal form J where B = T−1 JT
and J is a block diagonal matrix (which has complex entries
if B has complex eigenvalues). Then the closed form for Jn

can be given directly (see, e.g., [48]), and �an(�x) is equal to
2 While there are also over-approximating acceleration techniques (see
Sect. 8.1), in this paper we are interested only in under-approximations.

the first d components of T−1 JnT
( �x
1

)
. Moreover, one can

compute a closed form if �a =
( c1·x1+p1

...
cd ·xd+pd

)
where ci ∈ N and

each pi is a polynomial over x1, . . . , xi−1 [26,37].

3.1 Acceleration via decrease or increase

The first acceleration technique discussed in this section
exploits the following observation: If ϕ(�a(�x)) implies ϕ(�x)
and if ϕ(�an−1(�x)) holds, then the loop condition ϕ of Tloop
is satisfied throughout (at least) n loop iterations. So in other
words, it requires that the indicator function (or characteristic
function) Iϕ : Zd → {0, 1} of ϕ with Iϕ(�x) = 1 ⇐⇒ ϕ(�x)
is monotonically decreasing w.r.t. �a, i.e., Iϕ(�x) ≥ Iϕ(�a(�x)).
Theorem 1 (Acceleration via Monotonic Decrease [44]) If

ϕ(�a(�x)) 
⇒ ϕ(�x),

then the following acceleration technique is exact:

Tloop �→ �x ′ = �an(�x) ∧ ϕ(�an−1(�x))

We will prove the more general Theorem 7 in Sect. 5.
So, for example, Theorem 1 accelerates Texp to ψexp.

However, the requirement ϕ(�a(�x)) 
⇒ ϕ(�x) is often vio-
lated in practice. To see this, consider the loop

while x1 > 0 ∧ x2 > 0 do
( x1
x2

)←
(
x1−1
x2+1

)
. (Tnon-dec)

It cannot be accelerated with Theorem 1 as

x1 − 1 > 0 ∧ x2 + 1 > 0 �
⇒ x1 > 0 ∧ x2 > 0.

A dual acceleration technique to Theorem 1 is obtained
by “reversing” the implication in the prerequisites of the the-
orem, i.e., by requiring

ϕ(�x) 
⇒ ϕ(�a(�x)).

So the resulting dual acceleration technique applies iff ϕ is a
loop invariant of Tloop.3 Then {�x ∈ Z

d | ϕ(�x)} is a recurrent
set [36] (see alsoSect. 8.2) ofTloop. In otherwords, this accel-
eration technique applies if Iϕ is monotonically increasing
w.r.t. �a.
Theorem 2 (Acceleration via Monotonic Increase) If

ϕ(�x) 
⇒ ϕ(�a(�x)),

then the following acceleration technique is exact:

Tloop �→ �x ′ = �an(�x) ∧ ϕ(�x)
3 We call a formula δ a loop invariant of a loopTloop ifϕ(�x)∧δ(�x) 
⇒
δ(�a(�x)) is valid.
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We will prove the more general Theorem 8 in Sect. 5.

Example 1 As a minimal example, Theorem 2 accelerates

while x > 0 do x ← x + 1 (Tinc)

to x ′ = x + n ∧ x > 0.

3.2 Acceleration via decrease and increase

Both acceleration techniques presented so far have been gen-
eralized in [22].

Theorem 3 (Acceleration via Monotonicity [22]) If

ϕ(�x) ⇐⇒ ϕ1(�x) ∧ ϕ2(�x) ∧ ϕ3(�x),
ϕ1(�x) 
⇒ ϕ1(�a(�x)),

ϕ1(�x) ∧ ϕ2(�a(�x)) 
⇒ ϕ2(�x), and

ϕ1(�x) ∧ ϕ2(�x) ∧ ϕ3(�x) 
⇒ ϕ3(�a(�x)),

then the following acceleration technique is exact:

Tloop �→ �x ′ = �an(�x) ∧ ϕ1(�x) ∧ ϕ2(�an−1(�x)) ∧ ϕ3(�x)

Proof Immediate consequence of Theorem 5 and Remark 1,
which are proved in Sects. 4 and 5. ��

Here, ϕ1 and ϕ3 are again invariants of the loop. Thus,
as in Theorem 2 it suffices to require that they hold before
entering the loop. On the other hand, ϕ2 needs to satisfy a
similar condition as in Theorem 1, and thus, it suffices to
require that ϕ2 holds before the last iteration. In such cases,
i.e., if

ϕ1(�x) ∧ ϕ2(�a(�x)) 
⇒ ϕ2(�x)

is valid, we also say that ϕ2 is a converse invariant (w.r.t.
ϕ1). It is easy to see that Theorem 3 is equivalent to Theorem
1 if ϕ1 ≡ ϕ3 ≡ � (where � denotes logical truth) and it is
equivalent to Theorem 2 if ϕ2 ≡ ϕ3 ≡ �.
Example 2 With Theorem 3, Tnon-dec can be accelerated to

(
x ′1
x ′2

)
= ( x1−n

x2+n
) ∧ x2 > 0∧ x1 − n + 1 > 0 (ψnon-dec)

by choosing ϕ1 := x2 > 0, ϕ2 := x1 > 0, and ϕ3 := �.
Theorem 3 naturally raises the question: Why do we need

two invariants? To see this, consider a restriction of Theorem
3 where ϕ3 := �. It would fail for a loop like

while x1 > 0 ∧ x2 > 0 do
( x1
x2

)← ( x1+x2
x2−1

)
(T2-invs)

which can easily be handled by Theorem 3 (by choosing
ϕ1 := �, ϕ2 := x2 > 0, and ϕ3 := x1 > 0). The problem

is that the converse invariant x2 > 0 is needed to prove
invariance of x1 > 0. Similarly, a restriction of Theorem 3
whereϕ1 := �would fail for the following variant of T2-invs :

while x1 > 0 ∧ x2 > 0 do
( x1
x2

)← ( x1−x2
x2+1

)

Here, the problem is that the invariant x2 > 0 is needed to
prove converse invariance of x1 > 0.

3.3 Acceleration via metering functions

Another approach for loop acceleration uses metering func-
tions, a variation of classical ranking functions from termina-
tion and complexity analysis [28]. While ranking functions
give rise to upper bounds on the runtime of loops, metering
functions provide lower runtime bounds, i.e., the definition
of a metering function mf : Zd → Q ensures that for each
�x ∈ Z

d , the loop under consideration can be applied at least
�mf (�x)� times.

Definition 3 (Metering Function [28]) We call a function
mf : Zd → Q a metering function if the following holds:

ϕ(�x) 
⇒ mf (�x)− mf (�a(�x)) ≤ 1 and (mf-bounded)

¬ϕ(�x) 
⇒ mf (�x) ≤ 0

We can use metering functions to accelerate loops as fol-
lows:

Theorem 4 (Acceleration via Metering Functions [27,28])
Let mf be a metering function for Tloop. Then, the following
acceleration technique is sound:

Tloop �→ �x ′ = �an(�x) ∧ n < mf (�x)+ 1

We will prove the more general Theorem 9 in Sect. 5. In
contrast to [27, Thm. 3.8] and [28, Thm. 7], the acceleration
technique from Theorem 4 does not conjoin the loop con-
dition ϕ to the result, which turned out to be superfluous.
The reason is that 0 < n < mf (�x) + 1 implies ϕ due to
(mf-bounded).

Example 3 Using the metering function (x1, x2) �→ x1, The-
orem 4 accelerates Texp to
((

x ′1
x ′2

)
=

(
x1−n
2n ·x2

)
∧ n < x1 + 1

)
≡ ψexp.

However, synthesizing non-trivial (i.e., non-constant)
metering functions is challenging.Moreover, unless the num-
ber of iterations of Tloop equals �mf (�x)� for all �x ∈ Z

d ,
acceleration via metering functions is not exact.

Linear metering functions can be synthesized via Farkas’
Lemma and SMT solving [28]. However, many loops have
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only trivial linear metering functions. To see this, reconsider
Tnon-dec. Here, (x1, x2) �→ x1 is not a metering function as
Tnon-dec cannot be iterated at least x1 times if x2 ≤ 0. Thus,
[27] proposes a refinement of [28] based on metering func-
tions of the form �x �→ Iξ (�x) · f (�x) where ξ ∈ FOQF(C (�x))
and f is linear.With this improvement, themetering function

(x1, x2) �→ Ix2>0(x2) · x1

can be used to accelerate Tnon-dec to
(
x ′1
x ′2

)
= ( x1−n

x2+n
) ∧ x2 > 0 ∧ n < x1 + 1.

4 A calculus for modular loop acceleration

All acceleration techniques presented so far are monolithic:
Either they accelerate a loop successfully or they fail com-
pletely. In otherwords,we cannot combine several techniques
to accelerate a single loop. To this end, we now present
a calculus that repeatedly applies acceleration techniques
to simplify an acceleration problem resulting from a loop
Tloop until it is solved and hence gives rise to a suitable
ψ ∈ FOQF(C (�y)) which approximates or is equivalent to
Tloop.

Definition 4 (Acceleration Problem) A tuple

�ψ
∣∣ ϕ̌

∣∣ ϕ̂��a

where ψ ∈ FOQF(C (�y)), ϕ̌, ϕ̂ ∈ FOQF(C (�x)), and �a :
Z
d → Z

d is an acceleration problem. It is consistent if ψ

approximates 〈ϕ̌, �a〉, exact if ψ is equivalent to 〈ϕ̌, �a〉, and
solved if it is consistent and ϕ̂ ≡ �. The canonical acceler-
ation problem of a loop Tloop is
��x ′ = �an(�x) ∣∣ � ∣∣ ϕ(�x)��a .

Example 4 The canonical acceleration problem of Tnon-dec is
�(

x ′1
x ′2

)
= ( x1−n

x2+n
) ∣∣∣ �

∣∣∣ x1 > 0 ∧ x2 > 0
�

(
x1−1
x2+1

) .

The first component ψ of an acceleration problem
�ψ

∣∣ ϕ̌
∣∣ ϕ̂��a is the partial result that has been computed so

far. The second component ϕ̌ corresponds to the part of the
loop condition that has already been processed successfully.
As our calculus preserves consistency, ψ always approxi-
mates 〈ϕ̌, �a〉. The third component is the part of the loop
condition that remains to be processed, i.e., the loop 〈ϕ̂, �a〉
still needs to be accelerated. The goal of our calculus is to
transform a canonical into a solved acceleration problem.

More specifically, whenever we have simplified a canon-
ical acceleration problem

��x ′ = �an(�x) ∣∣ � ∣∣ ϕ(�x)��a
to

�ψ1(�y)
∣∣ ϕ̌(�x) ∣∣ ϕ̂(�x)��a ,

then ϕ ≡ ϕ̌ ∧ ϕ̂ and

ψ1 implies �x −→n
〈ϕ̌,�a〉 �x ′.

Then it suffices to find some ψ2 ∈ FOQF(C (�y)) such that

�x −→n
〈ϕ̌,�a〉 �x ′ ∧ ψ2 implies �x −→n

〈ϕ̂,�a〉 �x ′. (1)

The reason is that we have−→〈ϕ̌,�a〉∩−→〈ϕ̂,�a〉 = −→〈ϕ̌∧ϕ̂,�a〉
= −→〈ϕ,�a〉 and thus

ψ1 ∧ ψ2 implies �x −→n
〈ϕ,�a〉 �x ′,

i.e., ψ1 ∧ ψ2 approximates Tloop.
Note that the acceleration techniques presented so far

would map 〈ϕ̂, �a〉 to some ψ2 ∈ FOQF(C (�y)) such that

ψ2 implies �x −→n
〈ϕ̂,�a〉 �x ′, (2)

which does not use the information that we have already
accelerated 〈ϕ̌, �a〉. In Sect. 5, we will adapt all acceler-
ation techniques from Sect. 3 to search for some ψ2 ∈
FOQF(C (�y)) that satisfies (1) instead of (2), i.e., we will
turn them into conditional acceleration techniques.

Definition 5 (Conditional Acceleration) We call a partial
function

accel : Loop× FOQF(C (�x))⇀FOQF(C (�y))

a conditional acceleration technique. It is sound if

�x −→n
〈ϕ̌,�a〉 �x ′ ∧ accel(〈χ, �a〉, ϕ̌) implies �x −→n

〈χ,�a〉 �x ′

for all (〈χ, �a〉, ϕ̌) ∈ dom(accel), �x, �x ′ ∈ Z
d , and n > 0. It

is exact if additionally

�x −→n
〈χ∧ϕ̌,�a〉 �x ′ implies accel(〈χ, �a〉, ϕ̌)

for all (〈χ, �a〉, ϕ̌) ∈ dom(accel), �x, �x ′ ∈ Z
d , and n > 0.

Note that every acceleration technique gives rise to a con-
ditional acceleration technique in a straightforward way (by
disregarding the second argument ϕ̌ of accel in Definition 5).
Soundness and exactness can be lifted directly to the condi-
tional setting.
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Lemma 1 (Acceleration as Conditional Acceleration) Let
accel0 be an acceleration technique following Definition 1
such that accel0(〈χ, �a〉) 
⇒ �x ′ = �an(�x) is valid whenever
〈χ, �a〉 ∈ dom(accel0). Then for the conditional accelera-
tion technique accel given by accel(T, ϕ̌) := accel0(T ), the
following holds:

1. accel is sound if and only if accel0 is sound
2. accel is exact if and only if accel0 is exact

Proof For the “if” direction of 1., we need to show that

�x −→n
〈ϕ̌,�a〉 �x ′ ∧ accel(〈χ, �a〉, ϕ̌) implies �x −→n

〈χ,�a〉 �x ′

if accel0 is a sound acceleration technique. Thus:

�x −→n
〈ϕ̌,�a〉 �x ′ ∧ accel(〈χ, �a〉, ϕ̌)


⇒ accel(〈χ, �a〉, ϕ̌)

⇐⇒ accel0(〈χ, �a〉) (by definition of accel)


⇒ �x −→n
〈χ,�a〉 �x ′ (by soundness of accel0)

For the “only if” direction of 1., we need to show that

accel0(〈ϕ, �a〉) implies �x −→n
〈ϕ,�a〉 �x ′

if accel is a sound conditional acceleration technique.
Thus:

accel0(〈ϕ, �a〉)
⇐⇒ accel0(〈ϕ, �a〉) ∧ �x ′ = �an(�x)

(by the prerequisites of the lemma)

⇐⇒ �x −→n
〈�,�a〉 �x ′ ∧ accel0(〈ϕ, �a〉)

⇐⇒ �x −→n
〈�,�a〉 �x ′ ∧ accel(〈ϕ, �a〉,�)

(by definition of accel)


⇒ �x −→n
〈ϕ,�a〉 �x ′(by soundness of accel)

For the “if” direction of 2., soundness of accel follows
from 1. We still need to show that

�x −→n
〈χ∧ϕ̌,�a〉 �x ′ implies accel(〈χ, �a〉, ϕ̌)

if accel0 is an exact acceleration technique. Thus:

�x −→n
〈χ∧ϕ̌,�a〉 �x ′


⇒ �x −→n
〈χ,�a〉 �x ′

⇐⇒ accel0(〈χ, �a〉) (by exactness of accel0)

⇐⇒ accel(〈χ, �a〉, ϕ̌) (by definition of accel)

For the “only if” direction of 2., soundness of accel0 fol-
lows from 1. We still need to show that

�x −→n
〈ϕ,�a〉 �x ′ implies accel0(〈ϕ, �a〉)

if accel is an exact conditional acceleration technique. Thus:

�x −→n
〈ϕ,�a〉 �x ′


⇒ accel(〈ϕ, �a〉,�) (by exactness of accel)

⇐⇒ accel0(〈ϕ, �a〉) (by definition of accel) ��
We are now ready to present our acceleration calculus,

which combines loop acceleration techniques in a modular
way. In the following, w.l.o.g. we assume that formulas are
in CNF, and we identify the formula

∧k
i=1 Ci with the set of

clauses {Ci | 1 ≤ i ≤ k}.
Definition 6 (Acceleration Calculus) The relation � on
acceleration problems is defined by the rule

∅ �= χ ⊆ ϕ̂ accel (〈χ, �a〉, ϕ̌) = ψ2

�ψ1
∣∣ ϕ̌

∣∣ ϕ̂��a �(e) �ψ1 ∪ ψ2
∣∣ ϕ̌ ∪ χ

∣∣ ϕ̂\χ��a

where accel is a sound conditional acceleration technique.
A �-step is exact (written �e) if accel is exact.

So our calculus allows us to pick a subset χ (of clauses)
from the yet unprocessed condition ϕ̂ and “move” it to ϕ̌,
which has already been processed successfully. To this end,
〈χ, �a〉 needs to be accelerated by a conditional acceleration
technique, i.e., when accelerating 〈χ, �a〉 we may assume
�x −→n

〈ϕ̌,�a〉 �x ′.
With Lemma 1, our calculus allows for combining arbi-

trary existing acceleration techniqueswithout adapting them.
However, many acceleration techniques can easily be turned
into more sophisticated conditional acceleration techniques
(see Sect. 5), which increases the power of our approach.

Example 5 We continue Example 4, where we fix χ := x1 >

0 for the first acceleration step. Thus, we first need to accel-

erate the loop
〈
x1 > 0,

(
x1−1
x2+1

)〉
to enable a first �-step,

and we need to accelerate
〈
x2 > 0,

(
x1−1
x2+1

)〉
afterward. The

resulting derivation is shown in Fig. 1. Thus, we success-
fully constructed the formula ψnon-dec, which is equivalent
to Tnon-dec. Note that here neither of the two steps benefit
from the component ϕ̂ of the acceleration problems. We will
introducemore powerful conditional acceleration techniques
that benefit from ϕ̂ in Sect. 5.

The crucial property of our calculus is the following.

Lemma 2 The relation � preserves consistency, and the
relation �e preserves exactness.
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Fig. 1 �-derivation for
Tnon-dec

Proof For the first part of the lemma, assume

�ψ1
∣∣ ϕ̌

∣∣ ϕ̂��a � �ψ1 ∪ ψ2
∣∣ ϕ̌ ∪ χ

∣∣ ϕ̂\χ��a

where �ψ1
∣∣ ϕ̌

∣∣ ϕ̂��a is consistent and

accel(〈χ, �a〉, ϕ̌) = ψ2.

We get

ψ1 ∧ ψ2


⇒ �x −→n
〈ϕ̌,�a〉 �x ′ ∧ ψ2


⇒ �x −→n
〈ϕ̌,�a〉 �x ′ ∧ �x −→n

〈χ,�a〉 �x ′
⇐⇒ �x −→n

〈ϕ̌∧χ,�a〉 �x ′

The first step holds since �ψ1
∣∣ ϕ̌

∣∣ ϕ̂��a is consistent and the
second step holds since accel is sound. This proves consis-
tency of

�ψ1 ∧ ψ2
∣∣ ϕ̌ ∧ χ

∣∣ ϕ̂\χ��a
= �ψ1 ∪ ψ2

∣∣ ϕ̌ ∪ χ
∣∣ ϕ̂\χ��a .

For the second part of the lemma, assume

�ψ1
∣∣ ϕ̌

∣∣ ϕ̂��a �e �ψ1 ∪ ψ2
∣∣ ϕ̌ ∪ χ

∣∣ ϕ̂\χ��a

where �ψ1
∣∣ ϕ̌

∣∣ ϕ̂��a is exact and accel(〈χ, �a〉, ϕ̌) = ψ2.
We get

�x −→n
〈ϕ̌∧χ,�a〉 �x ′

⇐⇒ �x −→n
〈ϕ̌∧χ,�a〉 �x ′ ∧ ψ2

(by exactness of accel)

⇐⇒ �x −→n
〈ϕ̌,�a〉 �x ′ ∧ ψ2

⇐⇒ ψ1 ∧ ψ2

(by exactness of �ψ1
∣∣ ϕ̌

∣∣ ϕ̂��a)

which proves exactness of

�ψ1 ∪ ψ2
∣∣ ϕ̌ ∪ χ

∣∣ ϕ̂\χ��a .

��

Then, the correctness of our calculus follows immediately.
The reason is that

��x ′ = �an(�x) ∣∣ � ∣∣ ϕ(�x)��a �∗(e) �ψ(�y) ∣∣ ϕ̌(�x) ∣∣ ���a

implies ϕ ≡ ϕ̌.

Theorem 5 (Correctness of �) If

��x ′ = �an(�x) ∣∣ � ∣∣ ϕ(�x)��a �∗ �ψ(�y) ∣∣ ϕ̌(�x) ∣∣ ���a ,

then ψ approximates Tloop. If

��x ′ = �an(�x) ∣∣ � ∣∣ ϕ(�x)��a �∗e �ψ(�y) ∣∣ ϕ̌(�x) ∣∣ ���a ,

then ψ is equivalent to Tloop.

Termination of our calculus is trivial, as the size of the third
component ϕ̂ of the acceleration problem is decreasing.

Theorem 6 (Well-Foundedness of �) The relation � is
well-founded.

5 Conditional acceleration techniques

We now show how to turn the acceleration techniques from
Sect. 3 into conditional acceleration techniques, startingwith
acceleration via monotonic decrease.

Theorem 7 (Conditional Acceleration via Monotonic
Decrease) If

ϕ̌(�x) ∧ χ(�a(�x)) 
⇒ χ(�x), (3)

then the following conditional acceleration technique is
exact:

(〈χ, �a〉, ϕ̌) �→ �x ′ = �an(�x) ∧ χ(�an−1(�x))

Proof For soundness, we need to prove

�x −→m
〈ϕ̌,�a〉 �am(�x) ∧ χ(�am−1(�x))


⇒ �x −→m
〈χ,�a〉 �am(�x) (4)
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Fig. 2 �-derivation for T2-invs

for all m > 0. We use induction on m. If m = 1, then

�x −→m
〈ϕ̌,�a〉 �am(�x) ∧ χ(�am−1(�x))


⇒ χ(�x) (as m = 1)

⇐⇒ �x −→〈χ,�a〉 �a(�x)
⇐⇒ �x −→m

〈χ,�a〉 �am(�x). (as m = 1)

In the induction step, we have

�x −→m+1
〈ϕ̌,�a〉 �am+1(�x) ∧ χ(�am(�x))


⇒ �x −→m
〈ϕ̌,�a〉 �am(�x) ∧ χ(�am(�x))

⇐⇒ �x −→m
〈ϕ̌,�a〉 �am(�x) ∧ ϕ̌(�am−1(�x)) ∧ χ(�am(�x))

(asm > 0)


⇒ �x −→m
〈ϕ̌,�a〉 �am(�x) ∧ χ(�am−1(�x)) ∧ χ(�am(�x))

(due to (3))


⇒ �x −→m
〈χ,�a〉 �am(�x) ∧ χ(�am(�x))

(by the induction hypothesis (4))

⇐⇒ �x −→m+1
〈χ,�a〉 �am+1(�x).

For exactness, we need to prove

�x −→m
〈χ∧ϕ̌,�a〉 �am(�x) 
⇒ χ(�am−1(�x))

for all m > 0, which is trivial. ��
So we just add ϕ̌ to the premise of the implication that

needs to be checked to apply acceleration via monotonic
decrease. Theorem 2 can be adapted analogously.

Theorem 8 (Conditional Acceleration via Monotonic
Increase) If

ϕ̌(�x) ∧ χ(�x) 
⇒ χ(�a(�x)), (5)

then the following conditional acceleration technique is
exact:

(〈χ, �a〉, ϕ̌) �→ �x ′ = �an(�x) ∧ χ(�x)

Proof For soundness, we need to prove

�x −→m
〈ϕ̌,�a〉 �am(�x) ∧ χ(�x) 
⇒ �x −→m

〈χ,�a〉 �am(�x) (6)

for all m > 0. We use induction on m. If m = 1, then

�x −→m
〈ϕ̌,�a〉 �am(�x) ∧ χ(�x)


⇒ �x −→〈χ,�a〉 �a(�x)
⇐⇒ �x −→m

〈χ,�a〉 �am(�x).
(as m = 1)

In the induction step, we have

�x −→m+1
〈ϕ̌,�a〉 �am+1(�x) ∧ χ(�x)


⇒ �x −→m
〈ϕ̌,�a〉 �am(�x) ∧ χ(�x)


⇒ �x −→m
〈ϕ̌,�a〉 �am(�x) ∧ �x −→m

〈χ,�a〉 �am(�x)
(by the induction hypothesis (6))


⇒ �x −→m
〈χ,�a〉 �am(�x) ∧ ϕ̌(�am−1(�x)) ∧ χ(�am−1(�x))

(as m > 0)


⇒ �x −→m
〈χ,�a〉 �am(�x) ∧ χ(�am(�x))(due to (5))

⇐⇒ �x −→m+1
〈χ,�a〉 �am+1(�x).

For exactness, we need to prove

�x −→m
〈χ∧ϕ̌,�a〉 �am(�x) 
⇒ χ(�x),

for all m > 0, which is trivial. ��
Example 6 For the canonical acceleration problem of T2-invs ,
we obtain the derivation shown in Fig. 2, where �a2-invs :=( x1+x2

x2−1
)
. While we could also use Theorem 1 for the first

step, Theorem 2 is inapplicable in the second step. The rea-
son is that we need the converse invariant x2 > 0 to prove
invariance of x1 > 0.

It is not a coincidence that T2-invs , which could also be
acceleratedwith acceleration viamonotonicity (see Theorem
3) directly, can be handled by applying our novel calculus
with Theorems 7 and 8.

Remark 1 If applying acceleration via monotonicity to Tloop
yields ψ , then

��x ′ = �an(�x) ∣∣ � ∣∣ ϕ(�x)��a �≤3e �ψ(�y) | ϕ(�x) | ���a

where either Theorem 7 or Theorem 8 is applied in each
�e-step.

Proof As Theorem 3 applies, we have

ϕ(�x) ≡ ϕ1(�x) ∧ ϕ2(�x) ∧ ϕ3(�x)

where

ϕ1(�x) 
⇒ ϕ1(�a(�x)) ∧ (7)
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ϕ1(�x) ∧ ϕ2(�a(�x)) 
⇒ ϕ2(�x) ∧ (8)

ϕ1(�x) ∧ ϕ2(�x) ∧ ϕ3(�x) 
⇒ ϕ3(�a(�x)). (9)

If ϕ1 �= �, then Theorem 8 applies to 〈ϕ1, �a〉with ϕ̌ := �
due to (7), and we obtain:

��x ′ = �an(�x) ∣∣ � ∣∣ ϕ(�x)��a
= ��x ′ = �an(�x) ∣∣ � ∣∣ ϕ1(�x) ∧ ϕ2(�x) ∧ ϕ3(�x)

�
�a

�e
��x ′ = �an(�x) ∧ ϕ1(�x)

∣∣ ϕ1(�x)
∣∣ ϕ2(�x) ∧ ϕ3(�x)

�
�a

= �ψ1(�y) | ϕ1(�x) | ϕ2(�x) ∧ ϕ3(�x)��a
Next, if ϕ2 �= �, then Theorem 7 applies to 〈ϕ2, �a〉 with
ϕ̌ := ϕ1 due to (8) and we obtain:

�ψ1(�y) | ϕ1(�x) | ϕ2(�x) ∧ ϕ3(�x)��a
�e

�
ψ1(�y) ∧ ϕ2(�an−1(�x))

∣∣∣ ϕ1(�x) ∧ ϕ2(�x)
∣∣∣ ϕ3(�x)

�

�a
= �ψ2(�y) | ϕ1(�x) ∧ ϕ2(�x) | ϕ3(�x)��a
Finally, if ϕ3 �= �, then Theorem 8 applies to 〈ϕ3, �a〉with

ϕ̌ := ϕ1 ∧ ϕ2 due to (9) and we obtain

�ψ2(�y) | ϕ1(�x) ∧ ϕ2(�x) | ϕ3(�x)��a
�e �ψ2(�y) ∧ ϕ3(�x) | ϕ(�x) | ���a
= �ψ(�y) | ϕ(�x) | ���a .

��
Thus, there is no need for a conditional variant of acceler-

ation via monotonicity. Note that combining Theorems 7 and
8with our calculus is also useful for loopswhere acceleration
via monotonicity is inapplicable.

Example 7 Consider the following loop, which can be accel-
erated by splitting its guard into one invariant and two
converse invariants.

while x1 > 0 ∧ x2 > 0 ∧ x3 > 0 do (T2-c-invs)
( x1
x2
x3

)
←

(
x1−1
x2+x1
x3−x2

)

Let

ϕ2-c-invs := x1 > 0 ∧ x2 > 0 ∧ x3 > 0,

�a2-c-invs :=
(

x1−1
x2+x1
x3−x2

)
,

ψ ini t
2-c-invs := �x ′ = �an2-c-invs(�x),

and let x (m)
i be the i th component of �am2-c-invs(�x). Start-

ing with the canonical acceleration problem of T2-c-invs , we
obtain the derivation shown in Fig. 3.

Finally, we present a variant of Theorem 4 for conditional
acceleration. The idea is similar to the approach for deducing
metering functions of the form �x �→ Iϕ̌ (�x) · f (�x) from [27]
(see Sect. 3.3 for details). But in contrast to [27], in our setting
the “conditional” part ϕ̌ does not need to be an invariant of
the loop.

Theorem 9 (Conditional Acceleration via Metering Func-
tions) Let mf : Zd → Q.

If

ϕ̌(�x) ∧ χ(�x) 
⇒ mf (�x)− mf (�a(�x)) ≤ 1 and (10)

ϕ̌(�x) ∧ ¬χ(�x) 
⇒ mf (�x) ≤ 0, (11)

then the following conditional acceleration technique is
sound:

(〈χ, �a〉, ϕ̌) �→ �x ′ = �an(�x) ∧ n < mf (�x)+ 1

Proof We need to prove

�x −→m
〈ϕ̌,�a〉 �am(�x) ∧ m < mf (�x)+ 1


⇒ �x −→m
〈χ,�a〉 �am(�x) (12)

for all m > 0. Note that (11) is equivalent to

mf (�x) > 0 
⇒ ¬ϕ̌(�x) ∨ χ(�x). (13)

We use induction on m. If m = 1, then

�x −→m
〈ϕ̌,�a〉 �am(�x) ∧ m < mf (�x)+ 1

⇐⇒ ϕ̌(�x) ∧ mf (�x) > 0

(as m = 1)


⇒ χ(�x)
(due to (13))

⇐⇒ �x −→〈χ,�a〉 �a(�x)
⇐⇒ �x −→m

〈χ,�a〉 �am(�x)
(as m = 1)

In the induction step, assume

�x −→m+1
〈ϕ̌,�a〉 �am+1(�x) ∧ m < mf (�x). (14)

Then, we have:

(14)


⇒ �x −→m
〈ϕ̌,�a〉 �am(�x) ∧ m < mf (�x)


⇒ �x −→m
〈ϕ̌,�a〉 �am(�x) ∧ m < mf (�x) ∧

�x −→m
〈χ,�a〉 �am(�x)

(due to the induction hypothesis (12))
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Fig. 3 �-derivation for
T2-c-invs

⇐⇒ m < mf (�x) ∧ �x −→m
〈χ,�a〉 �am(�x) ∧

∀i ∈ [0,m − 1].
(
ϕ̌(�ai (�x)) ∧ χ(�ai (�x))

)


⇒ m < mf (�x) ∧ �x −→m
〈χ,�a〉 �am(�x) ∧

mf (�x)− mf (�am(�x)) ≤ m

(due to (10))


⇒ �x −→m
〈χ,�a〉 �am(�x) ∧ mf (�am(�x)) > 0 (as m < mf (�x))


⇒ �x −→m
〈χ,�a〉 �am(�x) ∧ (¬ϕ̌(�am(�x)) ∨ χ(�am(�x)))

(due to (13))

⇐⇒ �x −→m
〈χ,�a〉 �am(�x) ∧ χ(�am(�x))

(as (14) implies ϕ̌(�am(�x)))
⇐⇒ �x −→m+1

〈χ,�a〉 �am+1(�x)

��

6 Acceleration via eventual monotonicity

The combination of the calculus from Sect. 4 and the con-
ditional acceleration techniques from Sect. 5 still fails to
handle certain interesting classes of loops. Thus, to improve
the applicability of our approach we now present two new
acceleration techniques based on eventual monotonicity.

6.1 Acceleration via eventual decrease

All (combinations of) techniques presented so far fail for the
following example.

while x1 > 0 do
( x1
x2

)← ( x1+x2
x2−1

)
(Tev-dec)

The reason is that x1 does not behave monotonically, i.e.,
x1 > 0 is neither an invariant nor a converse invariant. Essen-
tially, Tev-dec proceeds in two phases: In the first (optional)
phase, x2 is positive and hence the value of x1 is monotoni-
cally increasing. In the second phase, x2 is non-positive and
consequently the value of x1 decreases (weakly) monoton-
ically. The crucial observation is that once the value of x1
decreases, it can never increase again. Thus, despite the non-
monotonic behavior of x1, it suffices to require that x1 > 0
holds before the first and before the nth loop iteration to
ensure that the loop can be iterated at least n times.

Theorem 10 (AccelerationviaEventualDecrease) Ifϕ(�x) ≡∧k
i=1 Ci where each clause Ci contains an inequation

ei (�x) > 0 such that

ei (�x) ≥ ei (�a(�x)) 
⇒ ei (�a(�x)) ≥ ei (�a2(�x)),

then the following acceleration technique is sound:

Tloop �→ �x ′ = �an(�x) ∧
k∧

i=1
ei (�x) > 0 ∧ ei (�an−1(�x)) > 0

If Ci ≡ ei > 0 for all i ∈ [1, k], then it is exact.
We will prove the more general Theorem 11 later in this
section.

Example 8 With Theorem 10, we can accelerate Tev-dec to

(
x ′1
x ′2

)
=

(
n−n2
2 +x2·n+x1

x2−n

)

∧ x1 > 0

∧ n−1−(n−1)2
2 + x2 · (n − 1)+ x1 > 0

as we have

(x1 ≥ x1 + x2) ≡ (0 ≥ x2) 
⇒
(0 ≥ x2 − 1) ≡ (x1 + x2 ≥ x1 + x2 + x2 − 1).

Turning Theorem 10 into a conditional acceleration tech-
nique is straightforward.

Theorem 11 (Conditional Acceleration via Eventual
Decrease) If we have χ(�x) ≡ ∧k

i=1 Ci where each clause
Ci contains an inequation ei (�x) > 0 such that

ϕ̌(�x) ∧ ei (�x) ≥ ei (�a(�x)) 
⇒ ei (�a(�x)) ≥ ei (�a2(�x)), (15)

then the following conditional acceleration technique is
sound:

(〈χ, �a〉, ϕ̌) �→
(
�x ′ = �an(�x)

∧∧k
i=1 ei (�x) > 0 ∧ ei (�an−1(�x)) > 0

)
(16)

If Ci ≡ ei > 0 for all i ∈ [1, k], then it is exact.
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Proof For soundness, we need to show

(
�x −→n

〈ϕ̌,�a〉 �an(�x)

∧
k∧

i=1
ei (�x) > 0 ∧ ei (�an−1(�x)) > 0

)


⇒ �x −→n
〈χ,�a〉 �an(�x).

(17)

Assume

�x −→n
〈ϕ̌,�a〉 �an(�x) ∧

k∧
i=1

ei (�x) > 0 ∧ ei (�an−1(�x)) > 0. (18)

This implies

n−1∧
i=0

ϕ̌(�ai (�x)). (19)

In the following, we show

k∧
i=1

n−1∧
m=0

ei (�am(�x)) ≥ min(ei (�x), ei (�an−1(�x))). (20)

Then, the claim (17) follows, as we have

k∧
i=1

n−1∧
m=0

ei (�am(�x)) ≥ min(ei (�x), ei (�an−1(�x)))


⇒
k∧

i=1

n−1∧
m=0

ei (�am(�x)) > 0

(due to (18))


⇒
n−1∧
m=0

χ(�am(�x))

(by definition of ei )

⇐⇒ �x −→n
〈χ,�a〉 �an(�x).

Let i be arbitrary but fixed, let e = ei , and let j be theminimal
natural number with

e(�a j (�x)) = max{e(�am(�x)) | m ∈ [0, n − 1]}. (21)

We first prove

e(�am(�x)) < e(�am+1(�x)) (22)

for all m ∈ [0, j − 1] by backward induction on m. If m =
j − 1, then

e(�am(�x))

= e(�a j−1(�x)) (as m = j − 1)

< e(�a j (�x)) (due to (21) as j is minimal)

= e(�am+1(�x)). (as m = j − 1)

For the induction step, note that (15) implies

e(�a(�x)) < e(�a2(�x)) 
⇒ ¬ϕ̌(�x) ∨ e(�x) < e(�a(�x)). (23)

Then we have

e(�am+1(�x)) < e(�am+2(�x))
(due to the induction hypothesis (22))


⇒ ¬ϕ̌(�am(�x)) ∨ e(�am(�x)) < e(�am+1(�x)) (by (23))


⇒ e(�am(�x)) < e(�am+1(�x)).
(by (19))

Now we prove

e(�am(�x)) ≥ e(�am+1(�x)) (24)

for all m ∈ [ j, n − 1] by induction on m. If m = j , then

e(�am(�x))
= e(�a j (�x))

(as m = j)

= max{e(�am(�x)) | m ∈ [0, n − 1]}
(due to (21))

≥ e(�a j+1(�x))
= e(�am+1(�x)).

(as m = j)

In the induction step, we have

e(�am(�x)) ≥ e(�am+1(�x))
(due to the induction hypothesis (24))


⇒ e(�am+1(�x)) ≥ e(�am+2(�x)) (due to (19) and (15)).

As (22) and (24) imply

n−1∧
m=0

e(�am(�x)) ≥ min(e(�x), e(�an−1(�x))),

this finishes the proof of (20) and hence shows (17).
For exactness, assume χ(�x) :=∧k

i=1 ei (�x) > 0. We have

�x −→n
〈χ∧ϕ̌,�a〉 �an(�x)


⇒ χ(�x) ∧ χ(�an−1(�x))
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⇐⇒
k∧

i=1
ei (�x) > 0 ∧ ei (�an−1(�x)) > 0.

��

Example 9 Consider the following variant of Tev-dec

while x1 > 0 ∧ x3 > 0 do
( x1
x2
x3

)
←

( x1+x2
x2−x3
x3

)
,

i.e., we have �a :=
( x1+x2
x2−x3
x3

)
. Starting with its canonical accel-

eration problem, we get the derivation shown in Fig. 4, where
the second step can be performed via Theorem 11 as

(ϕ̌(�x) ∧ e(�x) ≥ e(�a(�x)))
≡ (x3 > 0 ∧ x1 ≥ x1 + x2)

≡ (x3 > 0 ∧ 0 ≥ x2)

implies

(0 ≥ x2 − x3)

≡ (x1 + x2 ≥ x1 + x2 + x2 − x3)

≡ (e(�a(�x)) ≥ e(�a2(�x))).

6.2 Acceleration via eventual increase

Still, all (combinations of) techniques presented so far fail
for

while x1 > 0 do
( x1
x2

)← ( x1+x2
x2+1

)
. (Tev-inc)

As in the case of Tev-dec, the value of x1 does not behave
monotonically, i.e., x1 > 0 is neither an invariant nor
a converse invariant. However, this time x1 is eventually
increasing, i.e., once x1 starts to grow, it never decreases
again. Thus, in this case it suffices to require that x1 is posi-
tive and (weakly) increasing.

Theorem 12 (Acceleration via Eventual Increase) If ϕ(�x) ≡∧k
i=1 Ci where each clause Ci contains an inequation

ei (�x) > 0 such that

ei (�x) ≤ ei (�a(�x)) 
⇒ ei (�a(�x)) ≤ ei (�a2(�x)),

then the following acceleration technique is sound:

Tloop �→ �x ′ = �an(�x) ∧
k∧

i=1
0 < ei (�x) ≤ ei (�a(�x))

We prove the more general Theorem 13 later in this section.

Example 10 With Theorem 12, we can accelerate Tev-inc to
(
x ′1
x ′2

)
=

(
n2−n
2 +x2·n+x1

x2+n

)
∧ 0 < x1 ≤ x1 + x2 (ψev-inc)

as we have

(x1 ≤ x1 + x2) ≡ (0 ≤ x2) 
⇒
(0 ≤ x2 + 1) ≡ (x1 + x2 ≤ x1 + x2 + x2 + 1).

However, Theorem 12 is not exact, as the resulting formula
only covers program runs where each ei behaves monotoni-
cally. So ψev-inc only covers those runs of Tev-inc where the
initial value of x2 is non-negative.

Note that Theorem 12 can also lead to empty under-
approximations. For example, Theorem 12 can be used to
accelerate Texp, since the implication

x1 ≤ x1 − 1 
⇒ x1 − 1 ≤ x1 − 2

is valid. Then the resulting formula is

(
x ′1
x ′2

)
=

(
x1−n
2n ·x2

)
∧ 0 < x1 ≤ x1 − 1,

which is unsatisfiable. Thus, when implementing Theorem
12 (or its conditional version Theorem 13), one has to check
whether the resulting formula is satisfiable to avoid trivial
(empty) under-approximations.

Again, turning Theorem 12 into a conditional acceleration
technique is straightforward.

Theorem 13 (Conditional Acceleration via Eventual
Increase) If we have χ(�x) ≡ ∧k

i=1 Ci where each clause
Ci contains an inequation ei (�x) > 0 such that

ϕ̌(�x) ∧ ei (�x) ≤ ei (�a(�x)) 
⇒ ei (�a(�x)) ≤ ei (�a2(�x)), (25)

then the following conditional acceleration technique is
sound:

(〈χ, �a〉, ϕ̌) �→ �x ′ = �an(�x) ∧
k∧

i=1
0 < ei (�x) ≤ ei (�a(�x))

Proof We need to show

�x −→n
〈ϕ̌,�a〉 �an(�x) ∧

k∧
i=1

0 < ei (�x) ≤ ei (�a(�x))


⇒ �x −→n
〈χ,�a〉 �an(�x).

Due to �x −→n
〈ϕ̌,�a〉 �an(�x), we have

n−1∧
j=0

ϕ̌(�a j (�x)). (26)
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Fig. 4 �-derivation for
Example 9

Fig. 5 �-derivation for
Example 11

Let i be arbitrary but fixed and assume

0 < ei (�x) ≤ ei (�a(�x)). (27)

We prove

ei (�am(�x)) ≤ ei (�am+1(�x)) (28)

for all 0 ≤ m < n by induction on m. Then, we get

0 < ei (�am(�x))

and thus χ(�am(�x)) for all 0 ≤ m < n due to (27), and hence,
the claim follows. If m = 0, then

ei (�am(�x)) = ei (�x) ≤ ei (�a(�x)) = ei (�am+1(�x)). (due to (27))

In the induction step, note that (26) implies

ϕ̌(�am(�x))

as 0 ≤ m < n. Together with the induction hypothesis (28),
we get

ϕ̌(�am(�x)) ∧ ei (�am(�x)) ≤ ei (�am+1(�x)).

By (25), this implies

ei (�am+1(�x)) ≤ ei (�am+2(�x)),

as desired. ��
Example 11 Consider the following variant of Tev-inc.

while x1 > 0 ∧ x3 > 0 do
( x1
x2
x3

)
←

( x1+x2
x2+x3
x3

)

So we have �a :=
( x1+x2
x2+x3
x3

)
. Starting with the canonical accel-

eration problem, we get the derivation shown in Fig. 5, where
the second step can be performed via Theorem 13 as

(ϕ̌(�x) ∧ e(�x) ≤ e(�a(�x)))
≡ (x3 > 0 ∧ x1 ≤ x1 + x2)

≡ (x3 > 0 ∧ 0 ≤ x2)

implies

(0 ≤ x2 + x3)

≡ (x1 + x2 ≤ x1 + x2 + x2 + x3)

≡ (e(�a(�x)) ≤ e(�a2(�x))).

Wealso considered versions of Theorems 11 and 13where
the inequations in (15) and (25) are strict, but this did not
lead to an improvement in our experiments. Moreover, we
experimentedwith a variant ofTheorem13 that splits the loop
under consideration into two consecutive loops, accelerates
them independently, and composes the results.While such an
approach can accelerate loops likeψev-inc exactly, the impact
on our experimental results was minimal. Thus, we postpone
an in-depth investigation of this idea to future work.

7 Proving non-termination via loop
acceleration

We now aim for proving non-termination.

Definition 7 ((Non-)Termination) We call a vector �x ∈ Z
d a

witness of non-termination forTloop (denoted �x −→∞Tloop ⊥)
if

∀n ∈ N. ϕ(�an(�x)).

If there is such a witness, then Tloop is non-terminating.
Otherwise, Tloop terminates.

To this end, we search for a formula that characterizes
a non-empty set of witnesses of non-termination, called a
certificate of non-termination.

Definition 8 (Certificate of Non-Termination) We call a for-
mula η ∈ FOQF(C (�x)) a certificate of non-termination for
Tloop if η is satisfiable and

∀�x ∈ Z
d . η(�x) 
⇒ �x −→∞Tloop ⊥.

Clearly, the loops Tinc and Tev-inc that were used to moti-
vate the acceleration techniques Acceleration via Monotonic
Increase (Theorem2) andAcceleration viaEventual Increase
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(Theorem12) are non-terminating:Tinc diverges for all initial
valuations that satisfy its guard x > 0 and Tev-inc diverges if
the initial values are sufficiently large, such that x1 remains
positive until x2 becomes non-negative and hence x1 starts
to increase.

As we will see in the current section, this is not a coin-
cidence: Unsurprisingly, all loops that can be accelerated
with Acceleration via Monotonic Increase or Acceleration
via Eventual Increase are non-terminating. More interest-
ingly, the same holds for all loops that can be accelerated
using our calculus fromSect. 4, as long as all�-steps use one
of the conditional versions of the aforementioned accelera-
tion techniques, i.e.,Conditional Acceleration viaMonotonic
Increase (Theorem 8) or Conditional Acceleration via Even-
tual Increase (Theorem13).Thus,weobtain a novel,modular
technique for proving non-termination of loops Tloop.

Recall that derivations of our calculus from Sect. 4 start
with canonical acceleration problems (Definition 4) whose
first component is

�x ′ = �an(�x).

It relates the values of the variables before evaluating the loop
(�x) to the values of the variables after evaluating the loop (�x ′)
using the closed form (�an). However, if we are interested in
non-terminating runs, then the values of the variables after
evaluating the loop are obviously irrelevant. Hence, attempts
to prove non-termination operate on a variation of accelera-
tion problems, which we call non-termination problems.

Definition 9 (Non-Termination Problem) A tuple

∥∥ψ
∣∣ ϕ̌

∣∣ ϕ̂
∥∥�a

where ψ, ϕ̌, ϕ̂ ∈ FOQF(C (�x)) and �a : Zd → Z
d is a non-

termination problem. It is consistent if every model of ψ

is a witness of non-termination for 〈ϕ̌, �a〉 and solved if it
is consistent and ϕ̂ ≡ �. The canonical non-termination
problem of a loop Tloop is

‖� | � | ϕ‖�a .

In particular, this means that the technique presented in the
current section can also be applied to loops where �an cannot
be expressed in closed form.

Example 12 The canonical non-termination problem of
Tev-inc is

‖� | � | x1 > 0‖( x1+x2
x2+1

) .

We use a variation of conditional acceleration techniques
(Definition 5), which we call conditional non-termination

techniques, to simplify the canonical non-termination prob-
lem of the analyzed loop.

Definition 10 (Conditional Non-Termination Technique)
We call a partial function

nt : Loop× FOQF(C (�x))⇀FOQF(C (�x))

a conditional non-termination technique if

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ nt(〈χ, �a〉, ϕ̌) implies �x −→∞〈χ,�a〉 ⊥

for all (〈χ, �a〉, ϕ̌) ∈ dom(nt) and all �x ∈ Z
d .

Thus, we obtain the following variation of our calculus from
Sect. 4.

Definition 11 (Non-TerminationCalculus) The relation�nt

on non-termination problems is defined by the rule

∅ �= χ ⊆ ϕ̂ nt(〈χ, �a〉, ϕ̌) = ψ2∥∥ψ1
∣∣ ϕ̌

∣∣ ϕ̂
∥∥�a �nt

∥∥ψ1 ∪ ψ2
∣∣ ϕ̌ ∪ χ

∣∣ ϕ̂\χ∥∥�a
where nt is a conditional non-termination technique.

Like�, the relation�nt preserves consistency.Hence,we
obtain the following theorem, which shows that our calculus
is indeed suitable for proving non-termination.

Theorem 14 (Correctness of �nt) If

‖� | � | ϕ‖�a �∗nt
∥∥ψ

∣∣ ϕ̌
∣∣ �∥∥�a ,

andψ is satisfiable, thenψ is a certificate of non-termination
for Tloop.

Proof We prove that our calculus preserves consistency, then
the claim follows immediately. Assume

∥∥ψ1
∣∣ ϕ̌

∣∣ ϕ̂
∥∥�a �nt

∥∥ψ1 ∪ ψ2
∣∣ ϕ̌ ∪ χ

∣∣ ϕ̂\χ∥∥�a
where

∥∥ψ1
∣∣ ϕ̌

∣∣ ϕ̂
∥∥�a is consistent and

nt(〈χ, �a〉, ϕ̌) = ψ2.

We get

ψ1 ∧ ψ2


⇒ �x −→∞〈ϕ̌,�a〉 ⊥ ∧ ψ2


⇒ �x −→∞〈ϕ̌,�a〉 ⊥ ∧ �x −→∞〈χ,�a〉 ⊥
⇐⇒ �x −→∞〈ϕ̌∧χ,�a〉 ⊥

The first step holds since
∥∥ψ1

∣∣ ϕ̌
∣∣ ϕ̂

∥∥�a is consistent and the
second step holds since nt is a conditional non-termination
technique.
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This proves consistency of

∥∥ψ1 ∧ ψ2
∣∣ ϕ̌ ∧ χ

∣∣ ϕ̂\χ∥∥�a
= ∥∥ψ1 ∪ ψ2

∣∣ ϕ̌ ∪ χ
∣∣ ϕ̂\χ∥∥�a .

��
Analogously towell-foundedness of�,well-foundedness

of �nt is trivial.

Theorem 15 (Well-Foundedness of �nt) The relation �nt

is well-founded.

It remains to present non-termination techniques that can
be used with our novel calculus. We first derive a non-
termination technique from Conditional Acceleration via
Monotonic Increase (Theorem 8).

Theorem 16 (Non-Termination via Monotonic Increase) If

ϕ̌(�x) ∧ χ(�x) 
⇒ χ(�a(�x)),

then

(〈χ, �a〉, ϕ̌) �→ χ

is a conditional non-termination technique.

Proof We need to prove

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ χ(�x) 
⇒ �x −→∞〈χ,�a〉 ⊥.

To this end, it suffices to prove

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ χ(�x) 
⇒ ∀m ∈ N. χ(�am(�x))

by the definition of non-termination (Definition 7). Assume

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ χ(�x).

We prove χ(�am(�x)) for all m ∈ N by induction on m. If
m = 0, then the claim follows immediately. For the induction
step, note that �x −→∞〈ϕ̌,�a〉 ⊥ implies �x −→m+1

〈ϕ̌,�a〉 �am+1(�x),
which in turn implies ϕ̌(�am(�x)). Together with the induction
hypothesis χ(�am(�x)), the claim follows from the prerequi-
sites of the theorem. ��
Example 13 The canonical non-termination problem of Tinc
is

‖� | � | x > 0‖(x+1) .

Thus, in order to apply�nt with Theorem 16, the only possi-
ble choice for the formula χ is x > 0. Furthermore, we have

ϕ̌ := � and �a := (x + 1). Hence, Theorem 16 is applicable
if the implication

�∧ x > 0 
⇒ x + 1 > 0

is valid, which is clearly the case. Thus, we get

‖� | � | x > 0‖(x+1) �nt ‖x > 0 | x > 0 | �‖(x+1) .

Since the latter non-termination problem is solved and x > 0
is satisfiable, x > 0 is a certificate of non-termination forTinc
due to Theorem 14.

Clearly, Theorem 16 is only applicable in very simple
cases. To prove non-termination of more complex exam-
ples, we now derive a conditional non-termination technique
from Conditional Acceleration via Eventual Increase (The-
orem 13).

Theorem 17 (Non-Termination via Eventual Increase) If we
have χ(�x) ≡ ∧k

i=1 Ci where each clause Ci contains an
inequation ei (�x) > 0 such that

ϕ̌(�x) ∧ ei (�x) ≤ ei (�a(�x)) 
⇒ ei (�a(�x)) ≤ ei (�a2(�x)),

then

(〈χ, �a〉, ϕ̌) �→
k∧

i=1
0 < ei (�x) ≤ ei (�a(�x))

is a conditional non-termination technique.

Proof Let χ ′ := ∧k
i=1 0 < ei (�x) ≤ ei (�a(�x)). We need to

prove

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ χ ′ 
⇒ �x −→∞〈χ,�a〉 ⊥.

Then it suffices to prove

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ χ ′(�x) 
⇒ �x −→∞〈χ ′,�a〉 ⊥ (29)

since χ ′ implies χ . By the prerequisites of the theorem, we
have ϕ̌ ∧ χ ′(�x) 
⇒ χ ′(�a(�x)). Thus, Theorem 16 applies
to 〈χ ′, �a〉. Hence, the claim (29) follows. ��
Example 14 We continue Example 12. To apply �nt with
Theorem 17 to the canonical non-termination problem of
Tev-inc, the only possible choice for the formula χ is x1 > 0.
Moreover, we again have ϕ̌ := �, and �a := ( x1+x2

x2+1
)
. Thus,

Theorem 17 is applicable if

�∧ x1 ≤ x1 + x2 
⇒ x1 + x2 ≤ x1 + 2 · x2 + 1
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is valid. Since we have x1 ≤ x1 + x2 ⇐⇒ x2 ≥ 0 and
x1 + x2 ≤ x1 + 2 · x2 + 1 ⇐⇒ x2 + 1 ≥ 0, this is clearly
the case. Hence, we get

‖� | � | x1 > 0‖�a
�nt ‖0 < x1 ≤ x1 + x2 | x1 > 0 | �‖�a .

Since 0 < x1 ≤ x1 + x2 ≡ x1 > 0 ∧ x2 ≥ 0 is satisfiable,
x1 > 0∧x2 ≥ 0 is a certificate of non-termination for Tev-inc
due to Theorem 14.

Of course, some non-terminating loops do not behave
(eventually) monotonically, as the following example illus-
trates.

Example 15 Consider the loop

while x1 > 0 do
( x1
x2

)← ( x2
x1

)
. (Tfixpoint)

Theorem 16 is inapplicable, since

x1 > 0 �
⇒ x2 > 0.

Furthermore, Theorem 17 is inapplicable, since

x1 > x2 �
⇒ x2 > x1.

However, Tfixpoint has fixpoints, i.e., there are valuations
such that �x = �a(�x). Therefore, it can be handled by exist-
ing approaches like [22, Thm. 12]. As the following theorem
shows, such techniques can also be embedded into our cal-
culus.

Theorem 18 (Non-Termination via Fixpoints) For each
entity e, let V(e) denote the set of variables occurring in
e. Moreover, we define

closure�a(e) :=
⋃
n∈N

V(�an(e)).

Let χ(�x) ≡ ∧k
i=1 Ci , and for each i ∈ [1, k], assume that

ei (�x) > 0 is an inequation that occurs in Ci . Then,

(〈χ, �a〉, ϕ̌) �→
k∧

i=1
ei (�x) > 0 ∧

∧
x j∈closure�a(ei )

x j = �a(�x) j

is a conditional non-termination technique.

Proof Let

χ ′ :=
k∧

i=1
ei (�x) > 0 ∧

∧
x j∈closure�a(ei )

x j = �a(�x) j .

We need to prove

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ χ ′ 
⇒ �x −→∞〈χ,�a〉 ⊥.

Then, it suffices to prove

�x −→∞〈ϕ̌,�a〉 ⊥ ∧ χ ′(�x) 
⇒ �x −→∞〈χ ′,�a〉 ⊥ (30)

since χ ′ implies χ . By construction, we have

χ ′(�x) 
⇒ χ ′(�a(�x)).

Thus, Theorem 16 applies to 〈χ ′, �a〉. Hence, the claim
(30) follows. ��

Example 16 We continue Example 15 by showing how to
apply Theorem 18 to Tfixpoint, i.e., we have χ := x1 > 0,
ϕ̌ := �, and �a := ( x2

x1

)
. Thus, we get

closure�a(x1 > 0) = {x1, x2}.

So starting with the canonical non-termination problem
of Tfixpoint, we get

‖� | � | x1 > 0‖( x2
x1

)

�nt ‖x1 > 0 ∧ x1 = x2 | x1 > 0 | �‖( x2
x1

) .

Since the formula x1 > 0 ∧ x1 = x2 is satisfiable, x1 >

0∧ x1 = x2 is a certificate of non-termination for Tfixpoint by
Theorem 14.

Like the acceleration techniques from Theorems 12 and
13, the non-termination techniques from Theorems 17 and
18 can result in empty under-approximations. Thus, when
integrating these techniques into our calculus, one should
check the resulting formula for satisfiability after each step
to detect fruitless derivations early.

We conclude this section with a more complex example,
which shows how the presented non-termination techniques
can be combined to find certificates of non-termination.

Example 17 Consider the following loop:

while x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0 do
( x1

x2
x3
x4

)
←

( 1
x2+x1
x3+x2−x4

)

So we have

ϕ := x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0
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and

�a :=
( 1

x2+x1
x3+x2−x4

)
.

Then, the canonical non-termination problem is

‖� | � | x1 > 0 ∧ x3 > 0 ∧ x4 + 1 > 0‖�a .

First, our implementation applies Theorem 16 to x1 > 0 (as
x1 > 0 
⇒ 1 > 0), resulting in

‖x1 > 0 | x1 > 0 | x3 > 0 ∧ x4 + 1 > 0‖�a .

Next, it applies Theorem 17 to x3 > 0, which is possible
since

x1 > 0 ∧ x3 ≤ x3 + x2 
⇒ x3 + x2 ≤ x3 + 2 · x2 + x1

is valid. Note that this implication breaks if one removes
x1 > 0 from the premise, i.e., Theorem 17 does not apply to
x3 > 0 without applying Theorem 16 to x1 > 0 before. This
shows that our calculus is more powerful than “the sum” of
the underlying non-termination techniques.Hence,we obtain
the following non-termination problem:

‖x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 | x1 > 0 ∧ x3 > 0 | x4 + 1 > 0‖�a

Here, we simplified

0 < x3 ≤ x3 + x2

to

x2 ≥ 0 ∧ x3 > 0.

Finally, neither Theorem 16 nor Theorem 17 applies to
x4 + 1 > 0, since x4 does not behave (eventually) monoton-
ically: Its value after n iterations is given by (−1)n · xinit4 ,
where xinit4 denotes the initial value of x4. Thus, we apply
Theorem 18 and we get

‖x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 ∧ x4 = 0 | ϕ | �‖�a ,

which is solved.Here,we simplified the sub-formula x4+1 >

0 ∧ x4 = −x4 that results from the last acceleration step to
x4 = 0.

This shows that our calculus allows for applying Theorem
18 to loops that do not have a fixpoint. The reason is that
it suffices to require that a subset of the program variables
remain unchanged, whereas the values of other variablesmay
still change.

Since

x1 > 0 ∧ x2 ≥ 0 ∧ x3 > 0 ∧ x4 = 0

is satisfiable, it is a certificate of non-termination due to The-
orem 14.

8 Related work

The related work for our paper splits into papers on acceler-
ation and papers on methods specifically designed to prove
non-termination. In both cases, onemajor difference between
our approach and the approaches in the literature is that we
enable a modular analysis that allows for combining com-
pletely unrelated acceleration or non-termination techniques
to process a loop in an iterative way and to reuse information
obtained by earlier proof steps.

8.1 Related work on acceleration

Acceleration-like techniques are also used in over-approxi-
mating settings (see, e.g., [21,33,34,41,42,47,49,51]),whereas
we consider exact and under-approximating loop accelera-
tion techniques. As many related approaches are discussed
in Sect. 3, we only mention three more techniques here.

First, [6,9] presents an exact acceleration technique for
finite monoid affine transformations (FMATs), i.e., loops
with linear arithmetic whose body is of the form �x ← A�x+�b
where {Ai | i ∈ N} is finite. For such loops, Presburger
Arithmetic is sufficient to construct an equivalent formula
ψ , i.e., it can be expressed in a decidable logic. In general,
this is clearly not the case for the techniques presented in the
current paper (which may even synthesize non-polynomial
closed forms, see Texp). As a consequence and in contrast to
our technique, this approach cannot handle loops where the
values of variables grow super-linearly (i.e., it cannot handle
examples like T2-invs). Implementations are available in the
tools FAST [3] and Flata [39]. Further theoretical results on
linear transformations whose n-fold closure is definable in
(extensions of) Presburger Arithmetic can be found in [7].

Second, [8] shows that octagonal relations can be acceler-
ated exactly. Such relations are defined by afinite conjunction
ξ of inequations of the form±x±y ≤ c, x, y ∈ �x∪�x ′, c ∈ Z.
Then ξ induces the relation �x −→ξ �x ′ ⇐⇒ ξ(�x, �x ′). In
[43], it is proven that such relations can even be accelerated
in polynomial time. This generalizes earlier results for dif-
ference bound constraints [17]. As in the case of FMATs, the
resulting formula can be expressed in Presburger Arithmetic.
In contrast to the loops considered in the current paper where
�x ′ is uniquely determined by �x , octagonal relations can rep-
resent non-deterministic programs. Therefore and due to the
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restricted form of octagonal relations, the work from [8,43]
is orthogonal to ours.

Third, Albert et al. recently presented a technique to find
metering functions via loop specialization, which is auto-
mated via MAX-SMT solving [1]. This approach could be
integrated into our framework via Theorem 9. However, the
technique from [1] focuses on multi-path loops, whereas we
focus on single-path loops. One of the main reasons for our
restriction to single-path loops is that their closed form (Def-
inition 2) can often be computed automatically in practice.
In contrast, for multi-path loops, it is less clear how to obtain
closed forms.

8.2 Related work on proving non-termination

In the following, we focus on approaches for proving non-
termination of programs that operate on (unbounded) integer
numbers as data.

Many approaches to proving non-termination are based on
finding recurrent sets [36]. A recurrent set describes program
configurations from which one can take a step to a configu-
ration that is also in the recurrent set. Thus, a recurrent set
that includes an initial configuration implies non-termination
of the program. In the setting of this paper, a certificate of
non-termination ψ(�x) for a loop 〈ϕ, �a〉 induces the recurrent
set

{�an(�x) | n ∈ N ∧ �x ∈ Z
d ∧ ψ(�x)}.

As long as our calculus is used with the non-termination
techniques presented in the current paper only (i.e., Theorems
16–18), it even holds that {�x ∈ Z

d | ψ(�x)} is a recurrent set.
Conversely, a formula characterizing a non-empty recurrent
set of a loop is also a certificate of non-termination. Thus,
our calculus could also make use of other non-termination
techniques that produce recurrent sets expressed by formulas
in FOQF(C (�x)).

Recurrent sets are often synthesized by searching for suit-
able parameter values for template formulas [14,18,36,45,
46,55] or for safety proofs [16,35,54]. In contrast to these
search-based techniques, our current techniques use con-
straint solving only to check implications. As also indicated
by our experiments (Sect. 9), this aspect leads to low runtimes
and an efficient analysis.

Many proof techniques for proving non-termination of
programs [11,18,36,46] work by proving that some loop is
non-terminating and (often separately) proving that a wit-
ness of non-termination for this loop is reachable from an
initial program configuration. This captures lasso-shaped
counterexamples to program termination. A lasso consists
of a stem of straight-line code (which could be expressed as
a single update), followed by a loopwith a single update in its
body. Techniques for proving non-termination of loops that

provide witnesses of non-termination can thus be lifted to
techniques for lassos by checking reachability of the found
witnesses of non-termination from an initial program con-
figuration. While the presentation in this paper focuses on
loops, our implementation in LoAT can also prove that the
found certificate of non-termination for the loop is reachable
from an initial program configuration. If a loop cannot be
proven non-terminating, it can still be possible to accelerate
it and use the accelerated loop as part of the stem of a lasso
for another loop. Like this, LoAT can analyze programs with
more complex control flow than just single loops.

Several techniques for provingaperiodic non-termination,
i.e., non-termination of programs that do not have any lasso-
shaped counterexamples to termination, have been proposed
[11,14,16,35,45]. By integrating our calculus into a suitable
program-analysis framework [22,27], it can be used to prove
aperiodic non-termination as well.

Loop termination was recently proven to be decidable for
the subclass of loops inwhich the guards and updates use only
linear arithmetic and the guards are restricted to conjunctions
of atoms [25,40]. Our approach is less restrictive regarding
the input loops: we allow for non-linear guards and updates,
and we allow for arbitrary Boolean structure in the guards. In
future work, one could investigate the use of such decision
procedures as conditional non-termination techniques in our
calculus to make them applicable to larger classes of loops.
For practical applications to larger programs, it is important
to obtain a certificate of non-termination for a loop when
proving its non-termination, corresponding to a large, ide-
ally infinite set of witnesses of non-termination. The reason
is that some witness of non-termination for the loop must
be reachable from an initial program configuration so that
the non-termination proof carries over from the loop to the
input program. However, the decision procedures in [25,40]
are not optimized to this end: They produce a certificate of
eventual non-termination, i.e., a formula that describes initial
configurations that give rise to witnesses of non-termination
by applying the loop body a finite, but unknown number
of times. For example, the most general certificate of non-
termination for the loop Tinc is x > 0, whereas the most
general certificate of eventual non-termination is�. The rea-
son is that, for any initial valuation −c of x (where c is a
natural number), one obtains a witness of non-termination
by applying the body of the loop c + 1 times while ignor-
ing the loop condition. The problem of transforming a single
witness of eventual non-termination into a witness of non-
termination has been solved partially in [37]. The problem
of transforming certificates of eventual non-termination that
describe infinite sets of configurations into certificates of
non-termination is, to the best of our knowledge, still open.
In contrast, the conditional non-termination techniques pre-
sented in Sect. 7 aim to identify a potentially infinite set of
witnesses of non-termination.
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For a subclass of loops involving non-linearity and arbi-
trary Boolean structures, decidability of termination has
recently been proven, too [26]. However, the decidability
proof from [26] only applies to loops where the variables
range overR. For loops overZ, termination of such programs
is trivially undecidable (due to Hilbert’s tenth problem).

Ben-Amram, Doménech, and Genaim [5] show a connec-
tion between the non-existence ofmultiphase-linear ranking
functions as termination arguments for linear loops and
monotonic recurrent sets. A recurrent set

R :=
{
�x ∈ Z

d

∣∣∣∣∣
m∧
i=1

ei (�x) > 0

}

is monotonic if we have ei (�x) ≤ ei (�a(�x)) for all i ∈ [1,m]
and all �x ∈ R. In particular, they propose a procedure that,
if it terminates, returns either a multiphase-linear ranking
function as a termination proof or a set of program states
that could not be proven terminating. If the input loop has
a linear update function with only integer coefficients and if
the procedure returns a non-empty set of states that includes
integer values, this set is amonotonic recurrent set and proves
non-termination. This approach is implemented in the iRank-
Finder tool.

Leike and Heizmann [46] propose a method to find geo-
metric non-termination arguments that allow for expressing
the values of the variables after the nth loop iteration. In this
sense, their approach can also be seen as a use of loop acceler-
ation to express a non-termination argument. This approach
is implemented in the Ultimate tool. While our technique for
loop acceleration also relies on closed forms, our technique
for proving non-termination does not need closed forms.
Hence our approach also applies to loops where closed forms
cannot be computed, or contain sub-expressions that make
further analyses difficult, like the imaginary unit.

Finally, Frohn and Giesl [22] have already used loop
acceleration for proving non-termination. However, they use
loop acceleration (more specifically, Theorem 3) solely for
proving reachability of non-terminating loops. To prove
non-termination of loops, they used unconditional, stan-
dalone versions of Theorems 18 and 16. So their approach
does not allow for combining different acceleration or non-
termination techniques when analyzing loops. However,
they already exploited similarities between non-termination
proving and loop acceleration: Both their loop accelera-
tion technique (Theorem 3) and their main non-termination
technique (Theorem 16) are based on certain monotonicity
properties of the loop condition. Starting from this observa-
tion, they developed a technique for deducing invariants that
may be helpful for both proving non-termination and accel-
erating loops. This idea is orthogonal to our approach, which
could, of course, be combined with techniques for invariant
inference.

9 Implementation and experiments

We implemented our approach in our open-source Loop Ac-
celeration Tool LoAT [22,27]:

https://aprove-developers.github.io/LoAT

It uses Z3 [20] and Yices2 [19] to check implications and
PURRS [2] to compute closed forms. While LoAT can syn-
thesize formulas with non-polynomial arithmetic, it cannot
yet parse them, i.e., the input is restricted to polynomials.
Moreover, LoAT does not yet support disjunctive loop con-
ditions.

To evaluate our approach, we extracted 1511 loops with
conjunctive guards from the category Termination of Integer
Transition Systems of the Termination Problems Database
[53], the benchmark collection which is used at the annual
Termination and Complexity Competition [31], as follows:

1. We parsed all examples with LoAT and extracted each
single-path loopwith conjunctive guard (resulting in 3829
benchmarks).

2. We removed duplicates by checking syntactic equality
(resulting in 2825 benchmarks).

3. We removed loops whose runtime is trivially constant
using an incomplete check (resulting in 1733 bench-
marks).

4. We removed loops which do not admit any terminating
runs, i.e., loops where Theorem 2 applies (resulting in
1511 benchmarks).

All tests have been run on StarExec [52] (IntelXeonE5-2609,
2.40GHz, 264GBRAM [50]). For our benchmark collection,
more details about the results of our evaluation, and a pre-
compiled binary (Linux, 64 bit) we refer to [24].

9.1 Loop acceleration

For technical reasons, the closed forms computed by LoAT
are valid only if n > 0, whereas Definition 2 requires them to
be valid for all n ∈ N. The reason is that PURRS has only lim-
ited support for initial conditions. Thus, LoAT’s results are
correct only for all n > 1 (instead of all n > 0). Moreover,
LoAT can currently compute closed forms only if the loop
body is triangular, meaning that each ai is an expression over
x1, . . . , xi . The reason is that PURRS cannot solve systems of
recurrence equations, but only a single recurrence equation at
a time. While systems of recurrence equations can be trans-
formed into a single recurrence equation of higher order,
LoAT does not yet implement this transformation. However,
LoAT failed to compute closed forms for just 26 out of 1511
loops in our experiments, i.e., this appears to be a minor
restriction in practice. Furthermore, the implementation of
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Table 1 LoAT vs. other techniques

LoAT Monot. Meter Flata

Exact 1444 845 05 1231

Approx 38 0 733 0

Fail 29 666 778 280

Avg rt 0.16 s 0.11 s 0.09 s 0.47 s

Median rt 0.09 s 0.09 s 0.09 s 0.40 s

SD rt 0.18 s 0.09 s 0.03 s 0.50 s

our calculus does not use conditional acceleration via meter-
ing functions. The reason is thatwe are not aware of examples
where our monotonicity-based acceleration techniques fail,
but our technique for finding metering functions (based on
Farkas’ Lemma) may succeed.

Apart from these differences, our implementation closely
follows the current paper. It applies the conditional accel-
eration techniques from Sects. 5 and 6 with the following
priorities: Theorem 8 > Theorem 7 > Theorem 11 > Theo-
rem 13.

We compared our implementationwith LoAT’s implemen-
tation of acceleration viamonotonicity (Theorem3, [22]) and
its implementation of acceleration via metering functions
(Theorem4, [28]),which also incorporates the improvements
proposed in [27]. We did not include the techniques from
Theorems 1 and 2 in our evaluation, as they are subsumed by
acceleration via monotonicity.

Furthermore, we compared with Flata [39], which imple-
ments the techniques to accelerate FMATs and octagonal
relations discussed in Sect. 8. To this end, we used a straight-
forward transformation from LoAT’s native input format4

(which is also used in the category Complexity of Integer
Transition Systems of the Termination and Complexity Com-
petition) to Flata’s input format. Note that our benchmark
collection contains 16 loopswith non-linear arithmeticwhere
Flata is bound to fail, since it supports only linear arithmetic.
We did not compare with FAST [3], which uses a similar
approach as the more recent tool Flata. We used a wall clock
timeout of 60 s per example and a memory limit of 128GB
for each tool.

The results are shown in Table 1, where the information
regarding the runtime includes all examples, not just solved
examples. They show that our novel calculus was superior
to the competing techniques in our experiments. In all but 7
cases where our calculus successfully accelerated the given
loop, the resulting formula was polynomial. Thus, integrat-
ing our approach into existing acceleration-based verification
techniques should not present major obstacles w.r.t. automa-
tion.

4 https://github.com/aprove-developers/LoAT#koat.

Table 2 Impact of our new acceleration techniques

Ev-Inc Ev-Dec Ev-Mon

Exact 1444 845 845

Approx 0 493 0

Fail 67 173 666

Avg rt 0.15s 0.14s 0.09s

Median rt 0.08s 0.08s 0.07s

SD rt 0.17s 0.17s 0.06s

LoAT: Acceleration calculus + Theorems 7,8,11 and 13
Monot.: Acceleration via Monotonicity, Theorem 3
Meter: Acceleration via Metering Functions, Theorem 4
Flata: http://nts.imag.fr/index.php/Flata
Ev-Inc: Acceleration calculus + Theorems 7,8 and 11
Ev-Dec: Acceleration calculus + Theorems 7,8 and 13
Ev-Mon: Acceleration calculus + Theorems 7 and 8
Exact: Examples that were accelerated exactly
Approx: Examples that were accelerated approximately
Fail: Examples that could not be accelerated
Avg rt: Average wall clock runtime
Median rt: Median wall clock runtime
SD rt: Standard deviation of wall clock runtime

Furthermore, we evaluated the impact of our new accel-
eration techniques from Sect. 6 independently. To this end,
we ran experiments with three configurations where we dis-
abled acceleration via eventual increase, acceleration via
eventual decrease, and both of them. The results are shown
in Table 2. They show that our calculus does not improve
over acceleration via monotonicity if both acceleration via
eventual increase and acceleration via eventual decrease are
disabled (i.e., our benchmark collection does not contain
examples like T2-c-invs). However, enabling either accel-
eration via eventual decrease or acceleration via eventual
increase resulted in a significant improvement. Interestingly,
there aremany examples that can be acceleratedwith either of
these two techniques:When both of themwere enabled, LoAT
(exactly or approximately) accelerated 1482 loops. When
only one of them was enabled, it accelerated 1444 and 1338
loops, respectively. But when none of them was enabled, it
accelerated only 845 loops. We believe that this is due to
examples like

while x1 > 0 ∧ . . . do
( x1
x2
...

)
←

( x2
x2
...

)
(31)

where Theorems 11 and 13 are applicable (since x1 ≤ x2
implies x2 ≤ x2 and x1 ≥ x2 implies x2 ≥ x2).

Flata exactly accelerated 49 loops where LoAT failed or
approximated and LoAT exactly accelerated 262 loops where
Flata failed. So there were only 18 loops where both Flata
and the full version of our calculus failed to compute an
exact result. Among them were the only 3 examples where
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Table 3 Comparison of LoAT with competing tools

LoAT AProVE AProVE NT iRankFinder iRankFinder NT RevTerm Ultimate VeryMax

No 206 200 200 205 205 133 205 175

Yes 0 1301 0 1298 0 0 919 1299

Fail 1305 10 1311 8 1306 1378 387 37

Avg rt 0.03 s 16.09 s 25.69 s 1.40 s 1.03 s 38.85 s 23.30 s 3.17 s

Avg rt No 0.03 s 10.65 s 9.67 s 1.34 s 0.96 s 4.63 s 7.99 s 14.52 s

Median rt 0.02 s 13.41 s 15.74 s 1.11 s 0.91 s 34.93 s 11.57 s 0.03

Median rt No 0.02 s 8.51 s 6.91 s 1.17 s 0.90 s 1.88 s 8.01 s 5.36 s

SD rt 0.03 s 10.09 s 19.95 s 2.25 s 0.30 s 16.61 s 21.60 s 10.76 s

SD rt No 0.06 s 5.80 s 5.80 s 0.92 s 0.12 s 11.08 s 1.88 s 13.24 s

our implementation found a closed form, but failed anyway.
One of them was5

while x3 > 0 do
( x1
x2
x3

)
←

(
x1+1
x2−x1
x3+x2

)
.

Here, the updated value of x1 depends on x1, the update of
x2 depends on x1 and x2, and the update of x3 depends on
x2 and x3. Hence, the closed form of x1 is linear, the closed
form of x2 is quadratic, and the closed form of x3 is cubic:

x (n)
3 = − 1

6 · n3 + 1−x1
2 · n2 + ( x1

2 + x2 − 1
3

) · n + x3

So when x1, x2, and x3 have been fixed, x (n)
3 has up to 2

extrema, i.e., its monotonicity may change twice. However,
our techniques based on eventual monotonicity require that
the respective expressions behave monotonically once they
start to de- or increase, so these techniques only allow one
change of monotonicity.

This raises the question if our approach can acceler-
ate every loop with conjunctive guard and linear arithmetic
whose closed form is a vector of (at most) quadratic poly-
nomials with rational coefficients. We leave this to future
work.

9.2 Non-termination

To prove non-termination, our implementation applies the
conditional non-termination techniques from Sect. 7 with
the following priorities: Theorem 16 > Theorem 17 > The-
orem 18. To evaluate our approach, we compared it with
several leading tools for proving non-termination of integer
programs:AProVE [30], iRankFinder [5], RevTerm [14],Ulti-
mate [15], and VeryMax [45]. Note that AProVE uses, among
other techniques, the tool T2 [13] as backend for proving non-
termination, so we refrained from including T2 separately in
our evaluation.

5 The other two are structurally similar, but more complex.

To compare with AProVE, RevTerm, and Ultimate, we
transformed all examples into the format which is used in
the category Termination of C Integer Programs of the Ter-
mination andComplexityCompetition.6 For iRankFinder and
VeryMax, we transformed them into the format from the
category Termination of Integer Transition Systems of the
Termination andComplexityCompetition [12]. The latter for-
mat is also supported by LoAT, so besides iRankFinder and
VeryMax, we also used it to evaluate LoAT.

For the tools iRankFinder, Ultimate, and VeryMax, we
used the versions of their last participations in the Termi-
nation and Complexity Competition (2019 for VeryMax and
2021 for iRankFinder and Ultimate), as suggested by the
developers. For AProVE, the developers provided an up-to-
date version. For RevTerm, we followed the build instruction
from [32] and sequentially executed the following command
lines, as suggested by the developers:
RevTerm.sh prog.c-linear part1 mathsat 2
1
RevTerm.sh prog.c-linear part2 mathsat 2
1 It is important to note that all tools but RevTerm and LoAT
also try to prove termination. Thus, a comparison between
the runtimes of LoAT and those other tools is of limited
significance. Therefore, we also compared LoATwith config-
urations of the tools that only try to prove non-termination.
For AProVE, such a configuration was kindly provided by
its developers (named AProVE NT in Table 3). In the case
of iRankFinder, the excellent documentation allowed us to
easily build such a configuration ourselves (named iRank-
Finder NT in Table 3). In the case of Ultimate, its developers
pointed out that a comparison w.r.t. runtime is meaningless,
as it is dominated by Ultimate’s startup-time of ∼10 s on
small examples. For VeryMax, it is not possible to disable
termination-proving, according to its authors.

Weagain used awall clock timeout of 60 s and amemory limit
of 128 GB for each tool. For RevTerm, we used a timeout of

6 http://termination-portal.org/wiki/C_Integer_Programs
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30 s for the first invocation, and the remaining time for the
second invocation.

The results are shown in Table 3. They show that our
novel calculus is competitive with state-of-the-art tools. Both
iRankFinder and Ultimate can prove non-termination of
precisely the same 205 examples. LoAT can prove non-
termination of these examples, too. In addition, it solves one
benchmark that cannot be handled by any other tool:7

while x > 9 ∧ x1 ≥ 0 do
( x
x1

)←
(
x21+2·x1+1

x1+1
)

Most likely, the other tools fail for this example due to the
presence of non-linear arithmetic. Our calculus from Sect. 7
just needs to check implications, so as long as the under-
lying SMT-solver supports non-linearity, it can be applied
to non-linear examples, too. It is worth mentioning that
LoAT subsumes all other toolsw.r.t. proving non-termination.
There are only 4 examples where none of the tools can prove
termination or non-termination. Termination of one of these
examples can be proven by an experimental, unpublished
module of LoAT, which is inspired by the calculi presented in
this paper. Amanual investigation revealed that the 3 remain-
ing examples are terminating, too.

To investigate the impact of different non-termination
techniques, we also tested configurations where one of the
non-termination techniques from Theorems 16 and 18 was
disabled, respectively. The results are shown in Table 4.
First, note that disabling Theorem 16 does not reduce LoAT’s
power. The reason is that if the left-hand side p of an inequa-
tion p > 0 is monotonically increasing (such that Theorem
16 applies), then it is also eventually monotonically increas-
ing (such that Theorem 17 applies). However, since Theorem
16 yields simpler certificates of non-termination than Theo-
rem 17, LoAT still uses both techniques. Interestingly, Ev-Inc
and FP are almost equally powerful: Without Theorem 17,
LoAT still proves non-termination of 203 examples and with-
out Theorem 18, LoAT solves 205 examples. Presumably,
the reason is again due to examples like (31), where Theo-
rem 17 finds the recurrent set x2 > 0 and Theorem 18 finds
the recurrent set x1 > 0 ∧ x1 = x2. So even though both
non-termination techniques are applicable in such cases, the
recurrent set deduced via Theorem 17 is clearly more gen-
eral and thus preferable in practice. Note that LoAT cannot
solve a single example when both Theorems 17 and 18 are
disabled (Ev-Inc, FP in Table 4). Then, the only remaining
non-termination technique is Non-Termination via Mono-
tonic Increase. Examples where this technique suffices to
prove non-termination trivially diverge whenever the loop
condition is satisfied, and hence they were filtered from our
benchmark set (as explained at the beginning of Sect. 9).

7 1567523105272726.koat.smt2

Table 4 Comparison of LoAT versions

LoAT Inc Ev-Inc FP Ev-Inc, FP

No 206 206 203 205 0

Fail 1305 1305 1308 1306 1511

Avg rt 0.03 s 0.03 s 0.03 s 0.03 s 0.02 s

Avg rt No 0.03 s 0.02 s 0.02 s 0.02 s –

Median rt 0.02 s 0.02 s 0.02 s 0.02 s 0.02 s

Median rt No 0.02 s 0.02 s 0.02 s 0.02 s –

SD rt 0.03 s 0.02 s 0.02 s 0.02 s 0.02 s

SD rt No 0.06 s 0.03 s 0.03 s 0.04 s –

LoAT: Calculus from Section 7
AProVE: https://aprove.informatik.rwth-aachen.de
AProVE NT: Configuration of AProVE that does not try

to prove termination
iRankFinder: http://irankfinder.loopkiller.com
iRankFinder NT: Configuration of iRankFinder that does

not try to prove termination
RevTerm: https://github.com/ekgma/RevTerm
Ultimate: https://monteverdi.informatik.uni-

freiburg.de/tomcat/Website
VeryMax: https://www.cs.upc.edu/~albert/VeryMax.

html
Inc: Calculus from Section 7 without Theorem

16
Ev-Inc: Calculus from Section 7 without Theorem

17
FP: Calculus from Section 7 without Theorem

18
Ev-Inc, FP: Calculus from Section 7 without

Theorems 17 and 18
NO: Number of non-termination proofs
YES: Number of termination proofs
Fail: Number of examples where

(non-)termination could not be proven
Avg rt: Average wall clock runtime
Avg rt NO: Average wall clock runtime when

non-termination was proven
Median rt: Median wall clock runtime
Median rt NO: Median wall clock runtime when

non-termination was proven
SD rt: Standard deviation of wall clock runtime
SD rt NO: Standard deviation of wall clock runtime

when non-termination was proven

Regarding the runtime, we think that LoAT is faster than
the competing tools due to the fact that the technique pre-
sented in Sect. 7 requires very little search, whereas many
other non-termination techniques are heavily search-based
(e.g., due to the use of templates, as it is exercised by
RevTerm). In our setting, the inequations that eventually
constitute a certificate of non-termination immediately arise
from the given loop. In this regard, iRankFinder’s approach
for proving non-termination is similar to ours, as it also
requires little search. This is also reflected in our experi-
ments, where iRankFinder is the second fastest tool.
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It should also be taken into account that iRankFinder is
implemented in Python, AProVE, RevTerm, and Ultimate
are implemented in Java, and LoAT and VeryMax are imple-
mented in C++. Thus, the difference in runtime is in parts due
to different performances of the respective programming lan-
guage implementations.

Another interesting aspect of our evaluation is the result of
RevTerm, which outperformed all other tools in the evalua-
tion of [14]. The reason for this discrepancy is the following:
In [14], 300 different configurations of RevTerm have been
tested, and a benchmark has been considered to be solved
if at least one of these configurations was able to prove
non-termination. In contrast, we ran two configurations of
RevTerm, one for each of the two non-termination checks
proposed in [14]. So essentially, RevTerm’s results from [14]
correspond to a highly parallel setting, whereas the results
from our evaluation correspond to a sequential setting.

10 Conclusion and future work

We discussed existing acceleration techniques (Sect. 3) and
presented a calculus to combine acceleration techniques
modularly (Sect. 4). Then, we showed how to combine exist-
ing (Sect. 5) and two novel (Sect. 6) acceleration techniques
with our calculus. This improves over prior approaches,
where acceleration techniques were used independently, and
may thus improve acceleration-based verification techniques
[8,9,22,27,29,44] in the future. An empirical evaluation
(Sect. 9.1) shows that our approach is more powerful than
state-of-the-art acceleration techniques. Moreover, if it is
able to accelerate a loop, then the result is exact (instead
of just an under-approximation) in most cases. Thus, our
calculus can be used for under-approximating techniques
(e.g., to find bugs or counterexamples) as well as in over-
approximating settings (e.g., to prove safety or termination).

Furthermore, we showed how our calculus from Sect. 4
can be adapted for proving non-termination in Sect. 7, where
we also presented three non-termination techniques that can
be combined with our novel calculus. While two of them
(Theorems 16 and 18) are straightforward adaptions of exist-
ing non-termination techniques to our modular setting, the
third one (Theorem 17) is, to the best of our knowledge, new
andmight also be of interest independently fromour calculus.

Actually, the two calculi presented in this paper are so sim-
ilar that they do not require separate implementations. In our
tool LoAT, both of them are implemented together, such that
we can handle loops uniformly: If our implementation of the
calculi yields a certificate of non-termination, then it suffices
to prove reachability of one of the corresponding witnesses
of non-termination from an initial program state afterwards
to finish the proof of non-termination. If our implementa-
tion of the calculi successfully accelerates the loop under

consideration, this may help to prove reachability of other,
potentially non-terminating configurations later on. If our
implementation of the calculi fails, then LoAT continues its
search with other program paths. The success of this strategy
is demonstrated at the annual Termination and Complexity
Competition, where LoAT has been the most powerful tool
for proving non-termination of Integer Transition Systems
since its first participation in 2020.

Regarding future work, we are actively working on
support for disjunctive loop conditions.Moreover, our exper-
iments indicate that integrating specialized techniques for
FMATs (see Sect. 8) would improve the power of our
approach for loop acceleration, as Flata exactly accelerated
49 loops where LoAT failed to do so (see Sect. 9). Fur-
thermore, we plan to extend our approach to richer classes
of loops, e.g., loops operating on both integers and arrays,
non-deterministic loops, or loops operating on bitvectors (as
opposed to mathematical integers).
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