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I. DERIVATION OF THE TIME-OPTIMAL CONTROL SCHEME FOR A TWO-LEVEL SYSTEM

For |ψi〉 and |ψ′f 〉 being initial and target states in the interaction picture of a two-dimensional Hilbert space, these

can be represented on the Bloch sphere by the Bloch vecotrs ~ni and ~n′f (τ) respectively. Then, a state evolving along

a great circle (a geodesic) subtending the angle, Φ(τ) = arccos(~ni · ~n′f (τ)), will reach the target state |ψ′f (τ)〉 in the

least time τ provided that the angular velocity on the Bloch sphere Φ̇(t) is the greatest available at any time. Such

evolution is dictated by the unitary transformation Uc(t) = exp
(
−iΦ(t)

2 ~σ · ~n⊥(τ)
)

, where the rotation axis is defined

as ~n⊥(τ) =
~ni×~n′

f

|~ni×~n′
f |

and ~σ is the vector of Pauli matrices. The Hamiltonian that implements Uc(t) is:

H ′c(t) =
Φ̇(t)

2
~σ · ~n⊥(τ), (I.1)

which is traceless, fulfills the transversality condition 〈ψ′(t)|ψ̇′(t)〉 = 0, and has a Hilbert-Schmidt norm ‖H ′c(t)‖ =√
tr(H ′2c (t)) =

√
Φ̇2(t)/2.

The control Hamiltonian in Eq. (I.1) can now be written in terms of initial and final states |ψi〉 and |ψ′f (τ)〉. For that,

we define a new basis through Gram-Schmidt orthogonalization, {|ψi〉, |ψ̄′f (τ)〉}. We then multiply Eq. (I.1) from left

and from right by the identity 1 = |ψi〉〈ψi|+ |ψ̄′f 〉〈ψ̄′f |, and impose the traceless, transversality and Hilbert-Schmidt
norm conditions. We find:

H ′c(t) =
iΦ̇(t)

2
√

1−s2

(
e−iβ |ψ′f (τ)〉〈ψi| − eiβ |ψi〉〈ψ′f (τ)|

)
, (I.2)

where s and β are defined through 〈ψi|ψ′f (τ)〉 = 〈ψi|U†0 (τ)|ψf 〉 = seiβ .
Given the form of the time-optimal control Hamiltonian, we can now find the protocol time τ . We recall that the

evolution of the state under H(t) = H0(t) + Hc(t) drives the initial state to the target state up to a phase factor,
hence |〈ψf |U0(τ)Uc(τ)|ψi〉| = 1 by construction. This relation leads to a closed equation for s and τ :

s cos

(
Φ(τ)

2

)
+
√

1− s2 sin

(
Φ(τ)

2

)
= 1, (I.3)

which admits the solution

s = cos

(
Φ(τ)

2

)
. (I.4)

A simple manipulation of this equation allows us to write

Φ(τ) = 2 arccos (s) = 2 arccos |〈ψi|ψ′f (τ)〉|, (I.5)

and expressing the subtended angle as the integral of the angular velocity, Φ(τ) =
∫ τ

0
Φ̇(t)dt, and defining Φ̇ =

τ−1
∫ τ

0
Φ̇(t)dt, finally yields

τ =
2

Φ̇
arccos |〈ψi|ψ′f (τ)〉|. (I.6)
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II. DERIVATION OF THE FUNCTIONS η(t) AND ζ(t) OF EQ. (3)

In this section, we derive the specific form of the functions η(t) and ζ(t) that define the geodesic path along which
initial and final state are connected. The geodesic path in Eq. (3) of the main text can be recast as:

|ψ′(t)〉 =

(
η(t)− seiβ√

1− s2
ζ(t)

)
|ψi〉+

ζ(t)√
1− s2

|ψ′f 〉, (II.1)

in terms of initial and final states.
From the above equation, we can already define the boundary values of the functions of interest. For t = 0, we have

η(0) = 1, (II.2)

ζ(0) = 0; (II.3)

while for t = τ we have

η(τ)− ζ(τ)
seiβ√
1− s2

= 0, (II.4)

ζ(τ)
1√

1− s2
= eiα, (II.5)

where in the second equation we have allowed the final state to acquire a global phase during the evolution. Inserting
Eq. (II.5) into (II.4) we get η(τ) = sei(α+β) = s, where, without loss of generality, we have taken α = −β such that
η(t) is a real function. Thus, we can write:

η(τ) = s, (II.6)

ζ(τ) = e−iβ
√

1− s2. (II.7)

At his point we can already propose an ansatz that fulfills the above four boundary conditions (Eqs. (II.2), (II.3),
(II.6) and (II.7)):

η(t) = cos θ(t), (II.8)

ζ(t) = e−iβ sin θ(t), (II.9)

where the angle θ(t) can be fixed by realizing that |〈ψ̇′(t)|ψ̇′(t)〉| = θ̇2(t) and then using the form of the control
Hamiltonian in Eq. (6) of the main text:

θ(t) =

∫ t

0

∆H ′c(t
′)dt′. (II.10)

A further check on the above ansatz confirms that (i) the initial state |ψi〉 is monotonically brought closer to the
final state |ψ′f 〉 and (ii) that this happens at maximum speed given a particular energy resource of the control vz(t).

The first statement (i) can be proven by noting that the amplitudes accompanying initial and final states in Eq. (II.1)
are, respectively, monotonically decreasing and increasing functions of time (from θ(0) to θ(τ)). The second statement

(ii) can be assessed by realizing that 〈ψ′(t)|ψ̇′(t)〉 = 0, which is the transversality condition of Eq. (5) in the main
text and guarantees the minimization of the protocol time τ .

III. TIME-OPTIMAL CONTROL OF TWO-QUBITS IN A TIME-INDEPENDENT DRIFT
HAMILTONIAN

Here we consider the case of two interacting 1/2-spin qubits in a drift Hamiltonian of the form:

H0 = −
∑
j

Jjσ
(1)
j σ

(2)
j , (III.1)

where j = x, y, z and Jj represents the coupling between both spins. It turns out that this Hamiltonian is diagonal
in the Bell states basis, and thus:

H0 =− (Jz + J−)|Φ+〉〈Φ+| − (Jz − J−)|Φ−〉〈Φ−|
+ (Jz − J+)|Ψ+〉〈Ψ+|+ (Jz + J+)|Ψ−〉〈Ψ−|,

(III.2)
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with J± = Jx ± Jy.
Our goal is to entangle an initially separable state of the form, |ψi〉 = |0〉 ⊗ |1〉 = |01〉, into a Bell state, |ψf 〉 =

|Ψ+〉 = (|01〉+|10〉)/
√

2, in the minimum possible time. According to Eq. (7) of the main text, the control Hamiltonian
in the Schrödinger picture reads:

Hc(t) = i
vz(t)√
1− s2

U0(t)

(
e−iβU†0 (τ)|Ψ+〉〈01| − eiβ |01〉〈Ψ+|U0(τ)

)
U†0 (t), (III.3)

where 〈01|U†0 (τ)|Ψ+〉 = seiβ . Using the Bell state basis, the above control Hamiltonian can be rewritten as

Hc(t) =
1√
2

vz(t)√
1− s2

(
2 cos Θ|Ψ+〉〈Ψ+|+ ei(Θ+2J+t)|Ψ+〉〈Ψ−|+ e−i(Θ+2J+t)|Ψ−〉〈Ψ+|

)
, (III.4)

where Θ = π
2 − β + (Jz − J+)τ . The parameters s and β can be obtained from the overlap 〈01|U†0 (τ)|Ψ+〉, which

yields:

s =
1√
2

and β = (Jz − J+)τ, (III.5)

and therefore Θ = π/2. The control Hamiltonian in Eq. (III.4) finally reads:

Hc(t) = ivz

(
ei2J+t|Ψ+〉〈Ψ−| − e−i2J+t|Ψ−〉〈Ψ+|

)
, (III.6)

where we have taken the ‘full throttle’ condition vz(t) = vz. The least time τ (from Eq. (8) of the main text) then
reads:

τ =
1

vz
arccos

(
1√
2

)
, (III.7)

which gives τ = π
4vz

. We may then want to recast the Hamiltonian of Eq. (III.6) in the basis {|00〉, |01〉, |10〉, |11〉}
i.e.:

Hc(t) = 2vz sin(2J+t)

0 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 0

+ 2vz cos(2J+t)

0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


= vz

(
sin(2J+t)

(
1⊗ σz − σz ⊗ 1

)
+ cos(2J+t)

(
σy ⊗ σx − σx ⊗ σy

))
.

(III.8)

IV. ON THE NUMERICAL IMPLEMENTATION OF THE CONTROL PROTOCOL

The numerical implementation of the proposed method can be summarized as follows:

i. Given a drift Hamiltonian Ĥ0(t), initial and final states |ψi〉 and |ψf 〉, and the energy resource of the control
vz(t), we first compute the protocol time τ recursively by means of Eq. (8) (if the full throttle condition
vz(t) = vz is assumed) or according to

∫ τ
0
vz(t)dt = arccos |〈ψi|ψ′f 〉| (if the energy resource depends on time).

Note that this step requires the evaluation of the fidelity F0 ≡ |〈ψi|ψ′f 〉|2, which in turn entails the computation

of |ψ′f 〉 = U†0 (τ)|ψf 〉, where U0(t) = T exp
(
−i
∫ t

0
H0(t1)dt1

)
and T defines the usual time ordering operator.

ii. Given τ , we then construct the control Hamiltonian in the interaction picture H ′c(t) according to Eq. (7).

iii. Given H ′c(t), we can already propagate the initial state |ψi〉 according to the time-dependent Schrödinger

equation, i ddt |ψ(t)〉 = H(t)|ψ(t)〉, where H(t) = H0(t) +Hc(t) and Hc(t) = U0(t)H ′c(t)U
†
0 (t).

iv. During the propagation we may compute any observable of interest such as the mean adiabaticity or the cost
according to Eqs. (13) and (14) respectively.

In the specific example of the main text, the drift Hamiltonian, H0(t), is given by Eqs. (11) and (12), and the initial
and final states are the instantaneous adiabatic ground states of H0(t) at t = 0 and t = τ respectively. The first
step, (i), is executed using the bisection method with a tolerance tol = 10−5. The state propagation in steps (i) and
(iii) is carried out using the Runge-Kutta method (4th order) with a time step dt = 5 × 10−6. The evolution of the
control Hamiltonian in the Schrödinger picture was achieved using the same Runge-Kutta method and according to
dHc/dt = −i[H0, Hc] (after imposing the full throttle condition vz(t) = vz).
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FIG. V.1. Duration of the protocol, τ , in the presence (solid lines) and in the absence (dashed lines) of the drift Hamiltonian
HLZ with Γlinear. These results are presented as a function of the energy disposal of the control, vz, and for different values of
the coupling constant, ω = {0, 5, 15}.

V. TIME-OPTIMAL CONTROL OF A TWO-LEVEL SYSTEM IN A FAVORABLE WIND

Figure V.1 shows the protocol time τ as a function of the energy resource of the control, vz, for three different
values of the coupling constant ω = {0, 5, 15}. Solid and dashed lines correspond to Eqs. (8) and (9) of the main text
respectively. Figure V.1 is an example of the top inequality in Eq. (10), revealing how HLZ with Γlinear acts always
as a favorable ‘tail wind’ in the search for the target state |g(τ)〉. In the absence of a drift Hamiltonian, the control is
the only driving force during the course of the protocol and hence its duration coincides with the MT bound, which
according to Eq. (9) is inversely proportional to the energy disposal of the control vz. In the presence of HLZ, the
evolution of the system is expected to be roughly independent of the control for small enough values of vz (note the
asymptotic behavior of the solid lines for vz . 0.1). An exception occurs for ω = 0. In this limit the instantaneous
diabatic and adiabatic levels coincide and a level crossing at τ/2 induces an exchange of roles between ground and
excited states, i.e., F0 = 0. Furthermore, since initial and final states |g(0)〉 and |g(τ)〉 are eigenstates of HLZ(t), the
drift Hamiltonian does not exert any force on them and the protocol time reduces again to τMT , which for orthogonal
initial and target states reads τ = τMT = π/2vz. In general, for finite values of ω the protocol time is smaller than
τMT and only at very large values of vz, i.e., when the role of the drift Hamiltonian is negligible in front of the control
Hamiltonian, these differences tend to vanish.

Importantly, no matter how high the energy disposal of the control (vz) is, the mean energy of the system, 〈E〉 =
〈ψ(t)|HLZ(t)|ψ(t)〉, remains well bounded and close to the adiabatic evolution path. See for example the cases of
ω = 0 (where 〈E〉 is independent of vz) and ω = 1 (where the shaded green region spans all possible values of vz) in
Fig. V.2.

VI. TIME-OPTIMAL CONTROL OF A DECOUPLED TWO-LEVEL SYSTEM

We here derive an analytical solution to Eqs. (7) and (8) of the main text for the case where the system is immersed
in a drift Hamiltonian of the form:

HLZ(t) = Γlinear(t)σz, (VI.1)

where Γlinear has been defined in the main text, and initial and target states are respectively |ψi〉 = |g(t = 0)〉 =
|0(t = 0)〉 and |ψf 〉 = |g(t = τ)〉 = |1(t = τ)〉. Let us first write the time-evolution operator associated to HLZ(t):

ULZ(t) = exp

(
−iσz

∫ t

0

Γlinear(t
′)dt′

)
= exp

(
−iσz2t

(
t

τ
− 1

))
= exp (−iσzΛ(t)) . (VI.2)
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FIG. V.2. Evolution of the energy of the system 〈E〉 = 〈ψ(t)|HLZ(t)|ψ(t)〉 for all possible values of vz (shaded green region)
and for ω = 0 (left panel) and ω = 1 (right panel). The adiabatic energies of the drift Hamiltonian HLZ are plotted in black as
a reference.

This unitary operator allows us to find s = |〈ψi|U†LZ(τ)|ψf 〉| = 0, and bearing in mind the functional form of the
control Hamiltonian of Eq. (7), this yields:

H ′c(t) = vzσy. (VI.3)

In the Schrödinger picture, the above equation reads

Hc(t) = ULZ(t)H ′c(t)U
†
LZ(t) = vz exp (−iσzΛ(t))σy exp (iσzΛ(t)) = vz (cos (2Λ(t))σy − sin (2Λ(t))σx) , (VI.4)

where in the last equality we have taken into account the commutation relations of the Pauli matrices.
Given the above control Hamiltonian, we can now determine the dynamics of the system:

|ψ(t)〉 = ULZ(t)Uc(t)|ψi)〉 = exp (−iσzΛ(t)) exp

(
−iσy

∫ t

0

vz(t
′)dt′

)
|ψi〉 = exp (−iσzΛ(t)) exp (−iσyvzt) |ψi〉. (VI.5)

Notice that in the last equality we have taken the ‘full throttle’ condition vz(t) = vz.
Given the above result we can now look for an analytical expression of the adiabaticity A(t) = |〈g(t)|ψ(t)〉|2. For

that, we first notice that the instantaneous adiabatic ground state evolves as:

|g(t)〉 =

{
ULZ(t)|0〉 0 ≤ t ≤ τ/2,
ULZ(t)ULZ(τ/2)|1〉 τ/2 ≤ t ≤ τ,

(VI.6)

where |0〉 and |1〉 are the ground and excited states at t = 0, respectively. Using Eq. (VI.5) and Eq. (VI.6), the
adiabaticity can be cast as the following piecewise expression:

A(t) =

{
|〈0|U†LZ(t)|ψ(t)〉|2 = cos2

(
π
2
t
τ

)
0 ≤ t ≤ τ/2,

|〈1|U†LZ(t)|ψ(t)〉|2 = sin2
(
π
2
t
τ

)
τ/2 ≤ t ≤ τ,

(VI.7)

where we have used that τ = π/2vz. Finally, the mean adiabaticity can be written as

Ā =
1

τ

∫ τ

0

A(t)dt =
1

τ

∫ τ/2

0

cos2

(
π

2

t

τ

)
dt+

1

τ

∫ τ

τ/2

sin2

(
π

2

t

τ

)
dt =

2 + π

2π
≈ 0.82. (VI.8)

VII. FORM OF THE CONTROL HAMILTONIAN FOR A DRIVEN TWO-LEVEL SYSTEM

The most general form of the control Hamiltonian that drives an initial state into a target state under the influence
of HLZ can be written as:

Hc(t) = µ(t)σx − γ(t)σy + ε(t)σz. (VII.1)
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For the particular case of ω = 0.1 and Γlinear, the time-dependence of the functions µ(t), γ(t) and ε(t) is shown in
Fig. VII.1 for different values of the least time τ (this is to say for different values of the energy resource of the control
vz). For the sake of comparison, we also plot the corresponding counterdiabatic term HCD(t), that for the LZ model
with Γlinear(t), takes the specific form [1]:

HCD(t) = − Γ̇linear(t)ω

2
(
ω2 + Γ2

linear(t)
)σy, (VII.2)

where Γ̇linear(t) = ∂tΓlinear(t) = 4/τ , and the coefficients of σx and σz are zero. In the three panels of Fig. VII.1, we
observe that the coefficients are either antisymmetric (the case of ε(t)) or symmetric (the case of µ(t) and γ(t)) with
respect to the midpoint of the time axis (at t = τ/2) where an avoided crossing of the adiabatic levels occurs with an
energy gap 2ω. The coefficients in Eq. (VII.1) tend to zero progressively as τ increases (i.e. the energy resource of
the control decreases). This behavior indicates that the control is less relevant at low speeds, as expected. Moreover,

notice that the three quantities, µ, γ and ε, are connected through the Zermelo velocity, vz =
√

tr
(
H2
c (t)

)
/2, which

can be written as:

vz(t) =
√
µ2(t) + γ2(t) + ε2(t). (VII.3)

Above, we have used that H2
c (t) =

(
µ2(t) + γ2(t) + ε2(t)

)
1 and thus tr

(
H2
c (t)

)
= 2

(
µ2(t) + γ2(t) + ε2(t)

)
.

Equation (VII.3) establishes a connection between the three panels of Fig. VII.1 for the control Hamiltonian.
Regarding the counterdiabatic term (VII.2), it is relevant to highlight the fact that it takes considerably higher values
than the corresponding control term of our protocol, as can be seen in the first panel.

The practical implementation of the above control Hamiltonian depends on the system under consideration. As a

first example, consider the situation where a spin 1/2 is immersed in a time-varying magnetic field ~B(t). The spin-field
interaction Hamiltonian can be written as:

HS(t) = −ξ ~B(t) · ~S = −ξ
2

(
Bx(t)σx +By(t)σy +Bz(t)σz

)
, (VII.4)

where ξ = gq/2m, with g the g-factor and m and q the mass and the charge of the particle, respectively. Comparing
Eqs. (VII.1) and (VII.4), it is simple to establish a one-to-one correspondence between the components of the magnetic
field and the control Hamiltonian:

Bx(t) = −2µ(t)

ξ
, By(t) =

2γ(t)

ξ
, Bz(t) = −2ε(t)

ξ
. (VII.5)

As a second example, we may consider a Bose–Einstein condensate (BEC) in an optical lattice. Under appropriate
conditions the wavefunction of the BEC in the periodic potential of the optical lattice can be approximated by
considering only the two lowest energy bands [2, 3], which exhibit an avoided crossing at the edge of the first Brillouin
zone (see Fig. V.2) and thus realize a Landau-Zener Hamiltonian of the form in Eq. (11) of the main text, where terms
accompanying σz and σx can be controlled through the quasimomentum p and the depth V0 of the optical lattice,
respectively. To make a given evolution of a two-level system introducing the control Hamiltonian of Eq. (VII.1),
one needs to add an interaction term corresponding to a σy Pauli matrix. In practice, this term can be implemented
by introducing an additional interaction into the system, for example, through an extra laser or microwave field. In
the case of atoms in an optical lattice, σy components can be realized by adding a second optical lattice shifted with
respect to the first by dL/4 (dL is the lattice spacing) [4]. It can be shown, however, that the effect of this extra
field can also be achieved through an appropriate transformation Γ → Γ′ and ω → ω′, such that no extra field is
necessary [4]. This transformation, which should be independent of the physical system under consideration (and
could be considered as well for the spin in a magnetic field case), means that the resulting protocol is intrinsically
more stable, as there will be no problems associated, for example, with phase fluctuations between the fields [4].
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FIG. VII.1. Time dependence of each component of the control Hamiltonian in Eq. (VII.1) as a function of the normalized
time, t/τ , and for different values of the protocol time τ (solid lines). Dashed lines correspond to the counterdiabatic field of
Eq. (VII.2).
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