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ABSTRACT: Automated chemical synthesis has revolutionized
synthetic access to biopolymers in terms of simplicity and speed.
While automated oligosaccharide synthesis has become faster and
more versatile, the parallel synthesis of oligosaccharides is not yet
possible. Here, a chemical vapor glycosylation strategy (Vapor-
SPOT) is described that enables the simultaneous synthesis of
oligosaccharides on a cellulose membrane solid support. Different
linkers allow for flexible and straightforward cleavage, purification,
and characterization of the target oligosaccharides. This method is
the basis for the development of parallel automated glycan
synthesis platforms.

■ INTRODUCTION
Oligosaccharides are the most abundant biopolymers in nature
and play a fundamental role in many biological functions.
Despite their relevance in many processes of life, their role is
still not sufficiently understood.1,2 Their structural hetero-
geneity, complexity, and diversity often make their isolation
from natural sources laborious and their synthesis a
cumbersome process. Therefore, different automated platforms
for enzymatic,3−5 chemoenzymatic,6,7 and chemical oligosac-
charide8−12 synthesis have been developed, giving access to
complex and biologically valuable structures.13−15 In the last
two decades, the development of automated glycan assembly
(AGA) has enabled the successful synthesis of defined and
complex synthetic oligosaccharide libraries of biological and
medical interest,8,15−21 as well as very long polysaccharides
including complex branching, up to 100-mers.22,23 Currently,
AGA is used to prepare one single oligosaccharide at a time.
Parallel oligosaccharide synthesis would be more cost- and
time-efficient. Compared to the well-established parallel
peptide and oligonucleotide synthesis methods,24,25 the parallel
synthesis of oligosaccharides remains a major challenge. Early
work by the Kahne group relied mainly on acylations to
generate diversity and study the interaction of disaccharides
with carbohydrate-binding proteins.26 Mrksich and colleagues
demonstrated the on-chip synthesis of a collection of different
disaccharides and subsequent enzymatic modification.27

Recently, Heo et al. reported their on-chip sequential
enzymatic glycosylation strategy for the synthesis of several
Globo H-related oligosaccharides on a DNA linker, enabling
characterization and purification of the synthetic structures.28

None of these methods were advanced beyond the proof-of-
principle stage, since the chemical synthesis requires inert and
temperature-controlled glycosylation conditions, making auto-

mation a challenging process. Enzymatic synthesis overcomes
these issues, but still, only a limited number of glycosyl-
transferases is available.29

Here, we present the VaporSPOT method for parallel
oligosaccharide synthesis that overcomes these limitations.
SPOT synthesis, initially developed by Frank et al.,30 can be
performed manually or automated31−34 and is commonly used
to simultaneously generate peptide, small-molecule, or
glycopeptide libraries.34−37 The original SPOT method follows
the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase
synthesis protocol under ambient conditions, using cellulose
membranes as a solid support. Cleavage of the products can be
achieved after treatment with strong bases or acids, giving
access to a library of soluble and/or cellulose-tethered
peptides. However, SPOT synthesis is incompatible with
chemical carbohydrate synthesis, since the conditions are
neither inert nor temperature-controlled. To solve this
problem, we devised a novel method and designed a setup
to ensure controlled conditions suitable for glycosylation
reactions. With this, we show the parallel synthesis of six
different oligosaccharides and up to four residues in length in
the micromolar scale (∼1 μmol). In contrast to other solid-
phase approaches, it is a simple setup that saves time and
reagents by parallelization.
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■ RESULTS AND DISCUSSION
The VaporSPOT process under inert argon conditions was
designed for building block delivery at room temperature and
subsequent chemical vapor glycosylation at low temperature.
The synthesis begins with the functionalization and prepara-
tion of the cellulose membrane (Figure 1), which was

preloaded with a base-labile mannopyranoside linker (Sections
C and E in the Supporting Information), bearing an Fmoc
group on the C-6 position, after deprotection, serving as the
nucleophile for the first glycosylation. Therefore, the
commercially available Fmoc-β-alanine esterified cellulose
membrane (Figure 1A) was acetylated to minimize unspecific
glycosylation reactions. After Fmoc deprotection, an Fmoc-
protected mannopyranoside was attached (Figure S2) and
unreacted free amino groups of the β-alanine were acetylated
to minimize side reactions (see Section E in the Supporting
Information). The mannopyranoside linker was Fmoc-
deprotected and an acidic wash of the membrane was
performed to remove any residual base, followed by spotting

of the first building block and then drying under high vacuum.
One or several spotted membranes were transferred to the
bottom of the custom-built instrument (Figure 2) and cooled
to −15 °C. Activation of the glycosyl donor, similar to batch or
solid-phase syntheses, was achieved by delivery and con-
densation of TMSOTf and dichloromethane vapor inside the
glycosylation chamber (2 min). Then, the temperature was
slowly increased to rt and maintained for 30 min. After
completion, the remaining condensate was removed from the
glycosylation chamber under high vacuum. The membrane(s)
were transferred to a Petri dish and washed with dichloro-
methane and dimethylformamide. For higher coupling
efficiencies with poorly reactive and/or sterically hindered
building blocks, coupling can be repeated. Removal of the
temporary protecting group with piperidine unmasks the
nucleophile for the next synthesis cycle. These steps are
repeated until the target structure(s) are formed (Figure 1B,
modules ii−v). Simultaneous deprotection of the ester
protecting groups and release of the product(s) from the
surface was achieved by sodium methoxide, followed by
purification and characterization.
For successful glycosylations, two main parameters had to be

optimized: the temperature inside the glycosylation chamber
and the amount and concentration of the activator solution to
be delivered. Both affect the reactivity of the building blocks
and the yield.38−41 For the preparation of different
oligosaccharides, 14 building blocks (BBs, Figure 3) were
either synthesized following established protocols13,42−49 or
prepared from commercially available precursors (trichloroa-
cetimidates 3, 5, and 9 and phosphates 6 and 8, see Section B
in the Supporting Information). To optimize the coupling
conditions, glycosyl donors 1−6 and 8−12 were screened,
using 8% TMSOTf in dichloromethane (Figure 4A), to furnish
the corresponding dimers 15−17 in different yields (Figure
4B). While perbenzoylated building blocks (1, 9, 11) show
relatively similar results, mannoside 3, with an Fmoc
temporary protecting group on the C-6 position, gave the
best glycosylation outcome in comparison to galactoside 10
and glucoside 12, due to its higher reactivity (arming/
disarming effect)41,50 at these temperatures. Moreover, no
glycosylation was observed with more reactive BBs 5 and 6
with two electron-donating groups. This is likely due to the
currently limited minimum temperature (−15 °C) achievable
by the setup.
However, a significantly higher yield was obtained with

building block 8, where the Fmoc group on the C-6 position is
replaced with the more electron-withdrawing Lev group,
yielding 48% of the desired di-mannopyranoside 15 under
the exact same conditions.
Next, trimannoside 18 and tetramannoside 19 were

synthesized, using mannopyranosides 1, 3, and 4 for chain
elongation. While BB 8 resulted in a higher yield, the Lev
deprotection would require extensive optimization on the
cellulose membrane. Thus, we selected the already established
Fmoc deprotection strategy to synthesize longer structures. In
the first experiments, partial decomposition of the membrane
and reproducibility issues were observed during the synthesis
of 18 under the reported glycosylation conditions. Reduction
of the activator amount to 4% provided trisaccharide 18 in
32% yield, retaining the integrity of the membrane. Using the
optimized activator solution, tetramannoside 19 was success-
fully synthesized (8 steps) in an overall yield of 8%.
Furthermore, with a 4% activator solution, trimer 20 was

Figure 1. Schematic representation of VaporSPOT synthesis: (A)
reagents and conditions for membrane functionalization: (i) capping
10% Ac2O, 2% MsOH in DCM, rt, 30 min; (ii) 20% piperidine in
DMF, rt, 20 min; (iii) attachment of the linker, rt, overnight; and (iv)
capping 10% Ac2O, 20% DIPEA in DMF, rt, 30 min. (B) Modules of
the VaporSPOT process: (i) preparation of the membrane; (ii) acidic
wash of the membrane; (iii) spotting of the building block; (iv)
chemical vapor glycosylation; (v) removal of tPG; (vi) deprotection
of pPGs and release of oligosaccharides from the solid support; and
(vii) purification and characterization of synthesized structures.
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obtained in 34% yield with β-(1-6) and β-(1-4) linkage,
starting from disaccharide 14 (Scheme 1A). All final structures
15−20 were characterized using mass spectrometry (MS) and
nuclear magnetic resonance spectroscopy (NMR). Both purity
and anomeric purity of the final structures were analyzed by
high-performance liquid chromatography (HPLC) and de-
coupled 1H−13C heteronuclear single quantum coherence
spectroscopy (HSQC NMR).
Encouraged by these results, the parallel synthesis of

oligosaccharides was investigated (Scheme 1B). To assess,
whether diffusion or contamination can occur between
different membrane pieces placed in close proximity inside

the setup, a photolabile linker was designed and synthesized
(Sections D and E in the Supporting Information). With the
current set of BBs, the previously used base-labile linker would
deliver partially deprotected compounds of mostly indistin-
guishable molecular weight, since cleavage from the solid
support and deprotection of the ester and carbonyl protecting
groups occur simultaneously. In contrast, the photolabile linker
will deliver protected compounds with distinguishable
molecular weight. Using the same experimental setup, reaction
time, and the 4% activator solution, six different glycosyl

Figure 2. VaporSPOT setup: (A) schematic representation and (B) experimental setup of the custom-built apparatus for parallel and temperature-
controlled oligosaccharide synthesis on membranes.

Figure 3. Synthesized building blocks for VaporSPOT synthesis.
Figure 4. (A) Screening of BBs 1−6 and 8−12 under the same vapor
glycosylation conditions (8% TMSOTf in dichloromethane) for the
synthesis of dimers 15−17. (B) Obtained yields after cleavage and
characterization of the target dimers.
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donors 1−3, 7, 13, and 14, bearing different protecting groups,
were coupled onto six individual cellulose membrane pieces in
parallel. The glycosylation reaction on each membrane piece
was repeated once, while the positions of the membranes were
shuffled between the glycosylations to detect any possible
diffusion or contamination (Figure S9 and Section H in the
Supporting Information). The desired products 21−26 were
obtained after parallel cleavage under UV light (365 nm) and
detected based on their molecular weight using MALDI-ToF
mass spectrometry. During the parallel synthesis, no diffusion/
contamination between the different membranes was observed.
Nevertheless, further characterization was not possible due to
inefficient photocleavage from the solid support.
Finally, to show the versatility of the VaporSPOT approach,

a parallel reaction on a functionalized glass slide was performed
(Figure S10 and Section I in the Supporting Information). Six
glycosyl donors were spotted, glycosylated under chemical
vapor, and the protecting groups were removed without
cleavage of the synthesized structures from the solid support.
Validation of the formed disaccharides was achieved by
staining with a fluorescently labeled lectin.

■ CONCLUSIONS
SPOT synthesis is widely used for the parallel synthesis of
peptides. Here, we developed the VaporSPOT synthesis
method for the parallel synthesis of oligosaccharides on
cellulose membranes under inert and temperature-controlled
chemical vapor conditions. This method offers a flexible and
cost-efficient way to rapidly screen the glycosylation outcome
of different glycosyl donors in parallel and synthesize
oligosaccharides in good purity on the micromolar scale. In a
parallel reaction approach, diffusion or contamination between
the different spotted glycosyl donors was ruled out.
Future optimization of the methodology, including different

protecting groups and linkers, will lead to more complex
structures with higher yields. For example, the replacement of
the Fmoc protecting group with the more electron-with-
drawing Lev group on the C-6 position should lead to higher
glycosylation yields. Besides, technical improvements (e.g.,
minimum achievable temperature) may enable more flexible
chemical strategies.
Furthermore, other solid supports, such as cross-linked

cellulose,51 polypropylene, or Teflon-patterned membranes,34

may further improve the spot density, substrate stability, and
synthesis yield. The same VaporSPOT approach may be

further expanded to high-throughput glycan array synthesis on
functionalized glass slides or even beyond glycochemistry, for
precisely controlled polymerization or cross-coupling reactions.
Together with automated spotting of building blocks, this
should enable even higher parallelization. Such oligosaccharide
collections are ideal for microarray production, to drastically
accelerate the screening of glycan−glycan binding protein
interactions.
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