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Sampling from a quantum distribution can be exponentially hard for classical computers and yet
could be performed efficiently by a noisy intermediate-scale quantum device. A prime example of a
distribution that is hard to sample is given by the output states of a linear interferometer traversed by
N identical boson particles. Here, we propose a scheme to implement such a boson sampling machine
with ultracold atoms in a polarization-synthesized optical lattice. We experimentally demonstrate
the basic building block of such a machine by revealing the Hong-Ou-Mandel interference of two
bosonic atoms in a four-mode interferometer. To estimate the sampling rate for large N , we develop
a theoretical model based on a master equation. Our results show that a quantum advantage
compared to today’s best supercomputers can be reached with N & 40.
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I. INTRODUCTION

The idea that quantum computers could efficiently
solve problems that are believed to be intractable for
classical computers is the main motivation for the devel-
opment of quantum computing devices [1–3]. However,
despite the impressive progress in increasing the num-
ber of qubits and extending their coherence time [4–16],
building a fault-tolerant universal quantum computer is
not yet within the reach of current quantum technology
[17]. This fact has stimulated the development of alterna-
tive concepts of quantum computation that can be per-
formed with noisy intermediate-scale quantum (NISQ)
devices machines that are far less demanding than a
fault-tolerant quantum computer and yet can outper-
form the best available classical computers on specific
tasks. Examples of such NISQ devices are quantum an-
nealers [18], quantum simulators [19–27], quantum learn-
ing machines [28, 29], digital-analog quantum machines
[30], and quantum sampling machines [31].

A quantum sampling machine deals with the task of
drawing from the probability distribution of the outcomes
that are produced by measuring a quantum system in a
highly entangled state. In essence, the idea is to use
the randomness inherent to a measured quantum sys-
tem to construct a hard-to-simulate sampling machine.
Compared to other problems (e.g., decision problems),
quantum sampling has the advantage that its compu-
tational complexity can be ascertained for many quan-

tum distributions [32] by relying only a few widely held
assumptions (e.g., no collapse of the polynomial hier-
archy). Knowledge of the computational complexity of
these quantum machines allows us to gain important in-
sights into the conditions (e.g., size of the Hilbert space)
and class of quantum states [33–36] required to achieve
a quantum advantage over classical machines [37, 38].
Quantum sampling also appeals for practical reasons be-
cause its computational hardness is generally robust to
small experimental errors [39, 40]. Such a natural tol-
erance to errors makes quantum sampling a particularly
suitable task to be performed with NISQ devices. Based
on these motivations, several proposals have been put for-
ward, where one draws samples from the state generated
by a quantum circuit such as: constant-depth quantum
circuits [41–43], instantaneous quantum polynomial-time
circuits [44, 45], random quantum circuits [39, 46–49],
and linear quantum circuits of indistinguishable bosons
[50], better known as boson samplers.

Boson sampling [51] refers to the problem of sampling
from the probability distribution of the outcomes gen-
erated by N identical, noninteracting bosons that have
travelled through an M -mode interferometer, with the
initial and final N -particle states being of the form of
Fock states. The probability of detecting a particular
outcome comprising N bosons is proportional to the ab-
solute square of the permanent of a N×N submatrix of
U [52, 53]. In spite of its compact analytical expression,
the permanent (and likewise its absolute square) is very
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hard to compute, for it requires a time exponential in
N [54]. In fact, even its approximation to a multiplica-
tive factor has been shown [55] to fall into the #P-hard
complexity class [56]. From a physics point of view, it is
worth emphasizing that the hardness of this problem is
due to the quantum statistics of indistinguishable bosons
and not to the interactions between particles [57, 58].

A number of experiments have been reported demon-
strating boson sampling in photonic quantum circuits
[59–70], with the current record being N =20 photons
in M =60 modes [71]. Because of losses, however, it is
hard to reach in the near future a much higher number of
photons in a deterministic manner. This limitation along
with the development [72] of more efficient classical algo-
rithms for simulating boson sampling have prompted the
study of variants of the problem that better cope with
losses, such as lossy boson sampling [73, 74], scattershot
boson sampling [74–77] and Gaussian boson sampling
[74, 78]. This latter in particular, which uses squeezed
light instead of single photons, has recently demonstrated
[79–81] a huge increase in the number of photons detected
at the interferometer output, on the order of 100, leading
to claim a quantum advantage.

The quantum advantage of Gaussian boson sampling
machines has recently been questioned, though, as it has
been shown that classical sampling algorithms are able
to efficiently draw samples from a sufficiently close dis-
tribution [82–84]. For random quantum circuits [48, 49],
likewise, effective representations of the qubits’ entan-
gled state have been found [85, 86] using tensor networks,
which result in a tremendous speed-up of classical sim-
ulations, since only a tiny fraction of the Hilbert space
is actually used when the gate fidelity is below a cer-
tain threshold. Such a race between quantum hardware
and ever more efficient classical algorithms is indeed ex-
pected to continue in the coming years, promising new
insights into what makes quantum systems advantageous
from a computational complexity perspective. Remark-
ably, it was shown [36] based on fine-grained complexity
arguments that a boson sampling quantum machine of
the original type [50] with N =100 andM =500 achieves
quantum advantage with respect to any (i.e., known and
unknown) classical simulation algorithms. These num-
bers are large, yet not beyond the reach of scalable NISQ
devices such as ultracold atoms in optical lattices.

In this article, we propose to use ultracold atoms in
state-dependent optical lattices as a scalable architecture
for boson sampling with hundreds of bosons. We also re-
port on the experimental realization of the basic building
block of the proposed boson-sampling machine, demon-
strating the Hong-Ou-Mandel interference between two
atoms trapped in state-dependent optical lattices. In
our scheme, atoms cooled into their motional ground
state play the role of identical bosons, while the lattice
site as well as two internal atomic states serve as the
bosonic modes. Distant modes, associated with differ-
ent lattice sites, are brought together by state-dependent
shift operations, which are realized with polarization-

synthesized optical lattices [87, 88]. Modes that are spa-
tially overlapped are coupled in pairs, by a combination
of microwave and site-resolved optical pulses, realizing
the analog of phase-programmable photonic quantum cir-
cuits [89, 90].

It should be mentioned that based on a similar mo-
tivation to establish a quantum advantage, other NISQ
proposals alternative to photonic boson samplers have
been put forward in the past years relying on trapped
ions [91–93], superconducting circuits [94], and neutral
atoms with microwave assisted tunneling [95].

II. BOSON SAMPLING WITH ATOMS IN
OPTICAL LATTICES

A boson sampling quantum machine is in essence an
M -port quantum circuit traversed simultaneously by N
identical bosons that do not interact with each other. As
there are no interactions between the particles, such a
quantum circuit behaves as a linear interferometer, map-
ping each input mode into a superposition of the output
modes,

â†i →
M∑
j=1

Uji â
†
j . (1)

Here, âi is the operator creating a boson in the i-th mode,
and Uji is the matrix element of a unitary transforma-
tion Û , which is randomly chosen from the uniform dis-
tribution (i.e., Haar measure) over all M ×M unitaries.
The randomness of U ensures that no particular feature
can be exploited to efficiently simulate the boson sampler
machine with a classical computer.

By detecting the occupation of the output modes, the
machine thus directly samples from the probability dis-
tribution P (n1, n2, ..., nM ) = |〈n1, n2, . . . , nM | Û |ψ0〉|2.
Here, ni denotes the number of bosons in the i-th output
mode, and |ψ0〉 represents the initial state with N identi-
cal bosons, each occupying a particular input mode. Ac-
cording to best-known algorithms [72], sampling from P
cannot be performed efficiently with classical computers,
as it is bound to computing the permanent of N × N
matrices, which requires a computation time of order
O(N22N ) [96].

Importantly, to be hard to simulate by a classical com-
puter, a boson sampler must have a number of modes
much larger than that of particles, M � N � 1 [50].
The gold standard satisfying this condition is given by the
scaling lawM = N2 because it ensures that detecting two
or more particles in any of the output modes has a small
probability [97]. In fact, only when the output modes are
singly occupied, i.e., for the so-called collision-free out-
comes, does the conjectured hardness of boson sampling
hold [50]. We therefore assume such a quadratic scaling
in this paper. It should, however, be emphasized that
this scaling has so far only been experimentally realized
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FIG. 1. Illustration of a quantum circuit based on ultracold atoms in state-dependent optical lattices. Each
site accommodates two modes, |±〉, of the quantum circuit represented by two internal states of the atom. A representative
initial state is shown, where every second mode of the circuit is occupied. State-dependent shift operations connects distant
modes, while local operations couple the internal modes. Inset: Hong-Ou-Mandel interference of two indistinguishable atoms,
where a combination of local phase-imprinting pulses and microwave pulses realize the equivalent of a generalized photonic
beam splitter.

with a relatively small number of particles, N < 10, by
photonics devices [71].

In the remainder of this section, we develop a con-
cept how to implement such a boson sampling quantum
machine with ultracold atoms in state-dependent optical
lattices. We start with the key idea of how to construct
arbitrary quantum circuits, and then discuss initializa-
tion and detection.

A. Arbitrary quantum circuits using
polarization-synthesized optical lattices

Figure 1 illustrates how to “wire” an arbitrary quantum
circuit using ultracold atoms in state-dependent optical
lattices. The idea here is to use the lattice sites along with
two internal states of the atom, |+〉 and |−〉, to represent
the modes of the quantum circuit, so that M/2 lattice
sites accommodate M modes. Modes associated with
adjacent sites are connected in pairs by state-dependent
shift operations.

Such state-dependent shift operations can be per-
formed using polarization-synthesized optical lattices
[87]. This piece of technology rely on the synthesis of
polarization states of light to create two movable, fully
independent periodic potentials,

V±(x) = V 0
± cos2{2π/λL[x− x±(t)]}, (2)

which selectively trap atoms in either the |+〉 or |−〉 in-
ternal state. Here, V 0

± represents the trap depth and
x±(t) the position of the respective periodic potentials,
x is the coordinate along the lattice direction, and λL the
wavelength of the lattice laser. The underlying concept
of state-dependent optical potentials is suited to atomic

species such as Rb and Cs [98, 99]. In this work, we will
consider specifically the case of 133Cs, where the internal
modes are the hyperfine states |+〉 = |F = 4,mF = 3〉
and |−〉 = |F = 3,mF = 3〉, and λL is set to the value of
870 nm, for which the trapping potential of right and left
circularly polarized light selectively trap the two internal
states.

The lattice potentials must be chosen sufficiently deep,
with V 0

± being of order of a few hundred recoil energies,
to prevent atoms from tunneling to the neighboring sites.
In such a deep-lattice regime, one can shift the atoms to
the adjacent sites in a state dependent manner by simply
varying the relative position, x+(t)−x−(t), as a function
of time t. We have experimentally demonstrated [100]
that repeated state-dependent shift operations preserve
the coherence between the two internal states. Further-
more, we have shown in a recent work [101] that shift-
ing the atoms by one lattice site can be rapid, with the
minimum duration being bounded by the trap period at
around 10 µs.

Crucially, a quantum circuit such as the one in Fig. 1,
where the modes are locally coupled in alternating pairs,
allow one to realize any arbitraryM×M unitary transfor-
mation U of the input into the output modes [102, 103].
For a generic matrix U , a minimum number M(M−1)/2
of local operations T is required, arranged in a circuit
of M -step depth [103]. Such an operation T defines the
basic unit of the quantum circuit, coupling together the
modes |±〉 associated with a given lattice site,

T =

(
e−iφ cos(θ/2) − sin(θ/2)
e−iφ sin(θ/2) cos(θ/2)

)
, (3)

where φ and θ are parameters depending on the particu-
lar site and time step. A programmable quantum device
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of this kind is said to be completely controllable [104].
We propose to implement T through composite pulses,

where two types of elementary operations are stacked to-
gether: local phase imprints A(ϕ) and global Hadamard
pulses H. In fact, for any T , one can find suitable angles
θ and φ yielding the following decomposition:

T = e−iφ/2 T ′ = e−iφ/2H†A(θ)HA(φ), (4)

where A(ϕ) = exp[−iσzϕ/2] imprints onto the two modes
|±〉 a relative phase depending on the lattice site, whereas
H = exp(−iσxπ/4) acts on all sites identically, realizing
the equivalent of a beam splitter (here, σi represent the
Pauli matrices). Note that the local common-mode phase
shift by φ/2, which appears in Eq. (4), can be avoided
by conveniently adapting the algorithm by Clements et
al. [103] to use T ′ instead of T as the basic unit.

The decomposition of T in Eq. (4) reveals a direct anal-
ogy to phase-programmable photonic circuits [89, 90].
Their structure reveals however an important difference:
for ultracold atoms, a single spatial dimension suffices to
wire the circuital modes, whereas at least two dimensions
are necessary for photonic devices [70]. The advantage of
ultracold atoms simply arises from the fact that massive
particles can be held in a specific location by a trapping
potential.

The global Hadamard gates are readily implemented
by means of π/2 microwave pulses, which act homoge-
neously on all lattice sites and require a time of order
of 1µs. The local operator A(ϕ) can be realized by ex-
ploiting the differential Stark shift that is produced by
an array of laser beams focused on the target lattice
sites through a high-numerical-aperture objective lens
[105–107]. Exploiting the vector polarizability of alkali
atoms [98], one can imprint a purely differential phase
shift ϕ onto the atoms by means of a circularly polar-
ized light field. For Cs atoms, this condition is fulfilled
when the wavelength of the addressing light field is cho-
sen at λA = 880 nm. Such local pulses also require that
the addressing beam has a nonzero component along the
quantization axis. This additional condition can be met
by tilting the quantization axis with respect to the lattice
direction (see Appendix A).

The differential phase shift ϕ is directly controlled by
the product of the laser intensity and pulse duration. We
estimate that the addressing pulses A(ϕ) can be realized
in about 1 µs using approximately 10 µW of laser power
per addressed lattice site. These pulses have a small im-
pact on the coherence time of the atoms, because the
probability that an atom scatters a photon off the ad-
dressing beam is approximately 4× 10−5.

It is worth noting that the composite pulse scheme
proposed to implement T offers an important advantage
over other schemes that use local resonant pulses to cou-
ple the two hyperfine states, |±〉. The reason for this is
the difference in sensitivity to the crosstalk caused by the
light field at the sites adjacent to the target lattice site.
Differential Stark shift pulses, as in the proposed scheme,
depend on the intensity of the addressing laser beams in

their Hamiltonian, while resonant pulses directly depend
on the respective electric fields. This different sensitivity
implies that for the same intensity I leaking to the neigh-
boring sites, crosstalk errors are smaller in the proposed
scheme: the crosstalk infidelity is proportional to I2 in
the proposed scheme, in contrast to I in the resonant
pulse schemes.

B. Initializing an array of identical atoms

Atom sorting techniques have recently been demon-
strated [88, 108–112], where movable optical potentials
are used to deterministically fill a predefined array of op-
tical traps with one atom each. At present, the record
in the number of resorted atoms is at around N = 100,
and ideas exist how to boost this number up to 1000
by parallel resorting the atoms with a two-dimensional
state-dependent optical lattice [88]. Once loaded into the
desired sites of an optical lattice, atoms can be cooled
to their motional ground state using sideband cooling
techniques, making them indistinguishable in their me-
chanical degrees of freedom. Ground state probabilities
above 90% have already been achieved for atoms trapped
in optical tweezers [111, 113–115], whereas higher values
above 99% are expected [116] for more tightly confined
atoms in a three-dimensional optical lattice.

C. Detection of individual atoms

The final state is measured by recording a fluorescence
image of the atoms [107, 117]. Using a high-resolution
objective lens, the positions of the individual atoms in
the optical lattices can be reconstructed with a high fi-
delity, exceeding 99%. Standard fluorescence-imaging
techniques, however, only give information about the oc-
cupation of modes belonging to distinct lattice sites. To
also resolve the occupation of modes associated with the
same site, a state-sensitive detection scheme resolving the
two hyperfine states, |±〉, is needed. For this purpose,
a long-distance state-dependent transport operation can
be used to realize an optical Stern-Gerlach detection,
mapping the two internal states to different lattice sites
[118, 119]. Alternatively, one can use a magnetic Stern-
Gerlach detection scheme in a multilayer optical lattice
[120].

A particle number resolving detection is more demand-
ing. Standard fluorescence imaging is not suitable be-
cause of light-induced collisions, which only allow the
parity of the occupation number to be measured [121].
One approach is to distribute the atoms to multiple sites
prior to fluorescence imaging [122], similar to spatial mul-
tiplexing in photonic devices [63]. An improved version of
this approach consists in using a pinning lattice to detect
the atoms [123, 124]. Alternatively, one can exploit in-
teraction blockade to induce occupation-dependent tun-
neling to distinct sites of an optical lattice [120].
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III. SCALING LAW OF AN
ATOM-BOSON-SAMPLING MACHINE

To appreciate the quantum advantage of an atom bo-
son sampler over classical machines, we study in this sec-
tion the sampling rate, R, as a function of the number of
bosons.

A. Ideal boson sampler

In the ideal case of no atom losses, the sampling rate
is simply given by the repetition rate Rrep at which N
bosons are made to interfere with each other in a quan-
tum circuit of M modes. Three terms determines this
rate,

R−1rep = texec + tinit + tdet, (5)

where texec is the time for executing the quantum circuit,
tinit is the time for preparing the initial state of N atoms,
and tdet is the time for detecting the atoms in the M
output modes.

To estimate the execution time texec, we assume that
local Stark shift pulses can be carried out in parallel
by optically addressing all sites simultaneously [16, 125].
The time for executing the quantum circuit is thus pro-
portional to the total number of steps, which in turn is
equal to the number of modes M (see Sec. IIA). Con-
sidering that the number of modes is given by M = N2,
as previously reasoned, we find that the execution time
has a quadratic dependence on the number of bosons,
texec = N2tstep, where tstep is the time to perform the
single step.

The initialization time tinit is proportional to N for
linear atom sorting [108, 109], and to log(N) for par-
allel atom sorting [88]. For simplicity, we assume that
this time is fixed at 500ms, since the initialization of 100
atoms can be efficiently performed in less than this time
[27]. Likewise, we consider the detection time to be fixed,
tdet = 100ms, since both positions and spin can be effi-
ciently detected for all atoms in a single operation relying
on fluorescence imaging [118, 119].

Furthermore, if we post-select only those events with
all atoms populating a different output mode (i.e., the so-
called collision-free events), because these are the events
hard to simulate with a classical machine, the sampling
rate is reduced by a constant factor 1/e in the limiting
case of large N [97], leading to Rideal ≈ Rrep/e.

Thus, we conclude that under ideal conditions, an
atom boson sampler can draw events from the boson dis-
tribution efficiently, since its computation time 1/Rideal

scales with N2 for sufficiently large N (i.e., polynomial
time complexity). In contrast, classical computer simula-
tions require an exponentially longer time to perform the
same task, which scales withO(N22N ) [72], as mentioned
earlier.

classical computers

neutral atoms

photons

number of bosons
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1 hour mark

FIG. 2. Scaling of boson sampling machines. Predicted
sampling rate versus the number of bosons N is shown for
atomic (blue), photonic (purple), and classical (grey) boson
sampling machines. The atomic sampling is computed based
on Eq. (6), where an extended model (see appendix B) is used
for Pstep to account for both particle pairs and trios. The pho-
tonic and classical curves correspond to Eqs. (C1) and (C2),
respectively. Under state-of-the-art conditions, atomic NISQ
devices overtake classical algorithms at N ≈ 37. Pioneering
photonic experiments are marked with symbols [59], [60],
and [61], while the best reported boson sampling experiment
with [71]. Our proof-of-principle experiment, described in
Sec. IV, is marked with symbol. The numerical results ob-
tained with the master equation approach (see Appendix D)
are indicated with symbols, with the vertical bars indicating
the 1-σ statistical uncertainty.

B. NISQ boson sampler

In a realistic scenario typical of NISQ devices, the
sampling rate is significantly degraded by state prepa-
ration errors, atom losses while executing the quantum
circuit, and detection inefficiency. Along the lines of
Refs. [68, 72], we estimate the sampling rate as:

RNISQ = (ηinitηdet)
NPsurvR

ideal, (6)

where ηdet is the detection efficiency, ηinit the cooling
efficiency into the motional ground state, and Psurv is
the probability that all N atoms survive. We indeed
consider the sampling problem where no particle is lost
for the reasons outlined in Sec. I.

Equation (6) immediately reveals that the computa-
tion time 1/RNISQ scales exponentially with the number
of particles. It is therefore important to carefully evalu-
ate the expression in Eq. (6) to determine the conditions
when an atom boson sampler offers a quantum advantage
over classical computer simulations.

As described in Sec. II, cooling and detection of ultra-
cold atoms can be done efficiently, with reported values of
ηinit and ηdet above 90% [111, 113–115] and 99% [118],
respectively. The survival probability Psurv in Eq. (6)
depends on two main loss mechanisms, which we discuss
below.
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The first mechanism responsible for the loss of atoms
is represented by collisions of one of the N trapped atoms
with a molecule from the background gas at room tem-
perature, causing the atom to be ejected from the trap.
For N atoms, the probability that no collision with the
background gas occurs during a single step is given by the
exponential formula PBG

step = exp (−Ntstep/τBG), where
τBG is the background-gas-limited mean lifetime of a sin-
gle atom.

The second mechanism leading to the loss of atoms is
given by inelastic collisions of atoms occupying the same
lattice site. Inelastic collisions cause the atoms to change
their hyperfine state [126–128], and to acquire kinetic en-
ergy, thus leaving the motional ground state where they
are initially prepared. Such inelastic collisions typically
result in the loss of atoms from the trap because of the
large energy separation between hyperfine states (sev-
eral MHz between adjacent mF states, 9.2GHz between
different F states, expressed in frequency units). Three-
body collisions are neglected because the probability of
trios (and even higher occupations) compared to that
of pairs is negligible in the limit of large N (see Ap-
pendix B). To account for the two-atom lossy collisions,
we introduce the survival probability of a pair of atoms
located in the same lattice site, given by exp (−t/τTB),
where τTB is the mean lifetime limited by two-body colli-
sions. Note that for simplicity we use the same constant
τTB without differentiating between the three possible
spin configurations of the two bosons occupying the same
site. To estimate the number of pairs of atoms that can
collide onsite, we make the conservative assumption that
all states of N bosons have equal probability of being oc-
cupied at every time step. Thereby, we overestimate the
probability of inelastic collisions at the initial steps since
the atoms are first prepared in different sites. Under the
above assumption of uniform distribution and in the lim-
iting case of large N , the probability of finding k sites
occupied by exactly a pair of atoms can be estimated as
Pk = (3/2)k/e3/2k! (Appendix B). For example, k = 0
refers to the case where all atoms occupy distinct lattice
sites (collisionless subspace). The overall survival proba-
bility per time step, limited by two-body lossy collisions,
can thus be obtained by the evaluating the following sum,

PTB
step =

N/2∑
k=0

Pke
−k tstepτTB ≈ exp

[
3

2

(
e
− tstepτTB − 1

)]
, (7)

where the expression on the right-hand side holds in
the limit of large N (Appendix B). For weak two-body
losses, t � τTB, the survival probability PTB

step decays as
exp [−3tstep/(2τTB)], while in the limiting case of strong
losses the survival probability approaches P0, i.e., the
probability of the collisionless subspace.

Combining the two loss mechanisms, the survival prob-
ability per step is simply given by Pstep = PBG

stepP
TB
step.

Because the execution of the quantum circuit requires
M = N2 steps, the total survival probability of N atoms

is thus

Psurv = (Pstep)
M (8)

= exp{−N3tstep/τBG +N2(3/2)(e
− tstepτTB − 1)}.

A comparison of the two terms in Eq. (8) shows that
under typical conditions tstep � τTB � τBG two-body
collisions are the dominant loss mechanism for N <
Nthreshold = 3τBG/(2τTB). As will be argued below, real-
istic experiments are expected to operate with a number
of atoms below this threshold.

To evaluate RNISQ in Eq. (6), we consider two differ-
ent scenarios, which are based on conservative and state-
of-the-art assumptions, respectively. In the conservative
scenario, we assume a step duration tstep = 170 µs and
a mean lifetime limited by two-body collisions τTB =
40ms, while in the state-of-the-art scenario, we consider
tstep = 33 µs and τTB = 400ms. For the initialization
and detection times, we assume tin = 500ms and tdet =
100ms, with efficiencies of ηinit = 0.90 and ηdet = 0.99
for the conservative scenario, and ηinit = ηdet = 0.99 for
the state-of-the-art scenario. For the mean lifetime lim-
ited by background gas collisions, we take τBG = 360 s in
both scenarios. The threshold value Nthreshold is larger
than 1000 atoms in both scenarios, implying that for a
realistic number of atoms the dominant loss mechanism
is inelastic two-body collisions rather than collisions with
the background gas.

In Fig. 2, we show the sampling rate RNISQ as a func-
tion of the number of particles N , computed for an
atom boson sampler with conservative and state-of-the-
art assumptions (blue curves). To identify the regime of
quantum advantage, we present in the same figure the
sampling rate Rclassical of best algorithms [72] simulat-
ing a boson sampler using a standard laptop and the
Tianhe-2 supercomputer (gray curves). For the sake of
comparison, we also report in the figure the sampling
rate expected for NISQ photonic devices (purple curves)
for a conservative and state-of-the-art scenario; see Ap-
pendix C details.

To validate our model of the sampling rate RNISQ in
Eq. (6), we have carried out exact numerical simulations
based on a master equation approach (Appendix D) for
N up to 4. The result of the numerical simulations (blue
squares in Fig. 2) shows a very good agreement with the
curves from the model.

IV. EXPERIMENTAL DEMONSTRATION OF
THE HONG-OU-MANDEL INTERFERENCE

We have performed a proof-of-principle experiment
with two atoms in a four-mode interferometer, which
demonstrates the Hong-Ou-Mandel effect with atoms, as
schematically shown in the inset of Fig. 1. Such an ex-
periment establishes the basic building block of the en-
visaged boson sampling machine.
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The Hong-Ou-Mandel effect with atoms has been pre-
viously demonstrated experimentally using movable op-
tical tweezers [129], an optical lattice superimposed to
a box potential [130], and a free-fall atom interferom-
eter [101]. Compared to these setups [131] and to re-
lated proposals based on microwave-induced tunneling
[95], our setup is distinguished by the way modes are
coupled, where the the atoms are moved with state-
dependent shift operations [87] instead of having them
tunnel through an optical potential barrier. Our ap-
proach enables faster operations on the scale of few mi-
croseconds instead of milliseconds.

The setup used for our experimental demonstration
is schematically depicted in Fig. 3(a). We start with a
handful of Cs atoms, which are sparsely loaded in a one-
dimensional polarization-synthesized optical lattice [87].
Using the atom sorting technique presented in Ref. [88],
a pair of atoms is then selected and repositioned to a rel-
ative distance of twenty lattice sites with a success rate
of about 99%, mainly limited by an incorrect detection
of the initial distance between the two atoms [117].

To make the two atoms identical, we cool them to the
ground state of the lattice site potential in which they
are respectively trapped. For this purpose, we use re-
solved sideband cooling, where the sideband transitions
are driven by microwave radiation [132] for the direc-
tion along the lattice axis and by two Raman lasers [113]
for the transverse directions. The optical lattice pro-
vides a tight confinement (ν‖ ≈ 120 kHz sideband) along
its longitudinal direction, while a hollow-tube potential
collinear with the lattice axis also provides a tight con-
finement (ν⊥ ≈ 20 kHz sideband) in the transverse di-
rections. These trap frequencies are much larger than

detuning from carrier (kHz) detuning from carrier (kHz)

λ/4

λ/2 R

L

R

L

V WPvacuum cell H

H
ΦL

ΦR

V

Raman 1 Raman 2

microwave
SPP

(a)

(c)(b)

FIG. 3. Experimental setup probing the Hong-Ou-
Mandel interference with two atoms. (a) Atoms are
trapped in a polarization-synthesized optical lattice, formed
by two optical standing waves of left (L) and right (R) cir-
cular polarization, which can be shifted by varying the op-
tical phases φL and φR (adapted after [87]). Two Raman
laser beams perform transverse sideband cooling. A spiral
phase plate (SPP) generates a hollow-tube laser beam (inten-
sity profile in the inset), enhancing the transverse confinement
of the atoms. (b) Microwave and Raman (c) sideband spectra
show cooling along the longitudinal and transverse directions.

the recoil frequency (≈ 2 kHz), thus ensuring that the
Lamb-Dicke condition necessary for ground state cooling
is fulfilled. We alternate between microwave and Raman
sideband cooling 3 times in order to cool the atoms in
both the longitudinal and transverse directions. By al-
lowing a slight ellipticity of the transverse potential, we
lift the degeneracy of the transverse motional states, al-
lowing Raman sideband cooling to be effective along both
transverse directions. At the end of the cooling process,
the atoms are polarized in the |+〉 state with a probabil-
ity of 99%.

Figures 3(b) and 3(c) report a typical microwave and
Raman sideband spectrum recorded after the cooling pro-
cedure, demonstrating a pronounced suppression of the
cooling (blue detuned) sideband with respect to the heat-
ing (red detuned) sideband. From the ratio of the side-
band amplitudes [133], we derive a ground state prob-
ability of ≈ 95% for the longitudinal direction and of
≈ 84% for each transverse direction. Thus, the overall
probability of occupying the motional ground state can
be estimated as P3D ≈ 95% · 84% · 84% ≈ 69(9)%.

After sideband cooling, a magnetic field gradient along
the lattice direction (11.6G/cm) is ramped up in 10ms
and maintained until before detecting the atoms by flu-
orescence imaging. The magnetic field gradient induces
a position-dependent Zeeman shift (≈ 1.2 kHz per lat-
tice site), which is used to selectively transfer one of the
two atoms to the |−〉 state. We perform such a selective
spin flip by addressing the target atom with a microwave
narrow-bandwidth π pulse (Gaussian shape, 7 kHz rms
width). Spin-flip errors are clearly visible in the final flu-
orescence image, allowing them to be removed by post-
selection. The atom thus selected is then adiabatically
transported in 1ms to the site of the second atom by
shifting the V−(x) lattice potential. With the two atoms
occupying the same site, we apply a fast microwave π/2
pulse (square shape, 4.8 µs duration). This pulse acts
much like the beam splitter of a Hong-Ou-Mandel op-
tical interferometer, erasing the which-way information
of the two impinging particles. Last, we shift the V+(x)
lattice potential to map the the internal states, |+〉 and
|−〉, to two different locations 10 lattice sites apart, where
the atoms are detected by position-resolved fluorescence
imaging.

Two identical atoms are expected to bunch together
in the same lattice site with unit probability because of
the Hong-Ou-Mandel interference (quantum statistics).
In practice, however, the two atoms can differ from each
other because of their motional states. For two atoms
in orthogonal states (i.e., fully distinguishable particles),
the outcomes resemble those obtained from the toss of
two independent coins, yielding a bunching probability
of 1/2 (classical statistics). For partially distinguishable
atoms like ours, the probability to bunch is determined
by the so-called quantum purity of the state, γ ≈ P2

3D,
which represents the probability of the two atoms to
be indistinguishable: Pbunch = γ + (1 − γ)/2. Thus,
the Hong-Ou-Mandel interference is established if we can
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lattice sites
0 10 20-10-20

relative occurence
0 0.1 0.2 0.3 0.4 0.5 0.6

2 atoms

1 atom

1 atom

0 atoms

FIG. 4. Detection of the Hong-Ou-Mandel interfer-
ence. Right: measured probability for the detection of zero
(P0), one (P1), or two atoms (P2). The dash lines show the
case of distinguishable particles as a reference (see Appendix
E). The error bars represent the 68% Clopper-Pearson con-
fidence intervals. Left: representative fluorescence images of
the two atoms after the Hong-Ou-Mandel sequence, with the
internal states |−〉 and |+〉 mapped to the sites 0 and 10.
When the atoms are bunched in the same site, inelastic light-
induced collisions result in either one or zero atoms being
detected. Super-resolution microscopy allows resolving the
single lattice sites despite the diffraction-limited optical reso-
lution of ≈ 4 sites [117].

show that the bunching probability of the two atoms ful-
fills Pbunch > 1/2.

In the experiment, we distinguish three outcomes cor-
responding to the detection of zero, one, and two atoms
in the final fluorescence image. Figure 4 shows the exper-
imentally recorded probability for each of them. When
both atoms are positively detected, the atoms are found
at different locations, 10 sites apart (see fluorescence im-
age in Fig. 4). Importantly, such an outcome can only
occur when the two atoms have not bunched together.
Its probability is thus directly related to Pbunch through
the expression: P2 = S2(1 − Pbunch), where S is the
single-atom survival probability. From the measurement
of P2 = 19(3)% and S = 84(1)%, we therefore obtain
Pbunch = 73(4)%, which exhibits a 5-σ deviation from
the reference value 1/2.

Such a value of Pbunch establishes that the Hong-Ou-
Mandel interference of the two atoms occurs with a prob-
ability γ = 2Pbunch− 1 = 45(8)%. We expect that γ can
be significantly improved in the future with more efficient
ground-state cooling of the atoms in a three-dimensional
optical lattice. An analysis of all experimental outcomes,
including those with zero and one atom detected, yields
a value of Pbunch = 73(6)% that is statistically consis-
tent with the value we have derived from P2 only (see
Appendix E).

V. CONCLUSIONS

In this work, we have presented a scheme for the re-
alization of programmable NISQ circuits with neutral
atoms in state-dependent optical lattices. Quantum cir-
cuits based on the proposed scheme can be easily repro-
grammed and scaled up to hundreds of modes. Both
repogrammability and scalability are key to realize large
random unitaries a prerequisite for any large-scale bo-
son sampling machine. Furthermore, we have experimen-
tally demonstrated the basic building block of an atom
Boson sampling machine by executing a quantum cir-
cuit with four modes and two indistinguishable atoms.
We observed the atoms bunching in pairs, thus revealing
their bosonic nature. The Hong-Ou-Mandel interference
signal of the atom bunching is found to deviate from the
outcome predicted for distinguishable (i.e., classical) par-
ticles by 5σ. The degree of indistinguishability of the
atoms is determined by the probability of occupying the
motional ground state in the potential well of an optical
lattice site. We independently measured the motional
ground state occupancy of the atoms and showed that it
is in good agreement with the ground state occupancy
inferred from the observed bunching probability.

We have discussed in detail how to wire quantum cir-
cuits using a one-dimensional state-dependent optical lat-
tice. Our analysis of NISQ devices has shown that con-
trolling more than M = 500 lattice sites will be required
to reach a quantum advantage over best supercomputers.
Controlling such a large number of lattice sites may be-
come difficult to realize in a one-dimensional geometry.
However, our scheme can be readily extended to two-
dimensional state-dependent optical lattices [134], lead-
ing to a more compact and less resource-intensive plat-
form.

For future studies, it will be interesting to investigate
the role of controlled coherent collisions among atoms
[135], which can be exploited to imprint collisional phases
onto the quantum state when two or more particles meet
at the same site [136]. The inclusion of such nonlinear-
ities is shown to augment the amount of correlations in
the output distribution [137]. For this reason, there is a
potential that simulating a nonlinear boson sampler with
classical computers will be an even harder task than the
original linear problem.

Finally, we emphasize that beyond the boson sampling
application, the proposed scheme can be used to imple-
ment reprogrammable parametrized quantum circuits a
key component for quantum machine learning [28, 29].

APPENDIX A: QUANTIZATION AXIS TILT

Since the addressing beam is tightly focused onto sev-
eral sites of the optical lattice, its direction must be per-
pendicular to the optical lattice itself. With this geo-
metrical constraint, the only way to fulfill the condition
stated in Sec. IIA, namely that the quantization axis
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must have a nonzero component along the addressing
beam, is to allow the quantization axis to form an an-
gle, α, with respect to the optical-lattice direction.

However, a tilt of the quantization axis by α with re-
spect to the optical lattice causes an additional, unde-
sired effect. A wobble of the optical lattice potential’s
depth, V 0

±, is produced during state-dependent shift op-
erations, with its magnitude being an increasing function
of α. For small angles, though, the extent of this effect
is very small. For example, for α = 15°, it only causes a
reduction of the lattice depth by 3% during atom trans-
port, which can be easily taken into account and com-
pensated for by designing the transport operations.

APPENDIX B: PAIR DISTRIBUTION AND
EXTENDED MODEL

In the limit of large N and after averaging over random
quantum circuits, the state of the N bosons is described
by a uniform statistical mixture ρ̂u [97]. When N large,
the density matrix can be written as ρ̂u ≈

∑N/2
k=0 Pk|k〉〈k|,

where Pk is the probability of finding k sites populated
by exactly a pair of atoms, and |k〉〈k| represents a nor-
malized uniform sum of all states matching this criteria.
Notice that here we ignore all states where at least a
site is occupied by more than two atoms. Although valid
for large N , this approximation is not justified for inter-
mediate values of N . Thus, in the following we derive
a general expression P (k2, k3) to account for the prob-
ability of finding k2 sites occupied by exactly a pair of
particles, and k3 sites occupied by a particle trio. To
calculate P (k2, k3) we start by determining the number
of configurations containing k3 sites occupied by exactly
a trio of atoms. For that, we should first consider that
there are

(
M/2
k3

)
different ways in which k3 trios can be

arranged in M/2 sites (for simplicity, we consider M to
be even). Since each site has triple occupation, there
are four possible spin configurations, |3〉↓|0〉↑, |2〉↓|1〉↑,
|1〉↓|2〉↑ and |0〉↓|3〉↑, and the previous number of com-
binations should be multiplied by 4k3 to obtain the to-
tal number of configurations. Next, we should consider
that there are

(
M/2−k3

k2

)
combinations in which k2 pairs

can be arranged in the remaining M/2 − k3 sites. This
number, should be multiplied by 3k2 to account for the
three different spin configurations |2〉↓|0〉↑, |1〉↓|1〉↑, and
|0〉↓|2〉↑. Now, there are

(
M/2−k2−k3
N−2k2−3k3

)
different configura-

tions in which the remaining N − 2k2− 3k3 particles can
be placed inM−k2−k3 sites. Since in this case each site
is singly occupied, there are only two possible spin config-
urations, |1〉↓|0〉↑ and |0〉↓|1〉↑. Finally, all this should be
divided by the overall number of possible bosonic config-
urations, which is given by the multiset coefficient

((
M
N

))
.

The probability of having k2 sites occupied by pairs and
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FIG. 5. Extended probability function P (k2, k3). (left)
P (k2, 0) versus k2 is plotted (dotted blue lines) for N = 3, 9
and 27 and c = 1. When increasing N , P (k2, 0) tends to Pk2

(black curve). (right) P (0, k3) versus k3 is plotted (dotted
blue lines) for N = 3, 9 and 27 and c = 1. When increasing
N , P (0, k3) tends to zero.

k3 sites occupied by trios is then given by

P (k2, k3) = 4k3
(
M/2

k3

)
3k2
(
M/2− k3

k2

)
2N−2k2−3k3

×
(
M/2− k2 − k3
N − 2k2 − 3k3

)/((M
N

))
. (B1)

As anticipated in the main text, in the limit of large N
Eq. (B1) converges to a Poissonian distribution

Pk2 = lim
N→∞

P (k2, k3) =
λk2

eλk2!
, (B2)

with average value λ = 3/2c. Here, the constant factor c
denotes the ratio c =M/N2, which in the main text has
been simply assumed equal to 1.

In Eq. (B2) we see that, for large N , the probability
of having a particle trio vanishes, and the probability as-
sociated to the collision-free subspace (the subspace of
states where all atoms are at different sites), i.e. P (0, 0),
tends to exp(−3/2c). The situation for intermediate val-
ues of N has been illustrated in Fig. 5, where P (k2, 0)
(on the left) and P (0, k3) (on the right) have been plot-
ted for N = 3, 9 and 27 and for c = 1. In the left figure,
one can see how Eq. (B1) (blue dotted curves) tends to
Eq. (B2) (black solid curve) when increasing N . In the
right figure, we see that P (0, 1) has a non-negligible value
(between 0.0 and 0.1) for N = 3 or N = 9.

Now, let us consider how the uniform state ρ̂u evolves
according to two-body losses. Assuming that the sur-
vival probability of a state with k2 sites occupied by
a particle pair decays as e−k2t/τTB , we get that, for
large N , the total survival probability will be given by∑N/2
k2=0 Pk2e

−k2 t
τTB . This sum can be rewritten as

e−3/2
N/2∑
k2=0

1

k2!

(3
2
e−t/τTB

)k2 N→∞
= exp

[3
2
(e−t/τTB − 1)

]
,

(B3)
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which is equivalent to Eq. (7) in the main text. Taking
into account particle trios, the total survival probability
is

Pstep(t) =

N/3∑
k3=0

N/2−k3∑
k2=0

P (k2, k3)e
− (k2+3k3)t

τTB (B4)

instead. Note that a particle trio decays three times
faster than a particle pair. This can be understood
through the action of V (t) (defined in appendix D) in
a state with k3 sites containing a particle trio, that is,
V (t)|k3〉〈k3|V †(t) = exp (−3k3t/τTB)|k3〉〈k3|, when ig-
noring single-particle loss.

In Fig. 2 and in Appendix D, this model is used in-
stead of Eq. (7), as it is more accurate to describe the
scenario for small number of particles. Equation (B1)
can be further extended to account for the cases with k4
quartets, k5 quintets, etc. These have not been consid-
ered as their contribution is negligible even from small
number of particles.

APPENDIX C: SCALING LAW FOR PHOTONIC
AND CLASSICAL BOSON SAMPLERS

For a photonic boson sampler, the sampling rate is
given by

Rph =
1

e

R0

N
ηN , (C1)

where R0/N is the rate in whichN indistinguishable pho-
tons are created and η = ηfη

d
c is the success probability

of a single photon to complete the boson sampling ex-
periment from state preparation, to circuit transmission,
to single photon detection. The success probability η is
a product of a fixed probability ηf , that does not scale
with the number of modes in the circuit (preparation and
detection) and the circuit transmission probability ηMc ,
which accounts for the chance that a photon can be ab-
sorbed at each beamsplitter. In this manuscript we only
consider square circuits withM = N2 which implies that
the transmission probability ηMc depends quadratically
on the number of photons [103].

Our conservative values (lower edge of the blue area in
Fig. 2) are based on Ref. [71]. The authors use a single-
photon source working at R0 = 76 MHz and report a
boson sampling rate of Rph = 295Hz for 5-photons in
a 60 × 60 optical circuit. The transmission probability
through the entire circuit is reported as 98.7% and cor-
respondingly ηc = 0.9871/60, which in turn allows us to
extract the fixed preparation and detection probability
of ηf = 0.14. For the state-of-the-art estimate (upper
edge of the blue area in Fig. 2) we assume an overall
increased fixed preparation and detection probability of
ηf = 0.65 [69].

For a classical boson sampler, the time required
by a recently developed algorithm Ref. [72] based on

Metropolised independent sampling produce a valid sam-
ple scales as

Rcl = 2−N/(100 ã N2) (C2)

where ã relates to the speed of the classical computer.
This value has been reported to be ã = 3 × 10−15 s in
the case of the Tianhe-2 supercomputer [96]. For the
case of a regular computer we choose this value to be
ã = 3× 10−9 s.

APPENDIX D: BENCHMARK WITH EXACT
SIMULATIONS

Here, we introduce the master equation model used to
benchmark the sampling-rate formula for a small number
of particles. In our model, an N -particle initial state is
given by |ψ0〉 where 〈ψ0|ψ0〉 = 1 and

∑M
m=1 n̂m|ψ0〉 =

N |ψ0〉. Here, n̂m is the number operator acting on mode
m. The evolution of such a quantum state is given by

|ψ〉 = UMV (tstep)UM−1 . . . U1V (tstep)|ψ0〉, (D1)

where Uj are the coherent operations at step j, and
V (t) = exp (−Ht) represents particle decay acting for a
time t. Because our reduced Hilbert space accounts only
for states in the N -particle subspace, the final state |ψ〉 is
a pure state, and the survival probability of the process
is then characterized by its modulus, Psurv = 〈ψ|ψ〉. The
Hermitian operator H is

H =
1

2τBG

M/2∑
s=1

n̂s +
1

4τTB

M/2∑
s=1

n̂s(n̂s − 1). (D2)

Here, n̂s is the number operator acting on lattice site
s, where n̂s|n〉s = n|n〉s, with |n〉s being a Fock
state representing n atoms in site s. In Eq. (D2),
the first and second terms represents single-body and
two-body decay, respectively. Notice that V (t) acts
as exp (−Nt/2τBG) in states with zero pairs and as
exp (−Nt/2τBG) exp (−kt/2τTB) in states with k sites
populated by particle pairs.

In the following we benchmark the simplified models
used in the main text with exact numerical simulations
for N = 4. For that, we evaluate the appropriateness of
Eq. (B4) as a lower bound for the survival probability
at every time step. According to Eq. (D1), the survival
probability from time step j − 1 to j is given by pj =

〈ψj |ψj〉/〈ψj−1|ψj−1〉, where |ψj〉 =
∏j
i=1 UiV (tstep)|ψ0〉.

In Fig. 6 (a), we plot pj versus j and for different values
of τTB. For clarity, we omit the effect of single-particle
losses as their effect is trivial. For τTB = texec, there
is an almost exact correspondence between Pstep(tstep)
(black dashed line) and pj (blue solid curve) for all steps
j, suggesting that, for weak losses, Eq. (B4) provides an
accurate description of the decay of the success proba-
bility at every time step. Notice that, for simplicity, we
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FIG. 6. Exact numerical simulations for N = 4 and
M = 16. (a) Success probability pj from time step j − 1 to j
for different decay rates τTB = texec, τTB = texec/5 and τTB =
texec/20. Blue lines represent the exact simulation, where each
point is the average of 30 realizations with different random
unitaries. (b) Total success probability versus τTB, where the
blue solid line corresponds to the exact simulation and the
black dashed line corresponds to Pstep(tstep)

M .

chose a pure state with a uniform probability distribu-
tion |ψu〉 as the initial state. For lower values of τTB,
such as τTB = texec/5 or τTB = texec/20, this correspon-
dence only holds for the initial state, while for the rest
of the steps, Pstep(tstep) < pj . In Fig. 6 (b), we evalu-
ate 〈ψM |ψM 〉 in function of τTB (blue solid curve), and
conclude that Pstep(tstep)

M gives a correct description of
two-body losses for τTB & texec and it is a valid lower
bound for τTB . texec. Although this has been numer-
ically shown for N = 4, to the best of our knowledge,
there is no reason to believe in the change of this ten-
dency for larger values of N .

APPENDIX E: MONTE CARLO ANALYSIS OF
THE HONG-OU-MANDEL EXPERIMENT

In order to extract Pbunch from the experimental re-
sults, it is important to consider that atoms bunched in
the same site cannot be directly detected by fluorescence
imaging without losing them. In fact, measurements per-
formed in our apparatus on bunched atoms show that
with a probability PLIC,0 = 71(5)% no atom is left, while
with a probability PLIC,1 = 1−PLIC,0 just a single atom
is detected in the final fluorescence image as a conse-
quence of light-induced collisions [138]. Hence, identical

atoms lead to the detection of either zero or one atom,
while distinguishable atoms are both detected if after the
π/2 pulse they occupy different internal states. Exam-
ples of the three possible outcomes with 0, 1 and 2 atoms
detected are shown in Fig. 4(a).

To measure the single-atom survival probability S
we performed independent measurements similar to the
HOM interference experiment outlined in the main text,
omitting the microwave π/2 pulse. Without the mi-
crowave π/2 pulse Pbunch=0 which enables a direct mea-
surement of S. From this experiment we determine
S = 84(1)%. The value of S is limited by losses at the
beginning of the transverse cooling process, which could
be avoided in the future with an improved experimental
procedure.

We employ a Monte Carlo analysis to more rigorously
analyze the measured statistical outcomes. Our Monte
Carlo simulation mimics the experimental HOM inter-
ference sequence outlined in the main text. The Monte
Carlo simulation uses the predetermined light-induced
collision probability PLIC,0 and the single-atom survival
probability S. Further input parameters are the indistin-
guishability of the two atoms, the addressing probability
of the narrow bandwidth MW pulse, and the probabil-
ity to successfully reconstruct the position of the atoms.
We perform a nonlinear least-squares fit of the gener-
ated Monte Carlo events to the measured data to ex-
tract the underlying experimental parameters, yielding
Pbunch = 73(6)%.
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