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Learning and memory formation are processes which are still not fully understood. It
is widely believed that synaptic plasticity is the most important neural substrate for
both. However, it has been observed that large-scale theta band oscillations in the
mammalian brain are beneficial for learning, and it is not clear if and how this is linked to
synaptic plasticity. Also, the underlying dynamics of synaptic plasticity itself have not been
completely uncovered yet, especially for non-linear interactions between multiple spikes.
Here, we present a new and simple dynamical model of synaptic plasticity. It incorporates
novel contributions to synaptic plasticity including adaptation processes. We test its ability
to reproduce non-linear effects on four different data sets of complex spike patterns, and
show that the model can be tuned to reproduce the observed synaptic changes in great
detail. When subjected to periodically varying firing rates, already linear pair based spike
timing dependent plasticity (STDP) predicts a specific susceptibility of synaptic plasticity
to pre- and postsynaptic firing rate oscillations in the theta-band. Our model retains this
band-pass property, while for high firing rates in the non-linear regime it modifies the
specific phase relation required for depression and potentiation. For realistic parameters,
maximal synaptic potentiation occurs when the postsynaptic is trailing the presynaptic
activity slightly. Anti-phase oscillations tend to depress it. Our results are well in line
with experimental findings, providing a straightforward and mechanistic explanation for
the importance of theta oscillations for learning.
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1. INTRODUCTION
Synaptic plasticity likely is the key neural substrate underlying
learning and memory in the brain. Early ideas on the problem of
synaptic plasticity posited that positive correlations between neu-
ronal activities are the signal for the synapse to potentiate (see
e.g., review by Markram et al., 2011); later experiments showed
that the relevant signal is not just the average correlation of
activity, but rather the precise temporal order of single spikes at
the pre- and postsynaptic neuron (Markram et al., 1997; Bi and
Poo, 1998; Zhang et al., 1998; Feldman, 2000). This phenomenon
was termed Spike Timing Dependent Plasticity (STDP) and sub-
sumed in the well-known exponential spike pair STDP window
[Song et al. (2000), spSTDP in the following]. In many theoret-
ical studies, this window serves as a look-up table to compute
the weight change: Identify any pair of a pre- and a postsynap-
tic spike, locate the time difference between the two spikes in
the STDP window and add up the respective weight changes [see
Morrison et al. (2008) for a review of implementations]. While
this linear approach has its appeal, it is not sufficient, because the
contributions of spikes in sequences do not simply add up (Wang
et al., 2005). Some experiments find that a spike can suppress
the effect of later spikes of the same synaptic side (Froemke and
Dan, 2002; Froemke et al., 2006). Other experiments show that
contrary to expectation a single pre-post pair fails to potentiate
the synapse, but a pre-post-post triplet leads to strong long term

potentiation (LTP) (Sjöström et al., 2001; Nevian and Sakmann,
2006; Wittenberg and Wang, 2006). These findings highlight the
need for any accurate model of STDP to include non-linearities.
There are several different models available which attempt to
capture the experimental results. One class of models contains
phenomenologically motivated non-linear extensions of spSTDP
which are tailored to explain experimental data (Froemke et al.,
2006; Pfister and Gerstner, 2006; Schmiedt et al., 2010). A second
class are calcium-based models, which are grounded on biophys-
ical considerations. Most of these models invoke the calcium
control hypothesis, which states that a moderate increase of the
calcium concentration in the postsynaptic spine leads to long
term depression (LTD), while high concentrations lead to LTP.
The models then are concerned with the details of the calcium
dynamics (Shouval et al., 2002; Cai et al., 2007; Graupner and
Brunel, 2012; Uramoto and Torikai, 2013). A third class of mod-
els includes neuronal signals beyond spikes, most prominently the
postsynaptic membrane potential (Clopath et al., 2010). There are
few experimental studies which quantitatively examine the synap-
tic change in response to complex and versatile spike patterns
(Froemke and Dan, 2002; Wang et al., 2005; Froemke et al., 2006;
Nevian and Sakmann, 2006), however, none of the models cov-
ers all data sets [for the model of Uramoto and Torikai (2013),
see Discussion]. An attenuated synaptic response to repeated
high frequency spiking [Short term depression, (Tsodyks and
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Markram, 1997; Tsodyks et al., 1998; Zucker and Regehr, 2002)]
is explicitly included in several models (Froemke et al., 2006;
Cai et al., 2007; Schmiedt et al., 2010), which however, do not
explain the full range of experiments. In the following, we present
a minimal dynamical model which includes pre- and postsynap-
tic adaptation as well as an activating contribution, hence we call
it contribution dynamics model (CD model). Some of the ele-
ments of this model can be found in previous work (Schmiedt
et al., 2010). We evaluate the validity of the model by fitting it to
the four different data sets mentioned above, and compare its per-
formance with the Triplet model of Pfister and Gerstner (2006),
which is similar in scope and formulation, but lacks adaptation.

Another open question in neuroscience addresses the neural
substrate for the known importance of oscillatory brain states
for memory formation (Fell and Axmacher, 2011; Colgin, 2013).
Many studies find that the mere presence of oscillations of
increased theta power is enough to enhance the learning process,
even if the oscillations are present before (and during) the learning
trial (Seager et al., 2002; Nokia et al., 2008; Guderian et al., 2009).
Other studies find that not theta power, but global theta synchro-
nization promote good learning efficacy (Mölle et al., 2002; Burke
et al., 2013). It is likely that theta synchronization is imposed on
the affected brain areas by some higher area, which causes the
synchronization with a phase difference of around zero, such that
maxima of activity in synchronized areas occur at the same time
(Fell and Axmacher, 2011). It was suggested that the reason is
a specific phase dependence of synaptic plasticity in theta oscil-
lations: If activity maxima in the pre- and postsynaptic neurons
co-occur, the synapse potentiates, if the presynaptic neuron bursts
during the trough of the theta oscillation, the synapse depresses
(Pavlides et al., 1988; Hyman et al., 2003).

Can the combination of these findings be explained by a sin-
gle mechanism? We address this question with the hypothesis
that the reason lies in the filter properties of synaptic plastic-
ity, which can be investigated with models of synaptic plasticity.
To test this we assume that theta-band oscillations in large scale
signals like EEG or ECoG are caused by corresponding periodic
modulation of neuronal activity. For simplicity we neglect spike-
spike correlations and assume stochastic spiking. We investigate
the synaptic susceptibility to oscillations from the delta band to
the gamma band (1–80 Hz) in spSTDP and in the CD model.
For comparison, we did the same with a range of other models
(Shouval et al., 2002; Pfister and Gerstner, 2006; Cai et al., 2007;
Graupner and Brunel, 2012). We found that for spSTDP with
physiological parameters synapses are susceptible to oscillations
in the theta band (4–8 Hz). The same susceptibility is evident also
in the CD model, which however, shifts the phase dependence of
LTP close to zero phase difference, in accordance with experimen-
tal results. By removing single contributions from the CD model
and investigating the resulting changes of the susceptibility, we
find that presynaptic adaptation and a conditional activation are
the necessary prerequisites for phase zero susceptibility.

2. MATERIALS AND METHODS
In the following, we use a short hand notation to denote spike
patterns. “Pre” or “Post” refer to the origin of the spike, the pre-
or postsynaptic neuron. A string like “pre-post” denotes first a

presynaptic spike a postsynaptic spike, regardless of exact tim-
ing. “Post-pre-post-post” describes a postsynaptic spike, then a
presynaptic spike, followed by two postsynaptic spikes.

2.1. MODELING SPIKE PAIR STDP WITH DIFFERENTIAL HEBBIAN
LEARNING

The differential Hebbian learning rule is a rather simple algorithm
for weight changes (Kosko, 1986). The synapse changes propor-
tional to the product of the presynaptic activity and the temporal
derivative of the postsynaptic activity. For spiking neurons, how-
ever, this makes little sense, and one has to introduce some kind of
low pass filtering of neuronal activities to gain a signal suitable to
calculate synaptic change. As usual, we use delta pulses to model
neuronal spike trains:

xi(t) =
∑

k

δ(t − tk
i ), (1)

where i ∈ {pre, post} denotes the location of the spiking event.
Each spikes leaves an exponential trace yi on its synaptic side,
which can be described by the differential equation

ẏi = − yi

τi
+ xi. (2)

We use the dot notation to denote temporal derivatives. The
weight change is given by

ẇ ∝ ypre · ẏpost. (3)

This simple system of equations is equal to (balanced) spSTDP, as
we show now. Consider the solution of Equation (2) to a single
spike at time ti:

yi = �(t − ti)e
− t − ti

τi . (4)

Here, �(t) is the Heaviside function, i.e., �(t) = 0 for t < 0 and
�(t) = 1 everywhere else. The weight change is calculated via

�w = cw

+∞∫
−∞

ypre ẏpost dt, (5)

where we introduce the constant of proportionality cw. The
weight change resulting from a pair of one pre- and one post-
synaptic spike is given by

�w = cw

⎧⎪⎪⎨
⎪⎪⎩

(
1 − 1

1 + τpost
τpre

)
exp

(
− tpost − tpre

τpre

)
for tpre < tpost

− 1
1 + τpost

τpre

exp
(
− tpre − tpost

τpost

)
for tpre > tpost.

(6)
This is the standard STDP window for balanced spSTDP, where
the areas under the LTP and LTD part of the curve are of exactly
equal size, and the decay time constants are given by τpre and τpost

for LTP and LTD, respectively. Due to the linearity of the equa-
tions, the learning rule is also completely linear, and every spike
pair in a given spike pattern is treated the same by the learning
rule.
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The STDP window in differential Hebbian learning is deter-
mined by three parameters. To scale the LTD and LTP parts of
the window relative to each other a fourth parameter is needed.
We split the weight change into a depression and a potentia-
tion part by inserting Equation (2) into (3) and introduce a scale
parameter q:

ẇ = cwypre

(
qxpost − ypost

τpost

)
. (7)

This manipulation changes the STDP window to:

�w = cw

⎧⎪⎪⎨
⎪⎪⎩

(
q − 1

1 + τpost
τpre

)
exp

(
− tpost − tpre

τpre

)
for tpre < tpost

− 1
1 + τpost

τpre

exp
(
− tpre − tpost

τpost

)
for tpre > tpost.

(8)
Adjusting q scales the LTP part of the STDP window as required.
For example, setting q = 1/(1 + τpost/τpre) cancels LTP for every
possible spike pattern. There are experiments which show that
for low frequencies of spike pair induction, pre-post pairs do not
change the synapse, while post-pre pairs still depress the synapse
(Sjöström et al., 2001; Nevian and Sakmann, 2006; Wittenberg
and Wang, 2006). However, other spike patterns in these studies
potentiate the synapse, which suggests that in order to generalize
this description of STDP, one has to turn q into a function of time.

2.2. THE CONTRIBUTION DYNAMICS MODEL
For the CD model we use the differential Hebbian learning rule
described above as basis, and extend it by several new equations.
First, we introduce an adaptation variable ui for each synaptic
side. This dynamics resemble those of the presynaptic resources in
models of synaptic short term depression (Tsodyks and Markram,
1997; Tsodyks et al., 1998). Its effect is the attenuation of the
impact of rapid spiking on the synapse, and we model it by

u̇i = 1 − ui

τrec
i

− ciui(t − 0)xi. (9)

The update of the trace Equation (2) is now changed to

ẏi = − yi

τi
+ ui(t − 0)xi, (10)

where we write ui(t − 0) to emphasize that in order to update
each variable in case of a spike, one has to use the value of ui

shortly before the spike.
If the learning rule Equation (3) was left unchanged, the effect

of the adaptation variables ui would be a rescaling (shrinking) of
the STDP window with consecutive spikes, and relaxation dur-
ing silence. This property removes the linearity of the original
STDP learning rule, as the influence of each spike on the synapse
depends on the history of spiking of the respective neuron. We
introduce an additional non-linearity, by allowing q (Equation 7)
to vary over time:

q̇ = qmin − q

τq
+ cq�(ypre − ϑq)xpost, (11)

where � is again the Heaviside function. q is a trace of the post-
synaptic activity conditional on the presynaptic trace: Only if
ypre > ϑq at the time of a postsynaptic spike, q increases. For all
other times, it relaxes back to qmin. The actual weight change is
finally given by

ẇ = cwypre

(
q(t − 0)upost(t − 0)xpost − ypost

τpost

)
. (12)

The specific formulation of q is motivated by its simplicity—
linear ordinary differential equation of first order for the decay
term—and several observations in the data of Nevian and
Sakmann (2006). In these experiments, a pre-post pair does
not change the synapse, but the pre-post-post triplet does. The
translation to an STDP framework is that the LTP part of the
STDP window needs to vanish when the synapse is relaxed (any
previous activity took place relatively long ago), but reappear
in reaction to certain activity patterns. In this example (pre-
post vs. pre-post-post), the desired outcome can be achieved
by Equation (11) without the Heaviside function: q̇ = (qmin −
q)/τq + cqxpost. However, in the case of a post-post-pre-post pat-
tern (Figure 2C third data point from left) this would lead to a
huge upscaling of the LTP part, which was not observed. This
prompted us to install the threshold such that recent presynap-
tic activity gates the increase of q. We chose the all-or-none
threshold to exclude any non-linear effects of q on the STDP win-
dow. Because of the upregulation of potentiation, we call q the
activation variable.

Figure 1 gives an overview over the components of the CD
model.

2.3. FITTING THE CD MODEL TO EXPERIMENTAL DATA
To evaluate the ability of the CD model to reproduce experimental
findings, we matched its parameters to the following four in vitro
data sets:

• Visual cortex of young rats, thick tufted cells in layer 5 [VC5,
Sjöström et al. (2001)].

• Hippocampal neurons of rat embryos in culture [HC, Wang
et al. (2005)].

• Somatosensory cortex of young rats, pyramidal cells in layer
2/3 [SC23, Nevian and Sakmann (2006)].

• Visual cortex of young rats, pyramidal cells in layer 2/3 [VC23,
Froemke et al. (2006)].

In these experimental studies, the change of synaptic efficacy
is given as the ratio of the isolated EPSP (which we assume
to be proportional to the synaptic weight) after and before the
induction protocol:

EPSP ratio = EPSPafter

EPSPbefore
= wafter

wbefore
= wbefore + �w

wbefore

= 1 + �w

wbefore
. (13)

We identify �w with the weight change in the CD model.
Additionally, we assume that the synaptic weight before the
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FIGURE 1 | Overview over the CD model and its constituents. Presynaptic (top) and postsynaptic (bottom) contributions to synaptic plasticity are shown.
Arrows indicate direction of influence according to model equations. On the right side example spike trains and resulting traces of the variables are shown.

induction has a fixed value. The goal of the fitting pro-
cess is to compare the experimental synaptic change with the
model prediction �wCD and find the set of parameters π =
{τrec

pre, cpre, τ
rec
post, . . . } which minimizes the error

E = 1

N

N∑
i = 1

(
�w

exp
i − �wCD

i (π)

SEMi

)2

, (14)

where N is the number of experiments in the data set, i the index
of the experiment and SEMi the published standard error of the
mean for experiment i. The minimization of the error was done
by a brute force search in the space of parameters. The bounds
we defined for the search are given in Table 1 (see Appendix
for additional remarks on the bounds). For each data set, some
parameters were set by hand to fixed values as follows: We set
qmin according to the outcome of the pre-post spike pair exper-
iment found in every data set. If the pre-post spike pair resulted
in no change of synaptic efficacy, qmin = 1/(1 + τpost/τpre), oth-
erwise qmin = 1. The time constants τpre and τpost turn up as the
decay constants of the STDP window (see Equation 8). For the
experiments in VC23 and HC these values were explicitly given,
so we did not change them. For the other two cortical data sets,
we used the values of the experiment in VC23. As each spike pat-
tern contained only one presynaptic spike, no information could
be obtained for presynaptic adaptation for the data from SC23.
This left for fitting here τrec

post, cpost, τq, cq, ϑq and cw. In all other
data sets, τrec

pre and cpre were additionally fitted.

2.4. FITTING THE TRIPLET MODEL TO EXPERIMENTAL DATA
The CD model is structurally similar to the Triplet model con-
ceived by Pfister and Gerstner (2006). The latter is a set of linear
differential equations of first order that describe traces of activity
at the synapse. Each spike leaves two traces at the synapse: r1, r2

for the presynapse and o1, o2 for the postsynapse, which interact

Table 1 | Bounds on parameters in the CD model.

Parameter Unit Min Max

τrec
pre s 0.001 3

cpre 0 1

τrec
post s 0.001 3

cpost 0 1

τq s 0.001 3

cq 0 10

ϑq 0 0.2

cw 0.001 0.1

to determine the weight change. For the update of the traces, there
are two possible choices. The first one is that each spike increases
its respective traces by one; this is equivalent to the yi dynam-
ics of Equation (2). Second, at the time of a spike the respective
traces always jump to unity. The equation of the traces changes
to ẏi = −yi/τi + (1 − yi(t − 0))xi. The first update rule is called
“all to all interactions,” the second “nearest neighbor interac-
tions.” The weight change in the Triplet model then consists of
a standard spike pair STDP rule plus the spike triplet interaction,
which is proportional the product r1 · o2 (o1 · r2) at the time of
a postsynaptic (presynaptic) spike for LTP (LTD). The main dif-
ferences between the two models are that in the CD model ypre

and ypost are subject to spike amplitude adaptation and that the
triplet interactions are replaced by the (conditional postsynaptic)
activation q. For comparison, we fitted the triplet model to the
data sets VC23, SC23, and VC5. The Triplet model has been fit-
ted to the HC data set, the parameters can be found in Pfister and
Gerstner (2006). It has also already been fitted to the VC5 data
set (same article). However, the spike induction protocol used for
fitting was uniformly 60 spike pairs with �t = ±10 ms delivered
at different frequencies (1–40 Hz). In the study of Sjöström et al.
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(2001), spike pairs for frequencies greater than 1 Hz were deliv-
ered in 15 bursts of 5 pairs with varying intra burst frequency,
with bursts being 10 s apart. We re-fitted the Triplet model to VC5
to better compare the two models. In contrast to the original arti-
cle, we furthermore allowed the triplet interaction parameters A+

3
and A−

3 to become negative to account for adaptation in the data.
The fitting procedure was similar to the fit of the CD model; in
particular, the STDP window time constants τ+ and τ− were not
fitted, but set to predetermined values. The bounds defined for
the parameters are given in Table 2.

2.5. MEAN WEIGHT CHANGES IN MODELS OF STDP
The formulation of spSTDP as differential Hebbian learning
allows for a simple analytical treatment of continuous firing rates
rather than spike events. Under the assumption of poissonian
spiking and vanishing correlations between pre- and postsynaptic
spikes, one can easily compute the mean of the traces yi:

〈
ẏi
〉 = 〈

− yi

τi
+ xi

〉
= −

〈
yi
〉

τi
+ ri(t), (15)

where ri(t) = 〈xi〉 is the continuous and time-dependent firing
rate of neuron i. Because of the vanishing spike-spike correlations,
both traces combine to give the weight change as

ẇ = ẇ+ + ẇ− = cwq
〈
ypre

〉
rpost −

〈
ypre

〉 〈
ypost

〉
τpost

, (16)

where
〈
yi
〉

is the solution of differential Equation (15) for a given
time course of the firing rates ri(t).

In the non-linear models of STDP [CD model, Triplet model,
the three Calcium models (Shouval et al., 2002; Cai et al., 2007;
Graupner and Brunel, 2012)], the numerous non-linearities in
each model did not allow to compute and solve the mean field
equations. We therefore computed the average weight change
for a given stimulation protocol and model by generating many
realizations of the same continuous and time dependent firing
rates from inhomogeneous poisson processes (Dayan and Abbott,
2005), which we fed into each model. As in the analytical calcu-
lations for spSTDP, we assumed poissonian firing with vanishing
spike-spike correlations from synaptic transmission. In this case
the probability of finding a spike in a time bin of width �t is
given by

p(spike in neuron i in �t|t) = ri(t)�t, (17)

where ri(t) is the firing rate of neuron i as a function of time.

Table 2 | Bounds on parameters in the Triplet model.

Parameter Unit Min Max

τx s 0.0001 5

τy s 0.0001 5

A+
2 0 0.1

A+
3 −0.1 0.1

A−
2 0 0.1

A−
3 −0.1 0.1

2.6. STDP AND THETA OSCILLATIONS
We hypothesize that the link between theta oscillations and learn-
ing lies in certain filter properties of the synapse, which likely
depend on the model of synaptic plasticity used. We investigate
synaptic filter properties in a variety of different models: spSTDP,
the CD model, the Triplet model, and three different calcium
models, with the aim to carve out prerequisites for a synaptic fil-
ter. We used a sinusoidal oscillation to model the firing rate. For
the case of spSTDP, the firing rate is given by:

ri(t) = 1 + ε cos(ωmodt − φi) . (18)

Here, ε ∈ [0, 1] is a parameter that controls the amplitude of the
oscillation, ωmod = 2πfmod is the modulation frequency, and φi is
the phase of the oscillation. Because only relative phase is impor-
tant for the weight change, we set φpre = 0 and φpost = �ϕ. We
do not specify an absolute baseline firing rate for spSTDP, because
it is just a scale factor and does not qualitatively change the results.
The value we report is the weight change per time averaged over
one period of oscillation. This is constant after transients from the
onset of neuronal activity died out:

�w = 1

T

t′ + T∫
t′

ypre ẏpostdt . (19)

T = 1/fmod is the period of the modulatory oscillation, and t′ �
τpre, τpost is chosen such that any transient behavior in the traces
yi due to switching on the activity are gone. We derive the ana-
lytical solution for Equation (19) in the appendix, and use it to
generate the plots in Figure 4.

In the case of the non-linear models of STDP a baseline fir-
ing rate (the firing rate averaged over one period of oscillation)
has to be specified. The respective firing rates of the pre- and
postsynaptic neurons change to

rpre(t) = rbase (1 + ε cos(ωmodt))

rpost(t) = rbase (1 + ε cos(ωmodt) − �ϕ) .
(20)

To simplify the analysis, both neurons had the same baseline fir-
ing rate and the same modulation frequency. Similar to spSTDP,
in the CD model and the Triplet model we calculated the weight
change per time by averaging over an integer multiple of the oscil-
lation period starting after enough time has passed to settle the
transient:

�w = 1

NT

〈 t′ + NT∫
t′

ẇmodel dt

〉
, (21)

where model ∈ {CD, Triplet} refers to the model used. In all sim-
ulations, t′ = 2 s and NT = 98 s; we simulated only integer values
of the modulation frequencies, so NT is always a multiple of the
period.

For the three calcium-based models the procedure was differ-
ent. All models have inherent weight limits. As a consequence, the
rate of weight change itself is a function of time which does not
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settle into an equilibrium other than saturation. Therefore it is
not feasible to calculate an average weight change rate as with the
spike pair models. We rather let the two neurons fire with periodic
firing rates for some time [2 s and 5 s in the model of Shouval et al.
(2002), 10 s in the model of Cai et al. (2007), 5 s in the model of
Graupner and Brunel (2012)], after which we silenced the neu-
rons, but continued to simulate until the synapse settled into an
equilibrium. With all models, we report the final weight, with
w = 1 being the initial weight.

The fitting procedure and numerical simulations (Monte-
Carlo-Simulations) were done with custom-made programs in
Matlab (Mathworks Inc., Natick, MA, USA). Numerical integra-
tion of non-linear differential equations was done with Eulers
method and a step size of 0.1 ms. Linear differential equations
were solved analytically, and time evolution of the variables was
calculated based on the spike times.

3. RESULTS
3.1. THE CD MODEL CAPTURES A WIDE RANGE OF DYNAMICAL

PHENOMENA
The CD model describes the non-linear interactions between
spikes on either synaptic side acting on the contributions to
synaptic changes. To evaluate its ability to capture synaptic
changes, we chose four studies from the literature which mea-
sure synaptic changes in response to complex spike patterns,
and matched the model parameters to the experimental results.
Because the experiments were conducted under different condi-
tions (brain region, presynaptic stimulation method), the param-
eters had to be fitted separately for each data set. In the following
we describe the experiments and how the CD model recreates
them in relative detail, to illustrate the action of the different
contributions.

In all experimental studies, spikes were artificially induced by
application of current pulses to patched neurons, or sometimes in
the case of presynaptic spikes by stimulating the tissue close to the
dendritic tree of the postsynaptic neuron.

3.1.1. Area VC5 (Sjöström et al., 2001)
The experiments were a series of pre-post and post-pre pairs,
with fixed timing of 10 ms between the spikes of one pair. The
spike pairs were applied with 0.1 Hz (low frequency) 50 times,
or organized in “5–5”-bursts (moderate to high frequency), and
each burst was induced 15 times. Each burst consisted of 5 spike
pairs at intervals of 100, 50, 25, and 20 ms. Two consecutive bursts
were 10 s apart. Pre-post spike pairs at low frequency (0.1 Hz) do
not change the synapse. We reflect this in the CD model by set-
ting qmin = 1/(1 + τpost/τpre). For post-pre spike pairs of burst
frequencies up to 20 Hz, the weight change remained constant
(Figure 2B, blue bars). For pre-post pairs, however, potentia-
tion increased with increasing burst frequencies well below 20 Hz
(Figure 2A). In the CD model, �w− is proportional to the inte-
gral of the product of the pre- and postsynaptic activity traces ypre

and ypost. Consequently the time window of interaction is limited
by the smaller of the two time constants of decay τpre = 14 ms and
τpost = 42 ms. Because at 20 Hz the distance between each pair
is 40 ms, each spike pair remains effectively isolated, and �w−
only depends on the number of spike pairs. For pre-post pairs,

FIGURE 2 | Best fit of CD model and Triplet model to the data in VC5

(top) and SC23 (bottom). Blue bars show experimental weight change ±
SEM, red bars show weight change predicted by CD model, and green bars
show Triplet model for comparison. Insets show example spike patterns.
(A,B) Experiments in VC5. (A) shows “5–5” bursts with pre- before
postsynaptic spiking, (B) with order reversed. Both models capture the
transition of LTD to LTP with increasing burst rate. (C–E) Experiments in
SC23. The CD model quantitatively recreates the strong non-linearity of the
transition from no change to LTP with the addition of a postsynaptic spike
[(D): left vs. second-to-left, and (C): 50 ms].

however, the outcome is determined by the state of the variable
q at the time of the postsynaptic spike. The time constant τq is
longer (50 ms), which means that as the frequency of spike pairs
is increased, at the time of the next postsynaptic spike the vari-
able q is still well above baseline level and �w− and �w+ do
not cancel anymore, but �w+ “wins.” For even higher spike pair
frequencies (40 and 50 Hz), the spike pairs are so close together
that the traces yi interact. Because q has a considerable build-up
under these conditions, LTP is favored regardless of spike order.
This captures the experimental result that for burst frequencies of
40 and 50 Hz, post-pre pairings potentiate the synapse instead of
depressing it.

3.1.2. Area SC23 (Nevian and Sakmann, 2006)
In this study, one presynaptic spike was paired with a train of one
to three postsynaptic spikes. Each pattern was repeated 60 times at
a repetition rate of 0.1 Hz. Lacking multiple presynaptic spikes the
parameters of presynaptic adaptation could not be determined,
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therefore we set upre = 1 and cpre = 0 during the fitting proce-
dure. The pre-post spike pair at �t = 10 ms does not change the
synaptic efficacy, consequently we set qmin = 1/(1 + τpost/τpre).
However, LTP is reported for pre-post-post triplets of sufficient
postsynaptic burst frequency (≥50 Hz, see Figure 2). This is an
example for a “priming” of the synapse. In the CD model, the
conditional modulation of LTP by q (Equation 11) achieves this.
Pre-post pairs induced with low inter pair intervals (5 s and
longer) do not change the synapse, but allow LTP to be expressed
if a second postsynaptic spike follows the leading pair quickly.

3.1.3. Area HC (Wang et al., 2005)
The experimental setup of this study differs most from the oth-
ers. The measurements were done in cultured neurons from the
hippocampus of rat embryos, compared to neocortical slices of
young rats in all other experiments. Also, the spike pattern rep-
etition frequency was higher (1 Hz compared to 0.1–0.2 Hz).
The main result of these experiments is the synaptic change in
response to several pre-post-pre and post-pre-post spike triplets.
For identical timings, spSTDP predicts the same synaptic change
for both triplets, because the same post-pre and pre-post pairs
occur. But in the experiment, a post-pre-post triplet leads to
LTP (Figure 3C), while a pre-post-pre triplet does not change
synaptic transmission (Figure 3B). This suggests that the lead-
ing postsynaptic spike “primes” the synapse for potentiation,
without the need to meet the condition for q (Equation 11).
In the CD model, this requires a negative threshold ϑq < 0.
Compare this to the data in SC23, where the priming is con-
ditional on a pre-post pair, instead of a single postsynaptic
spike.

3.1.4. Area VC23 (Froemke et al., 2006)
In this study, several of the features of spike integration were
examined. First, “5–5” bursts were conducted similar to the
experiment in VC5 (Figure 3A, blue bars). For post-pre spike
pairs, LTD converted to LTP with burst frequencies greater than
50 Hz. Second, “n − 1” spike patterns were examined to char-
acterize presynaptic adaptation (termed “suppression” in the
original article). One to five presynaptic spikes in a burst at 100 Hz
were paired with one postsynaptic spike either before or after the
presynaptic burst. The result from this experiment can be inter-
preted such that only the leading presynaptic spike of the burst has
a noteworthy influence on synaptic change. In the CD model, this
is reflected by strong presynaptic adaptation in the fit to the data.
Third and last, “1 − n” experiments paired one presynaptic spike
with one to five postsynaptic spikes. (Figure 3D). An interesting
result is the comparison of the post-post-post-post-pre-post pat-
tern (Figure 3D, left) with the post-pre-post triplet: Both result in
the same synaptic change. One possible interpretation is that the
leading postsynaptic spikes had little to no influence on the synap-
tic change. In the CD model, this requires that the threshold ϑq is
greater than zero, so that no modulation of �w+ caused by an
increase of q happens in both spike patterns. If ϑq was smaller
than zero, the postsynaptic bursting before the conclusive pre-
post pair would lead to a build up of the variable q, which in turn
would cause �w+ to be strongly upregulated and to “overwhelm”
�w−, which was not observed.

FIGURE 3 | Best fit of CD model and Triplet model to the data in HC

(A–D) and VC23 (E–H). In HC, CD model and Triplet model capture the
main feature of the results, where pre-post-pre triplets do not change the
synapse, while post-pre-post triplets show strong LTP. The +5, −15 triplet
(B, right) however, can not be reproduced by both models, leading to a
relatively large error. In VC23, adaptation is evident in (G). Adding more
spikes in front of a pre-post pair decreases LTP, contrary to expectation. The
Triplet model has no mechanism which can deal with that.

The parameters of the best fits to all data sets are shown in
Table 3.

3.1.5. Testing the importance of adaptation
The parameters resulting from the fits show substantial postsy-
naptic adaptation only for the VC23 data set whereas postsynaptic
adaptation is non-existent in VC5 or has very fast recovery
reflected by short time constants in SC23 and HC. We there-
fore tested if postsynaptic adaptation was necessary to explain
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Table 3 | Parameters of CD model of best fit for each data set.

Data set τpre (ms) τpost (ms) τrec
pre cpre τrec

post cpost qmin τq cq ϑq cw Error

VC5 14 42 94 ms 0.7 – 0 0.25 46 ms 1.93 <0 0.03 0.17

HC 17 34 3 s 0.2 10 ms 0.9 1 20 ms 3.0 <0 0.009 2.81

SC23 14 42 – – 20 ms 1 0.25 0.5 s 8.5 0.1 0.018 0.81

VC23 14 42 0.6 s 0.7 0.3 s 0.9 1 0.3 s 6.6 0.1 0.033 0.78

Table 4 | Errors for reduced CD model.

Data set Full model cpost = 0 cpre = 0 No adaptation

VC5 0.17 – 0.38 0.59

HC 2.81 2.92 3.55 3.62

SC23 0.81 1.0 – 1.0

VC23 0.78 6.1 7.3 7.8

the data by fitting it a second time with cpost enforced to be
zero; this is effectively switching off postsynaptic adaptation. The
resulting errors are given in Table 4. For HC, the increase in
error is about 3%, for SC23 the error increases by 23%. This
is not a large difference, and it follows that postsynaptic adap-
tation is not necessary to explain these data sets. In the VC23
data set, the error increases sevenfold. If the CD model is fitted
to the data with presynaptic adaptation switched off (cpre ≡ 0
for the fitting), the error increases for HC by 26%, for VC5 it
more than doubles, and for VC23 the increase is greater than
sevenfold.

3.1.6. Comparison with triplet model
The Triplet model (Pfister and Gerstner, 2006) is a model of
STDP which is in scope and formulation similar to the CD model.
Both extend spSTDP with several non-linearities to account for
actual measurements of synaptic changes in complex spike pat-
terns. To gain a relative measure of fitting performance of the CD
model, we compare its fit to the different data sets to the ones
of the Triplet model. Because in the original article the Triplet
model was fitted only to VC5 and HC, we did our own fits to
the remaining two data sets, and a re-fit to VC5 (see Materials
and Methods). The best fits of the triplet model together with
the best fits of the CD model to the different data sets are
shown in Figures 2, 3 (green bars). The respective parameters
are given in Table 5. For VC5 the change of the experimental
protocol in the original article for this data set did not change
the resulting error by much, nor the original conclusion that the
error is lower with nearest neighbor interactions; the error is
0.51 for all-to-all interactions (parameters not shown). The CD
model reaches a lower error (0.17 compared to 0.33), but both
models follow the most prominent feature of this data set, the
conversion of depression to potentiation with increasing repeti-
tion frequency. The preference of nearest neighbor interactions
is also found in the fit to VC23, where the error is 25% lower
for the model with nearest neighbor interactions compared to
all-to-all interactions. An interesting feature of the parameters
is that the amplitude of “potentiating” triplet interactions A+

3
is negative in VC23. The reason is that the adaptation found

in VC23 needs to be accounted for. The triplet model has no
(explicit) adaptation, but negative values for A+

3 mimic part of the
effect.

For the data from SC23 with τ+ and τ− taken from VC23
the fit with all-to-all interactions led to the smallest error (1.69
compared to 1.97). The amplitude parameter A+

3 is two orders of
magnitude greater than the others. This gets outweighted by the
time constant τx = 7.7 s, which leads to an high accumulation of
trace r2 that controls the triplet depression. A second fit which
allowed τ+ and τ− to vary (eight parameters in total) reached a
lower error of 1.25, but the resulting time constants of the STDP
window have the property that τ+ > τ−, which is the reverse of
what is usually found. For the fit of the “minimal” CD model the
error is 1.0, but here only four out of seven parameters were var-
ied: τq, cq, ϑq and the scale parameter cw. The other three param-
eters are kept fixed: τpre and τpost are set to the values from VC23,
and qmin is determined by the outcome of the pre-post spike pair
experiment.

3.2. SYNAPTIC THETA-SUSCEPTIBILITY IN spSTDP
Several studies found that the presence of oscillations with high
theta power or large scale theta synchronization in EEG or LFP
enhance learning. (Mölle et al., 2002; Seager et al., 2002; Guderian
et al., 2009). A possible explanation for these findings could be
an underlying filter property of the single synapse, i.e., synap-
tic change depends on oscillating activity of both neurons in a
way specific to the oscillation frequency. To investigate this, we
assume a very simple model system: Two connected neurons fire
stochastically with vanishing spike-spike correlations, i.e., cor-
relations induced when a presynaptic neuronal activity changes
the probability of postsynaptic spikes. Theta oscillations found in
EEG or LFP are modeled by periodic sinosoidal modulation of
the baseline neuronal activity. Neurons fire spikes with an average
rate that is independent of the modulatory rate. Such a modu-
lation could be e.g., induced by periodic inhibition delivered by
external sources. As a first step we investigate the filter proper-
ties of spSTDP. In Figure 4 we display the rate of weight change
as a function of modulation frequency fmod and phase difference
�ϕ for five different values of q, corresponding to differently
biased STDP. For a given fmod in balanced spSTDP the plot
shows that synaptic change shows the greatest difference between
minimum and maximum (malleability or susceptibility) in the
theta range (4–10 Hz). For high or low frequencies the change
decays back to zero. An analytical calculation (see Appendix)
shows that the maximally effective modulation frequency
lies at

fmax = 1

2π
√

τpreτpost
. (22)
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Table 5 | Parameters of best fit for the triplet model.

Data set τ+ (ms) τ− (ms) τx τy A+
2

A+
3

A−
2 A−

3 Error

VC5 17 34 – 38 ms 0 0.049 0.0068 0 0.33

HC 17 34 946 ms 27 ms 0.0061 0.0067 0.0016 0.0014 2.9

SC23 14 42 7.7 s 6 ms 0.006 0.211 0.0004 0.009 1.69

VC23 14 42 2.7 s 2.6 s 0.007 −0.0005 0.0104 0.01 2.78

The frequency of maximum efficiency is a function of the
time constants of the STDP window. For the parameters from
VC23 used in Figure 4, τpre = 14 ms and τpost = 42 ms, fmax =
6.56 Hz. For the time constants from HC, τpre = 17 ms, τpost =
34 ms, fmax = 6.62 Hz. In general, for physiological parameters
the most effective frequency lies in the theta band.

This is a band-pass filter property, which discards too slow
or too fast oscillations, and uses intermediate oscillation fre-
quencies as signals for synaptic change. This is contrasted by
strongly biased spSTDP (Figures 4C,E). Here, the region of maxi-
mal phase dependency of synaptic plasticity on relative phase (i.e.,
the region of high susceptibility) is not cut off anymore for low
modulation frequencies. The synapse acts as a low pass filter.

3.3. SYNAPTIC SUSCEPTIBILITY IN NON-LINEAR MODELS OF
SYNAPTIC PLASTICITY

We chose five different models of synaptic plasticity to compare
the filter properties between them. First we examine the effects
of extending spSTDP with realistic non-linearities, with the CD
model and the Triplet model. Furthermore, we examine three
calcium-based models. The first one is the model of Shouval et al.
(2002) (“Shouval model” in the following), which introduced a
formalization of the calcium control hypothesis. This hypothesis
states that moderately elevated levels of calcium in the postsy-
naptic spine lead to synaptic depression, while high levels lead to
potentiation. The goal is then to model the calcium dynamics at
the synapse. For reference, we repeat the equations of the Shouval
model in the appendix. The second model is an extension of the
Shouval model with pre- and postsynaptic adaptation and presy-
naptic facilitation (Cai et al., 2007, Cai model). The adaptation is
shared with the CD model. The third calcium model was devel-
oped by Graupner and Brunel (2012) (“Graupner model”). This
model makes similar use of the calcium control hypothesis, how-
ever, it combines it with a bistable synapse model (Graupner and
Brunel, 2007). All models start from biologically plausible first
principles and derive the STDP window as a consequence. Also,
each model has inherent weight limits, which force us to change
the induction protocol for them (see Methods). For all models,
we do the analysis with all available parameter sets.

We constrain ourselves to models which use only spikes (spike
times) as relevant signals, and derive all relevant variables from
them. There exist models which explicitly take subthreshold neu-
ronal dynamics into account (see e.g., Clopath et al., 2010).
Although this type of model is potentially more accurate at
describing experimental results, it has to make specific assump-
tions about neuronal dynamics, which we want to avoid here.

For the CD model, the rate of weight change as a function of
modulation frequency and phase difference is shown in Figure 5.

Because the data in SC23 can not give information about presy-
naptic adaptation, we use τrec

pre and cpre from area VC23 instead.
Three of the plots show a very similar behavior. The weight
change is positive almost everywhere, and the zone of maximal
LTP depending on modulation frequency is tilted such that for
a modulation frequency of 1 Hz highest potentiation occurs at
�ϕ ≈ 0. A comparison with Figure 4 shows that in the case of
a slight bias toward LTP (q = 1.4) the picture looks similar. In
the parameters for VC23 and HC, qmin = 1, which means that
q(t) ≥ 1 and the requirement for potentiation-biased STDP is ful-
filled. In SC23, the STDP window is biased toward LTD (qmin =
0.25), however, the parameters for the activation q show that con-
tributions to it are strong (cq = 8.5) and last long (τq = 0.5 s).
Therefore the bias toward LTP results from the baseline activity.
The rate of weight change in VC5 deviates strongly from this,
it shows an asymmetry between maximal and minimal weight
change, and is strongly biased toward LTD.

The characteristics of the susceptibility in the Triplet model
are different from the CD model (Figure 6). In three parame-
ter sets (HC, SC23, VC23), the weight change is depression only,
and the tilt of maximal weight change (closest to zero) is inverted
compared to the CD model. None of these three parameter sets
shows a pronounced susceptibility specific to a certain frequency
range. Increasing the baseline rate does not change the weight
change qualitatively, but rather scales it up (Not shown for SC23,
VC23). Comparison with spSTDP (Figure 4; q = 0.7) suggests
that the respective parameters are biased toward LTD. Like in the
CD model, area VC5 stands out. At 5 Hz the weight change is the
same as in the CD model. For an increased baseline rate of 20 Hz,
it changes from depression to strong potentiation, as comparison
with Figure 4C shows.

In the Shouval model, the susceptibility depends little on the
parameters of the induction protocol (stimulation time 2 or 5 s,
baseline firing rates different from 5 Hz (not shown), Figure 7).
The synapse potentiates for all parameters, and shows a phase
dependence for slow oscillations (<3 Hz). However, the differ-
ence between maximum and minimum weight is small. The
situation is similar in the Graupner model: In VC5 the phase
dependence of weight change reaches into the theta band, in HC
up to 20 Hz (Figure 7). The synapse, however, shows no band-
pass properties. In contrast to the other two models, in the Cai
model the synapse is susceptible to oscillations in the theta band.
However, as the baseline firing rate is increased, the synapse shifts
to a low pass filter.

3.4. CONTRIBUTIONS TO THETA SUSCEPTIBILITY
The CD model is the only model of synaptic plasticity tested
here which retains a susceptibility specific for a certain frequency
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FIGURE 4 | Rate of weight change in spSTDP. These plots show
the rate of weight change for simple spSTDP (Time constants taken
from VC23). Contours mark lines of same weight change. Colors
indicate positive (red) or negative (blue) weight change, see colorbar.
Colorbar is the same for every plot. Plus and minus signs mark
maximum and minimum, respectively. Weight change is a function of
modulation frequency fmod and phase shift �ϕ [see Equation (31)].
�ϕ > 0 indicates a phase where presynaptic leads postsynaptic
activity. Baseline firing rate is unspecified (see text). (A) Balanced
spSTDP (q = 1). Maximal and minimal weight change occur at
fmod ≈ 6 Hz, while for very low and very high modulation frequencies
the weight change decays to an average value (zero in this case),
regardless of phase shift. We term this the band-pass property of
the synapse. (B,C) spSTDP with a moderate bias toward LTP
(q = 1.4) or LTD (q = 0.7). The bias converts the weight change to
LTP or LTD almost everywhere, however, the band-pass property is
mostly preserved. (D,E) spSTDP with a strong bias toward LTP or
LTD. The rate of weight change shows a strong dependence on
phase shift even for lowest oscillation frequencies instead of a
decay back to an average value. Therefore, the synapse acts as a
low pass filter in both cases.

FIGURE 5 | Susceptibility of the synapse to theta oscillations in the CD

model. Shown is the rate of weight change as a function of phase shift and
modulation frequency (similar to Figure 4). Baseline firing rate is 5 Hz for
each plot. Same colorbar for all plots. (A) Parameters of fit to VC5. The
synapse depresses for all modulation frequencies and phase shifts. (B)

Parameters of HC. The synapse is biased toward potentiation. Maximal
potentiation occurs for zero or small positive phase shifts at a modulation
frequency of ∼2–10 Hz. The result is similar for SC23 [(C), with τrec

pre = 0.6 s,
cpre = 0.7 from VC23] and VC23 (D), with slight variations in magnitude and
size of the zone of maximal LTP. Comparison with Figure 4 shows that
spSTDP with a moderate bias toward LTP exhibits very similar
characteristics.

range beyond the linear regime (low firing rates). To illustrate
the behavior in the non-linear regime, we computed the rate of
weight change for different baseline firing rates for the parameter
set of SC23 (Figures 8A–C). At low firing rates, the susceptibil-
ity is very similar to that of spSTDP with a moderate bias toward
depression (see Figure 4B). One could expect that with increas-
ing firing rate, the bias simply gets stronger until the weight
change is similar to Figure 4C. However, the specific susceptibility
gets slightly more pronounced, and the maximum of potentia-
tion moves toward (and for very high firing rates beyond) zero
phase shift. This effect is stronger for low modulation frequen-
cies (≈3 Hz, Figure 8C). Interestingly, this property resembles the
experimental observation that presynaptic stimulation repeatedly
delivered at the peak of a theta oscillation potentiates the synapse,
while stimulation at the trough depresses it (Hyman et al., 2003).

Frontiers in Computational Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 170 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Albers et al. Theta susceptibility in synaptic plasticity

FIGURE 6 | Susceptibility of the synapse in the Triplet model. Shown is
the rate of weight change of the synapse as a function of fmod and �ϕ in
the Triplet model, with each of the parameter sets and with different
neuronal baseline firing rates. In contrast to Figure 4 the colorscale is
separate for each plot. (A) Area VC5, left: 5 Hz average firing rate, right:
20 Hz firing rate. At 5 Hz, the weight change is negative everywhere (not
visible because of the order of magnitude). Changing the firing rate to 20 Hz
leads to LTP everywhere. (B) Area HC, at 5 and 20 Hz average firing rate of
the both neurons. The weight change is negative for both conditions. (C,D)

Areas SC23 and VC23 at a baseline firing rate of 5 Hz. With both parameter
sets, the weight change is purely negative.

Next, we investigate the effect of increasing oscillation ampli-
tude on the synapse. We keep the modulation frequency fixed
at 5 Hz with �ϕ = 0, and vary the oscillation scaling parameter
ε. In the case of the SC23 parameters (Figure 9A), the synapse
potentiates for constant (unmodulated) firing for baseline rates
greater than 5 Hz. Theta oscillations in the firing rates simply
lead to an upscaling of this potentiation. We do the same anal-
ysis for an altered set of parameters (Figure 9B). We change
τq to 50 ms instead of 500 ms. This tones down the activation
and therefore potentiation, however, it affects the fitting error
only slightly (increase from 0.81 to 1.1). In this case, the weight
change for constant firing is negative everywhere. Introducing
a periodic modulation then increases weight change, turning
depression into potentiation, but only for baseline firing rates
greater than 5 Hz.

FIGURE 7 | Synaptic susceptibility in the calcium models. Top row: Final
synaptic weights after 2 s (A) and 5 s (B) of stimulation in the Shouval
model. Baseline firing rate is 5 Hz. The synaptic weight shows a phase
dependence only for lowest modulation frequencies. The result is similar
for other baseline firing rates (not shown). Middle row: Final weights in the
Cai model. Baseline firing rate is 5 Hz (C) and 20 Hz (D), duration of theta
modulated firing is 10 s. At 5 Hz, the synapse shows a preference for
modulation in the theta range (centered at ∼5 Hz). Neither of the two other
models does something similar. Bottom row: Final synaptic weights in the
model of Graupner and Brunel after 5 s of stimulation, with parameters
fitted to VC5 (E) and HC (F). Baseline firing rate is 10 Hz. Similar to above,
the synapse reacts strongest to slow and slowest oscillations. Synapses in
calcium models are low-pass filters.

To elucidate what parts of the model are responsible for
this susceptibility, we did the analysis for confined versions
of the CD model. The resulting weight change as a func-
tion of modulation frequency and phase difference is shown
in Figures 8D–F, where we removed presynaptic adaptation,
postsynaptic adaptation and activation q, respectively. The weight
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FIGURE 8 | Susceptibility in the CD model under varying conditions. For
the base parameters for SC23 we repeated the simulations to compute the
rate of weight change under different conditions. Top row: Weight change
with increasing baseline firing rate (A: 5 Hz, B: 20 Hz, and C: 40 Hz). At low
firing rates, the synapse behaves similar to linear spSTDP; maximal LTP
occurs at �ϕ ≈ π/6 (compare Figure 4). With increasing firing rates, maximal
potentiation also increases, and maximal LTP shifts toward slightly negative
phase shifts (20 Hz: �ϕ ≈ 0 40 Hz: �ϕ ≈ −π/4), while being centered at
fmod ≈ 5 Hz. Bottom row: Influence of model constituents on susceptibility.

Neurons fire at an average rate of 5 Hz. (D) CD model without presynaptic
adaptation. The synapse is strongly sensitive to �ϕ, however, there is no
lower bound on fmod. (E) Without postsynaptic adaptation. The susceptibility
of the synapse is very similar to that of the undisturbed model (compare A).
(F) Without activation q. The weight change is negative everywhere, and the
synapse is not susceptible for some intermediate fmod. Plots (D,F) change
only slightly with increasing baseline firing rates. We conclude that of the
model constituents, postsynaptic adaptation is not necessary to explain theta
susceptibility in the non-linear regime.

change shows that presynaptic adaptation as well as activation
are both important for theta susceptibility. Removing either
one results in a low pass filter synapse. The link between
these two variables is the threshold ϑq, as Figure 9D illus-
trates. Here, we show the weight change for the full model
and parameters of SC23, except that ϑq < 0. As a conse-
quence, the synaptic susceptibility has no cutoff for low fre-
quencies anymore. Interestingly, removing the threshold removes
large part of the sensitivity to increasing oscillation ampli-
tude (Figure 9D), which further underlines the importance of
the interplay of presynaptic adaptation and activation for theta
susceptibility.

4. DISCUSSION
We presented a new phenomenological model for dynamic synap-
tic plasticity, which unifies several experimental results in one
framework. We analyzed the filter properties of this model, and
compared them to a range of other models. We found that the
CD model has unique properties which tie in with experimen-
tal findings on the connection of theta oscillations and memory
formation, thus providing a mechanistic link between synaptic
plasticity and the beneficial nature of theta-band oscillations for
learning.

4.1. INTERPRETATION OF MODEL COMPONENTS AND PARAMETERS
Although most of the components of the CD model are only
loosely guided by biophysical considerations, it is possible to

relate them to specific perisynaptic processes, and to envision
experiments for a more direct parameter estimation.

The spike traces y are very similar to the dynamics of bound
glutamate at postsynaptic receptors and calcium dynamics in the
synaptic bouton, which are essentially low-pass filtered action
potentials. Due to the differential Hebbian learning rule at the
core of the CD model, the decay constants of the spike traces
determine the shape of the classical exponential STDP window;
therefore, they can be directly estimated from varying the timing
of a single pre- and postsynaptic spike pair.

The adaptive suppression u, which leads to a sublinear summa-
tion of synaptic change, has a dynamics reminiscent of presynap-
tic short-term depression (Tsodyks and Markram, 1997; Tsodyks
et al., 1998). Its parameters can be determined by measuring
the change of the synapse in response to adding leading presy-
naptic (postsynaptic) spikes to a pre-post (post-pre) spike pair
and comparing the experimental result to the prediction of a
spike pair model. Presynaptic short-term depression is a well-
understood phenomenon, which has been shown to be present in
many different cell types (Zucker and Regehr, 2002). Interestingly,
the results of the fits of the reduced model indicate that short
term depression considerably influences synaptic change and
should be taken into account in quantitative models of synap-
tic plasticity. Some synapses show facilitation as well, and the
CD model can easily be accommodated to include this also by
adding one equation in a manner similar to Tsodyks et al. (1998).
On the postsynaptic side, however, the mechanism behind the
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FIGURE 9 | Effect of different oscillation amplitudes, and negative

threshold ϑq . (A–C) Show the rate of weight change as a function of
common pre- and postsynaptic baseline firing rate for �ϕ = 0, fmod = 5 Hz
and different oscillation amplitudes ε ∈ [0, 1]. (A) Parameters from SC23.
Because of the strong contributions to q, the weight change is positive for
all firing rates. Introducing the theta modulation increases weight change
even more. (B) Parameters from SC23 with shorter time constant of
activation: τq = 50 ms instead of 500 ms. This manipulation increases the
error from 0.81 to 1.1. Under this condition, imprinting theta oscillations on
the neurons alters LTD to LTP. (C) Same as (A), but with ϑ < 0. Removing
the threshold from the activation reduces the sensitivity to theta
oscillations. (D) Weight change as a function of �ϕ and fmod, with
parameters as in (C). The weight change is similar to spSTDP with strong
bias toward LTP (Figure 4C). The maximal potentiation at 1 Hz modulation
frequency occurs at negative phases.

adaptive process has been studied much less (Froemke et al., 2006;
Gasparini, 2011); the details of the formalization will possibly
have to be adapted as soon as more quantitative data becomes
available.

The conditional activating variable q is a coincidence detec-
tor, which primes the synapse for supralinear potentiation. An
interpretation is that q, if dependent on the presynaptic trace,
reflects the calcium trace from NMDA receptors, which rely on
the coincidence of glutamate binding and postsynaptic depolar-
ization to lift the Mg2+ block (Clarke and Johnson, 2006). A
negative threshold could mean that less calcium is needed for
induction of LTP, or influx of calcium through voltage dependent
calcium channels is sufficient for an elevated trace. The relaxed
state value qmin on the other hand tunes the balance of LTP and
LTD at the synapse. Under certain conditions, like in SC23, a
pre-post pair leads to calcium influx which does not exceed the
threshold for induction of LTP. A second postsynaptic spike added
after the pair then “rides” on an elevated level of calcium, and the
summed calcium contributions exceed this threshold. To estimate
the parameters of activation with known postsynaptic adapta-
tion, trailing postsynaptic spikes can be added to a pre-post-pair,
with an additional post-pre-post triplet to find the sign of the
threshold.

4.2. RELATION OF THE CD MODEL TO OTHER MODELS
In the last decade, a number of models for synaptic plasticity
in response to spiking activity have been developed. Some of
them are extensions of spSTDP, like the Triplet model, others are
grounded on more biophysically plausible considerations, like the
calcium models in general. The only model we know of which
was fitted to the same four data sets as the CD model here is
the recent calcium model by Uramoto and Torikai (2013). They
used a different way to calculate the error of their fit, as they did
not normalize the experimental results with the standard error of
the mean (SEM). We repeated the calculation of the error with
normalization by SEM, with the parameters given in the origi-
nal article. The resulting errors are 0.85 for VC5, 2.4 for HC, 0.27
for SC23, and 27.39 for VC23. See Tables 3, 5 for comparison.
The last value mostly results from the omission of the “1 − 5 ×
pre-post” experiments by the authors [Figure 4D in the original
article of Froemke et al. (2006)], although the error without these
experiments is still 9.2. These experiments most prominently
highlight the role of presynaptic adaptation: Adding more presy-
naptic spikes in front of the pre-post pair reliably decreases the
magnitude of synaptic potentiation. The Uramoto model has no
mechanism which results in less postsynaptic calcium (less LTP)
with increasing number of presynaptic spikes, a property shared
with the Triplet model, Graupner model and Shouval model. Our
quantitative analysis in the CD model showed that in the data
sets where applicable (SC23 used only one presynaptic spike in
each induction pattern), adding presynaptic adaptation consider-
ably improves the error. However, presynaptic (and postsynaptic)
adaptation can easily be implemented in all these models, for
example by introducing Equation (9). Different formalizations
are realized by Cai et al. (2007) and Kumar and Mehta (2011). We
propose that adaptation is a mechanism that should in general be
considered for the quantitative modeling of synaptic plasticity.

Among the existing phenomenological models of STDP, the
Triplet model is the one most similar to our CD model. Both
show similar fitting performance on visual cortex layer 5 and
hippocampal data sets. Although it lacks true adaptation, two
properties of the Triplet model partially mimic it: (1) with nearest
neighbor interactions a spike causes the trace to attain a certain,
constant value (from where it relaxes back). If the trace still is
greater than zero, the impact of the subsequent spike is reduced;
(2) a negative value for the triplet interaction A+

3 works in the
opposite direction of the normal spike pair interaction, leading
to a sublinear summation of potentiation. In total, the CD model
reaches a lower error than the Triplet model on all data sets, in
SC23 and VC23 by a considerable margin. This suggests that the
CD model generalizes better than the Triplet model. In addition,
the components of the CD model have a more straightforward
interpretation.

4.3. THETA SUSCEPTIBILITY IN DIFFERENT PLASTICITY MODELS
We investigated the filter properties of synaptic plasticity in a
range of different models. For balanced spSTDP, we can give an
explanation of the origin of the susceptibility to intermediate
neuronal activity oscillation. spSTDP is equivalent to the formu-
lation as differential Hebbian learning, Equations (2), (3). The
traces yi are driven by the spike trains xi, and they “smear” out
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the spike over time, which is basically the action of a low-pass
filter. However, the weight change is proportional to the prod-
uct of the presynaptic trace and the temporal derivative of the
postsynaptic trace, ẏpost. A temporal derivative accentuates (fast)
changes, and its effect is similar to a high-pass filter. The result is
a band-pass filter with an oscillation frequency of maximal effi-
ciency given by Equation (22). If a moderate bias is introduced
(see Figures 4B,C), the basic finding is distorted only slightly.

For non-linear models of synaptic plasticity that are based
on spSTDP, the picture in general is similar as long as the aver-
age firing rate stays low, which keeps the dynamic equations in
the linear regime. If the firing rate gets high enough that spikes
in a neuron start to interact with each other, non-linear inter-
actions will start to distort the susceptibility. For a mean firing
rate of 5 Hz, the CD model stays in a near-linear regime, while
in the Triplet model non-linear effects abandon susceptibility.
Interestingly enough, with the right parameter choice the non-
linearities in the CD model retain a band-pass behavior similar
to the linear regime (Figures 8A–C). The susceptibility in the
non-linear regime depends on the interplay of upre and q with a
threshold for activation ϑ greater than zero. The action of presy-
naptic adaptation is to suppress ypre for sustained constant firing
of the presynaptic neuron. In fact, a mean field calculation shows
that for parameters in VC23 in equilibrium and in the limit of

high firing rates
〈
y∞

pre

〉
= 0.033 < ϑq. However, with oscillating

neuronal firing, ypre reaches a maximum early during the rise
of the rate. The condition on the activation q leads to maximal
increase if the postsynaptic firing rate is maximal at the same time.
Therefore, q is maximal for slightly negative phases, which leads to
the observed phase shift in the transition to the non-linear regime
(increasing baseline firing rates).

We found that in contrast to spSTDP-based models, the
synapse in the two calcium models without adaptation is simply a
low pass filter, and prefers oscillations of both neurons that are in
phase. This is due to the extensive low-pass filtering in the dynam-
ical equations in these models. In both models, the contributions
to the calcium concentration are low-pass filtered spike signals,
which get low-pass filtered again in the calcium dynamics. As the
calcium concentration depends on the sum of pre- and postsy-
naptic contributions, it is not surprising that maximal LTP occurs
close to zero phase and slow oscillations. The Cai model is an
example of a calcium model with synaptic short term dynamics.
Here, the synapse shows a susceptibility to oscillatory modula-
tion in the theta band, if the average firing rate is sufficiently
low. Interestingly, our result seemingly conflicts with previous
results. In the study of Kumar and Mehta (2011), it was shown
that with the Shouval model the STDP window shows maximal
malleability, that is the difference between maximal and minimal
synaptic change, if the spike pairs are delivered with a repetition
frequency of 5–15 Hz. This is very similar to our definition of sus-
ceptibility, where there exists a region of fmod with pronounced
and maximal difference between maximal and minimal weight
change. However, in our study neuronal firing rate and oscillatory
modulation (fmod) are decoupled, while in the aforementioned
study they are equal. Furthermore, we investigated the malleabil-
ity under the condition of stochastic spiking. Here, spSTDP based

models in a near linear regime show a preferred window of
modulation frequency, while calcium based models prefer slow
oscillations.

4.4. THETA SUSCEPTIBILITY IN SYNAPTIC PLASTICITY
Theta band (4–8 Hz) oscillations of both cortical (Landfield et al.,
1972) and hippocampal (Berry and Thompson, 1978) local field
potentials have been associated with memory processes early on.
Later studies extended these findings across species and spatial
scales, i.e., from intracellular membrane potential fluctuations
in the rodent hippocampus (Harvey et al., 2009) to intracranial
recordings in monkey cortex (Liebe et al., 2012) and extracra-
nial EEG in humans (Kahana et al., 2001). Despite being observed
throughout the brain, theta band oscillations appears to be gen-
erated by a network of hippocampal oscillators (Colgin, 2013),
which is then transferred into cortical areas.

Although many studies have established a correlation between
activity in the theta frequency band, so far no direct explana-
tion for how theta rhythms influence memory processes has been
found (Colgin, 2013). Some studies (Berry and Thompson, 1978;
Seager et al., 2002; Nokia et al., 2008) report that the indicator
for learning success is the increased oscillation amplitude before
the onset of a trial. In other words, theta can be present with-
out being linked to a certain task and still be beneficial. Others
find that bursts delivered at theta frequency are optimal for induc-
tion of LTP (Larson et al., 1986), and LTD and LTP are inducted
by bursting at different phases of a background theta oscillation:
Presynaptic bursts at the peak of the oscillation potentiate the
synapse, while bursts at the trough lead to synaptic depression
(Pavlides et al., 1988; Hyman et al., 2003). In humans though, the
situation is not as clear. Some studies find that increased theta
power predicts learning success (Sederberg et al., 2003; Guderian
et al., 2009; Lega et al., 2012), others emphasize theta synchro-
nization and sometimes find decreased theta power (Mölle et al.,
2002; Burke et al., 2013). One experimental study found that in
successful learning single neurons show enhanced phaselocking to
a background theta oscillation in the LFP, with a wide distribution
of specific phase relations to this theta oscillation (Rutishauser
et al., 2010). All these observations make it very likely that theta
oscillations play a constructive role in the formation of memory.

The synaptic filter properties of several plasticity models
reported here provide an explanation, as they endow the synapse
with a susceptibility that is specific to oscillations in the theta
range. This susceptibility does not rely on precise spike tim-
ing, i.e., a fixed phase relation of repeated spikes to an ongoing
background theta oscillation. The distinction between the lin-
ear (similar to spSTDP) and non-linear regimes we found in the
models makes two different scenarios likely of how theta sus-
ceptibility plays a role in learning. With low baseline firing rates
[<10 Hz, reported in Rutishauser et al. (2010)] and a wide dis-
tribution of pairwise relative phases the synaptic changes are
also expected to show a wide distribution of values. In a neu-
ronal population firing at higher baseline rates the interplay
of presynaptic adaptation and conditional activation shifts the
phase requirement for strongest LTP to synchronous (phase zero)
oscillation. How can a synapse capitalize on that? The scenario
in Figure 9 provides a possible answer. The synapse depresses
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uniformly for neuronal constant firing. Introduction of theta
band oscillations (5 Hz) shift up the weight change, but only
for elevated baseline firing rates. The result is Hebbian learning
(“those who fire together wire together”), as synapses between
neurons which get no external excitation slightly depress. In this
scenario, theta oscillations can be present before external stimula-
tion, preparing the synapses for learning correlations of neuronal
firing.
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APPENDIX
THE MODEL OF Shouval et al. (2002)
We decided to include a full description of the model from
Shouval et al. (2002) here. We found the description given in the
original article not sufficiently clear.

In this model, spikes from either the pre- or postsynaptic neu-
ron influence the postsynaptic membrane potential with an EPSP
(pre) or a back propagating action potential (bAP; post), which
add linearly:

V(t) =
t∫

−∞
EPSP

(
t − t′

)
xpre

(
t′
)

dt′

+
t∫

−∞
bAP

(
t − t′

)
cpost

(
t′
)

dt′ (23)

EPSP(s) = �(s)AEPSP

(
e−s/τEPSP

s − e
−s/τEPSP

f

)
bAP(s) = �(s)AbAP

(
IbAP
f e

−s/τbAP
f + e−s/τbAP

s

)
,

with AbAP = 100 mV, τbAP
f , s = 3, 25 ms, IbAP

f , s = 0.75, 0.25, and

τEPSP
f , s = 5, 50 ms. AEPSP depends on the time constants such that

the maximum of the EPSP is exactly 1 mV. The model assumes
that the only source of calcium into the postsynapse are the
NMDA receptors. Each presynaptic spike opens a fraction of
P0 = 0.5 of all receptors still in the closed state, and in inter
spike intervals the open receptors decay exponentially back to
the closed state, however, with two components with different
time constants. This translates to the following equations, where
NMDA(t) is the fraction of open receptors at time t:

Ṅf = −Nf

τf
+ P0If (1 − NMDA (t − 0))xpre

Ṅs = −Ns

τs
+ P0Is(1 − NMDA (t − 0))xpre

NMDA(t) = Nf (t) + Ns(t) .

(24)

If , s = 0.5, 0.5 set the relative amplitudes of the fast and the
slow component, which decay back with time constants τf , s =
50, 200 ms. Due to the voltage-dependent magnesium block of
NMDA receptors, the resulting calcium current is a function of
both the fraction of open receptors as well as the membrane
potential:

INMDA(t) = GNMDA · NMDA(t)(V(t) − Vr)B(V) , with

B(V) = (1 + 0.28 exp(−0.062V))−1 ,
(25)

with V in mV, Vr = 130 mV and GNMDA = −0.02 μM
ms · mV . The

calcium concentration is a low pass filtered version of the current,
with decay time constant τCa:

d[Ca](t)

dt
= INMDA(t) − [Ca](t)

τCa
. (26)

The central assumption in this model is now that synaptic change
is completely ruled by the concentration of calcium in the post-
synaptic spine. Low concentrations lead to LTD, high concentra-
tions lead to LTP. Also, the learning rate is a monotonic function
of calcium concentration:

η
([Ca]) =

(
0.1 s

[Ca]3 + 10−5
+ 1s

)−1

�
([Ca]) = 0.25 + sig

([Ca] − α2, β2
)

(27)

− 0.25sig
([Ca] − α1, β1

)
sig(x, β) = exp(βx)/(1 + exp(βx)),

where [Ca] is measured in μM [in Equation 26 it is measured in
mM]. The resulting weight change is finally:

Ẇ = η
([Ca]) (�([Ca])− W(t)

)
(28)

STDP AND MEAN WEIGHT CHANGE WITH OSCILLATING FIRING RATES
In the mean field case, we investigated the rate of weight change
in spSTDP with periodically oscillating firing rates. The rate as a
function of time is given by Equation (18) We solved Equation
(15) with these ri(t). After sufficient time (t � τi), the transient
is gone, and the solution for the traces is

yi = τi

⎡
⎣1 + ε cos (ωt − φi + arctan(−ωτi))√

1 + ω2τ2
i

⎤
⎦ , (29)

where we replaced ω = 2πfmod for convenience. We now assume
stable conditions, and calculate the rate of weight change:

�w = 1

T

T∫
0

(
qyprerpost − ypreypost

τpost

)
dt . (30)

We replace Ai = ε/

√
1 + ω2τ2

i and ψi = arctan(−ωτi) and get

the solution:

�w = �w+ + �w−

= τpre(q − 1) + Apre

2

(
ε cos(ψpre + �ϕ) − Apost cos

(
ψpre

+ �ϕ − ψpost
))

. (31)

DERIVATION OF fmax

To gain insight into the reasons for theta susceptibility, we investi-
gate spSTDP in the balanced case (q = 1). We are interested in the
oscillation frequency at which the difference between potentiation
and depression depending on phase difference becomes maximal.
Instead of computing the derivative of Equation (31) with respect
to ω, we explicitly use the functional form of ypre and ẏpost (see
Equation 29):

ypre = τpre
[
1 + Apre cos

(
ωt + ψpre

)]
ẏpost = ωτpostApost cos

(
ωt + ψpost − �ϕ − π/2

)
.

(32)
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ypre is bounded between 1 + ε and 1 − ε, and because of 0 < ε <

1 it is strictly positive. The weight change is the integral of the
product of both functions, therefore ypre acts as a weighting func-
tion for ẏpost. As a consequence, potentiation is maximal if the
maxima of both functions coincide, i.e., the phases have to be
identical. This is true for �ϕ = ψpost − ψpre − π/2 (Shifted by
π for depression). At this phase shift, the rate of weight change
becomes

�w = 1

T

T∫
0

ypre ẏpostdt = 1

2

ε2τpreτpost√
1 + ω2τ2

pre

√
1 + ω2τ2

post

. (33)

We calculate the derivative with respect to ω:

2

ε2τpreτpost

d�w

dω
= 1√

1 + ω2τ2
pre

√
1 + ω2τ2

post

·

(
1 − τ2

preω
2

1 + τ2
preω

2
− τ2

postω
2

1 + τ2
postω

2

)
(34)

To find the maximum ωmax, we set d�w/dω = 0 and solve for ω:

fmax = ωmax

2π
= 1

2π
√

τpreτpost
. (35)

LIMITS OF PARAMETER VALUES IN THE FITTING PROCESS
The fitting process of the CD model and the Triplet model to the
data was a brute force search in parameter space. For that, we
defined a volume of space wherein the search was conducted. The
bounds for that space are given in Table 1 for the CD model and
Table 2 for the Triplet model. The range of possible values for ϑq

is given by [0, 0.2], with one additional value <0, whose magni-
tude does not matter. Except in two cases the parameters always
sat well within this space. In the case of the data in HC (Wang
et al., 2005), the presynaptic adaptation time constant τrec

pre should
be long, and the optimum lies at even longer times than given in
Table 3. However, the influence of this parameter on the error is
very small, and changes in τrec

pre do not change the other param-
eters much. Therefore we decided to set it to 3 s. In the Triplet
model, in the fit to the data in SC23, the parameters τx and A+

3 lie
outside the bounds. When the first fit showed that those param-
eters hit the bounds, we decided to redefine the parameter space
for this data set, in order to find a good minimum.
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