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We consider free fermions living on lattices in arbitrary dimensions, where hopping amplitudes follow a
power-law decay with respect to the distance. We focus on the regime where this power is larger than the
spatial dimension (i.e., where the single particle energies are guaranteed to be bounded) for which we
provide a comprehensive series of fundamental constraints on their equilibrium and nonequilibrium
properties. First, we derive a Lieb-Robinson bound which is optimal in the spatial tail. This bound then
implies a clustering property with essentially the same power law for the Green’s function, whenever its
variable lies outside the energy spectrum. The widely believed (but yet unproven in this regime) clustering
property for the ground-state correlation function follows as a corollary among other implications. Finally,
we discuss the impact of these results on topological phases in long-range free-fermion systems: they
justify the equivalence between Hamiltonian and state-based definitions and the extension of the short-
range phase classification to systems with decay power larger than the spatial dimension. Additionally, we
argue that all the short-range topological phases are unified whenever this power is allowed to be smaller.
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Introduction.—Locality is a central concept in quantum
many-body physics [1]. One of the most important impli-
cations of locality, which explicitly means the Hamiltonian
is a sum of local terms, is the Lieb-Robinson bound that
claims a “soft” light cone for correlation propagation [2–4].
Further assuming an energy gap in the Hamiltonian,
locality implies that the ground-state correlation functions
should decay exponentially [5,6]. This so-called clustering
property gives a partial justification for studying phases of
quantum matter [7] by focusing on short-range correlated
many-body states, which typically obey entanglement area
laws [8,9] and admit efficient representations based on
tensor networks [10].
The past couple of years have witnessed a series of

breakthroughs on generalizing the above locality-related
results to those “not-so-local” quantummany-body systems
with power-law decaying interactions [11–21], commonly
dubbed long-range systems [22]. This topic is of both
fundamental and practical importance as long-range inter-
actions appear ubiquitously in nature and quantum
simulators [23–27]. In particular, the problem of finding

Lieb-Robinson bounds with optimal light-cone behaviors
has recently been solved for both interacting [20] and
noninteracting (free-fermion) [18] long-range systems. In
contrast, other results such as clustering properties and
phase classifications remain to be improved or explored,
even on the noninteracting level [28]. We note that, despite
their simplicity, free fermions can already accommodate
various topological phases [29–31], whose long-range
generalizations have been considered in various specific
models [32–37] and may be realized effectively in spin
systems such as atomic arrays [38,39] and nitrogen-
vacancy (NV) centers [40]. Also, long-range models appear
naturally in the context of fermionic Gaussian projected
entangled pair states [41–43].
In this Letter, we report some essential progress on long-

range free fermions, focusing on universal and rigorous
results both in and out of equilibrium. First, we derive a
new Lieb-Robinson bound as the noninteracting counter-
part of that in Ref. [12], which is optimal in the spatial tail
but not in the light cone. This bound implies an (almost)
optimal clustering property for Green’s functions, leading
to a widely believed ground-state clustering property
among other applications. The latter result justifies the
equivalence between state and Hamiltonian formalisms for
long-range free-fermion topological phases. In addition, we
argue that the topological classification of short-range
phases remains applicable to long-range phases if the
decay power is larger than the spatial dimension, and
collapses otherwise.
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Setup.—For simplicity, we focus on free fermions living
on a d-dimensional hypercubic lattice Λ ⊂ Zd with particle
number conservation, where possible internal states (e.g.,
spin) per site form a set I. The generalization to the cases
without number conservation and other lattices is straight-
forward (see Supplemental Material [44]). Denoting
ĉ†rsðĉrsÞ as the creation (annihilation) operator of a fermion
with internal state s ∈ I at site r ∈ Λ, we know that the
Hamiltonian generally reads

Ĥ ¼
X
r;r0∈Λ
s;s0∈I

Hrs;r0s0 ĉ
†
rsĉr0s0 ; ð1Þ

where H is a jΛjjIj × jΛjjIj Hermitian matrix. We assume
the hopping amplitudes follow a power-law decay. This
means for any jIj × jIj block ½Hrr0 �ss0 ≡Hrs;r0s0 , or equiv-
alently Hrr0 ≡ PrHPr0 with Pr being the projector onto site
r, there exist two positive Oð1Þ constants [46] J and α such
that

kHrr0k ≤
J

ðjr − r0j þ 1Þα ; ð2Þ

where k · k is the operator norm and jr − r0j is the distance
between r and r0. We call such a long-range system
satisfying Eq. (2) α decaying to highlight the explicit
exponent.
Several comments are in order. First, given a fixed α, one

can equivalently replace jr − r0j þ 1 by jr − r0j in Eq. (2)
with r ≠ r0 specified. While both are commonly used
conventions, we prefer Eq. (2) as we need not exclude
r ¼ r0. Second, one can check that α > d is necessary and
sufficient for any α-decaying Hamiltonian to have bounded
single particle energies, i.e., kHk < ∞, so that the total
energy is extensive. Our results are mostly obtained in this
thermodynamically stable regime [19]. Third, the Bloch
Hamiltonian of a long-range periodic system is not analytic
or even continuous (if α < d) in the wave vector k, in stark
contrast to the short-range case of finite-range or exponen-
tially decaying hopping.
Lieb-Robinson bound.—For free fermions it suffices to

consider individual single particles. Our first main result
concerns how fast an initially localized particle propagates
under the time evolution governed by Ĥ:
Theorem 1: Lieb-Robinson bound.—For any α-decaying

HamiltonianH with α > d, there exists anOð1Þ constant tc
depending only on α and d such that for any t > tc

kPre−iHtPr0 k ≤
KðtÞ

ðjr − r0j þ 1Þα ; ð3Þ

where KðtÞ grows polynomially fast in time and KðtÞ ∝
tαðαþ1Þ=ðα−dÞ for large t.
Equation (3) essentially gives an upper bound on the

wave function amplitude on site r at time t of a single-
particle state initially localized at r0. It thus constrains the

spreading of the wave function in this “continuous-time
quantum walk” [47].
This bound (3) appears to be rather similar to the bound in

Ref. [12] for interacting long-range systems, but a crucial
difference here is that in our (free) case it holds for thewhole
α > d regime while the interacting case requires α > 2d, as
wewill explain for the derivation in the next paragraph. As is
also the case inRef. [12], the time scaling ofKðtÞ in Eq. (3) is
far fromoptimal. Indeed, the light cone t ∝ jr − r0jðα−dÞ=ðαþ1Þ
is linear only in the short-range limit α → ∞, while
optimally it would be linear already for α > dþ 1 [18].
On the other hand, the spatial tail of Eq. (3) is optimal. To
see this, we only have to consider Ĥ¼J=ðjr−r0jþ1Þα×
ðĉ†r ĉr0 þH:c:Þ. Then we have kPre−iHtPr0 k≥2t=½πðjr−r0jþ
1Þα� at a large distance, i.e., πðjr − r0j þ 1Þα=ð2JÞ > t. It is
also worthwhile to compare this bound (3) to the free-
fermion bound in Ref. [18], which is optimal in the light
cone but not in the tail.
Let us outline the proof of Theorem 1. It is instructive to

first recall that a direct Taylor expansion of e−iHt gives a
bound like Eq. (3) but with KðtÞ ∝ eλt [6]. To tighten this
exponential dependence, the basic idea is to separate the
Hamiltonian into the short-range and long-range parts, i.e.,
H ¼ Hsr þHlr, where the short-range part is determined
½Hsr�rs;r0s0 ¼ Hrs;r0s0 for jr − r0j ≤ χ (χ: cutoff parameter) but
otherwise ½Hsr�rs;r0s0 ¼ 0. We can then work in the inter-
action picture with respect to the former:

e−iHt ¼ e−iHsrtTe−i
R

t

0
dt0HðIÞ

lr ðt0Þ; ð4Þ
where T denotes the time ordering and HðIÞ

lr ðtÞ ¼
eiHsrtHlre−iHsrt. By Taylor expansion in the interaction
picture, we can also obtain an exponential factor but with
a modified coefficient λχ , which can be made sufficiently
small by properly choosing χ. While so far the procedure
largely follows Ref. [12], a crucial difference here is that we
further perform a coarse graining of the lattice Λ into Λ̃ at
the same scale χ (see Fig. 1). This helps us get rid of a factor
χd in λχ compared to the interacting case, making it
proportional to χ−ðα−dÞ rather than χ−ðα−2dÞ. Therefore,
α > d is enough for suppressing λχt by choosing a
sufficiently large χ.
To further illustrate how and why the coarse grain-

ing works, we first write down the Taylor-expansion
bound on the left-hand side of Eq. (3) in the interaction
picture (4) [48]:

kPre−iHtPr0 k≤
X∞
n¼0

Z
t

0

dtn

Z
tn

0

dtn−1 � ��
Z

t2

0

dt1

×kPre−iHsrðt−tnÞ
Y⃖n

m¼1
Hlre−iHsrðtm−tm−1ÞPr0k;

ð5Þ
where t0 ≡ 0. Instead of inserting 1 ¼ P

r∈Λ Pr (1: iden-
tity) as is essentially the strategy used in Ref. [12], we insert

PHYSICAL REVIEW LETTERS 130, 070401 (2023)

070401-2



the coarse-grained decomposition 1 ¼ P
R∈Λ̃ PR (see

Fig. 1) so that each integrand in Eq. (5) can be upper
bounded by

X
fRj∈Λ̃g2nj¼1

kPRe−iHsrðt−tnÞPR2n
k
Yn
m¼1

kPR2m
HlrPR2m−1

k

× kPR2m−1
e−iHsrðtm−tm−1ÞPR2m−2

k; ð6Þ

where R0 ≡ R0 and R, R0 are determined such that they
include r, r0 respectively. Obviously, except for the two
boundary factors, the bulk product is always smaller than
the refined decomposition (to each lattice site). In fact, it
turns out to be smaller by a factor χ−nd which leads
to the qualitative improvement of λχ discussed above.
This is because each kPR2m

HlrPR2m−1
k is roughly smaller

than the corresponding sum of kPr2mHlrPr2m−1
k by

a factor χd (rm ∈ Λ is a site coarse grained into
Rm ∈ Λ̃), while kPR2m−1

e−iHsrðtm−tm−1ÞPR2m−2
k differs from

kPr2m−1
e−iHsrðtm−tm−1ÞPr2m−2

k by mostly an Oð1Þ factor [44].
Note that in the interacting case this improvement is
canceled by a factor of χd from (the interacting counterpart
of) each kPR2m−1

e−iHsrðtm−tm−1ÞPR2m−2
k, accounting for the

size of support of PR. It is the single-particle nature of free
systems that allows us not to “pay the price.”
Clustering properties.—We move on to introduce the

second main result—the clustering property of the Green’s
function (or resolvent [49])

GðzÞ≡ ðz −HÞ−1: ð7Þ

We assume z is outside the spectrum of H and we define
ΔðzÞ≡ kGðzÞk−1 as the distance of z to such spectrum.
Precisely speaking, we have

Theorem2:Clustering property of theGreen’s function.—
For an α-decaying Hamiltonian H with α > d and z ∈ C
that is not an eigenvalue of H, the Green’s function (7)
satisfies

kGrr0 ðzÞk ≤
poly½logðjr − r0j þ 1Þ�

ðjr − r0j þ 1Þα ; ð8Þ

where Grr0 ¼ PrGðzÞPr0 and polyð·Þ means a polynomially
large function with jr − r0j-independent coefficients, which
nevertheless depend on ΔðzÞ and diverge for ΔðzÞ → 0.
Here, the condition ΔðzÞ ≠ 0 is absolutely necessary

since otherwise even short-range hopping (α → ∞)
can generate long-range correlations and interactions,
manifesting as, for instance, Friedel oscillations [50] and
Ruderman-Kittel-Kasuya-Yosida interactions [51] in the
presence of impurities. The short-range counterpart of
Theorem 2 has been considered in Ref. [52].
A direct corollary of Theorem 2 is the clustering property

of ground-state correlation functions. In the case of free
fermions, it is natural to consider the covariance matrix

Crs;r0s0 ≡ hΨ0jĉ†r0s0 ĉrsjΨ0i; ð9Þ

where jΨ0i is the ground state of Ĥ. Without loss of
generality, we may assume the Fermi energy, which lies in a
band gap, to be zero, so that [53,54]

2C ¼ 1 − sgnH: ð10Þ

Thanks to Wick’s theorem, any correlation functions can be
obtained from the covariance matrix (9), so it suffices to
consider the clustering properties for the latter, i.e., a bound
on kCrr0k with Crr0 ≡ PrCPr0 . Note that

C ¼
I
l<

dz
2πi

GðzÞ; ð11Þ

where l< is a closed loop that encompasses all the bands on
the negative real axis, i.e., below the Fermi energy.
Since the length of l< is bounded by a constant (due to
the finiteness of kHk) while kGrr0 ðzÞk satisfies Eq. (8)
∀ z ∈ l<, we know that kCrr0 k also satisfies Eq. (8).
Moreover, Theorem 2 has broader implications. For exam-
ple, it implies that any bound state outside the spectrum
induced by an impurity supported on Oð1Þ sites has an
algebraically decaying profile in real space, with essenti-
ally the same exponent α. This can be seen from
ψb ¼ GðEbÞVψb, where ψb is the wave function of the
bound state with eigenenergy Eb and V is the impurity
potential [55]. We will again exploit Theorem 2 when
discussing topological phases in the next section.
Finally, let us sketch out the proof of Theorem 2 [44].

Similar to Refs. [5,6,18,56,57] concerning ground-state
correlations, the main idea is to construct an analytic filter

FIG. 1. Coarse graining of a square lattice Λ (gray circles) into
Λ̃ (red circles) with a rescaling χ. Here, CR denotes all the sites in
Λ, including r, that are coarse grained into R ∈ Λ̃. The coarse-
grained projector is thus defined as PR ≡P

r∈CR
Pr. Note that no

periodicity of the Hamiltonian is assumed.
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function fσðtÞ such that it decays rapidly for large t and its
Fourier transform F½fσ�ðωÞ≡ R∞

−∞ðdt=2πÞfσðtÞe−iωt (also
analytic) well approximates ðz − ωÞ−1 if ω is away from z
by a few σ’s, a control parameter to be determined later. Via
Eq. (7) and up to some error terms involving σ, such a filter
enables us to express Grr0 ðzÞ as

PrF½fσ�ðHÞPr0 ¼
Z

∞

−∞

dt
2π

fσðtÞPre−iHtPr0 ; ð12Þ

which can be bounded by the Lieb-Robinson bound (3)
(and the trivial bound kPre−iHtPr0 k ≤ 1 for late times). The
desired bound (8) is obtained by choosing an appropriate σ,
which turns out to be proportional to ΔðzÞ and sublogar-
ithmically suppressed by jr − r0j.
Topological phases.—Free-fermion topological phases

are defined in terms of equivalence classes under continu-
ous deformations of gapped quadratic Hamiltonians or
alternatively of free-fermion (Gaussian) states. In the short-
range case these two approaches can be readily seen to be
equivalent [58]. In the long-range case, given an α decaying
free-fermion state, it is easy to construct a parent
Hamiltonian that is also α decaying by taking H ¼ 1 −
2C [cf. Eq. (10)]. It follows that a continuous deformation
of a state implies that of the parent Hamiltonian.
According to the clustering properties proven above, we

know that the converse is also true if α > d. Given a
continuous path of gapped α-decaying Hamiltonians Hλ

parametrized by λ ∈ ½0; 1�, their ground states will also be
(almost) α decaying due to the clustering property of
ground-state correlations. It can be further shown that they
define a continuous path in the space of states by using the
clustering property of the Green’s function. Indeed, we
have

Cλ0 − Cλ ¼
I
l<

dz
2πi

GλðzÞðHλ0 −HλÞGλ0 ðzÞ; ð13Þ

where l< encircles the lower bands of both Hλ and Hλ0 ,
which is always possible given a minimal gap during the
deformation. Because of Theorem 2, we have that
kGλðzÞk ≤ maxr

P
r0 kGλ;rr0 ðzÞk is bounded along l<,

implying that Cλ depends continuously on Hλ.
This analysis justifies the equivalence of considering

free-fermion states and gapped quadratic Hamiltonians for
α > d. In this case we can also say something more about
the structure of existing phases. One can show that every
long-range gapped Hamiltonian with α > d is continuously
connected to a short-range one, implying that there are no
new phases unique to long-range Hamiltonians. To see this,
consider the Hamiltonians defined by Hκ;rr0 ¼ e−κjr−r0jHrr0

which constitute a continuous path with respect to κ
and can be shown to be gapped for sufficiently small
but finite κ [44]. This path connects the long-range

Hamiltonian at κ ¼ 0 to a short-range one (i.e., exponen-
tially decaying) at finite κ.
Furthermore, there should be no unification of short-

range phases in the regime α > d, since for translation-
invariant systems the Bloch Hamiltonians hðkÞ remain
continuous in k and all the short-range topological invar-
iants remain well defined and robust under continuous
deformations of the Hamiltonian. For disordered systems,
the index theorem of Ref. [59] shows that topological
invariants must remain equal to a fixed integer along any
path Hλ provided that C changes continuously with respect
to H, which we have shown above to be true.
Remarkably, the threshold α ¼ d, above which the

short-range paradigm persists, is optimal, i.e., cannot be
improved to be smaller. This is because if we allow α < d
then all the short-range topological phases are expected to
be unified (up to a 0D topological invariant such as the
fermion number parity). Without loss of generality, we
focus on translation-invariant representatives described by
Bloch Hamiltonians. The argument is based on the well
known result that all the short-range topological phases
can be obtained by perturbing a Dirac Hamiltonian with a
mass term [31]

hðkÞ ¼
Xd
μ¼1

sin kμΓμ −
�Xd

μ¼1

cos kμ −m

�
Γ0; ð14Þ

where fΓμgμ¼0;…;d are Hermitian Dirac matrices satisfying
fΓμ;Γνg ¼ 2δμν. Decreasing m from m > d to
m ∈ ðd − 2; dÞ, there is a single band crossing at k ¼ 0,
giving rise to a transition from a trivial phase to a
topological phase with unit topological number [60]. Let
us take, for instance, the topological Bloch Hamiltonian
htopoðkÞ defined by choosing m ¼ d − 1. We can show that
htopoðkÞ is connected to the trivial Hamiltonian h0ðkÞ ¼ Γ0

through a continuous path of long-range gapped
Hamiltonians, provided that α is not constrained to be
larger than d. To this end, we consider a linear interpolation
from h0ðkÞ to hfDðkÞ and then from hfDðkÞ to htopoðkÞ,
where hfDðkÞ is the gapped flattened Dirac Hamiltonian

hfDðkÞ ¼
Xd
μ¼1

sin kμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
d
μ¼1 sin

2kμ
q Γμ: ð15Þ

One can see that hðkÞ2 > 0 during the whole deformation,
meaning that the gap does not close [44]. Furthermore
hfDðkÞ is (almost) d decaying in real space [44], while
h0ðkÞ and htopoðkÞ are local, so the Hamiltonian is at most
as nonlocal as d decaying during the deformation.
Numerical analysis suggests that also the ground state
covariance matrix C remains always d decaying along such
path, as shown in Fig. 2.
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Summary and outlook.—We have derived a tight (in the
sense of spatial tail) Lieb-Robinson bound for α-decaying
free-fermion systems with α > d. This bound allows us to
prove an (almost) optimal clustering property for the
Green’s function, which implies the clustering property
for the ground-state correlations in gapped systems. These
results justify the equivalence between state and
Hamiltonian-based definitions of topological phases in
long-range free-fermion systems. In addition, we argue
that all the short-range topological phases are connected
within the space of α-decaying systems with α < d.
A relevant open problem is how to further improve the

Lieb-Robinson bound to be consistent with the optimal
light cone [18]. Also, one still has to examine the validity
of bulk-edge correspondence [62] and prove the cluster-
ing properties for topological edge modes localized at
sharp edges, where our local-impurity argument does not
apply. Improving the entanglement area law [13,63] for
long-range free fermions could be yet another direction
of future study. One may also consider whether our
progress can facilitate the long-range generalization of
the clustering properties for short-range Anderson local-
ized systems [64,65].
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Poincaré 18, 519 (2017).
[15] C.-F. Chen and A. Lucas, Phys. Rev. Lett. 123, 250605

(2019).
[16] D. V. Else, F. Machado, C. Nayak, and N. Y. Yao, Phys. Rev.

A 101, 022333 (2020).
[17] T. Kuwahara and K. Saito, Phys. Rev. X 10, 031010 (2020).
[18] M. C. Tran, C.-F. Chen, A. Ehrenberg, A. Y. Guo, A.

Deshpande, Y. Hong, Z.-X. Gong, A. V. Gorshkov, and
A. Lucas, Phys. Rev. X 10, 031009 (2020).

[19] T. Kuwahara and K. Saito, Phys. Rev. Lett. 126, 030604
(2021).

[20] M. C. Tran, A. Y. Guo, C. L. Baldwin, A. Ehrenberg, A. V.
Gorshkov, and A. Lucas, Phys. Rev. Lett. 127, 160401
(2021).

[21] Z. Wang and K. R. A. Hazzard, Locality of gapped ground
states in systems with power-law decaying interactions,
arXiv:2208.13057.

[22] N. Defenu, T. Donner, T. Macrì, G. Pagano, S. Ruffo, and A.
Trombettoni, Long-range interacting quantum systems,
arXiv:2109.01063.

[23] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev.
Mod. Phys. 85, 553 (2013).

[24] A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac,
and H. J. Kimble, Nat. Photonics 9, 320 (2015).

FIG. 2. Decay rates of kCrr0 k for the ground states of the
Hamiltonians hλ defined by hλ ¼ ð1 − 2λÞh0 þ 2λhfD for λ ∈
½0; 0.5� and hλ ¼ 2ð1 − λÞhfD þ ð2λ − 1Þhtopo for λ ∈ ½0.5; 1� in
dimensions d ¼ 1, 2, 3. The red dashed lines are a fit of the long
distance behavior of the data with kCrr0 k ∝ jr − r0j−d, implying
the ill-definedness of conventional topological numbers. The
numerical calculations are performed on finite hypercubic lattices
of side L ¼ 500with antiperiodic boundary conditions [61]. In all
cases the odd sites along the x axis are plotted, as this is the subset
of sites in the lattice that shows the slowest decay.

PHYSICAL REVIEW LETTERS 130, 070401 (2023)

070401-5

https://arXiv.org/abs/1008.5137
https://arXiv.org/abs/1008.5137
https://doi.org/10.1007/BF01645779
https://doi.org/10.1007/BF01645779
https://doi.org/10.1007/s00220-006-1556-1
https://doi.org/10.1007/s00220-006-1556-1
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.93.140402
https://doi.org/10.1007/s00220-006-0030-4
https://doi.org/10.1007/s00220-006-0030-4
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/PhysRevLett.113.030602
https://doi.org/10.1103/PhysRevLett.114.157201
https://doi.org/10.1103/PhysRevLett.119.050501
https://doi.org/10.1007/s00023-016-0526-1
https://doi.org/10.1007/s00023-016-0526-1
https://doi.org/10.1007/s00023-016-0526-1
https://doi.org/10.1103/PhysRevLett.123.250605
https://doi.org/10.1103/PhysRevLett.123.250605
https://doi.org/10.1103/PhysRevA.101.022333
https://doi.org/10.1103/PhysRevA.101.022333
https://doi.org/10.1103/PhysRevX.10.031010
https://doi.org/10.1103/PhysRevX.10.031009
https://doi.org/10.1103/PhysRevLett.126.030604
https://doi.org/10.1103/PhysRevLett.126.030604
https://doi.org/10.1103/PhysRevLett.127.160401
https://doi.org/10.1103/PhysRevLett.127.160401
https://arXiv.org/abs/2208.13057
https://arXiv.org/abs/2109.01063
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1038/nphoton.2015.54


[25] J. Argüello-Luengo, A. González-Tudela, T. Shi, P. Zoller,
and J. I. Cirac, Nature (London) 574, 215 (2019).

[26] A. Browaeys and T. Lahaye, Nat. Phys. 16, 132 (2020).
[27] C. Monroe, W. C. Campbell, L.-M. Duan, Z.-X. Gong, A. V.

Gorshkov, P. W. Hess, R. Islam, K. Kim, N. M. Linke, G.
Pagano, P. Richerme, C. Senko, and N. Y. Yao, Rev. Mod.
Phys. 93, 025001 (2021).

[28] Z. Gong and R. Hamazaki, Int. J. Mod. Phys. B 36, 2230007
(2022).

[29] A. P. Schnyder, S. Ryu, A. Furusaki, and A.W.W. Ludwig,
Phys. Rev. B 78, 195125 (2008).

[30] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[31] C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev.

Mod. Phys. 88, 035005 (2016).
[32] D. Vodola, L. Lepori, E. Ercolessi, A. V. Gorshkov, and G.

Pupillo, Phys. Rev. Lett. 113, 156402 (2014).
[33] D. Vodola, L. Lepori, E. Ercolessi, and G. Pupillo, New J.

Phys. 18, 015001 (2015).
[34] K. Patrick, T. Neupert, and J. K. Pachos, Phys. Rev. Lett.

118, 267002 (2017).
[35] L. Lepori, D. Giuliano, and S. Paganelli, Phys. Rev. B 97,

041109(R) (2018).
[36] O. Viyuela, L. Fu, and M. A. Martin-Delgado, Phys. Rev.

Lett. 120, 017001 (2018).
[37] G. Francica and L. Dell’Anna, Phys. Rev. B 106, 155126

(2022).
[38] R. J. Bettles, J. c. v. Mináŕ, C. S. Adams, I. Lesanovsky, and

B. Olmos, Phys. Rev. A 96, 041603(R) (2017).
[39] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F.

Yelin, P. Zoller, and M. D. Lukin, Phys. Rev. A 96, 063801
(2017).

[40] G.Kucsko, S.Choi, J. Choi, P. C.Maurer, H. Zhou,R.Landig,
H. Sumiya, S. Onoda, J. Isoya, F. Jelezko, E. Demler, N. Y.
Yao, and M. D. Lukin, Phys. Rev. Lett. 121, 023601 (2018).

[41] T. B. Wahl, H.-H. Tu, N. Schuch, and J. I. Cirac, Phys. Rev.
Lett. 111, 236805 (2013).

[42] T. B. Wahl, S. T. Haßler, H.-H. Tu, J. I. Cirac, and N.
Schuch, Phys. Rev. B 90, 115133 (2014).

[43] J. Dubail and N. Read, Phys. Rev. B 92, 205307 (2015).
[44] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.130.070401, which in-
cludes Ref. [45], for the detailed proofs of the main
theorems as well as some further generalizations and
examples.

[45] R. Bhatia, Matrix Analysis (Springer, New York, 1997).
[46] By Oð1Þ constants, we mean independence on distance or

time, which is typically assumed to be large.
[47] P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P.

Zupancic, Y. Lahini, R. Islam, and M. Greiner, Science 347,
1229 (2015).

[48] Here, the ordered matrix product
Q⃖ n

m¼1Mm means
MnMn−1 � � �M2M1 [withMm ¼ Hlre−iHsrðtm−tm−1Þ in Eq. (5)]
when n > 0 and 1 when n ¼ 0.

[49] T. Kato, Perturbation Theory for Linear Operators
(Springer, New York, 1966).

[50] V. V. Cheianov and V. I. Fal’ko, Phys. Rev. Lett. 97, 226801
(2006).

[51] L. Brey, H. A. Fertig, and S. Das Sarma, Phys. Rev. Lett. 99,
116802 (2007).

[52] H. Watanabe, Phys. Rev. B 98, 155137 (2018).
[53] A. M. Turner, Y. Zhang, and A. Vishwanath, Phys. Rev. B

82, 241102(R) (2010).
[54] T. L. Hughes, E. Prodan, and B. A. Bernevig, Phys. Rev. B

83, 245132 (2011).
[55] R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents, Phys.

Rev. B 92, 085126 (2015).
[56] M. B. Hastings, Phys. Rev. Lett. 93, 126402 (2004).
[57] S. Hernández-Santana, C. Gogolin, J. I. Cirac, and A. Acín,

Phys. Rev. Lett. 119, 110601 (2017).
[58] Z. Gong and T. Guaita, Topology of quantum Gaussian

states and operations, arXiv:2106.05044.
[59] H. Katsura and T. Koma, J. Math. Phys. (N.Y.) 59, 031903

(2018).
[60] J. Y. Lee, J. Ahn, H. Zhou, and A. Vishwanath, Phys. Rev.

Lett. 123, 206404 (2019).
[61] We use antiperiodic rather than periodic boundary condi-

tions to avoid finite-size singularities of hfDðkÞ at high-
symmetry momenta.

[62] N. G. Jones, R. Thorngren, and R. Verresen, Bulk-boundary
correspondence and singularity-filling in long-range free-
fermion chains, arXiv:2211.15690.

[63] T. Kuwahara and K. Saito, Nat. Commun. 11, 4478
(2020).

[64] J. Fröhlich and T. Spencer, Commun. Math. Phys. 88, 151
(1983).

[65] M. Aizenman and S. Molchanov, Commun. Math. Phys.
157, 245 (1993).

PHYSICAL REVIEW LETTERS 130, 070401 (2023)

070401-6

https://doi.org/10.1038/s41586-019-1614-4
https://doi.org/10.1038/s41567-019-0733-z
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1103/RevModPhys.93.025001
https://doi.org/10.1142/S0217979222300079
https://doi.org/10.1142/S0217979222300079
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1063/1.3149495
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/PhysRevLett.113.156402
https://doi.org/10.1088/1367-2630/18/1/015001
https://doi.org/10.1088/1367-2630/18/1/015001
https://doi.org/10.1103/PhysRevLett.118.267002
https://doi.org/10.1103/PhysRevLett.118.267002
https://doi.org/10.1103/PhysRevB.97.041109
https://doi.org/10.1103/PhysRevB.97.041109
https://doi.org/10.1103/PhysRevLett.120.017001
https://doi.org/10.1103/PhysRevLett.120.017001
https://doi.org/10.1103/PhysRevB.106.155126
https://doi.org/10.1103/PhysRevB.106.155126
https://doi.org/10.1103/PhysRevA.96.041603
https://doi.org/10.1103/PhysRevA.96.063801
https://doi.org/10.1103/PhysRevA.96.063801
https://doi.org/10.1103/PhysRevLett.121.023601
https://doi.org/10.1103/PhysRevLett.111.236805
https://doi.org/10.1103/PhysRevLett.111.236805
https://doi.org/10.1103/PhysRevB.90.115133
https://doi.org/10.1103/PhysRevB.92.205307
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.070401
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.070401
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.070401
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.070401
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.070401
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.070401
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.070401
https://doi.org/10.1126/science.1260364
https://doi.org/10.1126/science.1260364
https://doi.org/10.1103/PhysRevLett.97.226801
https://doi.org/10.1103/PhysRevLett.97.226801
https://doi.org/10.1103/PhysRevLett.99.116802
https://doi.org/10.1103/PhysRevLett.99.116802
https://doi.org/10.1103/PhysRevB.98.155137
https://doi.org/10.1103/PhysRevB.82.241102
https://doi.org/10.1103/PhysRevB.82.241102
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.83.245132
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1103/PhysRevB.92.085126
https://doi.org/10.1103/PhysRevLett.93.126402
https://doi.org/10.1103/PhysRevLett.119.110601
https://arXiv.org/abs/2106.05044
https://doi.org/10.1063/1.5026964
https://doi.org/10.1063/1.5026964
https://doi.org/10.1103/PhysRevLett.123.206404
https://doi.org/10.1103/PhysRevLett.123.206404
https://arXiv.org/abs/2211.15690
https://doi.org/10.1038/s41467-020-18055-x
https://doi.org/10.1038/s41467-020-18055-x
https://doi.org/10.1007/BF01209475
https://doi.org/10.1007/BF01209475
https://doi.org/10.1007/BF02099760
https://doi.org/10.1007/BF02099760

