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and Patrick K.S. Vaudrevangea *

aPhysik Department, Technische Universität München,

James-Franck-Straße 1, 85748 Garching, Germany

bInstituto de F́ısica, Universidad Nacional Autónoma de México,
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Abstract

Eclectic flavor groups arising from string compactifications combine the power of mod-

ular and traditional flavor symmetries to address the flavor puzzle. This top-down scheme

determines the representations and modular weights of all matter fields, imposing strict

constraints on the structure of the effective potential, which result in controlled correc-

tions. We study the lepton and quark flavor phenomenology of an explicit, potentially

realistic example model based on a T6/Z3 × Z3 orbifold compactification of the heterotic

string that gives rise to an Ω(2) eclectic flavor symmetry. We find that the interplay of

flavon alignment and the localization of the modulus in the vicinity of a symmetry-enhanced

point leads to naturally protected fermion mass hierarchies, favoring normal-ordered neu-

trino masses arising from a see-saw mechanism. We show that our model can reproduce all

observables in the lepton sector with a small number of parameters and deliver predictions

for so far undetermined neutrino observables. Furthermore, we extend the fit to quarks

and find that Kähler corrections are instrumental in obtaining a successful simultaneous

fit to the quark and lepton sectors.
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1 Introduction

Top-down (TD) model building from string theory leads to the concept of the eclectic flavor

group [1–4] that includes traditional and modular flavor symmetries in the framework of “Local

Flavor Unification” [5,6]. Any discussion of the flavor problem should consider both, traditional

and modular flavor symmetries, as they give important restrictions on the Kähler potential

and superpotential of the theory. Spontaneous breaking of the eclectic flavor group exhibits

a subtle interplay of the vacuum expectation values (VEVs) of flavon and moduli fields [7]

that allow for a hierarchical pattern of masses and mixing angles of quarks and leptons. While

the appearance of the eclectic flavor group is automatic in the TD approach, it could also

be discussed within the bottom-up (BU) approach, where potential modular symmetries are

contained in the outer automorphisms of the traditional flavor group [1, 5, 6]. In general, only

part of the eclectic flavor group is linearly realized and the traditional flavor symmetry is

enhanced at certain points or sub-loci in moduli space. This provides the basis of “Local

Flavor Unification” at these regions of enhanced symmetry. Ultimately, this does lead to a

flavor scheme that incorporates both the quark and lepton sectors.

Since their introduction in BU constructions [8], most of the attempts for a description of

flavor with modular flavor symmetries have concentrated on the lepton sector alone, see e.g. [9–

23] and references therein. Even though apparently more difficult to accomodate, there have

been some fits of the flavor parameters that include the quark sector, see e.g. [24–37]. Yet no

clearly favored scheme has emerged. There are many choices of flavor groups, representations

of these groups as well as parameters in the action that provide reasonable fits, but one still

did not find a baseline theory or a fundamental principle through the BU considerations.

Furthermore, the predictivity of these BU models may be challenged by the arbitrariness of

their Kähler potential [38]. The TD approach is much more restrictive and it remains to be

seen whether a realistic fit to the data can be achieved at all. The present paper is meant to

be a first attempt for a global description of flavor in the quark and lepton sector from a TD

perspective. It will also serve as a benchmark scheme that allows a comparison to previous BU

constructions as it will indicate which properties of the construction and choice of parameters

will be most relevant. We shall see, for example, that nontrivial parameters in the Kähler

potential (usually ignored in the BU approach) might play an important role.

To initiate a TD construction of flavor we select a most promising scheme of a string

compactification with an elliptic fibration based on the T2/Z3 orbifold [2,3,5]. It leads to the

traditional flavor group ∆(54), the discrete modular flavor group Γ′3
∼= T ′ = SL(2, 3) ∼= [24, 3]

with eclectic flavor group Ω(2) ∼= [1944, 3448]. Matter fields appear in twisted sectors with

nontrivial representations of ∆(54) and T ′. Full details of this general flavor scheme can be

found in table 2 of our previous paper [7]. The choice of the possible representations is quite

restricted, as in other TD scenarios [39–42]. It is therefore difficult to compare this approach

to BU constructions where, even for the same group T ′, typically different representations have

been chosen [15,27,35].

The next step in our program is the choice of a (semi-)realistic string construction with
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Standard Model gauge group SU(3)× SU(2)×U(1), three families of quarks and leptons and

suitable Higgs-doublets. Here we concentrate on the constructions of ref. [43, 44] based on

T
6/Z3 × Z3 orbifolds where the gauge and flavor structure has been explicitly worked out.

Several classes of models with eclectic flavor group Ω(2) have been identified, as shown in table

3 of ref. [7]. We choose here the simplest example (class A) with properties displayed in table 1.

Twisted fields all have the same modular weight n = −2/3, transform as 32 representations of

∆(54) and 1 ⊕ 2′ representations of the T ′ modular group.1 The pattern of the spontaneous

breaking of the eclectic flavor group has been discussed in our earlier paper [7] (see Tables 1,

2 and 3 there). The simplicity of the scheme leads to severe restrictions on superpotential and

Kähler potential as we shall discuss later in sections 2.4 and 2.5. Still, it has to be stressed

that the Kähler potential is not diagonal (as usually assumed in the BU approach, with some

exceptions [27,38]) and this will be relevant for the global fit to the data.

The model allows for a successful fit of flavor both in the quark and lepton sector. It

predicts a see-saw mechanism in the lepton sector and a “normal hierarchy” for neutrino

masses. Hierarchies for masses and mixing angles appear from a subtle interplay of aligned

flavon VEVs and the location of the modular parameter in the vicinity of fixed points, as a

result of “Local Flavor Unification”.

The paper is structured as follows. In section 2 we present the explicit string model, matter

representations (table 1), superpotential (section 2.4) and Kähler potential (2.5). Section 3

contains the step-wise symmetry breaking and the resulting hierarchical structure in a qualita-

tive form. Section 4 will be devoted to the numerical analysis of the lepton sector, which will

be completed to include also quarks in section 5. In section 6 we shall summarize our results

and give an outlook to future developments. Our appendices include details on the structure

of the Kähler corrections, our numerical analysis and the full massless matter spectrum of our

model.

2 A string theory model with eclectic flavor symmetries

2.1 Model definition

Let us consider a fully consistent model based on the E8×E8 heterotic string containing an

eclectic flavor symmetry Ω(2) ∼= [1944, 3448], consisting of the traditional flavor group ∆(54),

the finite modular group T ′ and a ZR9 R-symmetry. As usual, there is an additional ZCP2
CP-like modular symmetry that acts as a simultaneous outer automorphism on all of these

groups and enlarges the eclectic flavor symmetry of this setting to order 3888. The CP-like

transformation is generally spontaneously broken by the VEV of the modulus as well as by the

VEVs of flavon fields thereby giving rise to CP violation at low energies. It has been known

that T6/Z3 ×Z3 (1, 1) orbifold compactifications2 of the heterotic string with some vanishing

Wilson lines can yield an MSSM-like massless spectrum equipped with a ∆(54) traditional

1This is the simplest class of models as we have only representations of class 32, and none of 31 and very

restrictive values for modular weights both in twisted and untwisted sector.
2See ref. [45] for orbifold nomenclature.
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quarks and leptons Higgs fields flavons

label q ū d̄ ` ē ν̄ Hu Hd ϕe ϕu ϕν φ0 φ0
M φ0

e φ0
u φ0

d

SU(3)c 3 3̄ 3̄ 1 1 1 1 1 1 1 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 2 2 1 1 1 1 1 1 1 1

U(1)Y 1/6 −2/3 1/3 −1/2 1 0 1/2 −1/2 0 0 0 0 0 0 0 0

∆(54) 32 32 32 32 32 32 1 1 32 32 32 1 1 1 1 1

T ′ 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 1 1 2′ ⊕ 1 2′ ⊕ 1 2′ ⊕ 1 1 1 1 1 1

Z
R
9 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0

n −2/3 −2/3 −2/3 −2/3 −2/3 −2/3 0 0 −2/3 −2/3 −2/3 0 0 0 0 0

Z3 1 1 ω ω 1 1 1 1 1 ω ω2 1 1 ω2 ω2 ω2

Z3 ω2 ω2 1 1 ω2 ω2 1 1 ω2 1 ω 1 1 ω2 ω2 ω2

Z3 1 1 ω 1 1 1 1 1 1 ω2 1 1 1 1 ω ω2

Table 1: MSSM matter and flavon states of a Z3×Z3 heterotic orbifold realization of a model endowed

with Ω(2) eclectic flavor symmetry. We display quantum numbers with respect to the SM gauge group,

the traditional flavor symmetry ∆(54), the finite modular symmetry T ′, the modular weights n and

the ZR
9 discrete R-symmetry arising from the full 10D orbifold compactification. We use the results

from refs. [2,4] to identify these quantum numbers. We provide the additional unbroken Z3 × Z3 × Z3

symmetries (with ω := e2πi/3), arising from the compact dimensions orthogonal to the T2/Z3 sector

where Ω(2) is realized. As shown in appendix C, the fields carry additional gauge U(1) charges that

distinguish e.g. φ0 and φ0M . The subindices e, ν,u,d label the flavons associated with the respective

leptons and quarks. The electron and down-quark sectors share the same flavon triplet ϕe, as discussed

in section 2.4. Besides these relevant matter states, the model contains the vectorlike exotic fields shown

in table 2.

flavor symmetry [43, 44, 46]. This symmetry arises from a two-dimensional T2/Z3 orbifold

sector, whose modular symmetries complete the eclectic scenario [1–6]. It leads to a picture

where the Ω(2) eclectic symmetry of this sector is extended by three extra Z3 symmetries

arising from the other compact dimensions, which can be regarded as “shaping symmetries”.

We consider a particular string orbifold defined by the background gauge-lattice shifts

V1 =
(
−1

2 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6

)
,
(
−1

6 ,−1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
2 ,

7
6

)
, (1a)

V2 =
(
−2

3 ,−2
3 ,−1

3 , 0, 0, 0, 1,
4
3

)
,
(
−5

6 ,
5
6 ,

1
6 ,

1
6 ,

1
2 ,

7
6 ,−5

6 ,
5
6

)
, (1b)

and Wilson lines

A1 = A2 =
(
−1, 1

3 ,−1
3 ,−1, 0, 0, 4

3 ,−2
3

)
,
(

3
2 ,−1

2 ,−1
6 ,

1
2 ,

5
6 ,

5
6 ,−5

6 ,−1
6

)
, (1c)

A3 = A4 =
(
−1

3 ,−2
3 , 1,

4
3 ,

1
3 ,

4
3 ,

2
3 ,−1

)
,
(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
2 ,−1

2 ,
1
2

)
. (1d)

The Wilson lines associated with the last two compact dimensions are chosen to be trivial, i.e.

A5 = A6 = 0. This is the condition for this T2/Z3 orbifold sector to yield the eclectic flavor

symmetry Ω(2). One can further show that the three extra Z3 discrete symmetries that are

left unbroken from the orbifold action on the first four compact dimensions, are orthogonal to

the Ω(2) eclectic group. From the gauge degrees of freedom, the unbroken 4D gauge group of

this model is SU(3)c × SU(2)L ×U(1)Y × [SU(4)×U(1)9]. By using e.g. the orbifolder [47],

one finds that the N = 1 massless matter spectrum includes three generations of quark and

lepton superfields as well as a pair of Higgs fields and various flavons, all listed in table 1.
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# irrep labels # irrep labels

101 (1,1)0 si

51 (1,1)−1/3 Vi 51 (1,1)1/3 V̄i

14 (1,1)−2/3 Xi 14 (1,1)2/3 X̄i

10 (1,2)−1/2 Li 10 (1,2)1/2 L̄i

9 (3̄,1)1/3 D̄i 9 (3,1)−1/3 Di

8 (1,2)−1/6 Wi 8 (1,2)1/6 W̄i

2 (3̄,1)−2/3 Ūi 2 (3,1)2/3 Ui

4 (3̄,1)0 Zi 4 (3,1)0 Z̄i

1 (3̄,1)−1/3 Y 1 (3,1)1/3 Ȳ

Table 2: Vectorlike exotic matter states of a Z3×Z3 heterotic orbifold realization of a model endowed

with Ω(2) eclectic flavor symmetry. In parenthesis, we display the gauge quantum number under

SU(3)c × SU(2)L and the subindices denote the hypercharges.

Additionally, this model includes several vectorlike exotics summarized separately in table 2,

which decouple from the low-energy dynamics when some singlets si develop VEVs close to the

string scale. Details of the entire massless spectrum are given in appendix C. We provide the

SM gauge quantum numbers, as well as the discrete flavor charges for all phenomenologically

relevant matter states in table 1, which we discuss in the following.

2.2 Flavor symmetry representations

This model belongs to the category A of the models classified in table 3 of ref. [7]. The

assignment of symmetry representations under the Ω(2) eclectic flavor symmetry is fairly simple

because it is entirely determined by the modular weight n of each field under the SL(2,Z)T

group of modular transformations of the Kähler modulus T [7].3 We follow the notation of [2]

and denote generic fields by Φn to indicate their transformation behavior under Ω(2). Quarks,

leptons, and flavons ϕu,e,ν correspond to Φ−2/3 fields with modular weights n = −2/3, while the

Higgs fields and flavons φ0 form Φ0 fields with trivial modular weights. While Φ0 fields are

trivial singlets under all flavor symmetries, Φ−2/3 are flavor triplets transforming simultaneously

as 32 of the traditional flavor group ∆(54), as well as 2′⊕1 of the finite modular group T ′ [5,6].

In addition, Φ−2/3 fields have ZR9 -charge 1 [4].

Next to the expectation value of the modulus 〈T 〉 also the VEVs of the flavon triplets

ϕi contribute to the breaking of the flavor symmetries of the model leading to the patterns

described in our previous work [7].

The generators of the three-dimensional representation 32 of the traditional ∆(54) flavor

3As pointed out in [7], the fact that the flavor symmetry representations are entirely fixed by knowing the

modular weight might be conjectured to be a general feature of TD constructions. Other examples for this

are [42,48–52], while virtually all BU constructions violate this rule.
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symmetry are given by the matrices

ρ32(A) :=

 0 1 0

0 0 1

1 0 0

 , ρ32(B) :=

 1 0 0

0 ω 0

0 0 ω2

 and, ρ32(C) := −

 1 0 0

0 0 1

0 1 0

 ,

(2)

where ω := exp(2πi/3), such that for g ∈ ∆(54),

Φ−2/3
g−→ ρ32(g) Φ−2/3 . (3)

Furthermore, the superpotential W transforms under C as W C→ −W, such that the Z2

subgroup of ∆(54) generated by C corresponds to an R-symmetry. This also implies that

the superpotential transforms as a ∆(54) nontrivial singlet 1′, see also [7, Table 2].

For modular transformations,

γ =

(
a b

c d

)
∈ SL(2,Z)T , (4)

the transformations of the relevant matter fields and the superpotential are given by

Φ−2/3
γ−→ (c T + d)

−2/3 ρ(γ) Φ−2/3 and W γ−→ (c T + d)−1W , (5)

with explicit representation matrices for the generators S and T of the modular group

ρ(S) :=
i√
3

 1 1 1

1 ω2 ω

1 ω ω2

 and ρ(T) :=

 ω2 0 0

0 1 0

0 0 1

 . (6)

The ZR9 R-symmetry generated by the sublattice rotation R̂ (see [4] for details) acts as

Φ−2/3
R̂−→ exp(2πi/9) Φ−2/3 and W R̂−→ ωW . (7)

Finally, the Z3 × Z3 × Z3 charges shown in table 1 can be understood by the localization of

the fields in the compact dimensions orthogonal to the T2/Z3 orbifold sector, supporting the

geometric intuition of the eclectic picture. For completeness, let us recall that the generator

of the additional ZCP2 CP-like symmetry of our TD eclectic scenario acts on the modulus as

T
CP−→ −T̄ while mapping Φ−2/3

CP−→ Φ̄−2/3 [5, 6], where bars denote complex conjugation (in

agreement with results in the BU approach [53]).4

2.3 T ′ modular forms

In order to determine the structure of the effective action of the model, let us recall the

properties of the modular forms that are relevant to build the couplings among the matter

fields of table 1. For the leading terms in the superpotential we only need the modular forms

4In general, transformations of the CP-type are accompanied by a non-trivial representation matrix and an

automorphy factor, see e.g. [7, eq. (3)].
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of level 3 and weight 1, which form a doublet representations of Γ′3
∼= T ′ and can be expressed

as [2, 15]

Ŷ (1)(T ) =

(
Ŷ1(T )

Ŷ2(T )

)
=

(
−3
√

2 η3(3T )
η(T )

3η
3(3T )
η(T ) + η3(T/3)

η(T )

)
, (8)

where η(T ) is the Dedekind η function. Under a modular transformation γ ∈ SL(2,Z)T , this

transforms as

Ŷ (1)(T )
γ−→ (c T + d) ρ2′′(γ) Ŷ (1)(T ) , (9)

where ρ2′′(γ) denotes the 2′′ representation of T ′, which can be generated by

ρ2′′(S) = − i√
3

(
1
√

2√
2 1

)
and ρ2′′(T) =

(
ω 0

0 1

)
. (10)

Using q := exp (2πiT ), we will make use of the “q-expansion” of Ŷ (1)(T ) given by

Ŷ1(T ) = − 3
√

2 q
1/3 (1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + 2q9 + . . . ) , (11a)

Ŷ2(T ) = 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 + . . . . (11b)

From these expansions, the behavior of the modular forms for large ImT can be read off:

Ŷ2(T )→ 1 while Ŷ1(T )→ 0. Hence, for large ImT , the modular form of weight 1 is hierarchi-

cally structured.

Let us mention here the appearance of an approximate accidental symmetry because of the

special behavior of these modular forms under the transformations T → T+3/4 and T → T+3/2.

Using

T → T + 3/4 : q → exp (2πi(T + 3/4)) = − i q , (12a)

T → T + 3/2 : q → exp (2πi(T + 3/2)) = − q , (12b)

and the q-expansions of eqs. (11), we find the approximate transformations

T → T + 3/4 :

(
Ŷ1(T )

Ŷ2(T )

)
→

(
−i Ŷ1(T )

Ŷ2(T )

)
+O(q) , (13a)

T → T + 3/2 :

(
Ŷ1(T )

Ŷ2(T )

)
→

(
−Ŷ1(T )

Ŷ2(T )

)
+O(q) . (13b)

These relations will be useful to interpret some of our phenomenological observations in sec-

tion 4.

We note that, under the generator of the ZCP2 CP-like symmetry, both components of the

modular form get complex conjugated, i.e.

T
CP−→ −T̄ : Ŷ (1)(T )

CP−→ Ŷ (1)(−T̄ ) =
(
Ŷ (1)(T )

)∗
. (14)
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2.4 Superpotential and mass matrices

Respecting gauge invariance5 as well as the correct transformation behavior under the eclectic

flavor symmetries of the model (see table 1),6 the effective superpotential to leading order in

operator mass dimension is given by

W = Ŷ (1)(T )
{
φ0
[
φ0

uHuūqϕu + φ0
dHdd̄qϕe + φ0

eHdē`ϕe +Huν̄`ϕν
]

+ φ0
Mν̄ν̄ϕe

}
, (15)

where henceforth we use Planck units. Here, Ŷ (1)(T ) are the modular forms discussed in

section 2.3 and, for brevity, we do not include the symmetry invariant overall couplings of each

term. Note that by plain effective-field-theory (EFT) power counting, the neutrino Majorana

mass term induced by the flavon VEV is hierarchically larger than the Dirac masses for all other

quarks and leptons. A see-saw mechanism is thus a prediction of the model. In addition, we

remark that down-quark and charged-lepton Yukawa couplings, as well as the Majorana mass

term, all are accompanied by the same flavon triplet ϕe, suggesting that our model exhibits a

particular kind of bottom-tau unification.

Owing to the highly constraining symmetries, all superpotential terms in eq. (15) have the

generic structure

Φ0 . . .Φ0 Ŷ
(1)(T ) Φ1

−2/3 Φ2
−2/3 Φ3

−2/3 , (16)

where the triplets Φ1
−2/3 and Φ2

−2/3 denote SM matter fields, Φ3
−2/3 is a flavon triplet, and

the series of Φ0’s includes a varying number of flavon singlets and the MSSM Higgs fields.

Considering that the superpotential must transform as a nontrivial singlet 1′ of ∆(54), see [7,

Table 2], the explicit form of each mass term can be written as [2, 4](
Φ1
−2/3

)T
M(T, c,Φ3

−2/3) Φ2
−2/3 , (17)

where

M(T, c,Φ3
−2/3) := c


Ŷ2(T )X − Ŷ1(T )√

2
Z − Ŷ1(T )√

2
Y

− Ŷ1(T )√
2

Z Ŷ2(T )Y − Ŷ1(T )√
2

X

− Ŷ1(T )√
2

Y − Ŷ1(T )√
2

X Ŷ2(T )Z


. (18)

Here, we have expressed the three components of the flavon triplet as Φ3
−2/3 = (X,Y, Z)T and

introduced c to denote the overall coefficient of the terms.

As an example, let us illustrate here how the charged lepton mass matrix Me obeys the

general texture described by eq. (18). For the charged lepton sector we find the following term

in the superpotential of eq. (15)

We = ce φ
0 φ0

e Hd

(
Ŷ (1)(T ) ē ` ϕe

)
1′
. (19)

5Recall that there are additional U(1) gauge symmetries with charges not listed in table 1 but given in

appendix C.
6We stress that superpotential operators invariant under these symmetries also respect all string-theory

selection rules [54–63].
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Here, we have explicitly included the symmetry-invariant overall coefficient ce, which we take

as a free parameter because its direct determination by string computations is still beyond our

reach. After inserting the VEV vd of the Hd Higgs field as well as all flavon VEVs, the mass

matrix is given by

Me = M(T,Λe, 〈ϕ̃e〉) , with Λe = ce vd 〈φ0〉 〈φ0
e〉Λϕe (20)

denoting the overall global scale which, effectively, is the only dimensionful parameter of the

mass matrix. Here we have introduced the dimensionless flavon triplet ϕ̃e and its VEV, defined

by

ϕe =: Λϕe ϕ̃e with ϕ̃e := (ϕ̃e,1, ϕ̃e,2, 1)T . (21)

Without loss of generality, we can assume that the components of the (dimensionless) flavon

triplet VEV have the hierarchical structure7

0 ≤ |〈ϕ̃e,1〉| ≤ |〈ϕ̃e,2〉| ≤ 1 . (22)

Likewise, the neutrino masses are determined by the superpotential terms

Wν = cD φ
0Hu

(
Ŷ (1)(T ) ν̄ ` ϕν

)
1′

+ cM φ0
M

(
Ŷ (1)(T ) ν̄ ν̄ ϕe

)
1′
, (23)

where we have explicitly included the symmetry-invariant coefficients cD and cM, and indicated

that we have to take the ∆(54) nontrivial singlet contraction 1′ of each term. Wν predicts a

type-I see-saw mechanism for neutrino masses. Hence, the light neutrino mass matrix is given

by

Mν = − 1

2
MDM

−1
M MT

D , (24)

where

MD = M(T,ΛD, 〈ϕ̃ν〉) and MM = M(T,ΛM, 〈ϕ̃e〉) (25)

are the Dirac and Majorana neutrino mass matrices which again follow the general form (18).

Analogously to eq. (21), we have defined the dimensionless flavon triplet ϕ̃ν through

ϕν =: Λϕν ϕ̃ν with ϕ̃ν := (ϕ̃ν,1, ϕ̃ν,2, 1)T . (26)

From the structure of the superpotential contribution (23) and the see–saw neutrino masses

(24), we see that the overall scale of the light neutrino mass matrix is given by

Λν =
Λ2

D

ΛM
=

(
cD vu 〈φ0〉Λϕν

)2
cM 〈φ0

M〉Λϕe

, (27)

where vu stands for the VEV of the up-type Higgs Hu.

In complete analogy with the charged-lepton sector, from the Yukawa couplings for the up

and down-quark sectors, we find that the corresponding mass matrices follow the structure of

eq. (18) depending as follows on the different parameters

Mu = M(T,Λu, 〈ϕ̃u〉) with Λu = cu vu 〈φ0〉 〈φ0
u〉Λϕu , (28a)

Md = M(T,Λd, 〈ϕ̃e〉) with Λd = cd vd 〈φ0〉 〈φ0
d〉Λϕe . (28b)

7Such an ordering can always be achieved for exactly one flavon VEV by using the symmetry transformations

of the S3 subgroup of ∆(54).
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Analogously to the previous cases, cu and cd denote the unconstrained symmetry-invariant

coefficients of the up and down-quark Yukawa couplings, respectively. Furthermore,

ϕu =: Λϕu ϕ̃u with ϕ̃u := (ϕ̃u,1, ϕ̃u,2, 1)T . (29)

In summary, the superpotential contributions to the lepton masses include the following

parameters: the global mass scales Λe for charged leptons and Λν for neutrinos, the VEV 〈T 〉
of the complex Kähler modulus, and the free components, 〈ϕ̃e,1〉, 〈ϕ̃e,2〉, 〈ϕ̃ν,1〉 and 〈ϕ̃ν,2〉, of

the flavon VEVs. As we shall see, a subtle interplay among the modulus and flavon VEVs

can explain the observed lepton-mass hierarchies (cf. section 3.2) and even yield a fit of lepton

flavor data with interesting predictions (cf. section 4). We will see that it suffices to consider

real flavon VEVs to arrive at those results, which implies that the modulus VEV 〈T 〉 is the

only source of CP violation in the lepton sector. Finally, since we aim at a global fit of flavor

in both lepton and quark sectors, note that up-quark Yukawa couplings introduce additional

parameters: the global up and down-quark mass scales Λu and Λd as well as the flavon com-

ponents 〈ϕ̃u,1〉 and 〈ϕ̃u,2〉. Down-quark Yukawas in the superpotential of our model, eq. (15),

share the charged-lepton flavon ϕ̃e, avoiding extra parameters but also imposing thereby severe

constraints. In fact, these restrictions challenge the compatibility of our model with observa-

tions. Fortunately, as we shall see in section 5, this issue can be addressed by including Kähler

corrections, which we now discuss.

2.5 Kähler corrections to the mass matrices

In contrast to the most common assumption of BU model building, the Kähler potential is,

in general, nontrivial.8 In string-derived TD models, we have to include the phenomenological

consequences of this fact. At leading order in the EFT expansion of the matter fields and

flavons, the Kähler potential of the model introduced in section 2.1 is given by [2]

K ⊃ − log(−iT + iT̄ )

+
∑
Ψ

[
(−iT + iT̄ )

−2/3 + (−iT + iT̄ )
1/3|Ŷ (1)(T )|2

]
|Ψ|2

+
∑
ϕ

[
(−iT + iT̄ )

−2/3 + (−iT + iT̄ )
1/3|Ŷ (1)(T )|2

]
|ϕ|2 .

(30)

Here we again suppress all symmetry-invariant coupling parameters, and the respective sum-

mations run over all MSSM matter fields, Ψ ∈ {q, ū, d̄, `, ē, ν̄}, and the various flavon triplets

of the model, ϕ ∈ {ϕe, ϕu, ϕν , . . .}, see table 1. Interestingly, the canonical form of the Kähler

potential at this level is preserved in models endowed with eclectic symmetries because matter

fields are charged under a traditional flavor symmetry [2], ∆(54) in our case, avoiding the loss

of predictivity that challenges models exclusively based on modular symmetries [38]. Con-

sequently, corrections to this canonical Kähler potential only appear if the traditional flavor

8The phenomenological consequences of noncanonical contributions to the Kähler potential have been con-

sidered in BU models of traditional flavor symmetries (see [64,65] for a special case and [66,67] for the general

case) as well as modular flavor symmetries [27,38].
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symmetry is spontaneously broken by flavons. Couplings between flavons and matter fields

induce additional terms in the Kähler potential of the form

K ⊃
∑
Ψ,ϕ

[
(−iT + iT̄ )

−4/3
∑
a

|Ψϕ|21,a + (−iT + iT̄ )
−1/3

∑
a

|Ŷ (1)(T )Ψϕ|21,a

]
, (31)

where the subindex 1, a refers to the ath invariant singlet contraction with respect to the whole

eclectic flavor symmetry. Since the terms in eq. (31) are proportional to the ratio of flavon

VEVs to the fundamental scale, they represent small corrections to the leading-order Kähler

potential (30). For simplicity,9 we restrict ourselves here to the modular forms Ŷ (1)(T ) that

naturally appear also in the superpotential W.

Since the (Planck suppressed) next-to-leading order terms, given in eq. (31), can yield

noncanonical contributions if the flavons develop VEVs, let us briefly discuss the consequences

of such contributions. As pointed out in [38], noncanonical terms can be relevant for the mass

matrices of a model. Hence, studying the Kähler potential is important to correctly determine

the phenomenology of a model. In order to canonically normalize the fields, the Kähler metric

associated with Ψ

Kij =
∂2K

∂Ψi ∂Ψ∗j
(32)

needs to be diagonalized, such that

Kij =
(
U †K D

2 UK

)
ij
, (33)

where UK is unitary and D is diagonal and positive. Then, the canonically normalized fields

Ψ̂ read

Ψ̂ = DUK Ψ . (34)

Assuming a superpotential mass term (
Ψ(1)

)T
M Ψ(2) , (35)

we need to consider the correct normalization of each field, i.e.

Ψ̂(1) = D(1) U
(1)
K Ψ(1) and Ψ̂(2) = D(2) U

(2)
K Ψ(2) . (36)

When applying these transformations to the mass term one obtains(
Ψ̂(1)

)T
M̂ Ψ̂(2) , (37)

with a mass matrix for the canonically normalized (i.e. “physical”) fields that reads

M̂ =
(
D(1)

)−1 (
U

(1)
K

)∗
M
(
U

(2)
K

)† (
D(2)

)−1
. (38)

9In principle, one might also consider contributions from modular forms with higher modular weights. These

forms are powers of Ŷ (1)(T ) and, hence, we expect that the term considered in eq. (31) captures the structure

of the corrections.
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Note that since D(1) and D(2) are not unitary, the normalization of the right-handed fields does

affect the mixing matrices and should, therefore, not be neglected. That is, M̂ M̂ † depends on

the normalization of both fields, Ψ(1) and Ψ(2).

In our specific case, the mass matrices (20), (24), and (28) obtained solely from the su-

perpotential will pick up corrections from the noncanonical Kähler potential eq. (31). Since

both, the superpotential and Kähler potential, are expansions in powers of fields, we may also

analyze the corrections in a perturbative manner. Let us consider the part KΨ ⊂ K associated

with a field Ψ. Explicitly introducing the symmetry-invariant coefficients κ(0) and κ(Y ) in

eq. (30), the leading order, i.e. bilinear, contributions are given by

KΨ ⊃
[
(−iT + iT̄ )

−2/3 κ(0) + (−iT + iT̄ )
1/3 κ(Y ) |Ŷ (1)(T )|2

]
|Ψ|2 . (39)

These terms have already been studied in [2]. It was found that the traditional flavor symmetry

restricts them in such a strong manner that the Kähler metric becomes proportional to the

identity matrix, i.e.

K
(id)
ij = χ δij , (40)

where δij denotes the Kronecker delta and

χ :=
[
(−iT + iT̄ )

−2/3 κ(0) + (−iT + iT̄ )
1/3 κ(Y ) |Ŷ (1)(T )|2

]
. (41)

Therefore, the Kähler potential is indeed (apart from normalization) canonical at leading order.

That is, there are no corrections to the structure of the mass matrices at this order (as a result

of the traditional flavor symmetry).

The next-to-leading order Kähler contributions do yield corrections to the structure of the

mass matrices. From eq. (31), restoring coefficients, the relevant terms of the Kähler potential

are

KΨ ⊃
∑
ϕ

[
(−iT + iT̄ )

−4/3
∑
a

ζ(ϕ)
a |Ψϕ|21,a + (−iT + iT̄ )

−1/3
∑
a

ζ(Y ϕ)
a |Ŷ (1)(T )Ψϕ|21,a

]
, (42)

where the first sum runs over all flavon triplets ϕ of the theory that develop VEVs, and the

second sum over a runs over all invariant singlet contractions of the tensor products. The

coefficients ζ
(ϕ)
a and ζ

(Y ϕ)
a cannot be fixed by symmetry. It may, however, be argued that they

should be O(1). The explicit tensor products are given in appendix A. Some of them yield

canonical contributions to the Kähler metric, proportional to the identity matrix. These can

be absorbed in the overall normalization and, hence, would only modify χ. However, other

terms, generically denoted as K
(non−id)
ij , yield noncanonical contributions to the Kähler metric,

which will be essential for phenomenology, as we will see below. These noncanonical terms

depend on the flavon VEVs and are given in eq. (88).

Hence, the Kähler metric of a generic matter field is given by a canonical contribution K
(id)
ij

and various noncanonical terms,

Kij = K
(id)
ij +

∑
ϕ

K
(non−id)
ij . (43)
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Using the matrices Aij and Bij which are functions only of the flavon triplets ϕ and the

modulus T , and whose explicit forms are given in eqs. (83) and (87), the Kähler metric can be

parametrized as10

Kij ≈ χ

(
δij +

∑
ϕ

λϕ (Aij(ϕ) + κϕBij(ϕ))

)
. (44)

We note that the overall factor χ can (and will) be eliminated by a simple rescaling of Ψ. Here,

λϕ is the ratio

λϕ = (−iT + iT̄ )
−2/3 |Ŷ (1)(T )|2 ζ(Y ϕ)

1 + (−iT + iT̄ )−1 ζ
(ϕ)
1

κ(Y ) |Ŷ (1)(T )|2 + (−iT + iT̄ )−1 κ(0)
, (45)

which parametrizes the relative size of the correction with respect to the leading-order

term (39). In addition,

κϕ =
ζ

(Y ϕ)
2

|Ŷ (1)(T )|2 ζ(Y ϕ)
1 + (−iT + iT̄ )−1 ζ

(ϕ)
1

(46)

parametrizes the ratio of the two linearly independent corrections associated with Aij(ϕ) and

Bij(ϕ). In the limit T → i∞, up to O(1) factors, λϕ scales as λϕ ≈
(
−iT + iT̄

)−2/3
while κϕ

is O(1) just as |Ŷ (1)(T )|. This limit will be important in our phenomenological considerations

below.

Importantly, note that all occurring flavon triplet representations ϕ enter the Kähler metric

in exactly the same way, cf. eq. (44). Hence, in order to capture the effect of all flavons on the

Kähler metric in the most efficient way without parameter degeneracies, we define two effective

flavons

ϕ
(A)
eff =: Λ

ϕ
(A)
eff

ϕ̃
(A)
eff with ϕ̃

(A)
eff :=

(
ϕ̃

(A)
eff,1, ϕ̃

(A)
eff,2, 1

)T
, (47)

and

ϕ
(B)
eff =: Λ

ϕ
(B)
eff

ϕ̃
(B)
eff with ϕ̃

(B)
eff :=

(
ϕ̃

(B)
eff,1, ϕ̃

(B)
eff,2, 1

)T
. (48)

These are sufficient to represent all ϕ’s in the sense that, by definition,∑
ϕ

λϕAij(ϕ) =: λϕeff
Aij(ϕ̃

(A)
eff ) , (49a)

∑
ϕ

λϕ κϕBij(ϕ) =: λϕeff
κϕeff

Bij(ϕ̃
(B)
eff ) . (49b)

The expansion parameter λϕeff
will now be roughly (−iT+iT̄ )−2/3

∑
ϕ Λ2

ϕ in the T → i∞ region,

where we used

ϕ =: Λϕ ϕ̃ with ϕ̃ := (ϕ̃1, ϕ̃2, 1)T , (50)

while κϕeff
should still be O(1).

10The relation (44) is approximate because, as discussed in appendix A, χ receives small contributions from

the Kähler corrections that we neglect.
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3 Eclectic breaking and charged-lepton mass hierarchies

Let us now turn to the spontaneous breaking of the eclectic flavor symmetry in detail and its

consequences for the model introduced in section 2. We study the breaking in two stages. First,

the modulus T is stabilized at or near to a fixed point in moduli space where the traditional

flavor symmetry is enhanced; and second, one or more flavon fields develop VEVs.

Breaking by 〈T 〉. As we have studied before [7], depending on the value of 〈T 〉, the ∆(54)

traditional flavor symmetry is enhanced to the following two linearly realized unified flavor

groups:

Ω(2)
〈T 〉=i−−−→ Ξ(2, 2) ∼= [324, 111] or Ω(2)

〈T 〉=1,i∞,ω−−−−−−−→ H(3, 2, 1) ∼= [486, 125] . (51)

In these cases, also a ZCP2 CP-like symmetry is left unbroken. Including this symmetry, the

enhanced traditional symmetry at the fixed points in moduli space are either H(3, 2, 1)oZCP2 ∼=
[972, 469] at 〈T 〉 = 1, i∞, ω or Ξ(2, 2) o ZCP2 ∼= [648, 548] at 〈T 〉 = i.

Breaking by flavon VEVs. In our model, all (matter and) flavon fields transform as

triplets 32 of the traditional flavor symmetry ∆(54) and have modular weight −2/3, see table 1.

This scenario significantly reduces the number of possible breaking patterns. At the moduli

point 〈T 〉 = i, the possible breakings read [7]

Z2

〈Φ−2/3〉←−−−−− Ξ(2, 2)
〈Φ−2/3〉−−−−−→ Z

(i)
3 , i = 1, 2 , (52)

where the two different Z
(i)
3 correspond to inequivalent Z3 subgroups of Ξ(2, 2), associated

with different directions of flavon VEVs. On the other hand, at 〈T 〉 = 1, i∞, ω, all possible

breaking patterns are described by

Z6

〈Φ−2/3〉←−−−−− H(3, 2, 1)
〈Φ−2/3〉−−−−−→ Z

(i)
3 , i = 1, 4 or (53a)

H(3, 2, 1)
〈Φ−2/3〉−−−−−→ Z

(2)
3 × Z

(3)
3

〈Φ−2/3〉−−−−−→ Z
(3)
3 . (53b)

Whether or not the ZCP2 CP-like symmetry is broken, depends not only on the structure of the

flavon VEVs discussed here, but also on their global phases, cf. [7]. Nevertheless, considering

the flavon VEVs to be real ensures that the ZCP2 CP-like symmetry is preserved for 〈T 〉 = i∞.

3.1 A pattern of eclectic breaking

In this work we choose the modulus to be fixed in the vicinity of 〈T 〉 = i∞, i.e. we assume

that moduli stabilization leads to H(3, 2, 1) as unified flavor group. Hence, only the breaking

patterns described in eqs. (53) are relevant in our case. Furthermore, we focus on the breaking

pattern described by eq. (53b). In order to better understand this breaking, let us consider the

H(3, 2, 1) generators and the flavon VEVs that lead to this breaking pattern. The generators

of the unified flavor group at 〈T 〉 = i∞ are {A,B,C,T, R̂, CP}; the modular generator S is

excluded because it does not leave the modulus invariant. For generic flavon fields ϕ of type
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Ω(2) H(3, 2, 1) Z
(2)
3 × Z

(3)
3 Z

(3)
3

∅

∅

〈T 〉 = i∞ 〈ϕ̃〉 =

0

0

1

 〈ϕ̃〉 =

 0

λ2

1


〈ϕ̃〉 =

λ1

λ2

1


ε = e2πi〈T 〉 6= 0

Figure 1: Breaking pattern of the eclectic flavor symmetry Ω(2) of a T2/Z3 orbifold model triggered by

the VEVs of the modulus T and (dimensionless) flavons ϕ̃. All flavons transform in the 32 representation

of ∆(54), see table 1.

Φ−2/3, such as those listed for our model in table 1, the representations of the generators are

given by the traditional group matrices (2), ρ(T) in eq. (6) (including the automorphy factor

equals one), and ρ(R̂) = exp(2πi/9)13 from eq. (7).

As before, it is convenient to use the dimensionless flavon ϕ̃ instead of ϕ, which are related

by eq. (50), since an overall factor would not affect the breaking pattern of the eclectic flavor

symmetry. The first step in the breaking chain (53b) is achieved by setting the dimensionless

flavon VEV 〈ϕ̃〉 = (0, 0, 1)T. This VEV is left invariant only by the generators

ρ(ABA2) =

ω 0 0

0 ω2 0

0 0 1

 and ρ(T) =

ω
2 0 0

0 1 0

0 0 1

 , (54)

i.e. one traditional and one modular generator. Both of them are of order three and generate

the group Z
(2)
3 × Z(3)

3 . In a second step, one can choose a misalignment of the flavon VEV

〈ϕ̃〉 = (0, λ2, 1)T with λ2 6= 0, which breaks the traditional Z
(2)
3 symmetry generated by

ρ(ABA2), leaving only the modular Z
(3)
3 symmetry unbroken. Finally, Z

(3)
3 can be broken too

by perturbing either the modulus VEV or the flavon VEV. In moduli space, one must simply

get slightly away from the moduli enhanced point 〈T 〉 = i∞, such that ε := 〈q〉 = exp(2πi〈T 〉)
is small but does not vanish. Note that this perturbation breaks the ZCP2 CP-like symmetry

too. In flavon space, Z
(3)
3 is broken by considering the VEV 〈ϕ̃〉 = (λ1, λ2, 1)T, which is no

longer left invariant by ρ(T). This breaking process is illustrated in figure 1.

Using this information, we realize that some useful hierarchies can arise in the model

by choosing appropriately the parameters ε, λ1 and λ2. From our previous discussion, we

notice that the vanishing of any of these parameters corresponds to a symmetry enhancement

at certain points in moduli and flavon space, where the symmetries displayed in figure 1

are left intact. If the VEV parameters are small, i.e. |ε|, |λ1|, |λ2| � 1, one can find that

the subgroups Z
(2)
3 and Z

(3)
3 of H(3, 2, 1) are approximately realized. If, in addition, those

parameters have very different values, then the three groups may correspond to hierarchically

different symmetries of the model, providing thereby a plausible explanation of the nontrivial

textures of masses and mixing of particle physics. We shall focus in the following on the

possibility of arriving at a hierarchical mass structure in both the quark and lepton sector

of the SM. For phenomenological reasons, we shall assume that the flavon VEVs follow this
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symmetry breaking pattern and satisfy

0 < |λ1| < |λ2| < 1 . (55)

Depending on the sector, we will consider the relevant flavon ϕ from table 1. For example, in

the lepton sector, the flavon fields ϕ that we can use are the ∆(54) triplets ϕe and ϕν .

3.2 Hierarchical masses from approximate symmetries

Let us now study the hierarchical structure of fermion masses that arise in the vicinity of the

symmetry-enhanced points. Following the discussion of [68, 69], we make use of the following

relation valid for any n× n complex matrix M :∑
i1<···<ip

m2
i1 · · · m2

ip =
∑
|detMp×p|2 , (56)

where mi are the singular values of M , p = 1, . . . , n is fixed, and the sum on the right-hand

side goes over all possible p× p submatrices Mp×p of M . This relation can be used to extract

the physical masses mi, i ∈ {I, II, III}, as singular values of the 3 × 3 mass matrices of our

model. Moreover, we shall assume the observed hierarchical pattern mI � mII � mIII, which

implies

m2
III ≈

∑
i,j

|Mij |2 = TrM †M , (57a)

m2
IIm

2
III ≈

∑
|detM2×2|2 ⇒ m2

II ≈
∑ |detM2×2|2

TrM †M
, (57b)

m2
I m

2
IIm

2
III = |detM |2 ⇒ m2

I ≈
|detM |2∑ |detM2×2|2

. (57c)

3.2.1 Charged-lepton and quark mass hierarchies

The explicit forms of the charged-lepton and quark mass matrices that arise from the super-

potential (15) are given in eqs. (20) and (28), respectively. We see that the resulting mass

textures are equal for charged leptons, up-type quarks, and down-type quarks, but the specific

masses in each sector depend on the values of the VEV parameters of the respective flavons.

Hence, the results derived in this section apply to all three sectors.

For a generic sector, in terms of the small VEV parameters λ1, λ2, and ε, the structure of

the mass matrices reads

M(〈T 〉,Λ, 〈ϕ〉) = Λ

 λ1 3 ε1/3 3λ2 ε
1/3

3 ε1/3 λ2 3λ1 ε
1/3

3λ2 ε
1/3 3λ1 ε

1/3 1

 + O(ε) . (58)

Here we have used the q-expansions (11) for the modular forms Ŷ1 and Ŷ2, valid in our case

because |ε| = |〈q〉| � 1 in the vicinity of 〈T 〉 = i∞. Using eqs. (57) and taking |ε|, |λ1|, |λ2| � 1,
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we identify the physical masses

m2
III ≈ TrM †M ≈ Λ2 , (59a)

m2
II ≈

∑ |detM2×2|2
TrM †M

≈ Λ2
(
|λ1|2 + |λ2|2 + 18 |ε2/3|

)
, (59b)

m2
I ≈

|detM |2∑ |detM2×2|2
≈ Λ2 |λ1λ2 − 9ε2/3|2

|λ1|2 + |λ2|2 + 18 |ε2/3| . (59c)

Depending on the relations among λ1, λ2, and ε, our model leads to three possible mass

hierarchies:

(mI, mII, mIII) ≈ Λ



(
3√
2
|ε1/3|, 3

√
2 |ε1/3|, 1

)
for |λ1|2 < |λ2|2 � |ε2/3| ,

(|λ1|, |λ2|, 1) for |ε2/3| � |λ1λ2| � |λ2|2 ,(
9
∣∣∣ ε2/3λ2

∣∣∣ , |λ2|, 1
)

for |λ1λ2| � |ε2/3| � |λ2|2 .

(60)

Recall that we assume |λ1| < |λ2| < 1 and aim at the observed mass hierarchies mI �
mII � mIII. Clearly, the first mass configuration in eq. (60) does not satisfy the condition of

hierarchical masses. The other two scenarios are compatible with our assumptions.

In the valid cases, we find the mass ratios

mI

mII
≈
∣∣∣∣λ1

λ2

∣∣∣∣ and
mII

mIII
≈ |λ2| for |ε2/3| � |λ1λ2| � |λ2|2 , (61a)

mI

mII
≈ 9

∣∣∣∣∣ε2/3λ2
2

∣∣∣∣∣ and
mII

mIII
≈ |λ2| for |λ1λ2| � |ε2/3| � |λ2|2 . (61b)

Interestingly enough, in both cases the ratio of the heavier masses depends only on |λ2| that,

as we saw in section 3.1, measures the amount by which the Z
(2)
3 approximate symmetry is

broken. On the other hand, the hierarchy mI/mII is governed by the breaking of the modular

Z
(3)
3 approximate symmetry,11 which is broken either by the flavon parameter λ1 or by the

modulus parameter ε. Since in string constructions both moduli and flavons acquire VEVs

roughly around the same scales, we consider the hierarchy pattern described by eq. (61b) to

be more appropriate to our scenario.

Let us concentrate now on the lepton sector. Applying eq. (61b) to charged leptons (with

mI → me, mII → mµ and mIII → mτ ) and comparing with their measured mass values (see

section 4 for the experimental values of lepton observables), we can fit the flavon VEV as

〈ϕ̃e,2〉 = |λe,2| ≈
mµ

mτ
= 0.0586 . (62)

Analogously, the modulus VEV is constrained to be approximately

|ε1/3| ≈
√
|λe,2|2

9

me

mµ
≈ 0.00134 ⇒ Im 〈T 〉 ≈ 3.16 (63)

in order to yield the correct hierarchy for the two light charged leptons. We shall see in section 4

that this approximate analytical result is compatible with a more complete numerical analysis.

11This situation is similar to the BU scenarios [29,69,70].
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As already mentioned, the uncovered pattern for charged leptons applies equally in our

model also to the up and down-quark sector separately. This symmetric structure has its

root in the spectrum of our model, see table 1, which leads to the superpotential (15). We

notice that the only difference among the Yukawas is that the flavons are different fields but

have identical quantum numbers. Even more, the appearance of ϕe in the down-quark and

charged-lepton Yukawas reveals identical mass relations in both sectors. These symmetries are

interesting but challenge the phenomenological viability of our model. As we shall shortly see,

corrections to the Kähler potential arising from flavon VEVs alleviate this issue.

3.2.2 Neutrino mass hierarchies

Light neutrino masses occur in our model via a seesaw mechanism. The corresponding light

neutrino mass matrix Mν has been defined in eq. (24). In order to write down the explicit

mass matrix, we need a closed form expression for the inverse of the Majorana mass matrix

eq. (25). This is up to an overall factor given by

M−1
M ∼

 λe,2 −3 ε1/3 −3λ2
e,2 ε

1/3

−3 ε1/3 λe,1 −3λ2
e,1 ε

1/3

−3λ2
e,2 ε

1/3 −3λ2
e,1 ε

1/3 λe,1 λe,2 − 9 ε2/3

 + O(λe,1 ε
2/3) . (64)

Since two flavons appear in the light neutrino mass matrix, we have to distinguish between

the components λe,1, λe,2 from 〈ϕ̃e〉, and λν,1, λν,2 from 〈ϕ̃ν〉 in the following. The structure

of the light neutrino mass matrix is then given by

Mν ∼

 ∆1 Σ3 ε
1/3 Σ2 ε

1/3

Σ3 ε
1/3 ∆2 Σ1 ε

1/3

Σ2 ε
1/3 Σ1 ε

1/3 ∆3

 + O(ε
2/3) , (65)

where

∆1 = λ2
ν,1 λe,2 , ∆2 = λe,1λ

2
ν,2 , ∆3 = λe,1λe,2 , (66)

and

Σ1 = 3λe,1

(
λν,1λν,2 + λν,1λe,2 − λe,1λν,2

)
, (67a)

Σ2 = 3λe,2

(
λν,1λν,2 − λν,1λe,2 + λe,1λν,2

)
, (67b)

Σ3 = 3
(
− λν,1λν,2 + λν,1λe,2 + λe,1λν,2

)
. (67c)

By using eq. (57), one might find approximate (rather long) expressions for the neutrino

masses, which depend on the various hierarchy configurations of the small parameters λi and ε.

A full classification of the large number of these hierarchies is not very enlightening. Instead,

let us focus here on the more appealing scenario given by the VEV relations

|λe,1λe,2| ≈ |λν,1|2 � |λe,1| � |λν,1| ≈ |ε1/3| � |λe,2| � |λν,2| ≈ 1 . (68)
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observables best fit values

me/mµ 0.00474± 0.00004

mµ/mτ 0.0586+0.0004
−0.0005

∆m2
21/10−5 [eV2] 7.42+0.21

−0.20

∆m2
31/10−3 [eV2] 2.510+0.027

−0.027

sin2 θ12 0.304+0.012
−0.012

sin2 θ13 0.02246+0.00062
−0.00062

sin2 θ23 0.450+0.019
−0.016

δ`CP/π 1.28+0.20
−0.14

Table 3: Observed masses and mixing angles of the lepton sector. We show the best fit and 1σ errors

for the charged-lepton mass ratios at the GUT scale, assuming tanβ = 10, MSUSY = 10 TeV, and

η̄b = 0.09375; taken from [71]. We also present the best-fit values and 1σ errors for the neutrino

oscillation parameters given by the global analysis NuFIT v5.1 [72] with Super-Kamiokande data for

normal ordering.

For this specific case, the neutrino masses, up to their overall mass scale, approximately read

(m1, m2, m3) ∼
(

9
|ε2/3 λ2

ν,1|
|λe,1|

, |λe,1 λe,2|, |λe,1|
)
, (69)

where we still satisfy that m1 � m2 � m3. The mass ratios turn out to be

m1

m2
≈ 9

∣∣∣∣∣ε2/3λe,1

∣∣∣∣∣ and
m2

m3
≈ |λe,2| . (70)

Hence, just as in the charged-lepton sector, the hierarchies in the neutrino masses are governed

by the amount by which the Z
(2)
3 ×Z

(3)
3 approximate symmetry is broken. Indeed, the relation

between m2 and m3 coincides approximately with the hierarchy of the heavier charged leptons,

eq. (62). Furthermore, a direct consequence of the VEV configuration (68) is that the difference

between the lightest neutrino m1 and m2 is smaller than the difference between the heaviest

neutrino m3 and m2, i.e.
m2 −m1

m3 −m2
≈ |λe,2| < 1 , (71)

which corresponds to a normal-ordered neutrino spectrum. As the subsequent numerical anal-

ysis will show, the specific VEV relations of eq. (68) are in fact compatible with the best-fit

scenario that allows us to reproduce all observations in the lepton sector.

4 Numerical analysis of the lepton sector

Let us now fit the parameters of our model such that it reproduces observations in the lepton

sector. We aim at the experimental observables summarized in table 3. In the top block, we
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Figure 2: Comparison of the χ2 profile determined by the global analysis NuFIT v5.1 [72] and the

presumed profile computed with eq. (74) in a conventional χ2 analysis for (a) sin2 θ23 and (b) δ`CP .

show the current values of the mass ratios and 1σ errors for the charged leptons, evaluated

at the GUT scale (for the running of these parameters, see e.g. [71]), assuming tanβ = 10,

MSUSY = 10 TeV, and η̄b = 0.09375, as described in [33, 73]. In the bottom block, the best-fit

values and 1σ errors of neutrino-oscillation parameters are presented, as given by the global

analysis NuFIT v5.1 [72]. These values include data on atmospheric neutrinos provided by the

Super-Kamiokande collaboration. The table contains only data for normal ordering because a

successful fit of our model with inverted ordering was not possible. Note that the oscillation

parameters are given at the low scale. It is common in the literature on modular flavor

symmetries to assume that the running from low energies to the GUT scale of these parameters

is negligible. This is justified by arguing that the effects of the running would be smaller than

the experimental errors. We shall adopt this practice here.

The lepton sector of our model depends on a set x of 7 parameters, i.e.

x = {Re 〈T 〉, Im 〈T 〉, 〈ϕ̃e,1〉, 〈ϕ̃e,2〉, 〈ϕ̃ν,1〉, 〈ϕ̃ν,2〉, Λν} , (72)

which include the VEVs of the two real components of the modulus T , and the VEVs of

the four nontrivial (real) components of the flavon triplets ϕe and ϕν , and the neutrino mass

scale Λν . In addition, one might include the overall mass scale Λe of charged leptons, but

we omit it as we shall fit only the mass ratios of that sector. For each choice of the values

of the parameters (72) one can numerically diagonalize the charged-lepton and neutrino mass

matrices, eqs. (20) and (24). From this process one can then extract the physical masses as well

as the mixing angles and CP violation phase(s) that parametrize the lepton mixing matrix.12

As a quantitative measurement for the goodness of our fit, we perform a χ2 analysis. We

define a χ2 function

χ2(x) =
∑
i

∆χ2
i (x) , (73)

where we sum over charged-lepton mass ratios and all observables listed in table 3. For the

12We use the PDG convention for the parametrization of the lepton mixing matrix [74].
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Figure 3: Regions in the fundamental domain of Γ(3) that yield fits with χ2 ≤ 25. Note that a mapping

into the fundamental domain of SL(2,Z) with a modular transformation γ ∈ T ′ is not possible for

this model, since we require the flavon VEVs to be real, i.e. to respect the CP-like symmetry. The

analogous flavon VEVs after performing a T ′ transformation would in general be complex. The colors

green, yellow, and orange may be interpreted as the 1σ, 2σ, and 3σ confidence levels, while the opaque

red fades out to white until the 5σ barrier is reached. Note that there are two disconnected 1σ regions

on the right-hand side plot. In the right green region, the best point is 〈T 〉 = 0.02279 + 3.195 i, which

yields χ2 = 0.08. In the left green region, 〈T 〉 = −0.04283 + 3.139 i yields χ2 = 0.45. Therefore, the

best-fit value of the model lies in the right green region.

charged-lepton mass ratios we use

∆χi(x) =
µi,exp − µi,model(x)

σi
, (74)

where µmodel is the prediction of the model and µexp and σ are its corresponding experimental

best-fit value and the size of its 1σ error, respectively. For the neutrino-oscillation parameters,

we use the profiles of the one dimensional ∆χ2 projections obtained by the global analysis

NuFIT v5.1.13 This makes a difference especially for sin2 θ23 and δ`CP , as can be directly

appreciated from figure 2. For instance, by using a conventional ∆χ2 obtained from eq. (74),

one would underestimate the goodness of the fit by multiple sigma ranges for the second octant

of θ23 and also for small values of δ`CP . For sin2 θ23 < 0.45 the goodness of the fit would be

overestimated. We included δ`CP when calculating χ2 because, even though no values could be

excluded with 5σ by now, experiments do seem to favor some values of δ`CP over others. We

numerically minimize the function χ2(x) as described in appendix B.

This numerical scan yields a successful fit to current experimental data with an overall

χ2 = 0.08. The regions in moduli space that yield good fits, with χ2 ≤ 25, are depicted

in figure 3. As we see, there are multiple clusters that yield good fits. Interestingly, they

have roughly the same shape but are shifted by T → T + 3/4 while also 〈ϕ̃e,1〉 → −〈ϕ̃e,1〉,
〈ϕ̃ν,1〉 → −〈ϕ̃ν,1〉. Note that this transformation is not part of the eclectic flavor group. It

therefore turns out to be an accidental approximate symmetry of the model. This symmetry

13The data for the one dimensional ∆χ2 projections is conveniently accessible on the NuFIT website [72].
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right green region left green region

parameter best-fit value 1σ interval best-fit value 1σ interval

Re 〈T 〉 0.02279 0.01345→ 0.03087 −0.04283 −0.05416→ −0.02926

Im 〈T 〉 3.195 3.191→ 3.199 3.139 3.135→ 3.142

〈ϕ̃e,1〉 −4.069 · 10−5 −4.321 · 10−5 → −3.947 · 10−5 2.311 · 10−5 2.196 · 10−5 → 2.414 · 10−5

〈ϕ̃e,2〉 0.05833 0.05793→ 0.05876 0.05826 0.05792→ 0.05863

〈ϕ̃ν,1〉 0.001224 0.001201→ 0.001248 −0.001274 −0.001304→ −0.001248

〈ϕ̃ν,2〉 −0.9857 −1.0128→ −0.9408 0.9829 0.9433→ 1.0122

Λν [eV] 0.05629 0.05442→ 0.05888 0.05591 0.05408→ 0.05850

χ2 0.08 0.45

Table 4: Best-fit values and their corresponding 1σ intervals for the two green regions displayed in the

plot on the right-hand side of figure 3.

originates from the properties under modulus shifts of the modular forms of weight 1 that

appear in our model. Namely, T → T+3/4 results in Ŷ1(T )→ −i Ŷ1(T ), up to O(q) corrections,

as shown in eq. (13). Moreover, every cluster has two 1σ (green) regions. As we shall shortly

see, this bimodality is inherited by most observables. For the two green regions of the cluster in

the fundamental domain of SL(2,Z), the best-fit values and 1σ intervals for the parameters x

of the model are listed in table 4. Note that the best-fit values are very close to the predictions

from the analytical approximate analysis for the mass ratios given in eqs. (62) and (63).

In table 5, we summarize the best-fit values for the observables resulting from our numerical

scan. At the best-fit point, all observables (i.e. the charged lepton mass ratios, the neutrino

mass-squared differences, and the four lepton mixing matrix parameters) are within the 1σ

interval of the current experimental data. In addition, even though we did not demand it in

our fit, it turns out that the results of the fit are in agreement with the experimental bounds

for the lightest neutrino mass m1, the sum of neutrino masses
∑

imi, the effective mass for

neutrino-less double beta decay mββ , and the neutrino mass observable in 3H beta decay mβ,

cf. [75], [76], [77], and [78], respectively.

For observables whose values have not yet been determined by experiment, our model has

the following predictions:

• As shown in figure 4, in our model θ23 is preferably found in the first octant, i.e. θ23 < 45◦.

Taking the atmospheric data provided by Super-Kamiokande into account, this octant

is currently also preferred by experiment in the case of normal ordering. Unfortunately,

for this octant, the model does not provide a prediction for the CP violating phase δ`CP .

• The model has a rather precise prediction for the neutrino masses, especially for the

heaviest neutrino mass, cf. figure 5. At 1σ, the neutrino masses are predicted to be

3.9 meV < m1 < 4.9 meV, 9.5 meV < m2 < 9.9 meV, and 50.1 meV < m3 < 50.5 meV.
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model experiment

observable best fit 1σ interval 3σ interval best fit 1σ interval 3σ interval

me/mµ 0.00473 0.00470→ 0.00477 0.00462→ 0.00485 0.00474 0.00470→ 0.00478 0.00462→ 0.00486

mµ/mτ 0.0586 0.0581→ 0.0590 0.0572→ 0.0600 0.0586 0.0581→ 0.0590 0.0572→ 0.0600

sin2 θ12 0.303 0.294→ 0.315 0.275→ 0.335 0.304 0.292→ 0.316 0.269→ 0.343

sin2 θ13 0.02254 0.02189→ 0.02304 0.02065→ 0.02424 0.02246 0.02184→ 0.02308 0.02060→ 0.02435

sin2 θ23 0.449 0.436→ 0.468 0.414→ 0.593 0.450 0.434→ 0.469 0.408→ 0.603

δ`CP/π 1.28 1.15→ 1.47 0.81→ 1.94 1.28 1.14→ 1.48 0.80→ 1.94

η1/π mod 1 0.029 0.018→ 0.048 −0.031→ 0.090 - - -

η2/π mod 1 0.994 0.992→ 0.998 0.935→ 1.004 - - -

JCP −0.026 −0.033→ −0.015 −0.035→ 0.019 −0.026 −0.033→ −0.016 −0.033→ 0.000

Jmax
CP 0.0335 0.0330→ 0.0341 0.0318→ 0.0352 0.0336 0.0329→ 0.0341 0.0317→ 0.0353

∆m2
21/10−5 [eV2] 7.39 7.35→ 7.49 7.21→ 7.65 7.42 7.22→ 7.63 6.82→ 8.04

∆m2
31/10−3 [eV2] 2.508 2.488→ 2.534 2.437→ 2.587 2.521 2.483→ 2.537 2.430→ 2.593

m1 [eV] 0.0042 0.0039→ 0.0049 0.0034→ 0.0131 < 0.037 - -

m2 [eV] 0.0095 0.0095→ 0.0099 0.0092→ 0.0157 - - -

m3 [eV] 0.0504 0.0501→ 0.0505 0.0496→ 0.0519 - - -∑
imi [eV] 0.0641 0.0636→ 0.0652 0.0628→ 0.0806 < 0.120 - -

mββ [eV] 0.0055 0.0045→ 0.0064 0.0040→ 0.0145 < 0.036 - -

mβ [eV] 0.0099 0.0097→ 0.0102 0.0094→ 0.0159 < 0.8 - -

χ2 0.08

Table 5: Comparison of the best-fit values in the lepton sector of our model against the experimental

data. In the columns 2–4 we present the best values from our fit with their 1σ and 3σ-error intervals. We

have added mod 1 for η1,2 because there are two disconnected 1σ regions shifted by π, cf. figure 6. In

the last three columns, we include the experimental best fit and 1σ ranges for the charged-lepton mass

ratios at the GUT scale, assuming tanβ = 10, MSUSY = 10 TeV, and η̄b = 0.09375, taken from [71].

In addition, we give the best-fit values and error intervals for the neutrino-oscillation parameters as

obtained by the global analysis NuFIT v5.1 [72] with Super-Kamiokande data for normal ordering.

Figure 4: Fitted regions with χ2 ≤ 25 in the space of sin2 θ23 and δ`CP achieved in our model. The black

lines delimit the experimental 1, 2, and 3σ regions as determined by the global analysis NuFIT. The

bimodality appearing in moduli space, cf. figure 3, seems to be absent in the θ23 − δ`CP plane, as the

two green regions overlap and therefore appear as only one green region here.
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Figure 5: Projections of χ2 on the neutrino masses, which are clearly normal ordered.

Figure 6: Majorana phases predicted by our model. Note that the Majorana phases are found to be in

general near CP-conserving values. The appearance of two 1σ (green) regions in this plot stems from

the bimodality found in moduli space: each green region in the plot on the right-hand side arises from

a different 1σ region of the fundamental domain of SL(2,Z) in figure 3.

• Only Majorana phases that are close to CP-conserving values are compatible with the

fit of our model. For more details, see figure 6.

• The prediction for the effective neutrino mass mββ is, unfortunately, not reachable by

the next-generation experiments for neutrinoless double beta decay. However, potential

next-to-next generation experiments, e.g. CUPID-1T [79], aim at covering the predicted

region, see figure 7.

• We have performed a wide numerical scan and did not find any successful fit that accepts

inverted ordered neutrino masses. Hence, we observe that our model clearly prefers

normal ordering.
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Figure 7: Effective neutrino mass for 0νββ as a function of the lightest neutrino mass. The dashed

lines delimit the experimentally admissible region within 3σ for normal ordering. Gray-shaded areas

are excluded by KamLAND-Zen [77] or cosmological bounds [75,76]. The 1σ and 2σ (green and yellow)

regions are within the bounds that next-to-next generation experiments are aiming at. For example,

the stated preliminary exclusion sensitivity of the CUPID-1T experiment goes down to 4.1 meV [79],

which is indicated in the plot by a thin gray line. As for Majorana phases, cf. figure 6, the appearance

of two 1σ (green) regions in this plot is related to the bimodality in moduli space, cf. figure 3.

5 Simultaneous fit of quark and lepton sectors

So far, we have discussed only the lepton sector. It has been fitted by choosing appropriate

VEVs for the modulus T and the flavon triplets ϕe and ϕν . Let us now include in our analysis

the masses and mixings of quarks. Inspecting the superpotential (15), we realize that up-type

quark Yukawa couplings include an additional flavon triplet ϕu while down-type Yukawas share

the flavon triplet ϕe. Consequently, at leading order i) the structure of the mass matrices of up

and down-type quarks are equal, and ii) the masses of charged leptons and down-type quarks

differ only by their overall scale. The latter contradicts experimental observations, but it can

be amended by taking into account contributions from the Kähler potential. As discussed in

section 2.5, if flavons develop VEVs, there can be considerable off-diagonal corrections to the

Kähler metric already at next-to-leading order.

In principle, Kähler corrections can affect both leptons and quarks. However, for simplicity,

we assume that the parameters in the lepton sector yield negligible contributions to additional

terms in the Kähler potential. That is, only the quark sector will be influenced by Kähler

corrections. According to our previous discussion in section 2.5, the next-to-leading order

corrections to the Kähler metric of quark fields Ψ ∈ {ū, d̄, q} take the form (see eq. (44))

Kf
ij ⊃ λfϕeff

(
Afij + κfϕeff

Bf
ij

)
, (75)

where f ∈ {u,d, q} labels the effective flavons and Kähler parameters associated with each

quark field, explicitly defined in eqs. (44)–(49). To simplify our notation, we have suppressed

the arguments of the Kähler matrix elements, such that

Afij := Aij(ϕ̃
(A),f
eff ) and Bf

ij := Bij(ϕ̃
(B),f
eff ) . (76)
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These matrix elements are quadratic in the VEVs of the components of the effective flavon

triplets. However, since these VEVs appear in the Kähler metric always accompanied by the

coefficients λfϕeff , it is convenient to use instead the parameters

αfi :=

√
λfϕeff 〈ϕ̃

(A),f
eff,i 〉 and βfi :=

√
λfϕeff 〈ϕ̃

(B),f
eff,i 〉 , (77)

such that

λfϕeff
Afij = αfi α

f
j , (78)

and λfϕeffB
f
ij is quadratic in βf up to O(1) factors. Note that the parameters αfi and βfi

represent a good measure of the size of the Kähler corrections.

The additional parameters of the quark sector include first the complex components of the

normalized up-type flavon triplet

〈ϕ̃u〉 =
(
〈ϕ̃u,1〉 exp(i〈ϑu,1〉) , 〈ϕ̃u,2〉 exp(i〈ϑu,2〉) , 1

)
. (79)

Furthermore, the Kähler corrections introduce 9 parameters αfi , 9 βfi and 3 κfϕeff . In order to

simplify somewhat our fit, we impose the following constraints:

• κfϕeff = 1 for all f ∈ {u, d, q},

• αfi = βfi for all f and i ∈ {1, 2, 3}, and

• all αfi are real.

While these constraints may appear ad-hoc, we stress that the philosophy here is not to scan

the full parameter space but to demonstrate, in the first place, that there is a region in the

parameter space that indeed agrees with a realistic low energy phenomenology. Taking the

constraints into account, we arrive at a remaining set of 13 quark parameters that we include

in our numerical scan, aiming at a global fit of both leptons and quarks. The numerical

procedure to achieve the global fit is based on a χ2 minimization, analogous to the one used

in the lepton sector, which is discussed in detail in appendix B. As for charged leptons, the

experimental data we consider for quarks are the mass ratios and mixing parameters at the

GUT scale [71], assuming a running with tanβ = 10, MSUSY = 10 TeV, and η̄b = 0.09375, as

in refs. [33, 73]. These experimental best-fit values together with their respective errors are

presented in the last two columns of table 6b.

The resulting best-fit values are displayed in table 6. The modulus and flavon VEVs of

the model have the values shown in table 6a. We point out that the magnitude of the Kähler

corrections needed to arrive at a successful global fit all satisfy αfi < 1. Also, the VEVs of

the modulus 〈T 〉 and the lepton flavons 〈ϕ̃e,i〉 and 〈ϕ̃ν,i〉 preserve the values obtained in the

lepton fit, cf. table 5. In table 6b we compare our best fit against the experimental values of

quark and lepton observables. Our global fit of all fermion mass ratios, mixing angles and CP
phases exhibits χ2 = 0.11. Although we do not provide any prediction in the quark sector,

it is remarkable that the eclectic scenario arising from a string compactification can fit the

observed data so well.
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parameter best-fit value

Im 〈T 〉 3.195

Re 〈T 〉 0.02279

〈ϕ̃u,1〉 2.0332 · 10−4

〈ϑu,1〉 1.6481

〈ϕ̃u,2〉 6.3011 · 10−2

〈ϑu,2〉 −1.5983

〈ϕ̃e,1〉 −4.069 · 10−5

〈ϕ̃e,2〉 5.833 · 10−2

〈ϕ̃ν,1〉 1.224 · 10−3

〈ϕ̃ν,2〉 −0.9857

su
p

er
p

ot
en

ti
al

Λν [eV] 0.05629

αu
1 −0.94917

αu
2 0.0016906

αu
3 0.31472

αd
1 0.95067

αd
2 0.0077533

αd
3 0.30283

αq
1 −0.96952

αq
2 −0.20501

K
äh

le
r

p
ot

en
ti

al

αq
3 0.041643

(a)

observable model best fit exp. best fit exp. 1σ interval

mu/mc 0.00193 0.00193 0.00133→ 0.00253

mc/mt 0.00280 0.00282 0.00270→ 0.00294

md/ms 0.0505 0.0505 0.0443→ 0.0567

ms/mb 0.0182 0.0182 0.0172→ 0.0192

ϑ12 [deg] 13.03 13.03 12.98→ 13.07

ϑ13 [deg] 0.200 0.200 0.193→ 0.207

ϑ23 [deg] 2.30 2.30 2.26→ 2.34

q
u
ar

k
se

ct
or

δq
CP [deg] 69.2 69.2 66.1→ 72.3

me/mµ 0.00473 0.00474 0.00470→ 0.00478

mµ/mτ 0.0586 0.0586 0.0581→ 0.0590

sin2 θ12 0.303 0.304 0.292→ 0.316

sin2 θ13 0.0225 0.0225 0.0218→ 0.0231

sin2 θ23 0.449 0.450 0.434→ 0.469

δ`CP/π 1.28 1.28 1.14→ 1.48

η1/π 0.029 - -

η2/π 0.994 - -

JCP −0.026 −0.026 −0.033→ −0.016

Jmax
CP 0.0335 0.0336 0.0329→ 0.0341

∆m2
21/10−5 [eV2] 7.39 7.42 7.22→ 7.63

∆m2
31/10−3 [eV2] 2.521 2.510 2.483→ 2.537

m1 [eV] 0.0042 <0.037 -

m2 [eV] 0.0095 - -

m3 [eV] 0.0504 - -∑
imi [eV] 0.0641 <0.120 -

mββ [eV] 0.0055 <0.036 -

le
p
to

n
se

ct
or

mβ [eV] 0.0099 <0.8 -

χ2 0.11

(b)

Table 6: Results of a simultaneous fit of the quark and lepton sectors with χ2 = 0.11. (a) Values of

the model parameters at the best-fit point. The parameter values in the lepton sector coincide with

the modulus and flavon VEVs showed in table 4. In addition, for the quark sector we provide the

(complex) components of the flavon VEV 〈ϕ̃u〉 appearing in the superpotential, along with the effective

Kähler parameters αf
i , f ∈ {u,d, q} and i ∈ {1, 2, 3}, defined in eq. (77). (b) Best-fit values of flavor

observables obtained from our model. We compare them with the corresponding experimental best-fit

value; we include the experimental 1σ error. The quark-sector observables are successfully fitted while

keeping untouched the lepton-sector fit presented in table 5.

Before concluding, let us mention some caveats of our model. First, the VEV parameters of

the model included in eqs. (72) and (79) as well as the Kähler parameters of eqs. (77) have been

considered here to be free. However, in a full string model the computation of the couplings

and the dynamic stabilization of the VEVs are in principle achievable. Unfortunately, these

tasks have not been solved so far, remaining as open questions for our model. Secondly, notice
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that the values of the Kähler parameters in our fit, displayed in table 6a, are all controllable

in the sense that they arise in a Kähler potential that is explicitly constrained by the eclectic

flavor group and, moreover, their magnitudes turn out to be smaller than unity ensuring the

perturbativity of our model. Yet, because of its complexity, the rigorous string computation of

these parameters lies still beyond the scope of our study. Finally, our focus is the flavor puzzle

only, assuming that all other phenomenological questions of particle physics and cosmology can

be solved by some methods introduced in many earlier influential works. For example, we have

assumed that all exotic matter states appearing in table 2 can acquire masses much larger than

the physical scale of the flavor sector in supersymmetric vacua [60,80–82]. One might then argue

that only the physical right-handed neutrinos and Higgs doublets are left massless as a result

of the existence of some unbroken (R-)symmetries either beyond the flavor sector [83–85] or

intimately linked with it [86]. As shown in those works, such symmetries could also be relevant

for proton stability and the suppression of the µ-term. In addition, relaxing our assumption

on the decoupling of the extra right-handed neutrinos in table 2 might be instrumental to

arrive at a better understanding of the relation between the Majorana and the observable

neutrino mass scales [87]. Our scheme also admits proposals to solve the discrepancy between

the GUT and string scale in heterotic models [88, 89] since it can be embedded in anisotropic

compactifications. Furthermore, heterotic orbifolds seem to be equipped with useful properties

to achieve supersymmetry breakdown [90]. All these aspects should be studied elsewhere in

detail to complete our construction and extend it to other relevant phenomenological questions,

such as identifying the cause of inflation, the origin of dark matter and the baryon asymmetry

of the Universe.

6 Conclusions and Outlook

We have studied the flavor phenomenology of the lepton and quark sectors emerging from

a specific T6/Z3 × Z3 heterotic orbifold model that gives rise to the eclectic flavor group

Ω(2). This TD scenario combines the virtues of a modular T ′ and a traditional ∆(54) flavor

symmetry, while avoiding the arbitrariness in the choice of quantum numbers of matter fields

inherent to BU constructions. The (traditional, modular and gauge symmetry) representations

of matter fields as well as their modular weights are entirely fixed by the compactification. In

our example model, SM fermions and flavons form identical flavor triplets and exhibit equal

(fractional) modular weights, cf. table 1. Hence, the structure of the superpotential and Kähler

potential are determined by the theory, guaranteeing, in particular, a canonical leading-order

Kähler potential, as is most frequently assumed in the BU approach. However, in addition, our

setup also allows us to control non-canonical, higher-order, Planck-suppressed corrections to

the Kähler potential that arise after the traditional flavor symmetry is spontaneously broken

by flavons. We computed these corrections (to next-to-leading order), which turn out to

be instrumental for a successful phenomenological fit since they contribute to the structure

of mass matrices. Both, the modulus and some of the flavons inherent to the construction

must attain non-trivial VEVs in order to break the modular and traditional components of
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the eclectic symmetry, as required by phenomenology. Special values of these VEVs lead to

discrete remnants of the flavor group that can appear as approximate discrete symmetries at

low energies [7].

In our string-derived example model, we have explicitly computed the leading-order super-

potential (15) and confirmed the canonical leading-order structure of the Kähler potential (39).

These results reveal that our model accommodates naturally a type-I see-saw mechanism as

explanation for the neutrino masses. We have shown that points in moduli space pertur-

batively close to the symmetry-enhanced point 〈T 〉 = i∞ enjoy various approximate sym-

metries as remnants of the eclectic group. Their successive spontaneous breaking through

the misaligned VEVs of the modulus and flavon fields can account for technically natural

(symmetry-protected) correct hierarchies. The tight, symmetry-based constraints allow us to

derive approximate analytical expressions for the mass hierarchies, as explained in section 3.

In order to fully explore the phenomenology of the model, we have performed a numerical

analysis of the charged-lepton and neutrino sectors. We found that the 11 independent observ-

ables listed in table 5 can be well fitted by adjusting seven free parameters corresponding to

the VEVs of the modulus and flavons as well as the neutrino mass scale. Their values at the

best-fit point are presented in table 4 and show that our analytical treatment is fairly accurate.

The octant of θ23, the normal ordering of neutrino masses, the observable values of mββ , as

well as the neutrino Majorana phases are predictions of the fit. These results are illustrated

in figures 4–7.

Next-to-leading-order Kähler corrections turn out to be crucial to arrive at a model of

flavor that includes the quark sector in a phenomenologically viable manner. This is another

consequence of the highly constrained nature of TD constructions, as our example model

contains only a single non-singlet flavon field that is responsible for the structure and hierarchies

of down-quark and charged-lepton Yukawa couplings, as well as of the neutrino Majorana mass

term. This results in a particular kind of bottom-tau unification that must be modified in order

to arrive at a realistic phenomenology. We have shown that this can be achieved thanks to the

presence of next-to-leading-order Kähler corrections, which allowed us to obtain a successful

numerical fit to quark phenomenology that does not change our predictions for the lepton

sector.

In summary, we have presented for the first time a UV-complete, full string theory model

that exhibits a flavor scheme that can accomodate the experimentally observed pattern of

quark and lepton flavor phenomenology. Reducing the number of free parameters was possible

by taking into account the restrictive constraints on the effective superpotential and Kähler

potential arising from the entire, partly non-linearly realized, eclectic flavor symmetry. Achiev-

ing the ambitious goal of a complete fit to the low-energy flavor data was possible only as a

consequence of the existence of controllable Kähler corrections.

This represents the first decisive step towards connecting the BU and TD efforts in the

quest for an ultimate theory of flavor, and demonstrates the potential of this TD approach. It

would be interesting to compare our results to the outcome of similar TD constructions, such

as the orbifold models of type B–D classified in ref. [7], orbifold constructions endowed with
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a T2/Z2 sector [48, 49], or other TD scenarios that can admit three fermion generations and

metaplectic flavor symmetries [42], and also exhibit eclectic features [40]. Moreover, quasi–

eclectic models [91] offer another interesting possibility to explore in order to further connect

the BU and TD approaches.

Future efforts should aim at further reducing the number of free parameters, either by

rigorous string computations of some of the low energy parameters, or by identifying other po-

tentially realistic string setups that are even more constrained by symmetry. Further attention

should also be paid to the field-theoretical minimization of the flavon potential as well as to

the longstanding question of modulus stabilization.
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A Kähler potential at next-to-leading order

In order to arrive at the next-to-leading order Kähler potential, eq. (44), one must compute

the tensor products of the relevant representations (by using e.g. ref. [92]). Here we discuss in

detail the results of the computation.

The first tensor product in eq. (42) is given by

T1,a = [ϕ∗ ⊗ ϕ⊗Ψ∗ ⊗Ψ]1,a . (80)

This product has two invariant singlet contractions, i.e. a ∈ {1, 2}. For a = 1 it reads

T1,a=1 = Ψ†

 |ϕ1|2 ϕ1 ϕ
∗
2 ϕ1 ϕ

∗
3

ϕ2 ϕ
∗
1 |ϕ2|2 ϕ2 ϕ

∗
3

ϕ3 ϕ
∗
1 ϕ3 ϕ

∗
2 |ϕ3|2

Ψ . (81)

Here ϕi corresponds to the i-th component of the flavor triplet ϕ, or equivalently

T1,a=1 = Ψ∗i Aij(ϕ) Ψj , (82)

where the components of the matrix A are given by

Aij(ϕ) := ϕi ϕ
∗
j , (83)

and summation over repeated indices is implied. The second invariant singlet contraction, i.e.

T1,a=2 = Ψ∗j ϕi ϕ
∗
i Ψj , is irrelevant because it is proportional to the identity matrix and hence

its contribution to the Kähler metric can be absorbed by the symmetry-invariant constant χ

of the leading-order Kähler potential (40). Thus, we shall not discuss it here.

The second tensor product in the next-to-leading order Kähler potential is given by

T2,a =
[(
Ŷ (1)(T )

)∗
⊗ Ŷ (1)(T )⊗ ϕ∗ ⊗ ϕ⊗Ψ∗ ⊗Ψ

]
1,a

, a ∈ {1, 2, 3} . (84)

This tensor product yields three linearly-independent invariant terms, but only two of them

cannot be absorbed in (40). The first nontrivial term reads

T2,a=1 = Ψ∗i |Ŷ (1)(T )|2Aij(ϕ) Ψj . (85)

Note that this term, apart from the overall factor of |Ŷ (1)(T )|2, structurally yields the same

Kähler metric as the first tensor product (82). The second invariant singlet contraction reads

T2,a=2 = Ψ∗i

(
Bij(ϕ) + |Ŷ2|2|ϕ|2δij

)
Ψj , (86)

where

Bij(ϕ) =


(
|Ŷ1|2 − 2 |Ŷ2|2

)
ϕi ϕ

∗
j , for i = j

−|Ŷ1|2 ϕi ϕ∗j +
√

2
(
Ŷ1 Ŷ

∗
2 ϕ
∗
i ϕk + Ŷ2 Ŷ

∗
1 ϕ
∗
k ϕj

)
, for k 6= i 6= j 6= k .

(87)

As before, the term proportional to δij in (86) can be absorbed in (40) and will thus be ignored.
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Using eqs. (82) and (86), we find that the next-to-leading order contributions to the Kähler

metric (42) that are not proportional to δij , are given by

K
(non−id)
ij ⊃

∑
ϕ

[((
−iT + iT̄

)−4/3
ζ

(ϕ)
1 +

(
−iT + iT̄

)−1/3
ζ

(Y ϕ)
1 |Ŷ (1)(T )|2

)
Aij(ϕ) (88)

+
(
−iT + iT̄

)−1/3
ζ

(Y ϕ)
2 Bij(ϕ)

]
,

where we sum over all flavon triplets ϕ (with all possible modular weights) that develop VEVs.

We stress that the noncanonical contributions (88) arise only as a result of the breaking of the

traditional flavor symmetry by flavon VEVs, and that they are clearly Planck suppressed.

B Numerical procedure

Let us describe here in detail the numerical procedure we follow to arrive at the fit of the

lepton sector. The goal of the numerical procedure is to explore the parameter space of the

model parameters x defined in eq. (72) in order to find the regions that yield values of lepton

masses and mixings that are in agreement with experimental observations. In detail, we search

for parameters that yield χ2 ≤ 25 corresponding to a compatibility with 5σ. Moreover, we also

want to identify the point in parameter space that yields the best match to the experimental

data. We therefore split the numerical analysis in two steps: i) First, we find all minima with

χ2 ≤ 25; and ii) then we explore the regions around these minima.

The first step is a typical optimization problem that can be conveniently approached by

using the non-linear optimization interface lmfit [93]. We start by picking a random start-

point in the parameter space, whose boundaries we set to

0 < |〈ϕ̃e,1〉| , |〈ϕ̃e,2〉| < 1 , 0 < |〈ϕ̃ν,1〉| , |〈ϕ̃ν,2〉| < 2 , (89a)

0 < |Re 〈T 〉| < 1.5 , 0 < Im 〈T 〉 < 5 . (89b)

As we expect the flavon VEVs to be hierarchically ordered, we sample them with a

blend of a uniform and a logarithmic distribution. Moreover, we use the analytical result

|〈ϕ̃e,2〉| ≈ mµ
mτ

= 0.0586 obtained in section 3.2.1 and sample |〈ϕ̃e,2〉| only in the vicinity of

this value. To the chosen start-point, we then consecutively apply five randomly chosen mini-

mization algorithms included in the lmfit interface. For our setup, especially the algorithms

‘Constrained trust-region’ and ‘L-BFGS-B’ deliver good results. We repeat this procedure

until roughly 1000 points with χ2 ≤ 25 and no new minima are found by the algorithms.

Finally, we explore the neighborhood of each minimum using the Markov Chain Monte Carlo

(MCMC) sampler emcee [94], which is also supported by lmfit. The MCMC sampler chooses

random points with a probability function that it tries to couple to χ2. They are therefore

well suited to provide information on the vicinity of the minima and hence the boundaries of

the respective confidence levels.

Although similar methods have been thoroughly explained in other works, see e.g. [95], we

make our python code available upon request to be applied both in BU and TD constructions.

Please, send your inquiries preferably to alexander.baur@tum.de.
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C Complete spectrum of a model with Ω(2) eclectic flavor symmetry

We provide all quantum numbers of the massless spectrum of our example T6/Z3×Z3 heterotic orbifold model, including the representations

under GSM = SU(3)c × SU(2)L × U(1)Y , the eclectic flavor group Ω(2) = ∆(54) ∪ T ′ ∪ ZR9 (along with the associated modular weights n),

and the extra Z3
3 flavor and ‘hidden’ SU(4)×U(1)anom ×U(1)8 gauge factors.

Flavor charges ‘Hidden’ gauge charges

sector GSM ∆(54) T ′ Z
R
9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

U1 (1,2) 1
2

1 1 0 0 1 1 1 1 0 1 0 0 0 0 −59 32 −124 Hu

(1,2)− 1
2

1 1 0 0 1 1 1 1 0 1 0 0 0 0 59 −32 124 Hd

(1,1)0 1 1 0 0 1 1 1 1 0 −2 0 0 0 0 0 0 0 φ0

(3,1) 2
3

1 1 0 0 1 1 1 1 0 0 0 0 0 −73 −90 −24 93 U1

U2 (1,1)0 1 1 0 0 1 1 1 1 −2 −1 0 0 0 73 149 −8 −125 φ0
M

(1,1)0 1 1 0 0 1 1 1 1 −2 0 2 −38 32 42 −84 264 30 s1

(1,1)0 1 1 0 0 1 1 1 1 0 0 −7 16 −73 0 0 0 0 s2

(1,1)0 1 1 0 0 1 1 1 1 4 −1 0 0 0 73 31 56 95 s3

(1,1)0 1 1 0 0 1 1 1 1 2 0 5 22 41 −42 84 −264 −30 s5

(3,1) 2
3

1 1 0 0 1 1 1 1 −2 1 0 0 0 0 59 −32 −32 U2

(3̄,1)− 2
3

1 1 0 0 1 1 1 1 −2 0 0 0 0 −73 −90 −24 −63 Ū1

U3 (1,1)0 1′ 1 3 −1 1 1 1 1 2 0 0 0 0 146 180 48 −30 s7

(3̄,1)− 2
3

1′ 1 3 −1 1 1 1 1 2 1 0 0 0 0 −59 32 32 Ū2

(1,2)− 1
2

1′ 1 3 −1 1 1 1 1 −4 0 0 0 0 −73 28 −88 29 L1

(1,2) 1
2

1′ 1 3 −1 1 1 1 1 2 0 0 0 0 −73 −208 40 1 L̄1

T(0,1) (3,2) 1
6

32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3

− 2
3

− 40
3

−2 − 17
3

329
3

40
3

1
3

(q1, q2, q3)

(3̄,1)− 2
3

32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3

− 2
3

− 40
3

−2 − 17
3

329
3

40
3

1
3

(ū1, ū2, ū3)

(1,1)1 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3

− 2
3

− 40
3

−2 − 17
3

329
3

40
3

1
3

(ē1, ē2, ē3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3

− 2
3

− 40
3

−2 − 236
3

59
3

− 32
3

280
3

(ν̄1, ν̄2, ν̄3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 − 4
3

− 2
3

− 2
3

− 40
3

−2 − 17
3

506
3

− 56
3

− 95
3

(s10, s13, s16)

(1,1)0 32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

1
3

4
3

80
3

4 253
3

− 565
3

88
3

− 185
3

(ϕe,1, ϕe,2, ϕe,3)

(3,1)− 1
3

32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

− 2
3

− 2
3

− 40
3

−2 − 236
3

− 118
3

64
3

− 92
3

(D1, D2, D3)

(1,2) 1
2

32 2′ ⊕ 1 1 −2/3 1 ω2 1 1 2
3

− 2
3

− 2
3

− 40
3

−2 − 236
3

− 118
3

64
3

− 92
3

(L̄2, L̄3, L̄4)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 1 1 1 1 0 1
3

7
3

62
3

− 11
3

127
3

53 −320 31 (V1, V2, V3)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 1 ω 1 1 − 2
3

− 2
3

10
3

44
3

140
3

− 236
3

118
3

− 64
3

92
3

(V̄1, V̄2, V̄3)
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Flavor charges ‘Hidden’ gauge charges

sector GSM ∆(54) T ′ Z
R
9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,2)− 1
6

32 2′ ⊕ 1 1 −2/3 1 ω 1 1 4
3

1
3

− 11
3

92
3

− 79
3

− 17
3

211
3

104
3

− 91
3

(W1,W2,W3)

T(0,2) (1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3

− 1
3

− 4
3

− 80
3

−4 − 34
3

481
3

176
3

− 370
3

(s17, s21, s25)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3

− 4
3

2
3

40
3

2 17
3

− 506
3

56
3

95
3

(s18, s22, s26)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3

2
3

2
3

40
3

2 17
3

− 506
3

56
3

95
3

(s19, s23, s27)

(1,1)0 3̄2 2′′ ⊕ 1 5 2/3 1 ω 1 1 − 8
3

− 1
3

2
3

40
3

2 17
3

25
3

− 232
3

275
3

(s20, s24, s28)

(3,1)− 1
3

3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3

− 1
3

2
3

40
3

2 236
3

− 59
3

32
3

188
3

(D4, D5, D6)

(1,2) 1
2

3̄1 2′′ ⊕ 1 2 −1/3 1 ω 1 1 4
3

− 1
3

2
3

40
3

2 236
3

− 59
3

32
3

188
3

(L̄5, L̄6, L̄7)

(1,1)− 1
3

3̄1 2′′ ⊕ 1 2 −1/3 1 ω2 1 1 2
3

2
3

11
3

− 92
3

79
3

236
3

− 118
3

64
3

− 92
3

(V4, V5, V6)

(1,1) 1
3

3̄1 2′′ ⊕ 1 2 −1/3 1 1 1 1 2 − 1
3
− 13

3
52
3

− 85
3

− 253
3

31 56 −61 (V̄4, V̄5, V̄6)

(1,2) 1
6

3̄1 2′′ ⊕ 1 2 −1/3 1 ω2 1 1 2
3

− 1
3

5
3

22
3

− 17
3

− 109
3

41
3

− 896
3

1
3

(W 1,W 2,W 3)

T(1,0) (3̄,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω 1 ω 1 −2 0 − 5
3

56
3

− 67
3

− 56
3

− 242
3

− 160
3

152
3

(d̄1, d̄2, d̄3)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω 1 1 1 − 8
3

0 4
3

2
3

38
3

− 14
3

− 326
3

104
3

182
3

(`1, `2, `3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω2 1 − 4
3

1 7
3

62
3

47
3

121
3

289
3

− 448
3

215
3

(ϕu,1, ϕu,2, ϕu,3)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 1 4 11
3

0 − 2
3

− 1
3

68
3

− 2
3

4
3

− 166
3

− 10
3

(s29, s37, s45)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 1 1 3 0 − 17
3

− 67
3

− 55
3

124
3

− 248
3

− 448
3

20
3

(s30, s38, s46)

(1,1)0 31 2′ ⊕ 1 −2 −5/3 ω 1 1 1 4
3

0 4
3

2
3

38
3

205
3

− 410
3

368
3

95
3

(s31, s39, s47)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω 4̄ 11
3

0 10
3

5
3

8
3

− 26
3

52
3

− 10
3

− 10
3

(s32, s40, s48)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω 1 7
3

0 10
3

5
3

8
3

− 26
3

52
3

1064
3

50
3

(s33, s41, s49)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω2 1 3 0 7
3

− 55
3

− 175
3

76
3

− 152
3

− 136
3

20
3

(s34, s42, s50)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω 1 ω2 1 7
3

0 − 14
3

− 7
3

128
3

22
3

− 44
3

752
3

50
3

(s36, s44, s52)

T(1,2) (1,1)0 1 1 0 0 ω ω 1 1 8
3

− 1
3

0 −26 26
3

57 71
3

544
3

− 275
3

s53

(1,1)0 1 1 0 0 ω ω 1 1 − 10
3

2
3

0 −26 26
3

−89 62
3

112
3

− 5
3

s54

(1,1)0 1 1 0 0 ω ω 1 1 8
3

− 1
3

−2 12 − 70
3

−58 407
3

− 512
3

190
3

s55

(1,1)0 1 1 0 0 ω ω 1 1 2
3

− 1
3

0 −26 26
3

−16 155
3

280
3

280
3

s56

(1,1)0 1 1 0 0 ω ω ω 1 10
3

− 1
3

−3 −8 − 79
3

43 155
3

280
3

− 305
3

s57

(1,1)0 1 1 0 0 ω ω ω 1 − 8
3

2
3

−3 −8 − 79
3

−103 146
3

− 152
3

− 35
3

s58

(1,1)0 1 1 0 0 ω ω ω 1 4
3

− 1
3

4 −24 140
3

−30 239
3

16
3

250
3

s59

(1,1)0 1 1 0 0 ω ω ω 1 4
3

− 1
3

−3 −8 − 79
3

−30 239
3

16
3

250
3

s60

(1,1)0 1 1 0 0 ω ω ω2 1 0 − 1
3

−4 −28 − 88
3

−2 71
3

544
3

310
3

s61

(1,1)0 1 1 0 0 ω ω ω2 1 −2 2
3

1 −6 35
3

−117 230
3

− 416
3

− 65
3

s62

(1,1)0 1 1 0 0 ω ω ω2 1 4 − 1
3

1 −6 35
3

29 239
3

16
3

− 335
3

s63
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Flavor charges ‘Hidden’ gauge charges

sector GSM ∆(54) T ′ Z
R
9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,1)0 1 1 0 0 ω ω ω2 1 2 − 1
3

1 −6 35
3

−44 323
3

− 248
3

220
3

s64

(1,1)− 1
3

1 1 0 0 ω ω2 1 1 − 5
3

− 1
3

1 7 −41 −104 31 56 56 V7

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 − 10
3

− 1
3

2 −12 4 −13 −151 −88 81 V8

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 1 − 1
3

5 9 −3 28 239 16 16 V9

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 1 − 1
3

5 9 −3 −45 31 56 −139 V10

(1,1)− 1
3

1 1 0 0 ω ω2 ω 1 − 5
3

− 1
3

−7 3 −1 −88 −1 −48 56 V11

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 − 2
3

− 1
3

−1 6 −31 119 57 −128 41 V12

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 − 2
3

− 1
3

−1 6 −31 46 −151 −88 −114 V13

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 1 − 1
3

−3 5 37 44 207 −88 16 V14

(1,1)− 1
3

1 1 0 0 ω ω2 ω2 1 1 − 1
3

−3 5 37 −29 −1 −48 −139 V15

(1,1) 1
3

1 1 0 0 ω 1 1 1 − 7
3

2
3

6 3 − 32
3

59 − 236
3

128
3

167
3

V̄7

(1,1) 1
3

1 1 0 0 ω 1 1 1 10
3

− 1
3

−3 18 − 47
3

−16 − 317
3

536
3

− 88
3

V̄8

(1,1) 1
3

1 1 0 0 ω 1 1 1 1 2
3

−3 −21 79
3

−43 376
3

− 568
3

17
3

V̄9

(1,1) 1
3

1 1 0 0 ω 1 ω 1 − 7
3

2
3

−2 −1 88
3

75 − 332
3

− 184
3

167
3

V̄10

(1,1) 1
3

1 1 0 0 ω 1 ω 4̄ − 2
3

2
3

−4 −2 − 56
3

12 46
3

− 298
3

92
3

V̄11

(1,1) 1
3

1 1 0 0 ω 1 ω 1 −2 2
3

−4 −2 − 56
3

12 46
3

776
3

152
3

V̄12

(1,1) 1
3

1 1 0 0 ω 1 ω 1 0 2
3

1 20 67
3

−30 298
3

− 16
3

62
3

V̄13

(1,1) 1
3

1 1 0 0 ω 1 ω2 4 − 2
3

2
3

0 0 − 116
3

4 94
3

− 142
3

92
3

V̄14

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 − 4
3

2
3

2 −38 − 20
3

46 − 158
3

− 424
3

122
3

V̄15

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 − 4
3

− 4
3

0 0 58
3

−2 130
3

512
3

122
3

V̄16

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 1 2
3

5 −17 − 41
3

−59 472
3

− 256
3

17
3

V̄17

(1,1) 1
3

1 1 0 0 ω 1 ω2 1 − 4
3

2
3

0 0 58
3

−2 130
3

512
3

122
3

V̄18

(1,2)− 1
6

1 1 0 0 ω 1 ω 1 2 − 1
3

1 20 67
3

43 391
3

152
3

− 121
3

W4

(1,2) 1
6

1 1 0 0 ω ω2 1 1 2 − 1
3

3 8 7 32 −123 −176 32 W 4

(1,2) 1
6

1 1 0 0 ω ω2 1 1 5
3

− 1
3

−4 −15 34 −1 −57 128 37 W 5

(1,2) 1
6

1 1 0 0 ω ω2 ω2 1 5
3

− 1
3

4 −11 −6 −17 −25 232 37 W 6

(1,1)− 2
3

1 1 0 0 ω 1 1 1 − 8
3

− 1
3

−3 18 − 47
3

−16 391
3

152
3

− 4
3

X1

(1,1)− 2
3

1 1 0 0 ω 1 ω 1 2 2
3

1 20 67
3

−30 − 56
3

176
3

− 214
3

X2

(1,1) 2
3

1 1 0 0 ω ω2 1 1 − 5
3

− 1
3

1 7 −41 −31 121 80 −37 X̄1

34



Flavor charges ‘Hidden’ gauge charges

sector GSM ∆(54) T ′ Z
R
9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,1) 2
3

1 1 0 0 ω ω2 ω 1 − 10
3

− 1
3

2 −12 4 60 −61 −64 −12 X̄2

(1,1) 2
3

1 1 0 0 ω ω2 ω 1 − 5
3

− 1
3

−7 3 −1 −15 89 −24 −37 X̄3

(3̄,1)− 1
3

1 1 0 0 ω 1 ω 1 2 − 1
3

1 20 67
3

−30 121
3

80
3

158
3

Y

(3̄,1)0 1 1 0 0 ω ω2 ω 1 1 2
3

5 9 −3 −45 90 24 −15 Z1

(3̄,1)0 1 1 0 0 ω ω2 ω2 1 − 2
3

2
3

−1 6 −31 46 −92 −120 10 Z2

(3̄,1)0 1 1 0 0 ω ω2 ω2 1 1 2
3

−3 5 37 −29 58 −80 −15 Z3

(3,1)0 1 1 0 0 ω 1 ω2 1 − 4
3

− 1
3

0 0 58
3

−2 − 47
3

608
3

− 250
3

Z̄1

T(2,0) (1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 1 1 − 10
3

0 2
3

− 116
3

58
3

− 79
3

158
3

424
3

− 5
3

(s65, s69, s73)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 1 1 8
3

−1 − 4
3

− 2
3

− 38
3

14
3

503
3

− 200
3

190
3

(s66, s70, s74)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 1 1 − 4
3

0 − 4
3

− 2
3

− 38
3

− 205
3

410
3

− 368
3

− 95
3

(s67, s71, s75)

(1,1)0 3̄1 2′′ ⊕ 1 2 −1/3 ω2 1 ω 1 4
3

1 − 7
3

− 62
3

− 47
3

− 121
3

− 289
3

448
3

− 215
3

(s68, s72, s76)

T(2,1) (1,1)0 1 1 0 0 ω2 ω2 ω 1 0 − 2
3

−1 6 − 35
3

−29 − 770
3

272
3

155
3

φ0
u

(1,1)0 1 1 0 0 ω2 ω2 ω2 1 2
3

1
3

1 −32 61
3

−60 301
3

128
3

− 340
3

φ0
d

(1,1)0 1 1 0 0 ω2 ω2 1 1 4
3

1
3

−2 −14 − 44
3

−74 385
3

− 136
3

− 370
3

φ0
e

(1,1)0 1 1 0 0 ω2 ω2 1 1 4
3

− 2
3

0 26 − 26
3

−57 − 602
3

− 256
3

95
3

s78

(1,1)0 1 1 0 0 ω2 ω2 ω 1 0 1
3

−3 −34 − 53
3

−46 217
3

392
3

− 310
3

s79

(1,1)0 1 1 0 0 ω2 ω2 ω2 1 2
3

− 2
3

3 8 79
3

−43 − 686
3

8
3

125
3

s82

(3,1)− 1
3

1 1 0 0 ω2 ω2 1 1 4
3

1
3

0 26 − 26
3

16 − 155
3

− 280
3

188
3

D7

(3,1)− 1
3

1 1 0 0 ω2 ω2 ω 1 0 1
3

−1 6 − 35
3

44 − 323
3

248
3

248
3

D8

(3,1)− 1
3

1 1 0 0 ω2 ω2 ω2 1 2
3

1
3

3 8 79
3

30 − 239
3

− 16
3

218
3

D9

(1,2) 1
2

1 1 0 0 ω2 ω2 1 1 4
3

1
3

0 26 − 26
3

16 − 155
3

− 280
3

188
3

L̄8

(1,2) 1
2

1 1 0 0 ω2 ω2 ω 1 0 1
3

−1 6 − 35
3

44 − 323
3

248
3

248
3

L̄9

(1,2) 1
2

1 1 0 0 ω2 ω2 ω2 1 2
3

1
3

3 8 79
3

30 − 239
3

− 16
3

218
3

L̄10

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 1
3

− 2
3

−4 37 50
3

31 − 304
3

− 272
3

− 77
3

V16

(1,1)− 1
3

1 1 0 0 ω2 1 1 4̄ 0 − 2
3

−4 −2 2
3

10 − 178
3

406
3

− 62
3

V17

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 2
3

− 2
3

1 20 125
3

−32 74
3

688
3

− 92
3

V18

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 2
3

4
3

3 −18 47
3

16 − 214
3

− 248
3

− 92
3

V19

(1,1)− 1
3

1 1 0 0 ω2 1 1 1 2
3

− 2
3

3 −18 47
3

16 − 214
3

− 248
3

− 92
3

V20

(1,1)− 1
3

1 1 0 0 ω2 1 ω 4 0 − 2
3

0 0 − 58
3

2 − 130
3

562
3

− 62
3

V21

(1,1)− 1
3

1 1 0 0 ω2 1 ω 1 − 2
3

− 2
3

2 −38 38
3

44 − 382
3

280
3

− 32
3

V22
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Flavor charges ‘Hidden’ gauge charges

sector GSM ∆(54) T ′ Z
R
9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

(1,1)− 1
3

1 1 0 0 ω2 1 ω 1 5
3

− 2
3

5 −17 17
3

−61 248
3

448
3

− 137
3

V23

(1,1)− 1
3

1 1 0 0 ω2 1 ω 1 4
3

− 2
3

0 0 − 58
3

2 − 130
3

− 512
3

− 122
3

V24

(1,1)− 1
3

1 1 0 0 ω2 1 ω2 1 1
3

− 2
3

4 41 − 70
3

15 − 208
3

40
3

− 77
3

V25

(1,1)− 1
3

1 1 0 0 ω2 1 ω2 1 −4 1
3

−1 −20 − 67
3

30 233
3

− 272
3

118
3

V26

(1,1)− 1
3

1 1 0 0 ω2 1 ω2 1 5
3

− 2
3

−3 −21 137
3

−45 152
3

136
3

− 137
3

V27

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 7
3

1
3

4 15 −34 74 29 −40 −66 V̄19

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 − 1
3

1
3

−1 −7 41 31 −3 −144 129 V̄20

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 − 1
3

1
3

−1 −7 41 −42 −211 −104 −26 V̄21

(1,1) 1
3

1 1 0 0 ω2 ω 1 1 2 1
3

−3 −8 −7 41 95 264 −61 V̄22

(1,1) 1
3

1 1 0 0 ω2 ω ω 1 7
3

1
3

−4 11 6 90 −3 −144 −66 V̄23

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 − 1
3

1
3

7 −3 1 15 29 −40 129 V̄24

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 − 1
3

1
3

7 −3 1 −58 −179 0 −26 V̄25

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 4
3

1
3

−2 12 −4 −60 179 0 104 V̄26

(1,1) 1
3

1 1 0 0 ω2 ω ω2 1 4
3

1
3

−2 12 −4 −133 −29 40 −51 V̄27

(1,2)− 1
6

1 1 0 0 ω2 ω ω 1 −3 1
3

3 −5 −37 29 1 48 −17 W6

(1,2)− 1
6

1 1 0 0 ω2 ω ω 1 − 4
3

1
3

1 −6 31 −46 151 88 −42 W7

(1,2)− 1
6

1 1 0 0 ω2 ω ω2 1 −3 1
3

−5 −9 3 45 −31 −56 −17 W8

(1,2) 1
6

1 1 0 0 ω2 1 1 1 2
3

1
3

3 −18 47
3

89 233
3

− 272
3

1
3

W 7

(1,2) 1
6

1 1 0 0 ω2 1 ω 1 − 2
3

1
3

0 0 − 58
3

−71 − 223
3

− 680
3

61
3

W 8

(1,1)− 2
3

1 1 0 0 ω2 ω 1 1 7
3

1
3

4 15 −34 1 −61 −64 27 X3

(1,1)− 2
3

1 1 0 0 ω2 ω 1 1 2 1
3

−3 −8 −7 −32 5 240 32 X4

(1,1)− 2
3

1 1 0 0 ω2 ω ω 1 7
3

1
3

−4 11 6 17 −93 −168 27 X5

(1,1) 2
3

1 1 0 0 ω2 1 ω 1 − 2
3

− 2
3

0 0 − 58
3

2 224
3

− 704
3

154
3

X̄4

(1,1) 2
3

1 1 0 0 ω2 1 ω2 1 2 1
3

−1 −20 − 67
3

30 − 475
3

112
3

34
3

X̄5

(3,1) 1
3

1 1 0 0 ω2 1 ω 1 − 2
3

1
3

0 0 − 58
3

2 47
3

− 608
3

− 218
3

Ȳ

(3̄,1)0 1 1 0 0 ω2 1 1 1 2
3

1
3

3 −18 47
3

16 − 37
3

− 344
3

280
3

Z4

(3,1)0 1 1 0 0 ω2 ω 1 1 − 1
3

− 2
3

−1 −7 41 31 −62 −112 5 Z̄2

(3,1)0 1 1 0 0 ω2 ω ω2 1 − 1
3

− 2
3

7 −3 1 15 −30 −8 5 Z̄3

(3,1)0 1 1 0 0 ω2 ω ω2 1 4
3

− 2
3

−2 12 −4 −60 120 32 −20 Z̄4
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Flavor charges ‘Hidden’ gauge charges

sector GSM ∆(54) T ′ Z
R
9 n Z3 Z3 Z3 SU(4) qanom q2 q3 q4 q5 q6 q7 q8 q9 labels

T(2,2) (1,1)0 32 2′ ⊕ 1 1 −2/3 ω2 ω 1 1 2 2
3

− 2
3

38
3

− 32
3

250
3

148 −56 −30 (ϕν,1, ϕν,2, ϕν,3)

(1,1)0 31 2′ ⊕ 1 1 −5/3 ω2 ω 1 1 0 2
3

− 2
3

38
3

− 32
3

− 188
3

−32 −104 0 (s84, s90, s96)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω2 ω ω 1 2
3

2
3

− 5
3

− 22
3

− 41
3

334
3

92 120 −10 (s85, s91, s97)

(1,1)0 31 2′ ⊕ 1 1 −5/3 ω2 ω ω 1 − 4
3

2
3

− 5
3

− 22
3

− 41
3

− 104
3

−88 72 20 (s86, s92, s98)

(1,1)0 32 2′ ⊕ 1 1 −2/3 ω2 ω ω2 1 4
3

2
3

7
3

− 16
3

73
3

292
3

120 32 −20 (s87, s93, s99)

(1,1)0 31 2′ ⊕ 1 1 −5/3 ω2 ω ω2 1 − 2
3

2
3

7
3

− 16
3

73
3

− 146
3

−60 −16 10 (s88, s94, s100)

(3̄,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω 1 1 2 − 1
3

− 2
3

38
3

− 32
3

31
3

−1 −48 −61 (D̄1, D̄4, D̄7)

(3̄,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω ω 1 2
3

− 1
3

− 5
3

− 22
3

− 41
3

115
3

−57 128 −41 (D̄2, D̄5, D̄8)

(3̄,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω ω2 1 4
3

− 1
3

7
3

− 16
3

73
3

73
3

−29 40 −51 (D̄3, D̄6, D̄9)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω2 ω 1 1 2 − 1
3

− 2
3

38
3

− 32
3

31
3

−1 −48 −61 (L2, L5, L8)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω2 ω ω 1 2
3

− 1
3

− 5
3

− 22
3

− 41
3

115
3

−57 128 −41 (L3, L6, L9)

(1,2)− 1
2

32 2′ ⊕ 1 1 −2/3 ω2 ω ω2 1 4
3

− 1
3

7
3

− 16
3

73
3

73
3

−29 40 −51 (L4, L7, L10)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 − 7
3

2
3

7
3

23
3

− 85
3

112
3

130
3

512
3

− 112
3

(V28, V34, V40)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 1 − 1
3
− 14

3
71
3

44
3

− 143
3

− 245
3

− 304
3

203
3

(V29, V35, V41)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 4
3

− 1
3

7
3

− 94
3

41
3

− 188
3

− 155
3

− 280
3

188
3

(V30, V36, V42)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω 1 − 7
3

2
3

− 17
3

11
3

35
3

160
3

34
3

200
3

− 112
3

(V31, V37, V43)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω 1 0 2
3

− 2
3

− 40
3

− 64
3

− 11
3

376
3

− 568
3

− 217
3

(V32, V38, V44)

(1,1)− 1
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω2 1 1 − 1
3

10
3

83
3

− 76
3

− 191
3

− 149
3

8
3

203
3

(V33, V39, V45)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 1 1 − 10
3

− 1
3

− 5
3

56
3

−3 − 62
3

− 289
3

448
3

− 98
3

(V̄28, V̄34, V̄40)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 1 1 3 2
3

10
3

5
3

−36 − 14
3

146
3

− 152
3

82
3

(V̄29, V̄35, V̄41)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω 1 − 7
3

− 1
3

7
3

− 55
3

−39 − 149
3

− 115
3

208
3

− 143
3

(V̄30, V̄36, V̄42)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω 1 3 2
3

− 14
3

− 7
3

4 34
3

50
3

− 464
3

82
3

(V̄31, V̄37, V̄43)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω2 1 2 2
3

− 2
3

116
3

0 73
3

− 28
3

88
3

127
3

(V̄32, V̄38, V̄44)

(1,1) 1
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω2 1 − 7
3

− 1
3
− 17

3
− 67

3
1 − 101

3
− 211

3
− 104

3
− 143

3
(V̄33, V̄39, V̄45)

(1,1)− 2
3

32 2′ ⊕ 1 1 −2/3 ω2 1 1 1 1
3

− 1
3

− 5
3

− 61
3

39 76
3

143
3

− 296
3

16
3

(X6, X9, X12)

(1,1)− 2
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω 1 − 2
3

− 1
3

7
3

62
3

35 115
3

65
3

256
3

61
3

(X7, X10, X13)

(1,1)− 2
3

32 2′ ⊕ 1 1 −2/3 ω2 1 ω2 1 1
3

− 1
3

19
3

− 49
3

−1 28
3

239
3

16
3

16
3

(X8, X11, X14)

(1,1) 2
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 1 − 1
3
− 14

3
71
3

44
3

76
3

25
3

− 232
3

− 76
3

(X̄6, X̄9, X̄12)

(1,1) 2
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 1 1 4
3

− 1
3

7
3

− 94
3

41
3

31
3

115
3

− 208
3

− 91
3

(X̄7, X̄10, X̄13)

(1,1) 2
3

32 2′ ⊕ 1 1 −2/3 ω2 ω2 ω2 1 1 − 1
3

10
3

83
3

− 76
3

28
3

121
3

80
3

− 76
3

(X̄8, X̄11, X̄14)
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