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The transfer function of the baryon power spectrum from redshift z =~ 1100 to today has recently
been, for the first time, determined from data by Pardo and Spergel. We observe a remarkable
coincidence between this function and the transport function of a cold ideal Fermi gas at different
redshifts. Guided by this, we unveil an infinite set of critical temperatures of the relativistic ideal
Fermi gas which depend on a very finely quantized long-distance cutoff. The sound horizon scale of
Baryon Acoustic Oscillations (BAQO) seems to set such a cutoff, which dials a critical temperature

that is subsequently reached during redshift.

At the critical point the Fermi gas becomes scale

invariant and may condense to subsequently undergo gravitational collapse, seeding small scale
structure. We mention some profound implications including the apparent quantization of Fermi
momentum conjugate to the cutoff and the corresponding “gapping” of temperature.

Despite the observationally inferred presence of Dark
Matter (DM) ranging from the largest scales in the ob-
servable universe down to sub-galactic scales, nothing is
known about its corpuscular nature. Hence, the cold dark
matter paradigm of the cosmological standard model
ACDM needs to be further scrutinized in as many ways
as possible, while keeping an open mind about clues in-
ferable on the possible particle nature of DM itself. A
crucial test of DM, firstly suggested by [1, 2], is to track
the effect of DM on baryons at large scales throughout
the evolution of the universe, captured in the so-called
transport function 77(k) of baryonic density perturba-
tions. Crucially, this test does not require the assump-
tion of ACDM or any other specific cosmology. Recently,
Pardo and Spergel (PS) firstly extracted 772 (k) from mea-
sured data, and stressed that any theory of DM must
adequately explain both its shape and normalization [3].
While the transport function determined by PS repro-
duces the expectation derived under the assumption of
ACDM reasonably well, the data displays a much higher
level of regularity than provided by ACDM. As we report
in this letter, the baryonic transport function is closely
matched (in fact, much closer than the inferred transport
function in ACDM) by the red-shift transport function of
a cold ideal Fermi gas.

In order to declare this coincidence to be more than
just a mathematical curiosity requires a full cosmological
model that can be tested against the entirety of cosmolog-
ical data. The model that we are led to by the coincidence
of transport functions consists of the SM amended by an
effectively decoupled [4] fermionic species with chemical
potential p larger than its temperature 7', i.e. with a de-
generate spectrum. This could be sterile neutrinos or
other new fermions and the corresponding extension of
the SM Lagrangian density is straightforward. As is well
known, such a decoupled extension of the SM is easily
compatible with all observational constraints if the cor-
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responding fermions are either: (7) heavy enough and do
not contribute more to the matter density than reserved
for DM, or (i%) light and their energy density is less than
the indirect bound imposable on the effective number of
decoupled relativistic species Neg [5].

For the massive case (i) (m = 1keV) it is well-known
that the new fermions can be good DM candidates [6, 7]
that satisfy all known constraints [8]. By contrast, in
the light or massless case (¢i) it would have to be shown
that other successful predictions of ACDM, such as the
matter power spectrum, temperature fluctuations of the
Cosmic Microwave Background (CMB) as well DM phe-
nomenology on galactic scales, can be consistently ex-
plained if the new fermions indeed are assumed to ex-
plain all of the DM. The light scenario may be harder
to exclude than naively expected because the exclusion
of “hot” dark matter predominantly arises from struc-
ture formation which heavily relies on the use of simu-
lations [9, 10] that are expected to be substantially al-
tered by taking into account the non-trivial transport
function of the DM candidate arising from its degener-
ate Fermi-Dirac spectrum. Effects on the CMB spectral
fluctuations are harder to accommodate as the time of
matter radiation equality would have to be altered but
earlier studies on hot and self-interacting DM [11-13] in-
dicate that this could be a legitimate possibility. Finally,
DM observations on galactic scales could be explained if
the fermions condense to scalars for which the Tremaine-
Gunn bound does not apply [14] or if gravity is modified
for small accelerations.

For reasons of mathematical tractability we will in this
work entirely focus on the case of an ultra-relativisitic
Fermi gas, where m < kp and hence y ~ kp with kr be-
ing the Fermi momentum. The non-relativistic case with
m > kg, hence m < pu, as well as a detailed investiga-
tion of CMB spectral fluctuations in the light case, are
reserved for future work.

The paper is organized as follows. We proceed by giv-

ing details on the baryonic transport function and how
it is matched by the transport function of an ideal rela-
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FIG. 1.
a fit to 772 (k) taken from [3]. The gray dashed lines show the

Our result for g (r) (solid black) as obtained from

initial estimates of [3]. We also illustrate how the function
gV (r) changes for larger values of kr in solid gray.

tivistic Fermi gas. Then, we investigate in detail how the
transport function of the Fermi gas comes about. Finally
we discuss how the initially light fermions might repro-
duce the observation of all DM despite being relativistic
through recombination, and give further comments on
our findings.

Given a primordial spectrum of perturbations Pp(k)
the power spectrum at later stages is related by a trans-
fer function as P(k) o T?(k)Pys(k). In analogy with
this, a transfer function can be defined that describes
the evolution of Baryon density correlations from red-
shift z = 1100 to redshift z ~ 0,

o Pbb(k,z ~ 0) (1)
- Pbb(k,z = 1100) ’

To determine T3 (k) firstly, PS extracted the baryon
power spectrum at redshift z = 1100 from CMB FEE-
mode polarization data [15], and at redshift z = 0.38

More intuitively than (1), one may look at the corre-
sponding Hankel transform, namely the position space
Green’s function
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Gu(r) = Go [ db 5 Tyl (2)

0

Throughout, j,(x) denote spherical Bessel functions of
the first kind. The normalization G here is set arbitrary,
as it has not yet been determined from the data (natu-
rally, it would be the density). Under assumptions clearly
formulated in PS, Gy (r) shows the response function that
any modified gravity theory of DM must have in order
to explain the evolution of baryons on large scales. Cru-
cially, Gy(r) changes sign at a scale closely related to the
physical BAO scale, implying that any “modified grav-
ity” theory would have to have this scale imprinted [3].
The purpose of this memo is to pomt out that a
well-fitting template to Gy(r) and T2 (k), see Fig. 1
and 2, is given by the single-particle correlation (i.e. auto-
correlation) function of an ideal Fermi gas (see e.g. [17])

V() := (®o | U(P)WT(0) | Do) . (3)

The expectation value here is taken in the background of
fermions, e.g. at T' = 0:

@o)= [ af 100, (4)

|k|<kp,o

with momenta k£ smaller than the Fermi momentum kg
(kg = h = c¢ = 1) and o running over spin d.o.f.’s. We
stress that all expressions used in this work are fully rel-
ativistic. At finite temperature T' > 0 and chemical po-
tential > m we can compute g™ (7) = ¢V (r) from the
integral

g () = 2 dpp®>  sin(pr) 5)
T on2 | eE-m/T 41 pr
0

from the galaxy-galaxy power spectrum determined by where g counts the number of spin d.o.f.’s. To leading

surveys of BAO [16]. order in Sommerfeld expansion we obtain

i1 (kpr w2 T? [ur ) _
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[
Here, n is the zero-temperature density, stress that the Sommerfeld expansion is not valid in the
latter region because the integrand of (5) is discontinu-
_ 9 2 2n3/2 _ 9 ;3 i i

n=c3 (M —-m ) =53 kS (7) ous close to the mass threshold. A different expansion

and we introduce the exact identity p? = m? + k2 to
eliminate the mass throughout. There could be two re-
gions of interest here, kp > m as well as kp < m. We

exists in this region [18], but performing this for (5) is a
challenging computation, beyond the scope of this work.
Presently, we focus entirely on the region kg > m, where
u =~ kp to good approximation.



We Hankel transform g(*)(r) (inverse to (2)) to arrive
at the momentum space power spectrum,

A
T(k) = / dr 4712 g () jo (kr) - (8)
A

Here we have included short and long-distance cutoffs A
and A whose meanings we see momentarily. 7 (k) can be
computed analytically, be there cutoffs or not, and we
state analytic expressions in Egs. (20) and (21). If we
set the cutoffs to their maximally allowed range (A —
0, A — o), the power spectrum is practically a box [19]

T(k)g" = gO(kr — k), 9)

with © being the Heaviside function. This is the usual
box of the Fermi-Dirac distribution, see [19] for finite-
T corrections. We emphasize that a power spectrum of
the Fermi-Dirac shape can only be obtained under the
tacit assumption of being able to probe the fermions at
arbitrary length. More realistically, there is a maximal
possible length at which the Fermi gas can be probed
implying that a physical long distance cutoff should be
introduced. In a laboratory setup with sufficiently long
measurement times this would correspond to the size of
the apparatus or trapping potential, while in a cosmo-
logical situation the cutoff is bounded from above by the
respective causal horizon.

We stress that 7 (k), absolute squared and normal-
ized, corresponds to the power spectral density which
can be assigned a spectral entropy, i.e. this curve has an
information-theoretic meaning. The box corresponds to
white noise with wave numbers k < kr. Hence, the cut-
offs are crucial to obtain a response to g(!)(r) with finite
spatial resolution, which leads to more interesting results
for T (k) as we will discuss in detail below.

To turn the power spectrum into our desired cosmic
conveyor belt we have to evaluate it, relatively, at differ-
ent cosmological redshifts z. In this way we obtain our
fitting template for the transport function of the Fermi
gas

T(k7 kF) M, Ta )‘7 A)2

T2(k)=N
r (k) T(k,zkp,zp, 2T\, N)2 "’

(10)

including an arbitrary normalization N that can cur-
rently not be fixed from the data. We have very explicitly
spelled out all parameter dependencies of T (k) here, to
be clear which quantities transform under redshift, or in
other words, scaling transformations. The cutoffs do not
red-shift because they correspond to the fixed resolution
at the high z probe scale, while k& does not shift because
it is our ruler at the low z probe scale. In addition to
the parameters listed, we find it necessary to introduce
a phase shift T2(k + ky) that we also include as a fit
parameter.

We use our template for the transport function to per-
form a simple MCMC fit to the PS measurement [3]. One
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FIG. 2. The measured baryon transport function 77 (k) of

the large scale structure of the Universe is shown in blue [3].
The solid black curve shows the momentum space power spec-
trum transport function T2 (k) of the ideal Fermi gas (in first
order Sommerfeld approximation) for representative param-
eters (see Eq. (11)). The dashed gray line shows the expec-
tation for Tf(k) in the standard ACDM paradigm computed
with CAMB [20] (extracted from [3]). The dotted black curves
show the transport function for vanishing phase shift kv (ver-
tically offset) or a small value of kr, see text for details.

result is shown as the solid black line in Fig. 2, next to
the data extracted from PS in solid blue. The following
parameters play straightforward roles in determining a
good fit point: (i) ky is essentially determined by align-
ing the first peak to data in horizontal direction. (iz) A
sets the period of oscillations, i.e. it is tightly fixed by the
observed peak-to-peak distance. (#ii) kr & u sets the size
of the relevant “box” and, hence, determines the number
of complete resonant peaks of 7T32(k) which are located in
the Fermi sphere. Next, there are some parameters that
do not play so relevant roles after all: (iv) Everything is
largely insensitive to the precise value of the UV cutoff A,
as it should be, and so we fix it to 0.5 Mpc. (v) Varying
0 < m < kg within the validity of Sommerfeld has no ef-
fect and we set m = 0 (hence kg = ) for the sake of the
fit. Finally, two parameters that play very subtle roles in
the fit are redshift and temperature, more details below.
We fix z = 1100 in the ultimate fit to comply with (1),
while noting that a redshift interval of about Az = 10 is
enough to create the peaks required. We stress that T/
must be finite to make the fit work. The curve shown in
Fig. 2 is obtained for

ky = —0.0115 Mpc ™!,
T/kp =1 x 1073,

A = 148 Mpc,
kp = 0.45Mpc ™. (11)

A here clearly corresponds to the scale of the BAO sound
horizon, but there could be much more to it: The fit
shows that the best fit values are obtained with dis-
cretized values for krp. The Fermi momentum seems to



be quantized in units of
. 2w
krp =ky +vAkp with Akp = A v € N. (12)

In these units, the best fit value for ky corresponds to
a —m/2 phase shift. The vertically offset dashed curve
in Fig. 2 is obtained for ky = 0. A minimum of v = 3
(i.e. kp =~ 0.1 Mpc_l) is required for kr to explain the
observed data, but it could also be much larger. We
show the possible extrapolations to larger k£ depending
on the size of kg in Fig. 2.

Let us also show the resulting g(!)(r), see black line in
Fig. 1. Note that PS had trouble in extracting this func-
tion from the data, as performing the integral (2) depends
on the extrapolation of 77(k) to momenta outside of the
observed region. We do not have this problem here since
we started from g™ (r) and performed the inverse trans-
formation to obtain the power spectrum. Hence, g(l)(r)
is fixed by the fit to (1), besides the discrete choice of v.
The resulting function is shown as the solid black line in
Fig. 1, for minimum allowed kg, together with the initial
estimates of PS. For larger kp, g™ (r) slides as indicated
by the arrow and gray line in Fig. 1.

So what are we looking at here? So far we fitted the
scale-transport function of this innocent Fermi gas to the
observed baryonic transport function of the Universe. If
one has to do with the other, baryons have to interact
with this momentum space lattice. One possible scenario
could be that baryons directly scatter off the Fermi gas
with a cross section o and mean free path Ayg, = (no) L.
In this case, the fermions would act as a low-pass filter
for momentum, as low-momentum modes may not be
excited in the Fermi gas. Having the baryons scatter at
least once in a 150 Mpc would require a cross section

1evV®1
kF>' (13)

or~1x107%cm? (
g

Compared to an electro-weak cross section of momentum
transfer kg this would require kpg'/® ~ 2 keV, implying
an energy density in the Fermi gas that would overclose
the universe.

Alternatively, recall that baryon transport is usually
ascribed to DM, implying that long range gravitational-
strength interactions seem to suffice in order to imprint
the transport functions of the fermions onto the baryons.
Supposing that our fermions would contribute an energy
density akin to that of all the DM, an estimate of the
required Fermi momentum at recombination is

872 NP 10ev
ke = (gPDM,o Z*> N (14)

This is not an incredibly large chemical potential. How-
ever, if stored in standard model neutrinos, a chemi-
cal potential of this size would violate the BBN bound
on neutrino degeneracy [21-24]. The chemical poten-
tial could also be stored in a non-thermal background

of right-chiral neutrinos [5], in which case the maxi-
mal allowed energy density during recombination ex-
pressed in ANeg [25], results in a constraint kp. S
1.85T, (AN /g)'/*, only in mild tension with (14).
While these bounds might easily be avoided in more
elaborate models, another possibility is that the fermions
have a mass and turn non-relativistic in the vicinity of
recombination. In fact, the required kp . is awkwardly
close to the sum of the observed neutrino masses. We re-
mind the reader though, that computing (5) in a region
where krp ~ m does require more care. At this stage, one
may argue that these fermions can impossibly be the DM
we observe on galactic scales given the seminal bound by
Tremaine and Gunn [14]. Note that in the natural quan-
tization imposed upon us by A, this value of kp . would
correspond to a large number of v ~ 3.7 x 103° nodes in
the Fermi sphere.

We leave them there for now and pick up the discus-
sion on the required sizes of z and T. We noted from
our fit that T'/u > 0 is required, and that Az ~ 10 was
enough to make peaks appear in the transport function,
Fig. 2. In fact, we noted that the absolute value of tem-
perature surpassed in the redshift sweep seemed to play
a role. How can that be, given that T'/u is scale invari-
ant? Note that in the case of an infinite cutoff A, the
resulting box power spectrum (9) is almost scale invari-
ant. While the height of the box is scale invariant even
for finite T', p and kg, it is our probe scale ruler k that
leads to an explicit breaking of scale invariance in the
theta function. Moving on to the more general case in-
cluding cutoffs, we note that also the cutoffs break scale
invariance explicitly. Yet in a very subtle manner: Given
the quantization indicated by momentum space matter
oscillations, see (12), it seems to make sense to fix the
long-distance cutoff in (8) to a definite zero of the inte-
grand. For T = 0 those are given by the v-th zeroes of
the Bessel function j;(kpz), in the following called B,.
In fact, note that the best fit A itself corresponds almost
exactly to (at least) the fourth zero of the Bessel function
(the zero crossing at A has also been stressed by PS). For
finite 7' the zeros of g(!)(r) get slightly misaligned with
B,. Nonetheless, B, seem to provide exquisite choices of
long distance cutoffs.

Taking our consideration of the box above as motiva-
tion, we thrive now to find temperatures at which the
resulting power spectrum 7 (k) might become scale in-
variant. Given a quantization of A in units of B, /kp,
as suggested by the data [26], and setting A = 0 we find
that there are two special points in the resulting power
spectrum, namely k = 0 and k& = kr. Requiring that the
spectrum vanishes at these points allows us to implicitly
define two critical temperatures

T(0,Te0) =0, and T(ke,Tox)=0,  (15)
while requiring a vanishing derivative yields a third,

d !
%T(kaTc,F’”k:krF =0. (16)
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The power spectrum behavior during the phase transition for temperatures T'[u] (kr fixed to kr = p for the plots).

LHS: values for T[u] are 0.09 and 0.3 and the curves have been rescaled by factors of 5 and 107!, respectively, to fit the plot.
The inset shows the same plot on a log-scale to better visualize how the transport function (cf. Fig. 2) comes about. RHS:
Behavior around the lowest-temperature critical point T2 = Tc2,0 for T'/p = 0.105,0.125 and 0.115158 (v = 3). While we display
the behavior of the power spectrum as a function of actual temperature here, we stress that it undergoes the very same events

also as a function of redshift.

The resulting temperatures are functions of p and kg,
as well as the cutoff, parametrized as B,. We display
these temperatures in Fig. 4 and state exact expressions
for them in (22), (23) and (24). The absolute values
of all these temperatures are, to our understanding, in a
perfectly valid region of the Sommerfeld expansion which
is trustworthy for
o 2 ki u?

T < T Sk (17)
where the last equality holds in case m = 0. Nontheless,
note that only the critical temperatures T, o(2v + 1) are
positive. T, o(2v), TZp(v), and T2, (v) are negative for
all v (mind the squares).

At this point we give a disclaimer, stating that the
investigation of the tantalizing phase transition happen-
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FIG. 4. Critical temperatures as function of the “Bessel

cutoff” A. Exact expressions are stated in (22), (23) and (24).

ing around these critical points will undoubtedly require
much more scrutiny and care than what we can deliver
in this short paper. Thus, everything that we have to
say must necessarily sound premature and speculative.
We will not further touch regions with imaginary criti-
cal temperatures in this paper but we note that they are
special. One may without problem rotate the tempera-
ture to imaginary values, while the power spectrum stays
a real function. Rotations of this kind affect the expo-
nential correction to the Sommerfeld expansion (6), and
therefore might, together with imaginary values of the
chemical potential, transfer a density of particles from
one sector to another.

We now focus on the real squared temperatures in
T2, (v) because the reader may more comfortably be con-
vinced that real temperatures exist. At all critical tem-
peratures Tf,o(V) the power spectrum is scale invariant
(in the sense of self-similar) under the remaining red-
shift capabilities of u and kr. For far above and below
the critical temperature(s), we show the according power
spectrum for the example choice of a cutoff v = 3 in
Fig. 3 (left). The behavior around the critical temper-
ature T2,(2v + 1) is highlighted in Fig. 3 (right). We
observe that TC%O(V) is the endpoint of a dramatic series
of events, turning the initial state of the power spectrum
(gray line in Fig. 3, left) into a final state (black line in
Fig. 3, left). In the process, several nodes, minima, max-
ima and turning points (in particular, their correspond-
ing information) are ejected from the Fermi sphere. The
process shown in the right of Fig. 3 (corresponding to
the behavior around the only real critical temperature in
our basis) is merely the swirling-off of the last extremum.
Note that all modes located outside of the Fermi sphere
appear to be crossed by some of the escaping modes; a
process during which most likely they get entangled.



To corroborate the information-theoretic nature of this
phase transition we compute the spectral entropy of the
power spectrum, given by a generalization of Shannon’s
discrete entropy [27] to continuous probability distribu-
tions [28]. The power spectral density corresponds to a
probability density

_ TR
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that allows us to compute the power spectral entropy

PSE(u,T) = f/ dk p(k) In (p(k)) + const. (19)
0 f(k)

Here, f(k) is a necessary normalization for continuous
probability distributions [28] that we take to be the usual
Fermi-Dirac density of states f(k) = dn/dk. Taking k in
units of kg, i ~ kg and T in units of p all of these inte-
grals can be computed numerically and converge quickly.
We display the resulting power spectral entropy in Fig. 5
for the case v = 3, and highlight that it becomes station-
ary at (or very close to) the critical temperature.

’ Tcrit.,O,u:B ’
'g' L
S,
=
wn
A, f
LT
i i: ; e e e e KT,
0.0 0.1 0.2 0.3
T

FIG. 5. Power spectral entropy (PSE) of the power spectrum
T (k) as a function of temperature for different choices of the
long-distance cutoff (parametrized as the v-th zero B, of the
spherical Bessel j-functions). The horizontal lines mark the
independently computed critical temperatures T2 (v) to show
that they line up with stationary points of the PSE.

Let us come back to the actual situation of baryon
transport, and reset the cutoff A as well as kr to be free
and independent parameters. In Fig. 6 we show the criti-
cal temperatures in the T'— i plane for an example cutoff
of A = 150 Mpc next to the validity region of the Som-
merfeld expansion, Eq. (17), and an arbitrary example for
the usual evolution of T and g under redshifts. Clearly,
it is not necessary to tailor A to a Bessel cutoff to obtain
a critical temperature akin to T o, where scale invariance
is restored (the critical temperatures obtained for Bessel
cutoffs provide lower bounds for critical temperatures ob-
tained with all other cutoffs). Crucially, note that the
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FIG. 6. Critical temperatures (green) of the ideal rela-

tivistic Fermi gas shown in the T-u plane for the example
choice A = 150 Mpc (the discreteness in the horizontal direc-
tion arises because we sample p with a finite resolution, the
discreteness in the vertical direction is genuine). The thicker
green dots show the critical temperatures obtained for the
special values kr = 4 = B, /A. The shaded gray region is
where the Sommerfeld expansion is not valid. The black line
shows the typical evolution of T and g under cosmological red-
shift indicated by the arrows (ignoring anything that might
happen at the critical points).

transport of modes in the power spectrum as a function
of redshift proceeds very similar to the transport as a
function of temperature, best visualized from the inset
in Fig. 3 (left). The illustrated transport of modes is the
behavior displayed in the observed structure-formation
transport function of the Universe, Fig. 2. Given T'/u of
our potentially structure-forming Fermi gas and the over-
all appearance of its transport function, we conclude that
the fermions that might be responsible for the large scale
structure of the Universe have already undergone this
phase transition; i.e. data that tells us, we sit below the
critical point. At the critical temperature the Fermi gas
becomes scale invariant, and observation indicates that
the fermions get stuck at this symmetry enhanced point:
So far we had looked at the transport from redshifts of
z ~ 1100 down to today, fitted to the observed baryon
transport function. Having the transport anchored at to-
day, as in Eq. (10), we might as well look at the “whole”
transport, say down from z ~ 10'° to today, and find
that it does not differ much from the one down from
z = 1100. On the other hand, if the power spectrum
were fixed for redshifts below the critical point this would
allow us to compute the absolute power spectrum of the
fermions irrespective of further redshifts. We show the
power spectrum of the ideal fermions at the critical point
in Fig. 7, together with today’s observed baryon power
spectrum. While the scale invariant power spectrum of
the fermions gives a good leading order approximation, it
does not coincide with the observed matter power spec-
trum on small scales. Simulations would be necessary to



104 10° 102 100 100 10!
E[Mpc™]

FIG. 7. Power spectrum of an ideal Fermi gas at the T¢ o crit-
ical point for excitation numbers v = 11,100, 10%° (overlap-
ping, in blue), the lines break at their respective Fermi edge.
Nothing enters this plot besides the BAO scale which sets the
horizontal offset of the scale invariant (blue) curves by pro-
viding a (cutoff-)ruler of the size 150 Mpc. We also show the
Universes’ matter power spectrum extracted from [29] (using
A%(k) = kK3 (27?) "t P(k) and h = 0.7). We have not touched
the normalization of the curves.

see whether this situation can be improved if the fermions
condense to scalars, which plausibly could clump in or-
der to transfer power from larger to smaller scales in the
course of the evolution of the universe.

As of now, we cannot with certainty tell the nature
of the final state after the phase transition, but it is
a logical possibility that the structure-forming fermions
undergo condensation [30]. Following this hypothesis,
the final state that we would be looking at from be-
low in redshift appears to be of the size of the Fermi
sphere in momentum space and bosonic. Subsequent to
condensation, the energy density of the condensed state
would redshift o< (Az)~2 like ordinary matter. A logical
possibility is that the fermions form quasi-particles akin
to Cooper pairs that condense into a superfluid stage.
If each two fermions make a boson and if all of the energy
would be stored in the boson masses, ppm,« = nmy/2,
then Eq. (14) implies an upper limit m; < 1.5 eVg~ /4.
The Jeans length for a Bose condensate of such scalars
(see e.g. [31, 32]) is Ay ~ 6 x 107m and the Jeans
mass Mj; ~ 3 x 108kg. These characteristics are suf-
ficiently close to the stability curve of Bose-Einstein con-
densates [33] suggesting such scalars would, at least ini-
tially, form fluffy Bose “meteors” of this size and mass
which sit dense in position space. The non-linearity scale
of the initial power spectrum, cf. Fig. 7, i.e. the point
when the variance of density perturbations o2 > 1, is
roughly k& ~ 0.04 Mpc™! corresponding to a non-linear
evolution of structure formation on scales R < 25 Mpc.

We emphasize that the details of this low energy phase
might be as rich as the condensed superfluid phase of
3He [34], which, despite being observed in the laboratory,
still bears many mysteries [35]. Hence, the quasi-particles
could also be much lighter than above bound with the

additional energy density stored in coherent field oscilla~
tions, as for the axion and similar light scalar DM can-
didates. Also, already miniscule self-interactions among
the quasi-particles would crucially affect their properties
under gravitational collapse and, hence, might drastically
affect the evolution of structure formation [36]. Alto-
gether, hence, small scale structure formation after the
phase transition crucially depends on the details of the
low energy phase and its excitations. These states may
very well behave as previously discussed candidates for
non-relativistic cold DM such that small scale structure
formation down to galactic scales and below may pro-
ceed more or less “as usual”. To further test this idea,
it would be extremely important to have numerical N
body simulations that go beyond the standard implemen-
tations of Maxwell-Boltzmann gases in order to simulate
degenerate Fermi gases with correct statistics and possi-
ble mixed phases of (non-)condensed fermionic quantum
gases. In addition, to investigate (or simulate) experi-
mentally the details of the low-energy phase would invite
laboratory studies of analogue systems with condensates
of relativistic (i.e. massless Weyl) fermions, which unfor-
tunately have not been realized to our knowledge.

It might also be instructive to look at this phase transi-
tion proceeding from a thermally fluctuating phase. Even
in scale invariant expansion, both 7" and u scale down
with redshift. The scale invariant temperature © := T/
might perform random fluctuations, bare any other scale
with an expectation value (©) = 0. However, this place is
doomed as the closer one gets to zero, the more likely one
will fluctuate into one of the critical temperatures. This
seems to be an artfully crafted selection mechanism for a
random, but steady population of the critical points. One
may want to closer investigate this mechanism to decide
whether temperature is really “gapped” in this way at a
fundamental level. Nontheless, we emphasize that in the
case discussed here, it seems that it is not temperature
fluctuations triggering the phase transition but we rather
red-shift into one of the critical points.

There remains the nagging phase shift ky (the well
converging fit result is ky = —0.011260(5) Mpc™'). Tt
is tempting to gloss over it, because ky quickly becomes
irrelevant in the total kg for growing occupation number
in (12). However, the phase shift is absolutely relevant
for the transport function at low k. In other words: we
are observing this offset phase shift already in the “first
bin” in k such that adjusting ky correctly is absolutely
crucial in order to fit the data. Hence, understanding
the precise value of ky might be a key check that we
are correctly interpreting the dynamics of the structure
forming phase transition. From a physical point of view,
the offset implies that all baryonic matter seems to get
a little push relative to the initial fermions. Nonetheless,
we can presently not compute ki, and so this remains an
open question. Also, even though we think this would be
very tempting, we did not succeed in relating ky to any
of the observed dipoles in the Universe [37, 38].

Finally, it is interesting to think about what causes the



breaking of scale invariance at a distance of 150 Mpc.
While it might just be the physical scale of the BAO
sound horizon, we note that there is an accidental prolif-
eration of scales in the vicinity of 150 Mpc. By chance,
this also falls close to the size of our physical horizon
in neutrinos today, as well as to the neutrino comoving
travel distance until recombination [39]. In fact, care-
fully considering the arguments of the present paper, one
may currently not exclude that the spatial cutoff A itself
might be quantized conjugate to kr. Coming from the ul-
trarelativistic regime and approaching (kg)min = m this
would imply that the fermion properties themselves lead
to an upper bound on the long-distance cutoff A < wv/m.
Following this path of thought implies that similar phase
transitions might occur every time the lightest species
of fermions becomes non-relativistic by redshift and is
forced to see the critical temperatures. This could mean
that 2m, ~ Tgpn might not be an accident. In any case,
we stress once again that our computation is not valid if
any of T or kg approach the mass, and so these specula-
tions may only be substantiated once the full computa-
tion becomes available. Irrespectively, we think it will be
very interesting to explore the potential for baryogenesis
in this mechanism.

Lastly, we point out what we think are the biggest
differences of this scenario with respect to the standard
cold DM paradigm. In ACDM, matter domination after
z = 3400 is required for structure formation on all scales.
In particular, DM needs to be non-relativistic long be-
fore CMB decoupling in order to allow DM to form early
structures that the baryons can collapse onto after recom-
bination. By contrast, in the scenario hinted at here, the
relativistic fermions should drag along the baryons after
recoupling to explain the remarkable coincidence of their
transport functions. Hence, the phase transition in the
Fermi gas, which causes the transport, ought to happen
at a time between recombination and today. The fact
that the fermions may only red-shift as non-relativistic
matter after undergoing their phase transition and po-
tentially condensation implies that the turnover scale of
matter-radiation equality might be delayed to redshifts
Zturnover & 1000 (or even lower) in this scenario. While
this may not be a problem per se, as it is still of the same
order of magnitude as in ACDM, it shows that a crucial
test of this scenario would be to check whether or not
it can accommodate the observed CMB spectral fluctu-
ations. While this certainly has the potential to shelve
the whole idea, performing such an analysis is beyond
the scope of this short memo. In addition, the fact that
the phase transition only requires a rather narrow red-

shift interval Az ~ O(10) suggests that also the baryon
transport might take much less time than in concordance
cosmology, where it is believed to have built up rather
steadily between recombination and today. Even though
there is presently no redshift resolved measurement of the
baryon transport (at least not at high redshifts), explor-
ing the consequences of such a fast baryonic transport
might be an interesting target for simulations of struc-
ture formation. Other ways to move forward and better
discriminate this idea from standard ACDM include a
more precise determination of the total baryonic trans-
port function including, in particular, the inter-minimum
slope, the homogeneity of peak-to-peak distances and,
of course, the premier determination of the function on
larger and smaller k£ scales.

To summarize, we have pointed out that the recently
firstly determined transport function of baryons in the
Universe bears remarkable coincidence with the trans-
port function of a degenerate, relativistic Fermi gas. The
characteristic features of the baryon transport function
are reproduced by the fermions while they undergo a
new type of information-theoretic phase transition of the
power spectrum that we have firstly described here. If
both transport functions are indeed related, data seems
to point to a quantization of Fermi momentum conju-
gate to a spatial cutoff, implying also a gap in the min-
imal possible temperatures attainable for ideal and rela-
tivistic degenerate Fermi gases. To fully comprehend the
new low-temperature phase of the fermions and the sub-
sequent structure formation on small scales will require
a concerted effort of condensed matter theory, on the
one hand, and advanced numerical simulations of cosmic
structure formation on the other hand.

Despite the fact that our revelations appear to be dra-
matic, it seems like we would not have to abandon any of
our paradigms. We surely hope that the outlined ideas
for the formation of large scale structure as well as the hy-
pothesis of the information-theoretic Fermi-condensation
phase transition stand up further scrutiny. This would
herald a new age of large scale cosmology in surprising
unison with theories of condensed quantum matter.

I am grateful to Jonas Rezacek, Luca Amendola,
Alexei Yu Smirnov, Andrei Angelescu, Evgeny Akhme-
dov, Christian Doring, Johannes Herms, Sudip Jana, Jeff
Kuntz, Kris Pardo and David Spergel for useful discus-
sions and comments. I want to stress that the original
Fig. 3 of PS inspired this work, and it would not have
happened if Fig. 3 would only have appeared directly in
its final (refereed) form.

APPENDIX

Here we state expressions for the power spectrum defined in Eq. (8) (for simplicity with vanishing short distance
cutoff A = 0). Using the exact expression for g1 (r) of (5) in the definition of 7 (k), and interchanging the integrals



we obtain an integral representation for 7 (k) given by
g dpp ‘ ‘
- 7/ (E— M/TJrl{JO[A(p_k)]—Jo[A(p+k)]}. (20)
0

To leading order in Sommerfeld expansion this evaluates to (this is consistent with first expanding ¢*) (r) to O(T2/k2)
as in (6) and then performing (8))

2 sin (kpA) sin (kA
T(k) = % {Si (ke — k) A] + Si [(he + k) A] — 2500 iji““‘m( )}+
gmT? o [cos[(kr —k)A]  cos|[(kp + k) A]
A _
Gka{ # [ ke — k etk | (21)
(k% — kpk — [LQ) sin [(k‘F — k‘) A] 7 (k‘% + krpk — /12) sin [(k’F + ]{1) A]
(kp — k)° (ke + k)* '
Analytic expressions for the critical temperatures are given by
6 ki [sin(B,) — Si(B,)]
T?2,(v) = — 22
o) = S [0 ) B, cos(B,) + (B2 + K% — %) s(B,)] @2)
24 ki [1 —cos(2B,) — B,Si(2B,)]
72 24k v) = B,SI2B, 23
er(v) 72 B2 [4ki — 2p2 cos(B,)] + B, [(p? — 2k2)sin(2B,)] ’ (23)
2 36 k 2 . 2 .
T (v) = — £ [2B] — 4sin(B,)* + B, sin(2B,)] x (24)

[4p®By, — 6B (2kp + (k§ — 2p4%) cos(2B,)) + 3(3kp — 2u*) B, sin(2B,) + 64° B} sin(2B,))] !
Here B, are the zeros of the Bessel function Js /5 typically called js /o, and Si is the integral sine. Note that TC%O(I/) >0

only for odd v, while T} ¢ (v), T g (v) < 0 for all v.
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