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1 | Introduction

When modelling the human cognitive capacity for language, one invariably has

to consider how language is represented in the mind. Whether we study the pro-

cessing and recognition of written language, sign language or speech, at some

point the external linguistic stimuli become mental states that our brain is ca-

pable of operating on. Computational linguistic models try to formalise the op-

erations our cognitive functions perform on linguistic stimuli, and as such force

us to be explicit about the representations being operated on. For example in

speech recognition models, the output is a ‘recognised word’, i.e., a mental state

of the listener, and the modeller has to decide how to represent this output.

While nearly all cognitive models of language processing assume that we have

mental representations of words, surprisingly few actually deal with where they

come from. Prior knowledge of words is assumed, and, perhaps because many

models are trained on (English) text, words are assumed to be ‘the things be-

tween spaces’. This prior knowledge is not readily available however, when

working with a language that has no orthography. During an internship at the

Jelinek Memorial Workshop on Speech and Language Technology, I worked on

a speech recognition system for unwritten languages. This posed a challenge, as

many of the machine learning techniques for Natural Language Processing (NLP)

I learned are dependent on text. How do you train such a system without relying

on transcribed speech and what does speech recognition mean in a system that

should not return a written transcript? We ended up implementing a system that

instead finds a picture displaying what is described in the sentence, for instance,

when hearing ‘a dog running through a field’, it should find a picture of a dog

running through a field (Scharenborg et al., 2020).

While this speech recognition system is obviously limited to concrete descrip-

tions of visual scenes, I wanted to continue investigating it and its potential as a

cognitive model of language learning and speech recognition. While languages

without orthography pose only a practical problem for an NLP application, they

hint at a more fundamental question for cognitive modelling: can we model the

representations that our mind operates on by depending solely on text? Infants

initially have little understanding of what is being said around them, and yet,
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12 1 Introduction

within a few years they are able to understand and speak their mother tongue.

They learn by interaction with their environment and listening to other humans,

a process that is well on its way before they sit down in a school bench to learn

to read and write. In fact, many people learn their mother tongue without ever

learning how to read and write. It seems clear to me that, because children ob-

viously do not learn language through reading lots of text and many languages

have no orthography at all, it is crucial that we look beyond written language

and build our computational models around more natural linguistic input. Sim-

ilarly in NLP, although cognitive plausibility is not an issue there, systems can

benefit from more insight into how humans learn language. After all, human

performance is still a golden standard in many machine learning tasks.

The speech recognition system I worked on learns to recognise speech by lever-

aging correlations between speech and the visual modality. Models that learn

language by combining speech and vision have been around for quite a while

(e.g., Roy and Pentland 1998). Recent advances in NLP and computer vision

have made it possible to build such models on more than a toy lexicon, and

sparked a new wave of interest in multi-modal learning. When the combination

of linguistic and visual input is concerned, such a model is considered a Visual

Grounding Model (VGM), that is, it grounds the representations of the linguis-

tic units in visual information. While vision is not the only possible modality to

include in multi-modal modals, it is the most prominent one and I will focus on

a VGM in this dissertation.

My main goal is to investigate if a VGM can learn representations at the lexical

and sentence level that capture cognitive aspects of meaning and predict human

behavioural data. I aim to show that the solution to understanding the human

language faculty will not come from increasingly large and complex text-based

models, but from models that consider the wider range of the human sensory

experience. In the next section, I discuss current approaches to representing

linguistic units in computational models.

1.1 Linguistic representations

As said before, most computational models assume that the representations that

model the mental states associated with the linguistic stimuli (which I will hence-

forth refer to as ‘linguistic representations’) are prior knowledge. The ‘mental

lexicon’, containing all information about all the individual words a language

user knows, including how to pronounce them, write them, what they mean
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1 Introduction 13

and how to use them properly in a sentence (Emmorey and Fromkin, 1988) is

prior knowledge to such models. Coming back to the speech recognition mod-

els, their lexicon is determines which words they are able to recognise in the first

place, what they sound like and how they are written. Discovering what words

there are in a language is no simple task however, as speech does not contain

neat breaks or other clear clues as to where each word begins and ends.

It is compelling to compare the mental lexicon to a sort of dictionary; a collec-

tion of all known words, including their spelling, meaning and often an example

of its use in a sentence. We could think of more elaborate dictionaries including

pictures, sounds, synonyms etc. but somehow the comparison to a dictionary

will always fall short. The mental lexicon is more than a collection of all the

knowledge that you could possibly gather about words. An important question

in psycholinguistic research is why certain words are faster to process than oth-

ers. After all, in a dictionary, it should not take more time to look up one word

or the other. This indicates that the structure of the mental lexicon is intricately

linked to our daily use of these mental representations, influencing how words

are activated and retrieved from memory when we read or hear them. Another

fundamental difference with a dictionary is the fact that words in the mental

lexicon are interconnected. Activation of one word can spread to related words,

as emphasised for instance by semantic priming effects (e.g., Hutchison et al.

2013; D’Arcais et al. 1985; Schreuder et al. 1998).

However, we still know surprisingly little about what a human’s mental repre-

sentations look like, what information they contain, the ways in which they are

connected, how they are learned, how multiple languages co-exist in the mental

lexicon (or whether there is one for each language) and some even doubt the

existence of the mental lexicon entirely (Elman, 2009). Computational models

of the mental lexicon and the representations it contains are required to bet-

ter understand it, and vice versa, computational models that rely on the mental

lexicon can benefit from better linguistic representations. In the next section

I discuss a widely used method to ‘learn’ linguistic representations from huge

corpora using deep learning.

1.2 Word embeddings

The linguistic units (such as words and sentences) in computational linguistic

models can be represented as embeddings. An embedding is a high-dimensional

numerical vector that is not so much defined by the exact numbers in the vec-
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14 1 Introduction

tor as it is by its relation to other embeddings in the same embedding space.

Distributional semantics models create embeddings that quantify word meaning

based on the idea that a word’s meaning depends on the contexts in which it

appears. The same idea has also been applied to sentence meaning, that is, a

sentence’s meaning depends on the surrounding sentences. In such a learned

embedding space, words or sentences with a similar meaning (i.e., appearing

in similar contexts) should have a similar embedding. Another example is that

word pairs with a similar relationship, such as ‘king-queen’ and ‘man-woman’,

also have a similar difference vector in the embedding space. Embeddings are

widely used in NLP systems, often to represent text inputs, and have been shown

to improve for instance machine translation, named entity recognition and sen-

timent analysis to name a few (Qi et al., 2018; Sienčnik, 2015; Severyn and

Moschitti, 2015).

The recent success of deep learning based distributional semantics in NLP has

revived attention from the cognitive modelling community as well and seman-

tic embeddings are now widely used as the linguistic input for various cognitive

models, with research showing that they can account for response times in lexi-

cal decision tasks (Mandera et al., 2017; Rotaru et al., 2018; Petilli et al., 2021),

decode brain data (Xu et al., 2016; Abnar et al., 2018), account for brain activ-

ity during text comprehension (Frank and Willems, 2017), and correlate with

human judgements of word similarity (Kiela et al., 2018; Derby et al., 2018,

2020).

Distributional semantics models are in this sense used as computational mod-

els of where the linguistic representations come from and how they are learned.

Aside from the fact that these word embeddings are only meant to quantify se-

mantics and not for instance phonetic information, they are not cognitively plau-

sible. Firstly, creating high-quality embeddings requires billions of word tokens.

Obviously, humans are able to understand language after much less exposure,

and furthermore, their language experience comes from much more than solely

reading texts.

Secondly, these models treat word and sentence learning as entirely separate

processes. Distributional semantics models are exposed to billions of word to-

kens to learn word meaning, without ever dealing with larger linguistic con-

structs. Distributional semantics models that learn sentence embeddings often

start from pretrained word embeddings, implying that word meaning is learned

first, before learning how they combine into a meaningful sentence (e.g., Con-

neau et al. 2017; Kiela et al. 2018).
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Thirdly, any model that uses text, implicitly receives a lot of prior lexical infor-

mation. Whereas speech does not contain neat breaks to indicate where words

start and end, (English) text clearly demarcates the lexical items for which the

model is supposed to learn representations. Even the knowledge that words exist

at all can be considered prior knowledge. When learning language from speech

and without prior knowledge, a model thus faces the difficult task of figuring

out what sub-sentence units an utterance contains in the first place.

In the next section, I discuss the theories about human language learning that

VGMs take inspiration from in order to create more cognitively plausible linguis-

tic representations.

1.3 Human language learning

In order to create more cognitively plausible cognitive models, one unsurpris-

ingly needs to look at how humans perform the cognitive function being mod-

elled. As hinted at before, VGMs take inspiration from how children learn lan-

guage. As children are able to learn language without any prior linguistic know-

ledge and without much explicit training, a plausible cognitive model should

be able to do the same. While my VGM is not intended to be a computational

model of child language acquisition, it focuses on the following two aspects of

child language learning.

The first aspect is that language learning goes from utterances to words, and

not the other way around. In usage-based theories of language there is, as the

name suggests, a strong relationship between language use and the linguistic

units involved. According to Tomasello (2009), a proponent of this theory, inten-

tion reading (i.e., the communicative intent behind language use) and pattern

finding (i.e., identifying smaller linguistic units) are the key cognitive functions

for learning language. The essential premise of this theory is that all language

use has communicative intent, that is for instance, you want another person

to do something or attend to something. Because the utterance is the smallest

unit that conveys communicative intent, children would start with complete ut-

terances as basic linguistic units when they learn language (Tomasello, 2000).

Indeed, research shows that in young children, much of their language use is

constrained to (parts of) utterances they have used before (Lieven et al., 2003)

or comes from a small set of patterns like: ‘Where is X’ and ‘Want more X’ (Braine

and Bowerman, 1976).
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Later on, children’s linguistic units become smaller, as they learn to identify

slots in the linguistic patterns and learn which constituents of their linguistic

units they can ‘cut and paste’ to create novel utterances (Pine and Lieven, 1993;

Tomasello, 2000). Still, some relatively frequently used expressions such as

‘how-are-you-doing’ might become entrenched as a single linguistic unit even

in adults. According to this view, the linguistic units in the mental lexicon can

be ‘the things between spaces’ but can also refer to concepts that would require

multiple ‘words’ to describe, or can even be complete sentences.

How exactly children learn language is not known, but from a usage-based

view two things seem clear: firstly, learning about words and learning about sen-

tences are not two separate, consecutive processes. Children’s linguistic units be-

come smaller (i.e., more like the traditional idea of words) by hearing sentences

and finding patterns. Furthermore, in usage-based models, linguistic units are

not necessarily the ‘things between spaces’, but multi-word expressions as well.

Humans learn about words by finding patterns in sentences, they do not learn

about sentences by learning how to combine words. Distributional semantics

models consider word and sentence learning as separate processes and even in

the wrong order. A model that first learns word representations through reading

billions of word tokens, before learning how to use them in a sentence is not

very plausible.

The second aspect of child language learning the VGM takes inspiration from

is that humans have multiple streams of sensory information to learn language

from, and text is not the one children start learning language with. According

to embodied cognition theory, our conceptual knowledge is based on all our

sensory experiences (Barsalou, 2008; Foglia and Wilson, 2013). For instance,

hearing the word coffee brings back other sensory experiences associated with

coffee, such as how it smells, looks and tastes. Embodied cognition theory thus

assumes that all our sensory experiences contribute to our conceptual knowledge

and processing, which should be reflected in human behaviour. If this is the case,

we cannot model human language learning without considering a wider range

of sensory experiences.

Of these sensory experiences, the most prominent one is the visual stream. It

is theorised that infants learn to extract their words from speech by repeatedly

hearing words while seeing the objects or actions these words refer to (Räsä-

nen and Rasilo, 2015). For instance, parents might say ‘the ball is on the table’

and ‘there’s a ball on the floor’ etc., while consistently pointing towards a ball.

Children could learn what ‘ball’ means, because it is something both utterances



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 17PDF page: 17PDF page: 17PDF page: 17

1 Introduction 17

and their associated visual scenes have in common. The combination of speech

and visual context offers a possible mechanism for learning words when no prior

linguistic information (e.g., segmentation) is given.

These two observations are essentially captured in the title of this disserta-

tion: modelling multi-modal language learning, from sentences to words. As

said before, the VGM is not intended to be a full computational account of child

language acquisition. Rather, I hope to make the case that the VGM is a more

cognitively plausible method for creating linguistic representations than distribu-

tional semantics and that in order to advance our cognitive models of language

learning, we need to consider a wider range of sensory experiences, and treat

sentence and word learning as a single end-to-end process.

1.4 Visually Grounded Models of language

Here I give a short overview of visually grounded models of language, but for a

comprehensive and recent review, I refer to Chrupała (2022).

The potential of visual input for modelling the learning of linguistic units has

long been recognised. One of the first VGMs of language learning is CELL, devel-

oped by Roy and Pentland (1998). Their model builds an ‘audio-visual lexicon’

by finding clusters in the visual input and looking for reoccurring segments in

the acoustic signal. However, the model was limited to colours and shapes (ut-

terances like ‘this is a blue ball’) and does not learn from more natural, less

restricted input.

The VGM used in this dissertation is based on the recent wave of neural net-

work based VGMs. Advances in machine learning have made it possible to train

deep neural networks on large databases, and as a result, many such databases

and models have emerged in the past ten years. In 2013, Hodosh, Young and

Hockenmaier introduced Flickr8k (Hodosh et al., 2013), a database of images

accompanied by written captions describing their contents, which was quickly

followed by similar databases such as MSCOCO Captions (Chen et al., 2015).

These datasets are now widely used for image-caption retrieval models (e.g.,

Karpathy and Fei-Fei 2015; Klein et al. 2015; Ma et al. 2015; Vendrov et al.

2016; Wehrmann et al. 2018; Dong et al. 2018) and caption generation (e.g.,

Karpathy and Fei-Fei 2015; Xu et al. 2015).

The move from written to spoken language was started by Harwath and Glass

(2015), who collected spoken captions for the Flickr8k database and used it

to train the first neural network based VGM based on speech. Initially, VGMs
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were intended as NLP systems: systems that retrieve relevant images for a given

caption or vice versa, and even systems that could generate appropriate captions

for an image. However, many studies have since begun considering VGMs as

cognitive models and investigated the properties of their learned representations

(e.g., Harwath et al. 2020a; Kiela et al. 2018; Chrupała et al. 2018; Hsu et al.

2020; Chrupała et al. 2020). Räsänen and Khorrami (2019) used a VGM to show

that words can be discovered from recordings made by head-mounted cameras

worn by infants during child-parent interaction. They showed that their model

learned utterance representations from which several words (e.g., ‘doggy’, ‘ball’)

could reliably be detected. This study was an important step towards showing

that VGMs can acquire linguistic units from actual child-directed speech.

1.5 This dissertation

My first attempt at implementing a VGM was a DyNet (Neubig et al., 2017) im-

plementation of the model by Harwath and Glass (2015), albeit with a different

neural network structure. That implementation was made as part of my intern-

ship at the 2017 Jelinek Memorial Workshop on Speech and Language Technol-

ogy (Scharenborg et al., 2018). At the time however, the system did not perform

as it should, and we were unable to pinpoint the flaw in the implementation1.

I decided to start the VGM implementation for this dissertation from scratch,

working in Python and PyTorch, to get a working implementation that I could

easily alter for the purposes of the research in this dissertation. Even though my

main interest is in a model that learns language without requiring any text at

all, I first built a text-based model, for the main reason that working with text is

simply less complex than working with speech. The working text-based model

was a stepping stone towards implementing the speech-based model. Another

advantage of text is that it is more straightforward to test the sentence and word

representations created by the model. Sentence- and word-embedding evalua-

tion datasets are readily available for written data, as are alternative text-based

sentence and word-embedding models to facilitate a comparative evaluation. By

starting from a text-based model, I was able to implement and investigate both

a text- and speech-based model, the results of which will be discussed in the

remainder of this dissertation.

1Scharenborg et al. (2020), a follow up to that paper, includes a working implementation
based on the work done for this dissertation in Chapter 4.
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This dissertation is divided into three parts; the first part is an investigation

of my text-based visual grounding model and in the second part, I present the

speech-based model. Both start with an investigation of the sentence represen-

tations and conclude with an investigation of the model’s word representations.

The third part is a more in-depth investigation of the way deep learning models

of cognition process language and how this relates to our knowledge of human

language processing. Finally, in Chapter 8 I present my overall conclusions and

recommendations for future work.

1.5.1 Text model

In Chapter 2, which is based on Merkx and Frank (2019), I introduce the visual

grounding model, which is my own Python implementation based on caption-

image retrieval models such as those by Karpathy and Fei-Fei (2015), Wehrmann

et al. (2018) and Dong et al. (2018). As caption-image retrieval models have

hitherto been used primarily as NLP systems, the main goal of this chapter is

to evaluate their viability as a cognitive models. Crucial for all subsequent re-

search in this dissertation, the model has to be able to extract semantic know-

ledge without requiring any prior linguistic knowledge. Existing image-caption

retrieval models as well as semantic sentence embedding models use pretrained

word embeddings as input and the cognitive plausibility of such models is ques-

tionable. I investigate whether the VGM learns to capture aspects of semantic

relatedness in its embedding space by using a large test battery for evaluating

sentence embeddings called SentEval and comparing the model’s sentence em-

beddings to a state-of-the-art text-based sentence embedding model.

In Chapter 3 (Merkx et al., 2022), I build upon the results from the previous

chapter and investigate whether the model can be used to create semantic word

embeddings. As the model is trained on full sentences, it is not self-evident that

it would also learn meaningful word representations, especially considering that

previous implementations all used pretrained word embeddings as input. The

goal of this chapter is to introduce a method to extract word embeddings from a

model which in principal delivers sentence embeddings, and investigate whether

these grounded embeddings capture cognitive aspects of word meaning that

text-based approaches cannot. I test a central idea of embodied cognition theory,

namely that all our sensory experiences contribute to our conceptual knowledge.

If our visual experiences contribute to our conceptual knowledge, word embed-

dings incorporating visual features should be able to explain human behavioural

data to a degree unattainable by purely text-based methods. To evaluate this
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claim, I perform two experiments on different types of human behavioural data,

using well-known text-based word embedding methods as control variables to

carefully separate the contribution of text-based knowledge from visual know-

ledge.

1.5.2 Speech model

The main goal of Chapter 4 (Merkx et al., 2019) is to introduce the speech-based

VGM. I build upon existing VGMs by implementing several improvements to their

architecture and training. As with the text-based model, the speech-based VGM

is trained on full sentences, and produces sentence embeddings. Inherent to the

spoken input is the fact that the speech-based VGM receives no word boundary

information, or even knows that words exist at all. I also perform a probing

experiment to see if the model encodes the presence of words in its sentence

embeddings. This is essential for the follow-up experiments and as the model is

trained only on full utterances without any explicit clues about word boundaries,

it is not self-evident that it encodes such information.

In Chapter 5 (Merkx et al., 2021), I investigate whether the VGM learns to

capture sentence semantics. This chapter can be seen as the spoken counterpart

to Chapter 2. I collect a spoken equivalent to the pre-existing evaluation data

used in the second chapter in order to test whether the speech-based VGM is able

to learn sentence semantics, even though it is not explicitly trained to recognise

speech, and in contrast to the text-based model from Chapter 2, does not even

receive word boundary information. I also provide a critical note on the trend

in computational linguistics and NLP to ‘improve’ models by creating larger neu-

ral networks trained on larger training corpora. I compare models trained on

datasets that differ in composition but are similar in size, and aim to show that

there are facets to corpus building other than its size to consider if we want to

improve our models.

The speech-based VGM takes the leap from sentences to words in Chapter

6 (Merkx et al., forthcoming). Whereas the fourth chapter introduced the first

step in this direction, I here present the VGM as a model of human word recog-

nition. The central question of this chapter is: does the model learn to recognise

words, and does this generalise to isolated words? I also investigate whether the

model’s word recognition performance is affected by known word competition

effects. This chapter aims to be a closing piece for the speech-based part of this

dissertation, showing that by combining multi-modal input, it can indeed learn

language on both the sentence and word level without requiring any prior lin-
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guistic knowledge and without separating the processes of sentence and word

learning.

1.5.3 Working memory in language processing

In Chapter 7 (Merkx and Frank, 2021) I take a closer look at the way deep

learning models process language. At the start of my project, Recurrent Neural

Networks (RNN) were the main neural architecture used in cognitive linguistic

models (including mine). The success of RNNs in explaining behavioural and

neurophysiological data suggests that something akin to recurrent processing is

involved in human sentence processing. Recently however, the Transformer ar-

chitecture was introduced and proceeded to break record after record in NLP

applications. The transformer differs drastically from the RNN in how it pro-

cesses and ‘remembers’ previous inputs. The Transformer’s success in process-

ing language merits a closer look at this architecture as a possible processing

mechanism in cognitive models as well. In this chapter I compare RNNs and

Transformers as a model of human sentence processing. Even though at face-

value the Transformer seems cognitively implausible, a re-evaluation of the RNN

may be required if the Transformer outperforms the RNN as a cognitive model.
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2 | Learning semantic sentence representations

from visually grounded language without

lexical knowledge

Current approaches to learning semantic representations of sentences often use

prior word-level knowledge. The current study aims to leverage visual infor-

mation in order to capture sentence level semantics without the need for word

embeddings. We use a multi-modal sentence encoder trained on a corpus of

images with matching text captions to produce visually grounded sentence em-

beddings. Deep Neural Networks are trained to map the two modalities to a

common embedding space such that for an image the corresponding caption

can be retrieved and vice versa. We show that our model achieves results com-

parable to the current state-of-the-art on two popular image-caption retrieval

benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content

of the resulting sentence embeddings using the data from the Semantic Textual

Similarity benchmark task and show that the multi-modal embeddings correlate

well with human semantic similarity judgements. The system achieves state-of-

the-art results on several of these benchmarks, which shows that a system trained

solely on multi-modal data, without assuming any word representations, is able

to capture sentence level semantics. Importantly, this result shows that we do

not need prior knowledge of lexical level semantics in order to model sentence

level semantics. These findings demonstrate the importance of visual informa-

tion in semantics.

2.1 Introduction

Distributional semantics, the idea that words that occur in similar contexts have

similar meanings, has been around for quite a while (e.g., Rubenstein and Good-

enough 1965; Deerwester et al. 1990). Rubenstein and Goodenough (1965)

This chapter is based on: Danny Merkx and Stefan L. Frank. Learning semantic sentence
representations from visually grounded language without lexical knowledge. Natural Language
Engineering, 25(4):451-466, 2019
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already studied “how the proportion of words common to contexts contain-

ing word A and to contexts containing word B was related to the degree to

which A and B were similar in meaning” (p.627). State-of-the-art word embed-

ding methods such as Word2Vec (Mikolov et al., 2013a) and GloVe (Pennington

et al., 2014) have shown meaningful clusters, correlations with human similar-

ity judgements (De Deyne et al., 2017), and have become widely used features

that boost performance in several natural language processing (NLP) tasks such

as machine translation (Qi et al., 2018). With the success of word embeddings,

researchers are looking for ways to capture the meaning of larger spans of text,

such as sentences, paragraphs, and even entire documents. Much less is known

about how to approach this problem and early solutions tried to adapt word em-

bedding methods to larger spans of text, for example, Skip-Thought sentence

embeddings (Kiros et al., 2015), FastSent (Hill et al., 2016), and Paragraph-

Vector (Hill et al., 2016), which are related to the Skip-Gram word model by

Mikolov et al. (2013a). Recently, there have also been successful sentence em-

bedding models which are trained on a supervised task and then transferred to

other tasks (e.g., Conneau et al. 2017; Yang et al. 2018; Kiela et al. 2018).

So far, existing sentence embedding methods often require (pretrained) word

embeddings (Conneau et al., 2017; Kiela et al., 2018), large amounts of data

(Hill et al., 2016), or both (de Boom et al., 2015; Yang et al., 2018). While

word embeddings are successful at enhancing sentence embeddings, they are

not very plausible as a model of human language learning. Firstly, a model us-

ing word embeddings makes the assumption that the words in its lexicon are

the linguistic units bearing meaning. It is for instance not possible for the model

to focus on only part of the morphology of such a predefined unit. Secondly,

these models assume that the process of language acquisition begins with lexi-

cal level knowledge before learning how to process longer utterances. That is,

the model already knows what a word is and in the case of pretrained word em-

beddings it receives considerable prior knowledge of lexical semantics. Both of

these assumptions are questionable.

Tomasello (2000), a proponent of usage-based models of language, argues

that children learn many relatively fixed expressions (e.g., ‘how-are-you-doing’)

as single linguistic units. Furthermore, he argues that the linguistic units that

children operate on early in language acquisition are entire utterances, before

their language use becomes more adult-like. Indeed, research shows that in

young children, much of their language use is constrained to (parts of) utter-

ances they have used before (Lieven et al., 2003) or comes from a small set of
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patterns like: ‘Where is X’ and ‘Want more X’ (Braine and Bowerman, 1976).

Children’s linguistic units become smaller and more adult-like as they learn to

identify slots in the linguistic patterns and learn which constituents of their lin-

guistic units they can ‘cut and paste’ to create novel utterances (Pine and Lieven,

1993; Tomasello, 2000). Models that assume lexical items are the basic mean-

ing bearing units and that language learning starts from lexical items towards

understanding full sentences are thus not very plausible as models of language

learning.

In the current study, we train a sentence encoder without prior knowledge of

lexical semantics, that is, without using word embeddings. Instead of word em-

beddings, we use character level input in conjunction with visual features. The

use of multi-modal data has proven successful on the level of word embeddings

(see for instance Collell et al. 2017; Derby et al. 2018). For sentence semantics,

the multi-modal task of image-caption retrieval, where given a caption the model

must return the matching image and vice versa, has been proposed as a way of

grounding sentence representations in vision (Harwath and Glass, 2015; Leidal

et al., 2017). Recently Kiela et al. (2018) found that such models do indeed

produce embeddings that are useful in tasks like natural language inference,

sentiment analysis and subjectivity/objectivity classification.

Our model does not know a priori which constituents of the input are impor-

tant. It may learn to extract features from spans of text both larger and smaller

than words. Furthermore, we leverage the potential semantic information that

can be gained from the visual features to create visually grounded sentence em-

beddings without the use of prior lexical level knowledge. We also probe the

semantic content of the grounded sentence embeddings more directly than has

so far been done, by evaluating on Semantic Textual Similarity, a well known

benchmark test set consisting of sentence pairs with human-annotated semantic

similarity ratings.

Our aim is to create a language model that learns semantic representations

of sentences in a more cognitively plausible way, that is, not purely text-based

and without prior lexical level knowledge. We evaluate our multi-modal sen-

tence encoder on a large benchmark of human semantic similarity judgements

in order to test if the similarity between the embeddings correlates with human

judgements of semantic textual similarity. This is to the best of our knowledge

the first evaluation of the sentence level semantics of a multi-modal encoder that

does not make use of lexical information in the form of word embeddings. We

find that the model produces sentence embeddings that account for human sim-
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ilarity judgements, with performance similar to competing models. Importantly,

our model does so using visual information rather than prior knowledge such as

word embeddings. We release the code of our preprocessing pipeline, models

and evaluation on github as open source: https://github.com/DannyMerk
x/caption2image.

2.2 Sentence embeddings

2.2.1 Text-only methods

Methods for creating sentence embeddings have thus far mostly been based

solely on text data. Skip-Thought (Kiros et al., 2015), inspired by the idea be-

hind word embeddings, assumes that sentences which occur in similar context

have similar meaning. Skip-Thought encodes a sentence and tries to reconstruct

the previous sentence and the next sentence from the resulting embedding. In

a similar approach, Yang et al. (2018) try to match Reddit posts with their re-

sponses based on the assumption that posts with similar meanings will elicit

similar responses.

InferSent, a recent model by Conneau et al. (2017), is one of the most suc-

cessful models with regards to transfer learning and semantic content. Conneau

et al. trained an RNN sentence encoder on the Stanford Natural Language In-

ference database (Bowman et al., 2015), a database with paired sentences an-

notated for entailment, neutral, or contradiction relationships. Conneau and

Kiela (2018) released SentEval, a transfer learning evaluation toolbox for sen-

tence embeddings, which includes a large number of human semantic similarity

judgements. InferSent embeddings show a high correlation to several sets of se-

mantic textual similarity judgements and perform well on various transfer tasks

like sentiment analysis and subjectivity/objectivity detection.

2.2.2 Multi-modal methods

Image-caption retrieval is a multi-modal machine learning task involving chal-

lenges from both computer vision and language modelling. The task is to rank

captions by relevance to a query image, or to rank images by relevance to a

query caption, which is done by mapping the images and captions to a common

embedding space and minimising the distance between the image and caption

in this space.

https://github.com/DannyMerk
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Ma et al. (2015) used two Convolutional Neural Networks (CNN) to create

image and sentence representations and another CNN followed by a Multilayer

Perceptron (MLP) to derive a matching score between the images and captions.

Klein et al. (2015) converted the captions to Fisher vectors (Jaakkola and Haus-

sler, 1998) and used Canonical Correlations Analysis to map the caption and

image representations to a common space. The model by Karpathy and Fei-Fei

(2015) works at a different granularity: they encoded image regions selected

by an object detection CNN and encoded each word in the sentence separately,

thus ending up with multiple embeddings per caption and image. They then

calculated the distances between all the embedded words and image regions.

Many image-caption retrieval models rely on pretrained neural networks and

word embeddings. It is common practice to use a pretrained network such as

VGG, Inception V2, or ResNet-152 to extract the visual features (e.g., Ma et al.

2015; Vendrov et al. 2016; Faghri et al. 2017; Wehrmann et al. 2018; Kiela

et al. 2018). Furthermore, with the exception of the character-based model

by Wehrmann et al. (2018), recent results are achieved by using pretrained

Word2Vec or GloVe word embeddings to initialise the sentence encoder. The

current state-of-the-art results are by Faghri et al. (2017), who fine-tuned a pre-

trained ResNet-152 and improved the sampling of mismatched image-caption

pairs during training.

The approach of mapping the image-caption pairs to a common semantic em-

bedding space is interesting because the produced embeddings could also be

useful in other tasks, similar to how word embeddings can be useful in machine

translation (Qi et al., 2018). Kiela et al. (2018) used a model similar to Dong

et al. (2018), that is, a recurrent neural network caption encoder paired with

a pretrained image recognition network which is trained to map the caption to

the image features extracted by the image recognition network. Using SentEval,

Kiela et al. (2018) showed that the resulting embeddings are useful in a wide va-

riety of transfer tasks such as sentiment analysis in product and movie reviews,

paraphrase detection and natural language inference. These results show that

visually grounded sentence representations can be used for transfer learning,

but do not directly probe the model’s ability to learn sentence semantics.

The current study differs from previous research in three respects. Firstly,

we train our model using character level input rather than word embeddings.

Secondly, our model uses only the sentence representations that can be learned

from the multi-modal training data. In contrast, Kiela et al. (2018) augmented

their grounded representations by combining them with non-grounded (Skip-
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Figure 2.1: Model architecture: the model consists of two branches with the im-
age encoder on the left and the caption encoder on the right. The
character embeddings are denoted by et and the RNN hidden states
by ht . Each hidden state has n features which are concatenated for
the forward and backward RNN into 2n dimensional hidden states.
Then attention is applied which weighs the hidden states and then
sums over the hidden states resulting in the caption embedding. At
the top we calculate the cosine similarity between the image and cap-
tion embedding (emb_img and emb_cap).

Thought) representations. Finally, we probe the semantic content of our sen-

tence representations more directly by evaluating the caption encoder on the

Semantic Textual Similarity benchmark. This benchmark is included in the Sen-

tEval toolbox but has to the best of our knowledge not been used to evaluate

visually grounded sentence representations.

2.3 Approach

In this section, we first describe our encoder architectures, where we combine

several best practices and state-of-the-art methods in the field of deep learning.

Next, we describe the training data and finally the semantic similarity tasks.
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2.3.1 Encoder architectures

Image encoder

Our model maps images and corresponding captions to a joint embedding space,

that is, the encoders are trained to make the embeddings of an image-caption

pair lie close to each other in the embedding space. As such the model requires

both an image encoder and a sentence encoder as illustrated in Figure 2.1.

The image features are extracted by a pretrained image recognition model

trained on ImageNet (Deng et al., 2009). For this we used ResNet-152 (He et al.,

2016), a residualised network with 152 layers from which we take the activations

of the penultimate fully connected layer1. ResNet-152 has lower error rates on

the ImageNet task than other networks previously used in the image captioning

task such as VGG16, VGG19 and Inception V2.

For the image encoder we use a single layer linear projection on top of the

pretrained image recognition model, and normalise the result to have unit L2

norm:

emb_img=
imgAT + b
||imgAT + b||2

where A and b are learned weights and bias terms, and img is the vector of

ResNet image features.

Caption encoder

We built a caption encoder that trains on raw text, that is, character-level in-

put. The sentence encoder starts with an embedding layer with embeddings

(e1, ...,et) for the t characters in the input sentence. The embeddings are then

fed into an RNN, followed by a self-attention layer and lastly normalised to have

unit L2 norm:

emb_cap=
Att(RNN(e1, ...,et))
||Att(RNN(e1, ...,et))||2

where e1, ...,et indicates the caption represented as character embeddings and

Att is the attention layer. The character embedding features are learned along

with the rest of the network.

The RNN layer allows the network to capture long-range dependencies in the

captions. Furthermore, by making the layer bidirectional we let the network

1The final layer of a pretrained visual network is a task-specific object classification layer
while the penultimate layer contains generally useful image features. Madhyastha et al. (2018)
document that the features of the penultimate layer yield better transfer learning results than
the object classification layer.
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process the captions from left to right and vice versa, allowing the model to cap-

ture dependencies in both directions. We then concatenate the results to create

a single embedding. We test two types of RNN: the Long Short Term Memory

unit (LSTM; Hochreiter and Schmidhuber 1997) and the Gated Recurrent Unit

(GRU; see Greff et al. 2017 and Chung et al. 2014 for detailed descriptions of

these RNNs). The GRU is a recurrent layer that is widely used in sequence mod-

elling (e.g., Zhu et al. 2015; Patel et al. 2016; Conneau et al. 2017). The GRU

requires fewer parameters than the LSTM while achieving comparable results or

even outperforming LSTMs in many cases (Chung et al., 2014). On the other

hand, Conneau et al. (2017) found that an LSTM not only performed better than

a GRU on their training task, but also generalised better to other tasks including

semantic similarity. We test both architectures as it is not clear which is better

suited for the image-captioning task.

The self-attention layer computes a weighted sum over all the hidden RNN

states:
at = softmax(V tanh(Wht + bw) + bv)

Att(h1, ...,ht) =
∑

t

at ◦ ht

where at is the attention vector for hidden state ht and W , V , bw, and bv indicate

the weights and biases. The applied attention is then the sum over the Hadamard

product between all hidden states (h1, ...,ht) and their attention vector.

While attention is part of many state-of-the-art NLP systems, Conneau et al.

(2017) found that attention caused their model to overfit on their training task,

giving worse results on transfer tasks. As a simpler alternative to attention, we

also test max pooling, where we take for each feature the maximum value over

the hidden states.

Both encoders are jointly trained to embed the images and captions such that

the cosine similarity between image and caption pairs is larger (by a certain

margin) than the similarity between mismatching pairs, minimising the so-called

hinge loss. The network is trained on a minibatch B of correct image-caption

pairs (cap, img) where all other image-caption pairs in the minibatch serve to

create counterexamples (cap, img ′) and (cap′, img). We calculate the cosine

similarity cos(x , y) between each embedded image-caption pair and subtract

the similarity of the mismatched pairs from the matching pairs such that the loss

is only zero when the matching pair is more similar by a margin α. The hinge

loss L as a function of the network parameters θ is given by:
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L(θ ) =
∑

(cap,img),(cap′,img ′)∈B

�
max(0, cos(cap, img ′)− cos(cap, img) +α)+

max(0, cos(img, cap′)− cos(img, cap) +α)
�

where (cap, img) �= (cap′, img ′).

2.3.2 Training data

The multi-modal embedding approach requires paired captions and images for

which we use two popular image-caption retrieval benchmark datasets: Flickr8k

(Hodosh et al., 2013) and MSCOCO (Chen et al., 2015).

Flickr8k is a corpus of 8,000 images taken from the online photo sharing appli-

cation Flickr.com. Each image has five captions created using Amazon Mechani-

cal Turk (AMT) where workers were asked to “write sentences that describe the

depicted scenes, situations, events and entities (people, animals, other objects)”

(Hodosh et al., 2013, p. 860). We used the data split provided by Karpathy and

Fei-Fei (2015), with 6,000 images for training and a development and test set of

1,000 images each.

To extract the image features, all images are resized such that the smallest

side is 256 pixels while keeping the aspect ratio intact. We take ten 224× 224

crops of the image: one from each corner, one from the middle and the same

five crops for the mirrored image. We use ResNet-152 pretrained on ImageNet

to extract visual features from these ten crops and then average the features of

the ten crops into a single vector with 2,048 features. The character input is

provided to the networks as is, including all punctuation and capitals.

Microsoft Common Objects in Context (MSCOCO) is a large dataset of 123,287

images with five captions per image. The captions were gathered using AMT,

with workers being asked to describe the important parts of the scene. Like

Vendrov et al. (2016), we use 113,287 images for training and 5,000 for devel-

opment and testing each. The image and text features are extracted from the

data following the same procedure used for Flickr8k. The only difference is that

the captions are provided in a tokenised format and we create the character level

input by concatenating the tokens with single spaces and adding a full stop to

the end of each caption.
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2.3.3 Training procedure

The image-caption retrieval performance on the development set is used to tune

the hyperparameters for each network. We found a margin α = 0.2 for the loss

function to work best on both the GRUs and LSTMs. Although performance was

relatively stable in the range 0.15 ≤ α ≤ 0.25, it quickly degraded outside this

range. The networks were trained with a single layer bidirectional RNN and we

tested hidden layer sizes n ∈ {512,1024, 2048}. The number of hidden units de-

termines the embedding size, which is 2n (due to the RNN being bidirectional).

The attention layer has 128 hidden units. The image encoder has 2n dimensions

to match the size of the sentence embeddings. We use 20-dimensional character

embeddings and found that varying the size of these embeddings has very little

effect on performance.

The networks are trained using Adam (Kingma and Ba, 2015) with a cyclic

learning rate schedule based on Smith (2017). The learning rate schedule varies

the learning rate l r smoothly between a minimum and maximum bound (l rmin

and l rmax) over the course of four epochs as given by:

l r = 0.5(l rmax − l rmin)(1+ cos(π(1+ 0.5step×mb))) + l rmin

where step indicates the step size, that is, the number of minibatches for a full

cycle of the learning rate, and mb is the number of minibatches processed so far.

We set the step size such that the learning rate cycle is four epochs. The cyclic

learning rate has two advantages. Firstly, fine-tuning the learning rate can be a

very time consuming process. Smith (2017) found that the cyclic learning rate

works within reasonable upper and lower bounds which are easy to find: simply

set the upper and lower bound by selecting the highest and lowest learning rates

for which the loss value decreases. Secondly, the learning rate schedule causes

the network to visit several local minima during training, allowing us to use

snapshot ensembling (Huang et al., 2017). By saving the network parameters

at each local minimum, we can ensemble the caption embeddings of multiple

networks at no extra cost.

We train the networks for 32 epochs and take a snapshot for ensembling at

every fourth epoch. For ensembling we use the two snapshots with the highest

performance on the development data. We found that for Flickr8k an upper

bound on the learning rate of 10−3 and a lower bound of 10−6 worked well and

for MSCOCO we had to adjust the upper bound to 10−4.
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2.3.4 Semantic evaluation

For the semantic evaluation we use the SentEval toolbox introduced by Conneau

and Kiela (2018). This toolbox is meant to test sentence embeddings on a diverse

set of transfer tasks, from sentiment analysis and paraphrase detection to entail-

ment prediction. For semantic textual similarity analysis, SentEval includes the

Semantic Textual Similarity and Sentences Involving Compositional Knowledge

datasets which we briefly review here. After training our multi-modal encoder

network, we simply discard the image encoder, and the caption encoder is used

to encode the test sentences in SentEval.

Semantic Textual Similarity (STS) is a shared task hosted at the SemEval work-

shop. SentEval covers the STS datasets from 2012 to 2016. The datasets consist

of paired sentences from various sources labelled by humans with a similarity

score between zero (‘the two sentences are completely dissimilar’) and five (‘the

two sentences are completely equivalent, as they mean the same thing’) for a to-

tal of five annotations per sentence pair (Agirre et al. 2015, p. 254, see also for a

full description of the annotator instructions). The evaluation performed on the

STS 2012 to 2016 tasks measures the correlation between the cosine similarity

of the sentence embeddings and the human similarity judgements.

The STS Benchmark set (STS-B) consists of 8,628 sentence pairs selected from

all STS tasks (Cer et al., 2017). STS-B consists of a training, development and

test set (5,749, 1,500 and 1,379 sentence pairs respectively). For the STS-B task,

the SentEval toolbox trains a classifier which tries to predict the similarity scores

using the sentence embeddings resulting from our model. Table 2.1 gives an

overview of the datasets. For full descriptions of each dataset see Agirre et al.

(2012, 2013, 2014, 2015, 2016).

Sentences Involving Compositional Knowledge (SICK) is a database created

for a shared task at SemEval-2014 with the purpose of testing compositional dis-

tributional semantics models (Bentivogli et al., 2016). The dataset consists of

10,000 sentence pairs which were generated using sentences taken from Flickr8k

and the STS 2012 MSRvid data set. The sentences were altered to display lin-

guistic phenomena that the shared task was meant to evaluate, such as negation.

This resulted in sentences like ‘there is no biker jumping in the air’ and ‘two an-

gels are making snow on the lying children’ (altered from ‘two children are lying

in the snow and are making snow angels’, Bentivogli et al. 2016, p. 6) which do

not occur in the Flickr8k training data.

For the semantic evaluation of our sentence embeddings we used the SICK

Relatedness (SICK-R) annotations. For the SICK-R task, annotators were asked
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Table 2.1: Description of the various STS tasks and their subtasks. Some sub-
tasks appear in multiple STS tasks, but consist of different sentence
pairs drawn from the same source. The image description datasets
are drawn from the PASCAL VOC-2008 dataset (Everingham et al.,
2008) and so do not overlap with Flickr8k or MSCOCO.

Task Subtask #Pairs Source
MSRpar 750 newswire
MSRvid 750 videos

STS 2012 SMTeuroparl 459 glosses
OnWN 750 WMT eval.
SMTnews 399 WMT eval.
FNWN 189 newswire

STS 2013 HDL 750 glosses
OnWN 561 glosses
Deft-forum 450 forum posts
Deft-news 300 news summary

STS 2014 HDL 750 newswire headlines
Images 750 image descriptions
OnWN 750 glosses
Tweet-news 750 tweet-news pairs
Answers forum 375 Q&A forum answers
Answers students 750 student answers

STS 2015 Belief 375 committed belief
HDL 750 newswire headlines
Images 750 image descriptions
Answer-Answer 254 Q&A forum answers
HDL 249 newswire headlines

STS 2016 Plagiarism 230 short-answer plagiarism
Postediting 244 MT postedits
Question-Question 209 Q&A forum questions

Total 12,544

to rate the relatedness of sentence pairs on a 5-point scale for a total of ten

annotations per sentence pair. Unlike for STS, there were no specific descriptions

attached to the scale; participants were only instructed using examples of related

and unrelated sentence pairs. Similar to STS-B, a classifier is trained on top

of the embeddings, using 45 percent of the data as training set, 5 percent as

development set and 50 percent as test set.
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Figure 2.2: Model performance on the semantic (SICK-R, STS-B, and STS12-16)
and training task (image-caption retrieval) measures including the
95 percent confidence interval. Training task performance is mea-
sured in recall@10. The semantic performance measure is Pearson’s
r. The horizontal axis shows the embedding size with “max” indicat-
ing the max pooling model.

2.4 Results and discussion

2.4.1 Model selection

We perform model selection after training on only the Flickr8k database. Due to

the considerably larger size of MSCOCO it is more efficient to train and test our

models on Flickr8k, and train on MSCOCO using only the best setup found on

Flick8k.

To select the DNN architecture with the best performance we compare our ar-

chitectures on image-caption retrieval performance and on their ability to cap-

ture semantic content. The image-caption retrieval performance is measured by

Recall@10: the percentage of images (or captions) for which the correct caption

(or image) was in the top ten retrieved items. For the purpose of model selection

we use the average of the bidirectional (caption to image and image to caption)

retrieval results on the development set. For the semantic evaluation we use

correlation coefficients (Pearson’s r) between embedding distances and human
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similarity judgements from STS-B and SICK-R. We also aggregate the Pearson’s

r scores for the STS 2012 through 2016 tasks.

Figure 2.2 shows the results for our models trained on Flickr8k. There is no

clear winner in terms of performance: the GRU 2048 (referring to the embed-

ding size) performs best on STS, GRU 4096 on SICK-R and STS-B, and LSTM

4096 on the training task. Although there are differences between the GRU and

the LSTM, they are only statistically significant for STS12-16. Furthermore, the

max pooling models are outperformed by their attention-based counterparts. We

only tested the max pooling with an embedding size of 2048. Due to the clear

drop in both training and semantic task performance we did not run any further

experiments.

As our main goal is the evaluation of semantic content, we continue with the

GRUs as they perform significantly better on STS12-16. There is no clear winner

between the GRU 2048 and GRU 4096 as the performance differences on all

measures are relatively small. The 4096 model performs significantly better on

SICK-R but the 2048 model performs slightly better on STS12-16. As STS12-16 is

the main interest in our evaluation we pick the GRU 2048 as our best performing

Flickr8k model and train a GRU 2048 model on MSCOCO. We will from now on

refer to this model as char-GRU, shorthand for character-based GRU.

2.4.2 Image-caption retrieval

We compare our char-GRU model with the current state-of-the-art in image-

caption retrieval on both Flickr8k and MSCOCO. Table 2.2 shows the bidirec-

tional retrieval results on both Flickr8k and MSCOCO. For MSCOCO we report

both the results on the full test set (5000 items) and average results on a five-fold

test set of 1000 items to be able to compare our results to previous work. Our

models perform comparable to the state-of-the-art on both image to caption and

caption to image retrieval on all metrics for Flick8k. The MSCOCO model by

Faghri et al. (2017), which fine-tuned the ResNet-152 network during training,

is the only model that significantly outperforms our own across the board.

All systems except the one by Wehrmann et al. (2018) and our own made

use of word embeddings. Wehrmann et al. (2018) report that their CNN model

trained on Flickr8k could only achieve such high recall scores when fine-tuning

a model that was pretrained on MSCOCO, which they hypothesised is due to the

small number of training examples in Flickr8k. Using our char-GRU model we

outperform their convolutional approach without any pretraining on MSCOCO,
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Table 2.2: Image-Caption retrieval results on the Flickr8k and MSCOCO test sets.
R@N is the percentage of items for which the correct image or caption
was retrieved in the top N (higher is better). Med r is the median rank
of the correct image or caption (lower is better). We also report the
95 percent confidence interval for the R@N scores. For MSCOCO we
report the results on the full test set (5,000 items) and the average
results on five folds of 1,000 image-caption pairs.

Flickr8k Caption to Image Image to Caption
R@1 R@5 R@10 med r R@1 R@5 R@10 med r

Klein et al. (2015) 21.2±1.1 50.0±1.4 64.8±1.3 5.0 31.0±2.9 59.3±3.0 73.7±2.7 4.0
Wehrmann et al. (2018) 26.9±1.2 - 69.6±1.3 4.0 32.4±2.9 - 73.6±2.7 3.0
Dong et al. (2018) - - - - 36.3±3.0 66.4±2.9 78.2±2.6 -
char-GRU 27.5±1.2 58.2±1.4 70.5±1.3 4.0 38.5±3.0 68.9±2.9 79.3±2.5 2.0
MSCOCO 1k results
Vendrov et al. (2016) 37.9±0.6 - 85.9±0.4 2.0 46.7±1.4 - 88.9±0.9 2.0
Faghri et al. (2017) 52.0±0.6 84.3±0.5 92.0±0.3 1.0 64.6±1.3 90.0±0.8 95.7±0.6 1.0
Wehrmann et al. (2018) 40.4±0.6 - 88.6±0.4 2.0 49.5±1.4 - 91.3±0.8 1.6
char-GRU 41.4±0.6 76.8±0.5 88.0±0.4 2.0 51.2±1.4 83.5±1.0 92.1±0.7 1.2
MSCOCO 5k results
Vendrov et al. (2016) 18.0±0.5 - 57.6±0.6 7.0 23.3±1.2 - 65.0±1.3 5.0
Faghri et al. (2017) 30.3±0.6 59.4±0.6 72.4±0.6 4.0 41.3±1.4 71.1±1.3 81.2±1.1 2.0
Kiela et al. (2018) 17.1±0.5 43.0±0.6 57.3±0.6 8.0 27.1±1.2 55.6±1.4 70.0±1.3 4.0
char-GRU 20.2±0.5 46.9±0.6 60.9±0.6 6.0 25.7±1.2 54.3±1.4 68.8±1.3 4.0

indicating that Flickr8k has enough training examples for a recurrent architec-

ture to take advantage of.

2.4.3 Semantic evaluation

We now look at the semantic properties of the sentence embeddings in more

detail and compare our models with previous work. Figure 2.3 displays Pearson’s

r scores on all the subtasks of the STS tasks for our char-GRU model, InferSent

(Conneau et al., 2017), and a Bag Of Words (BOW) baseline using the average

over a sentence’s GloVe vectors.

Comparing Flickr8k with MSCOCO

First of all, our Flickr8k model significantly outperforms the MSCOCO model on

6 out of 26 tasks, while the MSCOCO model only outperforms the Flickr8k model

on MSRvid, Images (STS 2014) and SICK-R. It seems that the larger amount of

image-caption data in MSCOCO allows the model to become better at what it

was already good at, that is, video and image descriptions. On the other hand,

specialising in image and video descriptions seems to decrease the models’ gen-

eralisation to other tasks indicating that it is overfitting. That being said, the

Flickr8k model performs quite well, beating the InferSent and BOW models on

some tasks and performing comparably on most of the other tasks even though
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Figure 2.3: Semantic evaluation task results: Pearson correlation coefficients
with their 95 percent confidence interval for the various subtasks
(see Table 2.1). BOW is a bag of words approach using GloVe embed-
dings and InferSent is the model reported by Conneau et al. (2017).
A supplement with a table of the results shown here is included in
the github repository.

the Flickr8k database is only about five percent of the size of MSCOCO and about

one percent of what InferSent is trained on.

Comparing with BOW baseline

It is important to note that models using GloVe vectors receive a considerable

amount of prior lexical semantic knowledge. GloVe vectors are trained on an

840-billion-word corpus with a vocabulary of over 2.2 million words and In-

ferSent gets all of this extracted semantic knowledge for free. If the model en-

counters a word in the transfer tasks that it has never seen during training, it
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still has knowledge of the word’s semantic relatedness to other words through

that word’s GloVe vector.

This makes the BOW model a useful baseline model. It uses the prior word

knowledge that InferSent uses (GloVe vectors) but it is not trained to create

sentence embeddings. While InferSent is a significant improvement over the

BOW model on most tasks (22 out of 26), it does not improve on the BOW

model on 4 out of 26 tasks. Figure 2.3 shows that the BOW model performs

close to the three trained models on many tasks. InferSent and the BOW model

have the same input, but InferSent is trained on large amounts of data in order

to extract information from this input. This then makes it reasonable to assume

that a large part of InferSent’s performance is due to the word level semantic

information available in the GloVe vectors.

Our char-GRU model does not have such information available but instead

benefits from being grounded in vision. By learning language from the ground

up from multi-modal data, our model learns to capture sentence semantics with

a performance comparable to models which receive prior knowledge of lexical

semantics. Even though the system’s only language input consists of image cap-

tions, Figure 2.3 shows that our model generalises well to a wide variety of

domains. The Flickr8k model significantly outperforms the BOW baseline on 20

out of 26 tasks.

Comparing with InferSent

Next, we compare InferSent with our Flickr8k char-GRU in more detail. Our

model performs on par with InferSent on 16 out of 26 tasks. It is not surprising

that our char-GRU model performs well on the Images sets, with a significant

improvement over InferSent on Images (STS 2015). Our char-GRU also outper-

forms InferSent significantly by quite a margin on SMTeuroparl (transcriptions

from European Parliament sessions) and MSRpar (a news set scraped from the

internet), both very different from each other and different from image captions.

Table 2.3 contains examples of these datasets to highlight what we will discuss

next.

On closer inspection, SMTeuroparl contains sentence pairs with high word

overlap and relatively high similarity scores given by the human annotators.

Even though word embedding based models should be just as capable of exploit-

ing high word overlap as our char-GRU model, perhaps they are more prone to

make mistakes if the two sentences differ by a very rare word such as ‘pontifi-

cate’ in the example. The embedding for such a rare word could be very skewed
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Table 2.3: Example sentence pairs with their human-annotated similarity score
taken from STS tasks.

Dataset Similarity Example pair
SMTeuroparl 3.5 We often pontificate here about being the representa-

tives of the citizens of Europe.
We are proud often here to represent the citizens of Eu-
rope.

MSRpar 4.0 South Asia follows, with 1.1 millions youths infected —
62 percent of them female.
Of the 1.1 million infected in South Asia, 62 % are fe-
male.

FNWN 0.4 This frame contains words that describe an item’s static
position on a scale with respect to some property vari-
able.
Lacking in specific resources, qualities or substances.

Question-Question 4.0 How do I make a height adjustable desk?
How can I build a wall mounted adjustable height desk?

towards an unrepresentative context when learning the embeddings. The MSR-

par dataset contains many proper nouns for which no embedding might exist

and it is common practice to then remove the word from the input. In contrast,

our character-based method does not remove such proper nouns and thereby

benefits from morphological similarity between the two sentences, even though

the proper noun has never been seen before. Indeed, our model seems to work

reasonably well on the other news databases as well, achieving state-of-the-art

performance equal to InferSent on all HDL (news headlines) sets.

InferSent significantly outperforms our Flickr8k trained char-GRU model on

7 out of 26 tasks. Especially noticeable is our model’s performance on the

Question-Question (forum question) dataset and on FNWN (WordNet defini-

tions), the only task where our model is outperformed significantly by the BOW

model. FNWN contains definition-like sentences, often with structures that one

does not find in an image description. In the example in Table 2.3, for instance,

the first sentence of the pair is very lengthy and contains parentheses and abbre-

viations, while the second sentence is very short and lacks a subject. Concerning

the question database, our model has never seen a question during training.

Questions have a different syntactic structure than what our model has seen

during training. Furthermore, most image descriptions tend to start with the

word ‘A’ (e.g., ‘A man scales a rock in the forest.’), whereas questions tend to

start with ‘What’, ‘Should’ and ‘How’, for example.
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Figure 2.4: The training task performance (R@10) and the semantic task per-
formance (Pearson’s r ×100) as they develop over training, with the
number of epochs on a logarithmic scale. For MSCOCO (right) we
show the training task performance on the 5,000 item test set.

Trade-off between training task and transfer task performance

We further investigate how prone our model is to overspecialising on image de-

scriptions. Figure 2.4 shows how the bidirectional image-caption retrieval per-

formance and the semantic task performance (SICK-R and STS12-16 combined)

develop during training.

Epoch zero is the performance of an untrained model, and it is clear that both

measures increase substantially during the first few epochs. Most improvement

in both training task and semantic task performance happens in the first four

epochs. After that the training task performance still increases by 12.8 and 28.5

percent for Flickr8k and MSCOCO, respectively. On the other hand, semantic

task performance peaks around epoch four and then slowly decreases by 4.6

and 5.8 percent towards the last epoch for Flickr8k and MSCOCO, respectively.

So even though our model is capable of learning how to extract semantic infor-

mation from image-caption pairs, it is prone to overspecialising on the training

task. The performance drop on the semantic task is only small, but trade-offs

between the performance on different tasks pose a challenge to the search for

universal sentence embeddings.

2.5 Conclusion

We investigated whether sentence semantics can be captured in sentence embed-

dings without using (prior) lexical knowledge. We did this using a multi-modal

encoder which grounds language in vision using image-caption pairs. Harwath

and Glass (2015) have claimed that this method produces a multi-modal seman-
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tic embedding space and, indeed, we found that the distances between resulting

sentence embeddings correlate well with human semantic similarity judgements,

in some cases more so than models based on word embeddings. Importantly,

this shows that we do not need to use word embeddings, which has hitherto

been the standard in sentence embedding methods. The addition of visual infor-

mation during training allows our model to capture semantic information from

character-level language input. The model generalises well to linguistic domains

such as European Parliament transcriptions, which are very different from the

image descriptions it was trained on, but our model also has difficulty with some

of the subtasks. For instance, our model scored significantly lower than InferSent

on the SICK and forum question databases suggesting that our grounding ap-

proach alone is not enough to learn semantics for all linguistic domains. This

could be because some visual information is hardly ever explicitly written down

(few people will write down obvious facts like ‘bananas are yellow’), while more

abstract concepts will not appear in images or their descriptions (e.g., the words

‘intent’ and ‘attempted’ from our test sentences in Table 2.3 are hard to capture

in an image). Future work could combine the visual grounding approach with

text-only methods in order to learn from more diverse data. In such a multi-

task learning setting, our grounded sentence encoder could be fine-tuned on for

instance natural language inference data, combining our approach with that of

InferSent (Conneau et al., 2017).

In future work, we plan to work on spoken utterances. Unlike text, speech is

not neatly segmented into lexical units, posing a challenge to conventional word

embedding methods. However, the results presented here show that it is possible

to learn sentence semantics without such prior lexical semantic knowledge and

segmentation into lexical units. So far, studies of sentence meaning have mostly

focused on written language, even though we learn to listen and speak long

before we learn how to read and write. Learning representations of sentence

meaning directly from speech therefore seems more intuitive than separately

learning word and sentence representations from written sources. Furthermore,

most languages have no orthography and only exist in spoken form. Captur-

ing semantics directly from the speech signal provides a way to model sentence

semantics for these languages. While there is previous work on spoken caption-

image retrieval (e.g., Harwath et al. 2016; Chrupała et al. 2017) we have barely

scratched the surface of transfer learning using spoken input.
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3 | Seeing the advantage: visually grounding

word embeddings to better capture human

semantic knowledge

Distributional semantic models capture word-level meaning that is useful in

many natural language processing tasks and have even been shown to capture

cognitive aspects of word meaning. The majority of these models are purely

text based, even though the human sensory experience is much richer. In this

paper we create visually grounded word embeddings by combining English text

and images and compare them to popular text-based methods, to see if visual

information allows our model to better capture cognitive aspects of word mean-

ing. Our analysis shows that visually grounded embedding similarities are more

predictive of the human reaction times in a large priming experiment than the

purely text-based embeddings. The visually grounded embeddings also correlate

well with human word similarity ratings. Importantly, in both experiments we

show that the grounded embeddings account for a unique portion of explained

variance, even when we include text-based embeddings trained on huge cor-

pora. This shows that visual grounding allows our model to capture information

that cannot be extracted using text as the only source of information.

3.1 Introduction

Distributional semantic models create word representations that quantify word

meaning based on the idea that a word’s meaning depends on the contexts in

which the word appears. Such representations (also called embeddings) are

widely used as the linguistic input for computational linguistic models, with re-

search showing that they can account for response times in lexical decision tasks

(Mandera et al., 2017; Rotaru et al., 2018; Petilli et al., 2021), decode brain data

This chapter is based on: Danny Merkx, Stefan L. Frank and Mirjam Ernestus. Seeing the
advantage: visually grounding word embeddings to better capture human semantic knowledge.
In Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 1-11.
ACL, 2022
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(Xu et al., 2016; Abnar et al., 2018), account for brain activity during text com-

prehension (Frank and Willems, 2017), and correlate with human judgements

of word similarity (Kiela et al., 2018; Derby et al., 2018, 2020).

While such embeddings have proven useful, they are not cognitively plausible

as creating high quality embeddings requires billions of word tokens. For in-

stance, the GloVe embeddings developed by Pennington et al. (2014) are trained

on 840 billion words. It would take a human 80 years of constant reading at

about 330 words per second to digest that much information. Obviously, hu-

mans are able to understand language after much less exposure, and further-

more, their sensory experience is much richer than solely reading texts.

Embodied cognition theory poses that our conceptual knowledge is based

on the entirety of our sensory experience (Barsalou, 2008; Foglia and Wilson,

2013). For instance, reading the word dog elicits sensory experiences we have

with dogs, such as their sound and how they look. Embodied cognition the-

ory thus assumes that all our sensory experiences contribute to our conceptual

knowledge and processing, which should be reflected in human behaviour. Early

priming studies have indeed found that visual similarities can elicit priming ef-

fects (D’Arcais et al., 1985; Schreuder et al., 1998).

If visual features are part of our conceptual knowledge, word embeddings in-

corporating visual features should be able to explain human behavioural data

to a degree unattainable by purely text-based methods (that is, if we assume

visual sensory experiences can never be fully captured by textual descriptions).

That is why recent research has taken an interest in multi-modal word embed-

dings, combining text with a second source of information, resulting in visually

grounded embeddings (VGEs) in the case of visual information.

3.1.1 Related work

Using image tags as a source of visual context, Bruni et al. (2013) create vi-

sual distributional semantic embeddings and use dimensionality reduction to

map visual and text-based embeddings to the common VGE space. Derby et al.

(2018) combine text-based embeddings with the network activations of an object

recognition model and show that these visual features improve the embeddings’

performance in downstream tasks. Petilli et al. (2021) use visual embeddings

created by an object recognition network, and show that the embedding simi-

larities are predictive of priming effects over and above text-based similarities.

The studies described above involve separately trained word and visual em-

beddings. An end-to-end approach to combine visual and linguistic information
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is through a deep neural network based caption-to-image retrieval (C2I) mod-

els (e.g., Karpathy and Fei-Fei 2015; Kamper et al. 2017a). While these models

are trained to encode images and corresponding written or spoken captions in

a common embedding space such that relevant captions can be retrieved given

an image and vice versa, the resulting embeddings have been shown to capture

sentence-level semantics (e.g. Chrupała et al. 2017 and Chapters 2 and 5). Kiela

et al. (2018) showed that pretrained embeddings correlated better with human

intuition about word meaning after being fine-tuned as learnable parameters in

their C2I model.

3.1.2 Current study

In this study we investigate whether VGEs created by a C2I model explain human

behavioural data. Our research question is: can VGEs capture aspects of word

meaning that (current) text-based approaches cannot? To answer this question

we investigate novel end-to-end trained VGEs and test them on two types of

human behavioural data thought to rely on conceptual/semantic knowledge.

Secondly, we take care to separate the contribution of the image modality from

that of the linguistic information to see whether visual grounding captures word

properties that cannot be learned by purely text-based methods. We do this by

comparing our VGEs to three well-known text-based methods.

Throughout our experiments we will use two versions of the text-based meth-

ods: custom trained on the same data as our VGEs and pretrained on large

corpora. From a cognitive modelling perspective, the former of these is more

interesting. While the use of large corpora may not be problematic for natu-

ral language processing applications where performance comes first, we aim to

create cognitively plausible embeddings, that is, from a realistic amount of lin-

guistic exposure. However, the inclusion of pretrained embeddings serves to

answer our main research question.

Semantic similarity judgements

In our first experiment we test whether the VGEs correlate better with a mea-

sure of human intuition about word meaning than text-based embeddings. A

well-known method to capture human intuition about word meaning is simply

by asking subjects how similar two words are in meaning. To evaluate word

embeddings, one can then see if embedding similarities for those word pairs
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correlate with the human judgements (e.g., Bruni et al., 2013; Baroni et al.,

2014; Speer and Chin, 2016; Kiela et al., 2018; Derby et al., 2020).

While the study by Kiela et al. (2018) performed a similar investigation on

pretrained word embeddings fine-tuned through their C2I model, they did not

take into account the fact that text might also contain visual knowledge. It is

not unreasonable to assume that some visual knowledge can be gained from a

large corpus of sentences solely describing visual scenes. We account for this

visual knowledge from text by incorporating word embeddings trained on the

image descriptions in order to investigate the contribution of the image modality

included in the VGEs.

Collecting word similarity ratings typically involves showing participants two

words and asking them to rate how similar or related their meanings are, or

picking the most related out of several pairs. Semantic relatedness refers to

the strength of the association between two word meanings. For instance, ‘dog’

and ‘leash’ have a strong relationship but are not similar in meaning. Semantic

similarity refers to two words sharing semantic properties, for instance ‘dogs’

and ‘cats’ which are both animals that people keep as pets (Hill et al., 2015).

Semantic priming

In the second experiment, we test whether our VGEs are predictive of seman-

tic priming effects from a large priming experiment (Hutchison et al., 2013).

Semantic priming effects occur when activation of a semantically related prime

word facilitates the processing of the target word, resulting in shorter reaction

times. If all our sensory experiences contribute to word meaning, we would

expect visual perceptual properties of the prime-target pair to influence the re-

sponse times.

Petilli et al. (2021) performed a similar experiment using visual embeddings

derived from activation features from an object recognition network and text-

based word embeddings. Their results show that after accounting for the text-

based similarity, the visual embedding similarities contribute to explaining the

human reaction times only for lexical decision trials with a short stimulus onset

asynchrony (SOA), and not for the naming task or long SOA trials. They attribute

this to: 1) the lexical decision task being more sensitive to semantic effects than

the naming task (Lucas, 2000), and 2) visual information being activated in early

linguistic processing and rapidly decaying (Pecher et al., 1984; Schreuder et al.,

1998). We will further test these interactions in our own experiment.
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3.2 Methods

In our experiments, we compare the VGEs from our own model with three well

known text-based distributional semantic models: FastText (Bojanowski et al.,

2017), Word2Vec (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014).

For the purpose of this study, we take two approaches: 1) we train our own text-

based distributional models to allow for a fair comparison to the VGEs, and 2)

we use the pretrained models to investigate whether our VGEs capture semantic

information that even models trained on large text corpora do not. We released

the code for this project on github: https://github.com/DannyMerkx/sp
eech2image/tree/CMCL2022.

3.2.1 Training data

MSCOCO is a database intended for training image recognition, segmentation

and captioning models (Chen et al., 2015). It has 123,287 images and 605,495

written English captions, that is, five captions paired to each image. Captions

were collected by asking annotators to describe what they saw in the picture.

Five thousand images (25,000 captions) are reserved as a development set.

The captions are provided in tokenised format. In order to use them in our

models we only de-capitalised all words and removed the punctuation at the end

of each sentence. This results in a total of 6,184,656 word tokens and 28,415

unique word types, to which we add start- and end-of-sentence tokens for train-

ing our visually grounded model.

The images are preprocessed by resizing the images such that the shortest side

is 256 pixels, while keeping the original aspect ratio. We take ten 224 by 224

crops of the image: one from each corner, one from the middle and the same five

crops for the mirrored image. We use ResNet-152 (He et al., 2016) pretrained

on ImageNet to extract visual features from these ten crops and then average the

features of the ten crops into a single vector with 2,048 features. These features

are extracted by removing ResNet’s classification layer and taking the activations

of the penultimate layer.

3.2.2 Models

Visually grounded model

Our visually grounded model is based on the implementation presented in Chap-

ter 2, and we refer to that chapter for the details. Here we will provide a brief

https://github.com/DannyMerkx/sp
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overview of the model, any differences with the original model and the param-

eter settings tested in this study.

The VGE model maps images and their corresponding captions to a common

embedding space. It is trained to make the embeddings for matching images and

captions as similar as possible, and those for mismatched images and captions

dissimilar. The model consists of two parts; an image embedder and a caption

embedder. The image embedder is a single-layer linear projection on top of the

image features extracted with ResNet-152. We train only the linear projection

and do not further fine-tune ResNet.

The caption embedder consists of a word embedding layer followed by a two-

layer bi-directional recurrent Long Short Term Memory (LSTM) layer and finally

a self-attention layer. The embedding layer has 300 dimensions and is used to

represent the input words as learnable embeddings. The purpose of the LSTM is

to create a contextualised hidden state for each time-step (input word). Its first

layer has 1028 hidden units, while its second layer acts as a bottleneck with 300

hidden units. Finally, the purpose of the attention layer is to weigh each time-

step in order to create a single fixed-length embedding for the entire caption.

The attention layer has 128 hidden units.

The image embedder has 2× 300 dimensions so that the output matches the

size of the caption embeddings. Both image and caption embedding are L2 nor-

malised and we take their distance as the loss signal for the batch hinge loss func-

tion (see section 2.3.1). The networks are trained for 32 epochs using Adam with

a cyclic learning rate schedule based on Smith (2017), which varies the learning

rate smoothly between 10−3 and 10−6.

The obvious way to extract word embeddings from the trained model would

be to use the trained weights of the embedding layer. Unlike for instance in

GloVe, where each word’s embedding is based on its full co-occurrence distri-

bution, these embeddings are not trained specifically to capture word context

or meaning and they are not necessarily the best word embeddings. Our initial

tests showed that they indeed performed very poorly as semantic embeddings

when trained from a random initialisation 1. Rather than taking the input em-

beddings we create our own embeddings from the hidden representations of the

model.

We create our VGEs from the hidden activations of the bottleneck LSTM layer.

We use the trained caption encoder to encode all training sentences in MSCOCO.

1Kiela et al. (2018) were able to use the input embeddings because they were initialised
using pretrained embeddings.
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However, we remove the attention layer that creates the sentence embedding

and we retain the individual activations of the LSTM at each time step. As the

word representations in this layer can be used to create semantic sentence em-

beddings that capture human intuition about sentence meaning (as shown for

instance in Chapters 2 and 5), we expect these representations to better capture

word meaning than the input embeddings.

The embedding for each word is then created by summing and normalising

its LSTM layer activations from all its occurrences in the dataset. As opposed to

the model in Chapter 2, where we used a single recurrent layer and found no

further benefit of additional layers in terms of sentence embedding quality, we

found that the quality of our VGEs improves when we use a two-layer LSTM, with

the second layer acting as a bottleneck from which we derive the embeddings.

Text-based models

The text-based distributional models are trained on the MSCOCO captions. We

train Word2Vec and FastText using the Gensim package (Řehůřek and Sojka,

2010). We train GloVe using the code that Pennington et al. (2014) made pub-

licly available2.

Word2Vec and FastText were trained as the Skip-gram variant with embedding

size 300, a context window of 10 and 10 negative samples. GloVe was trained

with embedding size 300 and a context window of 10. All resulting word em-

beddings are then L2 normalised.

In addition, we use the following pretrained vectors (all 300 dimensional):

Word2Vec trained on 100 billion tokens of the Google News corpus (Mikolov

et al., 2013b), FastText trained on 600 billion tokens of Common Crawl (Mikolov

et al., 2018) and GloVe trained on 840 billion tokens of Common Crawl (Pen-

nington et al., 2014).

3.2.3 Evaluation data

Semantic similarity judgements

We include both semantic relatedness and similarity datasets in our analysis. It

has been argued that subjects’ intuitive understanding of similarity is not neces-

sarily in line with the ‘scientific’ notions of similarity and relatedness explained in

the introduction (Hill et al., 2015). Thus, if subjects are not clearly instructed on

2https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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Table 3.1: Description of the word similarity/relatedness evaluation datasets.
#available is the number of word pairs included in the evaluation.
Type indicates whether the dataset captures similarity or relatedness.
NA indicates subjects were not specifically instructed on the differ-
ence.
Dataset #word-pairs #available type
WordSim353 353 240 NA
WordSim-S 203 147 Similarity
WordSim-R 252 166 Relatedness
SimLex999 999 793 Similarity
-SimLex999 Q1 249 141 Similarity
-SimLex999 Q4 250 249 Similarity
MEN 3000 2889 Relatedness
RareWords 2034 204 NA

these notions of similarity or relatedness, we consider the nature of the dataset

undefined.

The WordSim353 dataset by Finkelstein et al. (2002) contains 353 word pairs

annotated with similarity ratings. While the name suggests it is a similarity rating

dataset, more recent studies consider it a hybrid dataset, as subjects were not

specifically instructed to judge relatedness or similarity. In a later study by Agirre

et al. (2009), the WordSim353 data was split into similar and related pairs by

annotating the word pairs. WordSim-S (similar) contains word pairs annotated

as being synonyms, antonyms, identical, or hyponym-hyperonym. WordSim-R

(related) contains word pairs annotated as being meronym-holonym, and pairs

with none of the above relationships but with a similarity score greater than 5

(out of 10). Both sets contain all unrelated words (words not annotated with

any of the above relationships and a similarity lower than 5).

SimLex999 was created with the caveats of the original WordSim353 in mind

in order to create a dataset of 999 word pairs annotated for similarity rather than

relatedness (Hill et al., 2015). SimLex999 furthermore contains concreteness

ratings for the word pairs. Hill et al. (2015) divided the dataset into concreteness

quartiles based on the sum of the concreteness ratings for each pair. Using these

quartiles we also look at the 25% most concrete word pairs versus the 25% most

abstract pairs in the dataset, of course expecting our grounded model to perform

best on the concrete words.

MEN contains 3000 word pairs annotated for semantic relatedness (Bruni

et al., 2013). Ratings were collected by showing subjects two word pairs and

asking them to select the most related one. MEN was specifically collected to
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test multi-modal models, by selecting only words that have a visual referent that

appeared in a large image database.

The RareWords dataset contains 2034 word pairs, where at least one word

of each pair has a low frequency in Wikipedia (Luong et al., 2013). Modelling

low-frequency words is a challenge for many models of distributional semantics.

Not all of the words in these databases are available in our training data and

thus some will not have a word embedding. Table 3.1 contains an overview of

the datasets described here and the number of word pairs that could be entered

in our evaluations.

Semantic priming

The Semantic Priming Project (SPP) dataset (Hutchison et al., 2013) contains

lexical decision times and naming times from a large priming experiment. The

database is large for its kind, with 1,661 target words (and 1,661 non-words

for the lexical decision task), each paired with a strong and weak prime and

two unrelated primes. Furthermore, each prime-target pair was presented with

a short (200ms) and a long (1200ms) SOA. Every combination of prime-target

and SOA received responses from 32 subjects.

This gives us 26,576 (1661 target words × 4 priming conditions × 2 SOAs × 2

tasks) trials (disregarding the non-word word trials). We preprocessed the data

by removing target words that mistakenly had more or fewer than the required

four primes, trials with erroneous responses and missing data. We also lowered

any capitals in the prime and target words, averaged the response times over

the 32 subjects, and removed any prime-target pair that did not occur in our

training data, resulting in 18,326 datapoints.

3.2.4 Analysis

Semantic similarity judgements

To test whether the word embedding models capture human intuitions on word

similarity, we use the models to calculate embedding cosine similarities for each

word pair and correlate them with the human annotations. From the correlations

r we derive R2 values, that is, the percentage of variance in the human similarity

judgements that is explained by the model similarity scores. This allows us to

evaluate our custom trained word embeddings to see which method best extracts

word-level semantics from the MSCOCO dataset.
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Next, we also compute semi-partial correlations between the human anno-

tations and our VGE model using each of the text-based models as a control.

Simply put, the semi-partial correlation between the VGE similarities and hu-

man annotations removes the effect of the control (i.e., text-based similarities)

from the VGE similarities. Semi-partial R2 gives us the percentage of variance

that is uniquely explained by the VGE similarities. Given that all models are

trained on the same textual data, with only the VGEs having access to the visual

modality, this allows us to see whether visual grounding captures information

that the text-based methods do not.

Finally we also test the semi-partial correlations using the pretrained em-

beddings as a control. For each pretrained model we also add in its custom

MSCOCO-trained equivalent as a control, to take into account the information

that text-based models can extract from the MSCOCO captions.

Semantic priming

Using linear regression models, we analyse how well embedding similarities pre-

dict human (log-transformed) reaction times in the SPP data using the Statsmod-

els package in Python (Seabold and Perktold, 2010). We code SOA and Task as

factor variables. The reaction times are not on the same scale due to differences

in the required response for the lexical decision and naming tasks so we stan-

dardise the log-transformed reaction time data separately for each combination

of SOA and Task. This removes the main effects of SOA and Task but we in-

clude them in the regression as we are interested in their interactions with the

similarity measures.

We fit a baseline regression including the target length (number of characters),

Task and SOA as regressors. We furthermore include several regressors based

on SUBTLEX-US (Brysbaert and New, 2009): log-transformed word-frequency

counts, contextual diversity (the number of SUBTLEX-US documents a word ap-

pears in) and the orthographic neighbourhood density (the number of SUBTLEX-

US words that are one character edit away) for the target words.

Next, for each of our embedding models, we include the prime-target embed-

ding similarities as a regressor to the baseline model. We also add two two-way

interactions to test the claims made in Petilli et al. (2021): 1) the interaction be-

tween the embedding similarities and Task to test the difference between lexical

decision and naming in terms of sensitivity to semantic effects and 2) the inter-

action between the embedding similarities and SOA to test their claim about the

time-frame in which visual information plays a role. These regression models
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allow us to compare the word embedding models to each other and to the base-

line using the Akaike Information Criterion (AIC), where a lower AIC indicates

a better model fit.

We also test if our VGEs can explain variance in the human reaction times that

the text-based methods do not. We do this by refitting the regression models for

each of the text-based similarity measures and adding the VGE similarity mea-

sures and their interactions with Task and SOA as extra regressors. For each

of these regressions we then calculate the log-likelihood ratio (LLR) with the

corresponding regression without the VGEs, indicating the decrease in model

deviance due to adding the VGE similarity measures. Higher LLRs indicate a

larger contribution of the VGEs to explaining variance in the human response

times beyond what the text-based embedding similarities explain. Because the

LLR follows a χ2 distribution, we can test whether including the VGEs signifi-

cantly improves the regression model.

We apply a similar approach to the pretrained text-based embeddings, but we

also want to account for the information that text-based embedding models can

extract from the MSCOCO captions. We do this by fitting a regression model as

in the previous step except that we include both the pretrained and MSCOCO

trained embeddings and their interactions with SOA and Task. We then follow

the same procedure as described above by adding the VGE similarities and cal-

culate LLRs to see if adding VGEs improves the regression fit.

3.3 Results

3.3.1 Semantic similarity judgements

Figure 3.1 shows the R2 (explained variance) based on the Pearson correlation

coefficients between the human similarity annotations and the embedding simi-

larities. On top of the text-based R2 values, we display the semi-partial R2 of the

VGEs using the text-based model as control. As total explained variance equals

the semi-partial R2 plus R2 of the control(s), this clearly visualises both the total

amount of explained variance and the amount of extra variance that is uniquely

explained by the VGEs. All Pearson correlations were positive, as expected, ex-

cept for two non-significant semi-partial correlations which are therefore not

included in the figure.

For the MSCOCO models (left panel) we see that while GloVe has the worst

performance on each dataset, there is no single best model. Furthermore, while
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Figure 3.1: The coloured bars indicate the R2 scores of the four word embed-
ding models. The grey-scale bars on top of the R2 scores of the text-
based models indicate the semi-partial R2 scores and their signifi-
cance (∗p < .05,∗ ∗ p < .01,∗ ∗ ∗p < .001, corrected using the Ben-
jamini and Hochberg (1995) procedure with a false discovery rate of
0.05) of the VGEs after controlling for the variance explained by that
text-based model. Left panel: models trained on MSCOCO. Right
panel: pretrained text-based models.

the VGEs are outperformed by FastText and Word2Vec on SimLex999, we see

that the VGEs perform best on the most concrete words (Q4) in SimLex999. A

bit surprising then, is that the VGEs are outperformed by FastText and Word2Vec

on MEN, which contains solely picturable nouns.

Looking at the semi-partial R2, that is, the extra variance explained by the

VGEs after controlling for one of the other embedding models, we see that for

nearly every dataset and every model, the VGEs explain a significant portion of

variance that is not explained by the text-based models. This is not very surpris-

ing on WordSim, where the VGEs were the best performing embeddings by quite

a margin. However, we also see that even though the VGEs are outperformed

by FastText and Word2Vec on MEN, they still explain a large extra portion of

variance even though the R2 for these models was already quite high.

Lastly, the pretrained models (right panel) outperform the MSCOCO models.

This was expected, as the used training data is several orders of magnitude larger

than MSCOCO. However, the semi-partial correlations still show that the VGEs

explain a significant portion of extra variance on SimLex999 Q4 and MEN.
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Table 3.2: AIC comparison of regression models (lower is better). Δ indicates the
difference in AIC compared to the VGE model or the Baseline model. β
indicates the coefficient of the embedding similarity main effect (lower
is better) and its significance.

Model AIC ΔVGE ΔBaseline β

VGE 46997.55 — −211.04 −.67***
FastText 47101.90 104.35 −106.86 −.54***
GloVe 47163.70 166.15 −44.88 −.20**
Word2Vec 47184.45 186.90 −24.13 −.22**
Baseline 47208.58 211.03 — —

Table 3.3: LLRs between regression models with the indicated text-based simi-
larity measures and the same model with the VGE similarities as extra
regressors. β VGE are the regression coefficients for the VGE simi-
larities in each model. Higher LLRs indicate a larger improvement in
model quality due to adding the VGEs.

MSCOCO + Pretrained
LLR β VGE LLR β VGE

Word2Vec 193.72*** −.77*** 69.72*** −.49***
FastText 111.46*** −.63*** 47.32*** −.42***
GloVe 168.34*** −.72*** 49.80*** −.36***

3.3.2 Semantic priming

The ΔAIC scores in Table 3.2 show that all word embedding models trained on

MSCOCO improve the regression fit above the baseline. The embedding similar-

ity effects were all negative, that is, a higher similarity correctly predicts a lower

reaction time. We furthermore see that the VGE-derived similarity measures re-

sult in the best model fit by quite a margin, as evidenced by the AIC scores and

effect size.

We also find significant interactions between Task and the embedding sim-

ilarities for the VGE (β = 0.201, P = 0.009) and FastText regression models

(β = 0.197, P = 0.027), meaning that the effect of embedding similarity is

stronger for the lexical decision task. We find no significant interactions between

the embedding similarities and SOA.

Table 3.3 shows the LLRs between the regression models including the (pre-

trained) text-based and our VGE word similarity measures and the correspond-

ing model including only the text-based measures. We see that our VGEs sig-

nificantly improve the regression fit for every type of text-based method, even

when we include both the pretrained and MSCOCO text-based measures. The
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coefficients of the VGE effects in these models are all negative, meaning a higher

VGE similarity predicts a lower reaction time.

In the regression models including the VGEs and the MSCOCO text-based em-

beddings we found significant interactions between the VGE similarities and Task

in the regression models that also include Word2Vec (β = 0.239, P = 0.007) or

GloVe (β = 0.234, P = 0.01) and no other interactions with Task or SOA.

Lastly, in the regression models including the VGEs and both pretrained and

MSCOCO text-based embeddings, we find significant interactions with Task for

Word2Vec (β = 0.312, P < 0.001), FastText (β = 0.297, P = 0.001) and GloVe

(β = 0.443, P < 0.001) vectors, and none for the VGEs.

3.4 Discussion

We created Visually Grounded Embeddings using a caption-image retrieval mo-

del in order to test if these embeddings can capture information about word

meaning that text-based approaches cannot. Importantly, by testing our VGEs on

human behavioural measures typically thought to rely on conceptual/semantic

knowledge, we test a central idea of embodied cognition theory, namely that our

visual experiences contribute to our conceptual knowledge.

3.4.1 Semantic similarity judgements

Our first experiment showed that, when trained on the same corpus, our VGEs

are on par with text-based methods. While there is no clear overall best method,

the VGEs perform well on WordSim and, as might be expected, on the datasets

with concrete picturable nouns. Even though the text-based methods outperform

the VGEs on one of these (MEN), the VGEs still explain a significant amount of

extra variance over and above what is explained by the text-based methods. This

indicates that the text-based embeddings and VGEs capture non-overlapping

conceptual knowledge, which we attribute to the visual grounding of the VGEs,

given that the training materials were otherwise equal.

The only database where the VGEs performed notably worse than the text-

based methods was RareWords. This is perhaps because during training, the

VGEs are grounded in the image corresponding to the text input, even if not

all words in the sentence are visible in the picture. As the words in RareWords

are generally not picturable nouns, any visual information incorporated into the
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word-embedding is unlikely to be helpful, or, as evidenced by the results, coun-

terproductive.

We furthermore found that our VGEs explain additional variance in the human

similarity ratings even after accounting for both the MSCOCO text-based models

and pretrained models trained on massive text corpora. The fact that the VGEs

explain a significant amount of extra variance even after the text-based models

have seen billions of tokens of text, suggests that some aspects of word meaning

cannot be captured solely from text and that visual similarity plays a role in

human intuition about word meaning.

3.4.2 Semantic priming

In our second experiment, the VGEs outperformed the text-based methods on

explaining human reaction times from the Semantic Priming Project. Even after

we account for both the MSCOCO text-based models and pretrained models in

our regression, the VGEs still explain a significant amount of variance in the

reaction times.

In previous work, Petilli et al. (2021) only found a significant contribution of

visual information in the short SOA lexical decision task. We found no further

proof for their hypothesis that visual information is activated in early linguistic

processing and thereafter rapidly decays. Rather, we find that our VGEs improve

the model quality for both short and long SOA trials.

We did find a significant positive interaction with Task, meaning that the word

embeddings explain less variance in the naming task than in the lexical decision

task. This interaction was not specific to the VGEs but also occurred in the mod-

els including FastText and for all the pretrained embeddings. As claimed in Petilli

et al. (2021) and Lucas (2000) this suggests that naming tasks are in general less

sensitive to semantic effects.

3.5 Conclusion

We set out to test an end-to-end approach to combining visual and textual input

in a single embedding, trained on a cognitively plausible amount of data. The

results from our two experiments suggest that VGEs capture aspects of word

meaning that text-based approaches cannot. Even though we include word em-

beddings trained on corpora several orders of magnitude greater than any hu-
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man’s exposure to language, our VGEs still explain a unique portion of variance

in both human behavioural measures.

While our results indicate that visual grounding can provide complementary

information for certain words, it may not play a role in our conceptual know-

ledge of rare, abstract words, as shown by our results on the RareWords corpus.

Similar to Petilli et al. (2021) this then does not support the strongest formu-

lations of embodied cognition theory which suggest total equivalence between

conceptual and sensorimotor processing (Glenberg, 2015).

Of course, one could always claim that it is just current word-embedding mod-

els that do not fully capture word meaning yet. However, given that VGEs trained

on a relatively small amount of visual data can complement text-based embed-

dings, we do not think even larger text-corpora or more complex embedding

models can ever fully capture human semantic knowledge. The human experi-

ence is rich and varied, and our computational models can never fully capture

human word knowledge while ignoring visual aspects of this experience.
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4 | Language learning using speech to image

retrieval

Humans learn language by interaction with their environment and listening to

other humans. It should also be possible for computational models to learn lan-

guage directly from speech but so far most approaches require text. We improve

on existing neural network approaches to create visually grounded embeddings

for spoken utterances. Using a combination of a multi-layer GRU, importance

sampling, cyclic learning rates, ensembling and vectorial self-attention our re-

sults show a remarkable increase in image-caption retrieval performance over

previous work. Furthermore, we investigate which layers in the model learn

to recognise words in the input. We find that deeper network layers are bet-

ter at encoding word presence, although the final layer has slightly lower per-

formance. This shows that our visually grounded sentence encoder learns to

recognise words from the input even though it is not explicitly trained for word

recognition.

4.1 Introduction

Most computational models of natural language processing (NLP) are based on

written language; machine translation, sentence meaning representation and

language modelling to name a few (e.g., Wang et al. 2018; Kiros et al. 2015).

Even if the task inherently involves speech, such as in automatic speech recog-

nition, models require large amounts of transcribed speech (Wang and Wang,

2016). Yet, humans are capable of learning language from raw sensory input,

and furthermore children learn to communicate long before they are able to

read. In fact, many languages have no orthography at all and there are also

languages of which the writing system is not widely used by its speakers. Text-

based models cannot be used for these languages and applications like search

engines and automated translators cannot serve these populations.

This chapter is based on: Danny Merkx, Stefan L. Frank and Mirjam Ernestus. Language
learning using speech to image retrieval. In Interspeech 2019 - 20th Annual Conference of the
International Speech Communication Association, pages 1841-1846, 2019
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There has been increasing interest in learning language from more natural

input, such as directly from the speech signal, or multi-modal input (e.g., speech

and vision). This has several advantages such as removing the need for expensive

annotation of speech, being applicable to low resource languages and being more

plausible as a model of human language learning.

An important challenge in learning language from spoken input is the fact that

the input is not presented in neatly segmented tokens. An auditory signal does

not contain neat breaks in between words like the spaces in text. Furthermore,

no two realisations of the same spoken word are ever exactly the same. As such,

spoken input cannot be represented by conventional word embeddings (e.g.,

Word2Vec (Mikolov et al., 2013a) and GloVe (Pennington et al., 2014)). These

text-based embeddings are trained to encode word-level semantic knowledge

and have become a mainstay in work on sentence representations (e.g., Conneau

et al. 2017; Kiela et al. 2018). When we want to learn language directly from

speech, we will have to do so in a more end-to-end fashion, without prior lexical

level knowledge in terms of both form and semantics.

In Chapter 2 we used image-caption retrieval, where given a written caption

the model must return the matching image and vice versa. We trained deep

neural networks (DNNs) to create sentence embeddings without the use of prior

knowledge of lexical semantics (see Kiela et al. 2018; Karpathy and Fei-Fei 2015;

Faghri et al. 2017 for other studies on this task). The visually grounded sentence

embeddings that arose capture semantic information about the sentence as mea-

sured by the Semantic Textual Similarity task (see Agirre et al. 2016), performing

comparably to text-only methods that require word embeddings.

In the current study we present an image-caption retrieval model that extends

our previous work to spoken input. Harwath and colleagues adapted text-based

caption-image retrieval (e.g., Karpathy and Fei-Fei 2015) and showed that it is

possible to perform speech-image retrieval using convolutional neural networks

on spectral features (Harwath and Glass, 2015; Harwath et al., 2016). Our work

is most closely related to the models presented by Harwath and Glass (2015),

Harwath et al. (2016, 2020b) and Chrupała et al. (2017). In the current study

we improve upon these previous approaches to visual grounding of speech and

present state-of-the-art image-caption retrieval results.

The work by Harwath and Glass (2015), Harwath et al. (2016, 2020b), Chru-

pała et al. (2017) and the results presented here are a step towards more cog-

nitively plausible models of language learning as it is more natural to learn lan-

guage without prior assumptions about the lexical level. For instance, research
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indicates that the adult lexicon contains many relatively fixed multi-word expres-

sions (e.g., ‘how-are-you-doing’) (Tomasello, 2000). Furthermore, early during

language acquisition the lexicon consists of entire utterances before a child’s lan-

guage use becomes more adult-like (Tomasello, 2000; Braine and Bowerman,

1976; Pine and Lieven, 1993; Lieven et al., 2003). Image to spoken-caption

retrieval models do not know a priori which constituents of the input are im-

portant and have no prior knowledge of lexical level semantics. We probe the

resulting model to investigate whether it learns to recognise lexical units in the

input without being explicitly trained to do so.

We test two types of acoustic features; Mel Frequency Cepstral Coefficients

(MFCCs) and Multilingual Bottleneck (MBN) features. MFCCs are features that

can be computed for any speech signal without needing any other data, while the

MBN features are ‘learned’ features that result from training a network on top

of MFCCs in order to recognise phoneme states. While MBN features have been

shown to be useful in several speech recognition tasks (e.g., Nguyen et al. 2014;

Fer et al. 2017), learned audio features face the same issue as word embeddings,

as humans learn to extract useful features from the audio signal as a result of

learning to understand language and not as a separate process. However, the

MBN features can still be useful where system performance is more important

than cognitive plausibility, for instance in a low resource setting. Furthermore,

these features could provide a clue as to what performance would be possible if

we had more sophisticated models or more data to improve the feature extrac-

tion from the MFCCs in an end-to-end fashion.

In summary, we improve on previous spoken-caption to image retrieval models

and investigate whether it learns to recognise words in the speech signal. We

show that our model achieves state-of-the-art results on the Flickr8k database,

outperforming previous models by a large margin using both MFCCs and MBN

features. We find that our model learns to recognise words in the input signal and

show that the deeper layers are better at encoding this information. Recognition

performance drops a little in the last two layers as the network abstracts away

from the detection of specific words in the input and learns to map the utterances

to the joint embedding space. We released the code for this project on github:

https://github.com/DannyMerkx/speech2image/tree/Interspeech1
9.

https://github.com/DannyMerkx/speech2image/tree/Interspeech1
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4.2 Image to spoken-caption retrieval

4.2.1 Materials

Our model is trained on the Flickr8k database (Hodosh et al., 2013). Flickr8k

contains 8,000 images taken from online photo sharing application Flickr.com,

for which five English captions per image are available. Annotators were asked

to ‘write sentences that describe the depicted scenes, situations, events and en-

tities (people, animals, other objects)’. Spoken captions for Flickr8k were col-

lected by Harwath and Glass (2015) by having Amazon Mechanical Turk work-

ers pronounce the original written captions. We used the data split provided by

Karpathy and Fei-Fei (2015), with 6,000 images for training and a development

and test set both of 1,000 images.

4.2.2 Image and acoustic features

To extract image features, all images are resized such that the smallest side is

256 pixels while keeping the aspect ratio intact. We take ten 224 by 224 crops

of the image: one from each corner, one from the middle and the same five

crops for the mirrored image. We use ResNet-152 (He et al., 2016) pretrained

on ImageNet to extract visual features from these ten crops and then average

the features of the ten crops into a single vector with 2,048 features.

We test two types of acoustic features; Mel Frequency Cepstral Coefficients

(MFCCs) and Multilingual Bottleneck (MBN) features. The MFCCs were created

using 40 Mel-spaced filterbanks. We use 12 MFCCs and the log energy feature

and add the first and second derivatives resulting in 39-dimensional feature vec-

tors. We compute the MFCCs using 25 ms analysis windows with a 5 ms shift.

The MBN features are created using a pretrained DNN made available by Fer

et al. (2017). In short, the network is trained on multilingual speech data (11

languages, no English) to classify phoneme states. The MBN features consist

of the outputs of intermediate network layers where the network is compressed

from 1500 features to 30 features (see Fer et al. (2017) for the full details of the

network and training).

4.2.3 Model architecture

Our multi-modal encoder maps images and their corresponding captions to a

common embedding space. The idea is to make matching images and captions
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Figure 4.1: Model architecture: the model consists of two branches with the im-
age encoder on the left and the caption encoder on the right. The
audio features consist of n features by t frames and the GRU has ht/2

hidden states. Each GRU hidden state has m features which are con-
catenated for the forward and backward GRU into 2m dimensional
hidden states. Vectorial attention is applied which weighs and sums
the hidden states resulting in the caption embedding. At the top we
calculate the cosine similarity between the image and caption em-
bedding (emb_img and emb_cap).

lie close together and mismatched images and captions lie far apart in the embed-

ding space. Our model consists of two parts; an image encoder and a sentence

encoder as depicted in Figure 4.1. The approach is based on our own text-based

model described in Chapter 2 and on the speech-based models presented by

Harwath et al. (2016) and Chrupała et al. (2017) and we refer to those studies

for more details. Here, we focus on the differences with previous work.

For the image encoder we use a single-layer linear projection on top of the

pretrained image recognition model, and normalise the result to have unit L2

norm. The image encoder has 2048 input units and 2048 output units.

Our caption encoder consists of three main components. First we apply a 1-

dimensional convolutional layer to the acoustic input features. The convolution

has a stride of size 2, kernel size 6 and 64 output channels. This is the only layer

where the model differs from the text-based model, which features a character

embedding layer instead of a convolutional layer. The resulting features are then
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fed into a bi-directional Gated Recurrent Unit (GRU) followed by a self-attention

layer and is lastly normalised to have unit L2 norm.

We use a 3-layer bi-directional GRU which allows the network to capture long-

range dependencies in the acoustic signal (see Chung et al. 2014 for a more de-

tailed description of the GRU). Furthermore, by making the layer bi-directional

we let the network process the output of the convolutional layer from left to right

and vice versa, allowing the model to capture dependencies in both directions.

We use a GRU with 1024 units, and concatenate the bidirectional representations

resulting in hidden states of size 2048. Finally, the self-attention layer computes

a weighted sum over all the hidden GRU states:

at = softmax(V tanh(Wht + bw) + bv) (4.1)

Att(h1, ...,ht) =
∑

t

at ◦ ht (4.2)

where at is the attention vector for hidden state ht and W , V , bw, and bv indicate

the weights and biases. The applied attention is then the sum over the Hadamard

product between all hidden states (h1, ...,ht) and their attention vector. We use

128 units for W and 2048 units for V .

4.2.4 Training

Following the approach in Chapter 2, the model is trained to embed the images

and captions such that the cosine similarity between image and caption pairs is

larger (by a certain margin) than the similarity between mismatching pairs. This

so called hinge loss L as a function of the network parameters θ is given by:

L(θ ) =
∑

(c,i),(c′,i′)∈B

�
max(0, cos(c, i′)− cos(c, i) +α)+

max(0, cos(i, c′)− cos(i, c) +α)
� (4.3)

where (c, i) �= (c′, i′). B is a minibatch of correct caption-image pairs (c, i), where

the other caption-image pairs in the batch serve to create mismatched pairs (c, i′)
and (c′, i). We take the cosine similarity cos(x , y) and subtract the similarity of

the mismatched pairs from the matching pairs such that the loss is only zero

when the matching pair is more similar than the mismatched pairs by a margin

α. We use importance sampling to select the mismatched pairs; rather than

using all the other samples in the mini-batch as mismatched pairs (as done in
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Chapter 2 and Chrupała et al. 2017), we calculate the loss using only the hardest

examples (i.e. mismatched pairs with high cosine similarity). While Faghri et al.

(2017) used only the single hardest example in the batch for text-captions, we

found that this did not work for the spoken captions. Instead we found that

using the hardest 25 percent worked well.

The networks are trained using Adam (Kingma and Ba, 2015) with a cyclic

learning rate schedule based on the work by Smith (2017). The learning rate

schedule varies the learning rate smoothly between a minimum and maximum

bound which were set to 10−6 and 2×10−4 respectively. The learning rate sched-

ule causes the network to visit several local minima during training, allowing us

to use snapshot ensembling (Huang et al., 2017). By saving the network pa-

rameters at each local minimum, we can ensemble the embeddings of multiple

networks at no extra cost. We use a margin α = 0.2 for the loss function. We

train the networks for 32 epochs and take a snapshot for ensembling at every

fourth epoch. For ensembling we use the two snapshots with the highest perfor-

mance on the development data and simply sum their embeddings.

The main differences with the approaches described by Harwath et al. (2016)

and Chrupała et al. (2017) are the use of multi-layered GRUs, importance sam-

pling, the cyclic learning rate, snapshot ensembling and the use of vectorial

rather than scalar attention.

4.3 Word presence detection

While our model is not explicitly trained to recognise words or segment the

speech signal, previous work has shown that such information can be extracted

by visual grounding models (Chrupała et al., 2017; Kamper et al., 2017a). Chru-

pała et al. (2017) use a binary decision task: given a word and a sentence em-

bedding, decide if the word occurs in the sentence. Our approach is similar to the

spoken-bag-of-words prediction task described by Kamper et al. (2017a). Given

a sentence embedding created by our model, a classifier has to decide which of

the words in its vocabulary occur in the sentence.

Based on the original written captions, our database contains 7,374 unique

words with a combined occurrence frequency of 324,480. From these we select

words that occur between 50 and a 1,000 times and are over 3 characters long so

that there are enough examples in the data that the model might actually learn

to recognise them, and to filter out punctuation, spelling mistakes, numerals and

most function words. This leaves 460 unique words, mostly verbs and nouns,
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with a combined occurrence frequency of 87,020 in our data. We construct a

vector for each sentence in Flickr8k indicating which of these words is present.

We do not encode multiple occurrences of the same word in one sentence.

The words described above are used as targets for a neural network classifier

consisting of a single feed forward layer with 460 units. This layer simply takes

an embedding vector as input and maps it to the 460 target words. We then

apply the standard logistic function and calculate the Binary Cross Entropy loss

to train the network.

We train five word detection networks for both the MFCC and the MBN-based

caption encoders, in order to see how word presence is encoded in the different

neural network layers. We train networks for the final output layer, the three

intermediate layers of the GRU and the acoustic features. For the final layer we

simply use the output embedding as input to the word detection network. We

apply some post-processing to the acoustic features and the intermediate layer

outputs to ensure that our word detection inputs are all of the same size. As the

intermediate GRU layers produce 2048 features for each time step in the signal,

we use average-pooling along the temporal dimension to create a single input

vector and normalise the result to have unit L2 norm. The acoustic features

consist of 30 (MBN) or 39 (MFCC) features for each time step, so we apply the

convolutional layer followed by an untrained GRU layer to the input features,

use average-pooling and normalise the result to have unit L2 norm.

The word detection networks are trained for 32 epochs using Adam (Kingma

and Ba, 2015) with a constant learning rate of 0.001. We use the same data split

that was used for training the multi-modal encoder, so that we test word presence

detection on data that was not seen by either the encoder or the decoder.

4.4 Results

Table 4.1 shows the performance of our models on the image-caption retrieval

task. The caption embeddings are ranked by cosine distance to the image and

vice versa where R@N is the percentage of test items for which the correct im-

age or caption was in the top N results. We compare our models to Harwath

and Glass (2015) and Chrupała et al. (2017), and include our own character-

based model from Chapter 2 for comparison. Harwath and Glass (2015) used

a convolutional approach, whereas Chrupała et al. (2017) used recurrent high-

way networks with scalar attention. The character-based model is similar to the

model we use here and was trained on the original Flickr8k text captions (see
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Table 4.1: Image-Caption retrieval results on the Flickr8k test set. R@N is the
percentage of items for which the correct image or caption was re-
trieved in the top N (higher is better). Med r is the median rank of
the correct image or caption (lower is better). We also report the 95
percent confidence interval for the R@N scores.

Model Caption to Image
R@1 R@5 R@10 med r

Harwath and Glass (2015) - - 17.9±1.1 -
Chrupała et al. (2017) 5.5±0.6 16.3±1.0 25.3±1.2 48
MFCC-GRU 8.4±0.8 25.7±1.2 37.6±1.3 21
MBN-GRU 12.7±0.9 34.9±1.3 48.5±1.4 11
Chapter 2 Char-GRU 27.5±1.2 58.2±1.4 70.5±1.3 4
Model Image to Caption

R@1 R@5 R@10 med r
Harwath and Glass (2015) - - 24.3±2.7 -
MFCC-GRU 12.2±2.0 31.9±2.9 45.2±3.1 13
MBN-GRU 16.0±2.5 42.8±3.1 56.1±3.0 8
Chapter 2 Char-GRU 38.5±3.0 68.9±2.9 79.3±2.5 2

Table 4.2: Area under the curve of the receiver operating characteristic for both
models.

Model AUC
input layer 1 layer 2 layer 3 attention

MBN .57 .80 .86 .85 .82
MFCC .54 .68 .80 .75 .75

Chapter 2 for a full description). Both our MFCC and MBN-based model signif-

icantly outperform previous spoken caption-to-image methods on the Flickr8k

dataset. The largest improvement is the MBN model which outperforms the re-

sults reported in Chrupała et al. (2017) by as much as 23.2 percentage points

on R@10. The MFCC model also improves on previous results but scores sig-

nificantly lower than the MBN model across the board, improving as much as

12.3 percentage points over previous work. There is a large performance gap

between the text-caption to image retrieval results and the spoken-caption to

image results, showing there is still a lot of room for improvement.

The results of the word presence detection task are shown in Figure 4.2 and

Table 4.2. Figure 4.2 shows the F1 score for all the classifiers at 20 equally spaced

detection thresholds (i.e. a word is classified as ‘present’ if the word detection

output is above this threshold). Table 4.2 displays the area under the curve for

the receiver operating characteristic. Even though the MBN model outperforms

the MFCC model for all layers we see the same pattern emerging from both the
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Figure 4.2: Plots of the F1 scores for the word presence classifiers at 20 equally
spaced activation thresholds. The top figure shows the classifiers
trained on the MBN model, and the bottom figure the MFCC model.

F1 score and the AUC. The performance on the feature level is not much better

than random. Predicting ‘not present’ for every word would be the best random

guess as this is a heavy majority class in this task. Inspection of the predictions

shows that the classifier is indeed heavily biased towards the majority class for

the input features. Then we see the performance increasing for the first layer

and peaking at the second layer. The performance then drops slightly for the

third layer and the attention layer.



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 69PDF page: 69PDF page: 69PDF page: 69

4 Language learning using speech to image retrieval 69

4.5 Discussion and conclusion

We trained an image-caption retrieval model on spoken input and investigated

whether it learns to recognise linguistic units in the input. As improvements

over previous work we used a 3-layer GRU and employed importance sampling,

cyclic learning rates, ensembling and vectorial self-attention. Our results on both

MBN and MFCC features are significantly higher than the previous state-of-the-

art. The largest improvement comes from using the learned MBN features but

our approach also improves results for MFCCs, which are the same features as

were used by Chrupała et al. (2017). The learned MBN features provide better

performance whereas the MFCCs are more cognitively plausible input features.

The probing task shows that the model learns to recognise these words in the

input. The system is not explicitly optimised to do so, but our results show that

the lower layers learn to recognise this form related information from the input.

After layer 2, the performance starts to decrease slightly which might indicate

that these layers learn a more task-specific representation and it is to be expected

that the final attention layer specialises in mapping from audio features to the

multi-modal embedding space.

In conclusion, we presented what are, to the best of our knowledge, the best

results on spoken-caption to image retrieval. Our results improve significantly

over previous approaches for both untrained and trained audio features. In a

probing task, we show that the model learns to recognise words in the input

speech signal.

We are currently collecting the Semantic Textual Similarity (STS) database in

spoken format and the next step will be to investigate whether the model pre-

sented here also learns to capture sentence level semantic information and un-

derstand language in a deeper sense than recognising word presence. The work

presented by Chrupała et al. (2017) has made the first efforts in this regard and

we aim to extend this to a larger database with sentences from multiple domains.

Furthermore, we want to investigate the linguistic units that our model learns to

recognise. In the current study, we only investigated whether the model learns

to recognise words, but the potential benefit of our model is that it might learn

multi-word statements or might even learn to look at sub-lexical level informa-

tion. Harwath et al. (2020b) and Drexler and Glass (2017) have recently shown

that the speech-to-image retrieval approach can be used to detect word bound-

aries and even discover sub-word units. Our interest is in investigating how

these word and sub-word units develop over training and through the network

layers.
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5 | Semantic sentence similarity: size does not

always matter

This study addresses the question whether visually grounded speech recogni-

tion (VGS) models learn to capture sentence semantics without access to any

prior linguistic knowledge. We produce synthetic and natural spoken versions

of a well known semantic textual similarity database and show that our VGS

model produces embeddings that correlate well with human semantic similarity

judgements. Our results show that a model trained on a small image-caption

database outperforms two models trained on much larger databases, indicating

that database size is not all that matters. We also investigate the importance of

having multiple captions per image and find that this is indeed helpful even if the

total number of images is lower, suggesting that paraphrasing is a valuable learn-

ing signal. While the general trend in the field is to create ever larger datasets to

train models on, our findings indicate other characteristics of the database can

be just as important.

5.1 Introduction

The idea that words that occur in similar contexts have similar meaning has been

investigated for decades (e.g., Rubenstein and Goodenough 1965; Deerwester

et al. 1990). Advances in deep learning and computational power have made

it possible to create models that learn useful and meaningful representations of

larger spans of text such as sentences, paragraphs and even complete documents

(Kiros et al., 2015; Hill et al., 2016; Conneau et al., 2017; Yang et al., 2018;

Kiela et al., 2018; Devlin et al., 2019). A caveat of such models is the need to be

trained on enormous amounts of text and the current trend is to use ever larger

training corpora to create better models. Whereas BERT (Devlin et al., 2019) is

trained on 2.5 billion tokens of text the more recent GPT-3 (Brown et al., 2020)

is trained on nearly 500 billion tokens. It is obvious that humans are able to

This chapter is based on: Danny Merkx, Stefan L. Frank and Mirjam Ernestus. Semantic
sentence similarity: size does not always matter. In Interspeech 2021 - 22nd Annual Conference
of the International Speech Communication Association, pages 4393-4397, 2021
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understand and use language after much less exposure; one would need to read

200 words per second, 24 hours a day for 80 years to digest as much information

as GPT-3. People are able to hear and speak long before they are able to read,

and many people never learn to read at all. Moreover, writing is a relatively

recent invention, which only arose after spoken language.

Visually Grounded Speech (VGS) models aim to learn language without us-

ing written text data or prior information on the linguistic units in the speech

signal. Instead, these models combine speech signals with visual information to

guide learning; a VGS model learns to create representations for an image and

its corresponding spoken caption that are similar to each other in the embedding

space. Such models have been shown to learn to extract meaningful linguistic

units from speech without explicitly being told what these units are, as shown in

word recognition experiments (e.g., Chapter 4 and Havard et al. 2019) and se-

mantic keyword spotting (Kamper and Roth, 2018). Recent research has shown

that VGS models with quantisation layers learn to extract phonetic and word-like

units that are useful in zero-shot learning and speech synthesis (Harwath et al.,

2020a; Hsu et al., 2020).

As with text-based models, there is a trend in VGS models to use ever larger

training corpora. CELL, one of the earliest VGS models, used a database of

around 8,000 utterances (Roy and Pentland, 1998). Harwath and colleagues

introduced the first ‘modern’ neural network based approach which was trained

on the Flickr8k Audio Caption corpus, a corpus with 40,000 utterances (Har-

wath and Glass, 2015). This corpus was quickly followed up by Places Audio

Captions (400,000 utterances) (Harwath et al., 2020b) and, most recently, by

SpokenCOCO (600,000 utterances) (Hsu et al., 2020).

However, previous work on visual grounding using written captions has shown

that larger databases do not always result in better models. In Chapter 2, we

compared models trained on the written captions of Flickr8k (Hodosh et al.,

2013) and MSCOCO (Chen et al., 2015). We showed that, although the much

larger MSCOCO (600k sentences) achieved better performance on the training

task, the model trained on the smaller Flickr database performed better at trans-

fer tasks; the resulting embeddings correlated better with human semantic re-

latedness ratings. As the MSCOCO model only performed better on visually de-

scriptive sentences, these results suggest that there is a trade-off between getting

better at processing image descriptions and creating generally useful sentence

representations.
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There is another interesting difference between the VGS training corpora be-

sides their size. While both Flickr8k Audio and SpokenCOCO have five captions

per image, Places Audio has only one. Consequently, even though SpokenCOCO

has more captions than Places, Places has 400,000 images while SpokenCOCO

has only 120,000. The more fundamental difference is how models trained on

Places and Flickr8k handle paraphrases. In a VGS, captions with similar images

(i.e., likely paraphrases) should have similar representations. So, in a way, a VGS

can be said to implicitly learn that paraphrases share one meaning. However,

the paraphrasing in SpokenCOCO and Flickr8k is more explicit than in Places

because there are always five captions per image, and these should ideally have

the same representation in the embedding space.

Our first research question is: do VGS models learn to capture sentence se-

mantics? So far, testing of the usability of the sentence representations cre-

ated by VGS models has been limited, and recent research has focused more on

whether useful sub-sentence units can be extracted (e.g., Havard et al. 2019;

Harwath et al. 2020a; Hsu et al. 2020). To answer this question we will inves-

tigate whether the representations learned by a VGS are predictive of semantic

sentence similarity as judged by humans. In order to test this, we create spo-

ken versions of the Semantic Textual Similarity (STS) database. STS consists

of sentence pairs that were annotated by humans for semantic similarity. We

look at the correlation between the human similarity ratings and the similarity

of sentence representations created by our VGS model.

We compare models trained on the three spoken image caption databases;

Flickr8k Audio Captions, Places Audio Captions and SpokenCOCO. It is tempt-

ing to simply move on to the bigger corpus once one becomes available with-

out investigating whether this actually constitutes an improvement. Using more

data will likely lead to an increase in training task performance, but compar-

isons between corpora based on metrics other than training task performance

are scarce. We investigate which model creates sentence representations that

best capture sentence semantics, the only difference between these models being

the database they were trained on. Our test material (STS) contains sentences

from a wide range of domains, so a model needs to be able to generalise well to

perform well on this task.

We will also investigate the importance of paraphrasing in corpora having

multiple captions for each image. Our second research question is: is it beneficial

for VGS models to have multiple captions per image? We answer this question

by training models on subsets of SpokenCOCO where we fix the total number
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of captions, but vary the number of captions per image and consequently the

number of images in the training data.

5.2 Methods

5.2.1 Semantic similarity data

For the semantic evaluation we use the Semantic Textual Similarity (STS) data.

STS is a shared task hosted at the SemEval workshop. These datasets contain

paired sentences from various sources labelled by humans with a similarity score

between zero (‘the two sentences are completely dissimilar’) and five (‘the two

sentences are completely equivalent, as they mean the same thing’) averaged

over five annotators per sentence pair (see Agirre et al. 2015 for a full description

of the annotator instructions).

We use the STS 2012 to 2016 tasks, which are included in the SentEval toolbox

for testing textual sentence representations (Conneau and Kiela, 2018), allowing

for a comparison between speech-based models and previous work using SentE-

val. Table 5.1 gives an overview of the STS tasks by year, and the sources from

which the sentences were taken. We had the sentences produced by speech pro-

duction software (synthetic speech) and by humans. All synthetic and natural ut-

terances are made publicly available in .wav format as the SpokenSTS database,

which can be found at: https://doi.org/10.17026/dans-z48-3ev6.

Synthetic speech

The synthetic speech was created with Google’s Wavenet using three male and

three female voices with a US accent. All utterances were produced using all six

voices for a total of 75,264 utterance pairs. We applied as little preprocessing

to the STS text as possible. To identify the necessary preprocessing steps, we

sampled 10% of the STS sentence pairs to convert to synthetic speech without

any preprocessing. This sample was used to identify text characteristics that

were troublesome to Wavenet and to apply the necessary preprocessing steps in

order to correct these where possible. For example, Wavenet pronounces the

quotation marks (saying /quote/) if there is a space between the period and

a quotation mark at the end of a sentence. Wavenet also pronounces certain

non-capitalised abbreviations as if they were words rather than spelling them

out (e.g., ‘usa’ is pronounced /usa/ instead of /u/, /s/, /a/). A full overview

https://doi.org/10.17026/dans-z48-3ev6
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Table 5.1: Description of the STS subtasks by year. Some subtasks appear in mul-
tiple years, but consist of different sentence pairs drawn from the same
source. The image description datasets are drawn from the PASCAL
VOC-2008 dataset (Everingham et al., 2008) and do not overlap with
the training material of our models.

Task Subtask #Pairs Source
MSRpar 750 newswire
MSRvid 750 videos

STS 2012 SMTeuroparl 459 glosses
OnWN 750 WMT eval.
SMTnews 399 WMT eval.
FNWN 189 newswire

STS 2013 HDL 750 glosses
OnWN 561 glosses
Deft-forum 450 forum posts
Deft-news 300 news summary

STS 2014 HDL 750 newswire headlines
Images 750 image descriptions
OnWN 750 glosses
Tweet-news 750 tweet-news pairs
Answers forum 375 Q&A forum answers
Answers students 750 student answers

STS 2015 Belief 375 committed belief
HDL 750 newswire headlines
Images 750 image descriptions
Answer-Answer 254 Q&A forum answers
HDL 249 newswire headlines

STS 2016 Plagiarism 230 short-answer plagiarism
Postediting 244 MT postedits
Question-Question 209 Q&A forum questions

Total 12,544

of all preprocessing applied, our code and our data can be found at https:
//github.com/DannyMerkx/speech2image/tree/Interspeech21.

Natural speech

We selected a random sample of 5% of the STS sentence pairs (638 pairs) evenly

distributed across the different STS subsets. These sentences were recorded by

four native speakers of English (two male, two female) with a North American

accent. Recordings were made in a sound-attenuated booth using Audacity in

sessions of one and a half hour including breaks. Speakers read the sentences

out loud from a script. They were instructed to pronounce the sentences as

https://github.com/DannyMerkx/speech2image/tree/Interspeech21
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they found most appropriate (e.g., saying ‘an apple’ even though the original

STS sentence might be misspelled as ‘a apple’) and to pronounce large numbers

according to their preference either in full or digit by digit. Speakers were paid

10 euros per hour in gift certificates.

After recording was done, the audio was processed by an annotator. Utter-

ances were automatically detected and labelled in Audacity, checked by the an-

notator for deviations from the script and where possible these deviations were

corrected. For instance, when speakers made a mistake, they were allowed to

continue from a natural break like a comma and so the annotator combined the

correct parts from multiple attempts. If speakers misspoke and corrected them-

selves mid-utterance without re-recording (part of) the utterance, the mistake

was removed. Furthermore, silences longer than 500ms were shortened.

5.2.2 Visually Grounded Speech model

The VGS architecture used in this study is our own implementation presented

in Chapter 4 and we refer to that paper for more details. Here, we present a

description of the model and the differences with Chapter 4.

Our VGS model maps images and their corresponding captions to a common

embedding space. It is trained to make matching images and captions lie close

together, and mismatched images and captions lie far apart, in the embedding

space. The model consists of two parts; an image encoder and a caption encoder.

The image encoder is a single-layer linear projection on top of ResNet-152 (He

et al., 2016), a pretrained image recognition network, with the classification

layer removed. We train only the linear projection and do not further fine-tune

ResNet.

The caption encoder consists of a 1-dimensional convolutional layer followed

by a bi-directional recurrent layer and finally a self-attention layer. The only

difference with Chapter 4 is the use of a four-layer LSTM instead of a three-layer

GRU. Audio features consist of 13 Cepstral mean-variance normalised MFCCs

and their first and second order derivatives calculated for 25ms frames with

10ms frame-shift.

5.2.3 Training material

We train separate models on each of the three training corpora. Flickr8k (Hodosh

et al., 2013) has 8,000 images and 40,000 written captions, five per image. We

use the spoken versions of these captions collected using Amazon Mechanical
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Turk (AMT) by Harwath and Glass (2015). The data split is provided by Karpathy

and Fei-Fei (2015), with 6,000 images for training and a development and test

set both of 1,000 images.

Places has 400,000 images drawn from the Places205 corpus (Zhou et al.,

2014) for which a single audio description per image was collected by Harwath

et al. (2020b) using AMT. Whereas Flickr8k Audio consisted of written captions

which were then read out loud by workers, here, workers were tasked with de-

scribing the Places images as no written captions existed. We use the most recent

official split1 with 400,000 images for training and a development and test set

of 1,000 images.

MSCOCO has 123,287 images and 605,495 written captions (Chen et al.,

2015), for which Hsu et al. (2020) collected spoken versions using AMT which

they released as SpokenCOCO. Five thousand images are reserved as a develop-

ment set and no official test set is provided. In order to keep results comparable

between models we use 1,000 images from the development set for development

and reserve 1,000 images as a test set.

5.2.4 Experiments

All models reported in this study are trained for 32 epochs. The models are

trained using a cyclical learning rate which smoothly varies the learning rate

between 2× 10−4 and 2× 10−6 over the course of four epochs. After a model is

trained, we select the epoch with the lowest development set error for further

testing.

To answer our first research question, we use the trained caption encoders to

encode the SpokenSTS sentences. We calculate the cosine similarity between

each pair of encoded sentences and then calculate the Pearson correlation coef-

ficient between the embedding similarity scores and the human similarity judge-

ments.

To answer our second research question, we train five more models on subsets

of SpokenCOCO where we vary the number of images in the training set and the

number of captions per image. As a lower bound on the amount of data we take

the size of Flickr8k; 6,000 images and 30,000 captions, five per image. We then

increase the amount of visual information (i.e., number of images) while keeping

the total number of captions fixed at 30,000; 7,500 images with four captions

per image, 10,000 images with three captions per image, 15,000 images with

1Available at: https://groups.csail.mit.edu/sls/downloads/placesaudio/d
ownloads.cgi

https://groups.csail.mit.edu/sls/downloads/placesaudio/d
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Table 5.2: Image-Caption retrieval results of each database’s respective test set.
R@N is the percentage of items for which the correct image or caption
was retrieved in the top N (higher is better). Med r is the median rank
of the correct image or caption (lower is better).

Model Caption to Image
R@1 R@5 R@10 med r

Flickr8k Audio 12.7 35.1 48.4 12
Places Audio 30.6 62.6 73.8 3
SpokenCOCO 30.6 64.1 79.8 3

Image to Caption
Flickr8k Audio 20.3 44.8 58.8 7
Places Audio 29.5 62.0 74.3 3
SpokenCOCO 39.2 75.3 86.4 2

two captions per image and finally 30,000 images with one caption per image,

similar to the Places database. If paraphrasing is helpful to the model, we expect

model performance to decrease with a decreasing number of captions per image,

even though the total number of captions remains the same. While we obviously

cannot make sure that the models are trained on the same data, the data in the

model with five captions per image is a subset of the data for the model with four

captions per images and so on, so that the training data for each model overlaps

as much as possible given the experimental setup. All code used in this study is

available at https://github.com/DannyMerkx/speech2image/tree/In
terspeech21

5.3 Results

In Table 5.2 we compare the image-caption retrieval performance of the three

models trained on different datasets (Flickr8k Audio, Places Audio and Spoken-

COCO). This indicates how well the models perform on the training task. In

order to retrieve images using a caption or captions using an image, the caption

embeddings are ranked by their similarity to the image embeddings, and vice

versa. It is clear that training task performance increases with database size.

The results of the sentence semantics evaluation are shown in Figure 5.1. We

show Pearson correlation coefficients between the human similarity judgements

and the embedding similarities generated by the trained models. As each sen-

tence is pronounced by six voices we calculate the embedding similarity for

each pair of voices and average over the resulting 36 pairs. In general, we

see that both the Flickr8k and the SpokenCOCO model tend to outperform the

https://github.com/DannyMerkx/speech2image/tree/In
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Figure 5.1: Semantic evaluation task results: Pearson correlation coefficients
with their 95 percent confidence interval for the various subtasks us-
ing the synthetic SpokenSTS(see Table 5.1). The bottom rightmost
section shows the average over all STS subsets (All), the results on
the natural speech recordings (Natural speech) and the results on the
synthetic version of the natural speech sample (Sample).

Places model, and that the Flickr8k model tends to outperform the SpokenCOCO

model. This is confirmed by the significant differences in Pearson’s r calculated

on the complete SpokenSTS database (indicated as All).

Lastly, it is clear that all models perform worse on natural speech. In Fig-

ure 5.1, Sample indicates the subset of synthetic speech representing the same

sample of STS sentences that was used for the natural speech. Model perfor-

mance on this subset is similar to the performance on the entirety of SpokenSTS

indicating that the sample is representative of the entire corpus.

The results of the paraphrasing experiment are shown in Figure 5.2. The re-

sults show a trend where models trained on more captions per image (i.e., more

paraphrases) perform better, even though the total number of captions is the

same across models and the models with more paraphrases receive less visual
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Table 5.3: AIC comparison of regression models (lower is better). ΔAIC indicates
the difference in AIC compared to the best model, LL indicates the
model’s log likelihood

No. captions AIC ΔAIC LL
5 127974.5 0.00 −63984.23
3 127985.3 10.81 −63989.64
4 128116.3 141.80 −64055.13
2 128218.3 243.80 −64106.13
1 128269.7 295.26 −64131.86

Figure 5.2: Comparison of the five models trained on subsets of SpokenCOCO
with differing numbers of captions per image. We show Pearson cor-
relation coefficients over the entire synthetic SpokenSTS with 95 per-
cent confidence intervals.

information. To further investigate this trend we performed five separate re-

gression analyses with the human similarity judgements as dependent variable

and each of the five models’ similarity ratings as regressors. Embedding simi-

larities were averaged over the 36 voice pairs. Table 5.3 shows a comparison of

the Akaike Information Criteria (AIC) of these regression models. These results

show the same trend as Figure 5.2 and clearly indicate that the similarity ratings

generated by models with more captions per image provide a better fit to the

human similarity ratings.

5.4 Discussion and conclusion

We collected synthetic and natural speech for a large corpus of human sentence

similarity judgements in order to investigate whether VGS models learn to cap-
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ture sentence semantics. Furthermore, we investigated the merits of database

size and the availability of paraphrases in the training data.

The results show that similarity scores generated by our VGS models correlate

quite well human similarity judgements overall. This shows that a model tasked

with mapping images to captions and vice versa learns to capture sentence se-

mantics. However there are also some subsets of STS (MSRpar, FNWN) on which

the model performs quite poorly, and unsurprisingly all models clearly perform

best on subtasks consisting of visual descriptions. Furthermore, we found that

even though the models trained on Places and SpokenCOCO outperform the

Flickr8k model in terms of training task performance, the Flickr8k model per-

forms better on the SpokenSTS task. This confirms our previous results on text-

based grounding models in Chapter 2 which compared models trained on the

written versions of Flickr8k and MSCOCO. As in Chapter 2 we see that Spoken-

COCO outperforms Flickr8k mainly on the subtasks containing visual descrip-

tions. The models that were trained on a smaller subsets of SpokenCOCO for

the paraphrasing experiment performed better than the model trained on the en-

tire database. This indicates that training on more data might cause the model to

overspecialise; it performs better on sentences which are similar to the training

data, but becomes worse at generalising to sentences from other domains.

Next, we investigated whether the presence of paraphrases in the data (i.e.,

multiple captions per image) is beneficial to the model. By training models on

subsets of SpokenCOCO where we fixed the total number of captions but varied

the number of captions per image, we found that having more captions per im-

age increases model performance, even though these models consequently are

trained on less visual information. This also explains why the Places model per-

forms worst out of the three, even though the amount of data is in the same

ballpark as SpokenCOCO (it has fewer captions but more images). An inter-

esting question for future research is whether this trend continues beyond five

captions per image. Collecting more captions for existing databases, rather than

collecting more image captions pairs, could be an important consideration for

future data collection efforts.

In conclusion, we show VGS models are capable of capturing sentence seman-

tics. Importantly, our results show that database size is not all that matters when

it comes to training VGS models. Even though it is enticing to collect ever larger

databases to increase training task performance, this does not always translate

to better transfer learning results. Our Flickr8k model outperforms our Spoken-

COCO model even though it has 20 times less data. Furthermore, other charac-
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teristics of a database might be even more important than its size; in the case of

VGS this is the presence of multiple captions per image.
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6 | Modelling human word learning and

recognition using visually grounded speech

Many computational models of speech recognition assume that the set of tar-

get words is already given. This implies that these models learn to recognise

speech in a biologically unrealistic manner, i.e., with prior lexical knowledge

and explicit supervision. In contrast, visually grounded speech models learn to

recognise speech without prior lexical knowledge by exploiting statistical depen-

dencies between spoken and visual input. While it has previously been shown

that visually grounded speech models learn to recognise the presence of words

in the input, we explicitly investigate such a model as a model of human speech

recognition. We investigate the time-course of noun and verb recognition as

simulated by the model using a gating paradigm to test whether its recognition

is affected by well-known word-competition effects in human speech process-

ing. We furthermore investigate whether vector quantisation, a technique for

discrete representation learning, aids the model in the discovery and recogni-

tion of words. Our experiments show that the model is able to recognise nouns

in isolation and even learns to properly differentiate between plural and singu-

lar nouns. We also find that recognition is influenced by word competition from

the word-initial cohort and neighbourhood density, mirroring word competition

effects in human speech comprehension. Lastly, we find no evidence that vector

quantisation is helpful in discovering and recognising words, though our gating

experiment does show that the LSTM-VQ model is able to recognise the target

words earlier.

6.1 Introduction

Infants initially have little understanding of what is being said around them, and

yet at approximately nine months old are able to produce their first words. When

they start producing their first multi-word utterances around 18 months, they

This chapter is based on: Danny Merkx, Sebastiaan Scholten, Stefan L. Frank, Mirjam Ernes-
tus and Odette Scharenborg. Modelling human word learning and recognition using visually
grounded speech. Cognitive Computation, forthcoming.
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can already produce about 45 words and comprehend many more (Benedict,

1979; Snyder et al., 1981). One of the challenges infants face is that speech does

not contain neat breaks between words, which would allow them to segment the

utterance into words. To complicate things further, words might be embedded

in longer words (e.g., ham in hamster) and furthermore, no two realisations of

the same spoken word are ever the same due to speaker differences, accents, co-

articulation and speaking rate, etc. (Eisner and McQueen, 2018). In this study,

we investigate whether a computational model of speech recognition inspired by

infant learning processes can learn to recognise words without prior linguistic

knowledge.

Cognitive science has long tried to explain our capacity for speech compre-

hension through computational models (see Weber and Scharenborg 2012 for

an overview). Models such as Trace (Elman and McClelland, 1988), Cohort

(Marslen-Wilson, 1987), Shortlist (Norris, 1994), Shortlist B (Norris and Mc-

Queen, 2008) and FineTracker (Scharenborg, 2010) attempt to explain how vari-

able and continuous acoustic signals are mapped onto a discrete and limited-size

mental lexicon. These models all assume that the speech signal is first mapped

to a set of pre-lexical units (e.g., phones, articulatory features) and then to a set

of lexical units (words). The exact set of units is predetermined by the model

developer, avoiding the issue of learning what these units are in the first place.

Even the recently introduced DIANA model (ten Bosch et al., 2015), which does

away with fixed pre-lexical units, uses a set of predetermined lexical units.

While all these models have proven successful at explaining behavioural data

from listening experiments, they all require prior lexical knowledge in the form

of a fully specified set of (pre-)lexical units. In contrast, infants learn words

without prior lexical knowledge (or, arguably, any other linguistic knowledge)

as well as without explicit supervision. A viable computational model should

simulate word learning in a similar manner.

We take inspiration from the way infants learn language in order to model hu-

man word learning and recognition in a more cognitively plausible and ‘human

like’ manner. While learning language, children are exposed to a wide range of

sensory experiences beyond purely linguistic input. On the other hand, current

computational models of word learning and recognition are often limited to lin-

guistic input. Using a multi-modal model, we aim to show that it is possible to

learn to recognise words without prior lexical knowledge and explicit supervi-

sion if the model is exposed to sensory experiences beyond speech. While there

are many sensory experiences that could contribute to language learning, we



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 85PDF page: 85PDF page: 85PDF page: 85

6 Modelling human word learning and recognition 85

focus on the most prominent of the human senses: vision. The model that we

investigate in the current work exploits visual context in order to learn to recog-

nise words in speech without supervision or prior lexical knowledge.

6.1.1 Visually Grounded Speech

Humans have access to multiple streams of sensory information besides the

speech signal, perhaps most prominently the visual stream. It has been sug-

gested that infants learn to extract words from speech by repeatedly hearing

words while seeing the associated objects or actions (Räsänen and Rasilo, 2015),

and indeed speech is often used to refer to and describe the world around us.

For instance, parents might say ‘the ball is on the table’ and ‘there’s a ball on the

floor’ etc., while consistently pointing towards a ball.

Visually Grounded Speech (VGS) models are speech recognition models in-

spired by this learning process. The idea behind VGS models (e.g. De Deyne

et al. 2021; Harwath et al. 2020a; Kamper et al. 2019) is to make use of co-

occurrences between the visual and auditory streams. For instance, from the

sentences ‘a dog playing with a stick’ and ‘a dog running through a field’ along

with images of these scenes, a model could learn to link the auditory signal for

‘dog’ to the visual representation of a dog because they are common to both

image-sentence pairs. This allows the model to discover words, that is, to learn

which utterance constituents are meaningful linguistic units. While there is a

wide variety of VGS models, they all share the common concept of combining vi-

sual and auditory information in a common multi-modal representational space

in which the similarity between matching image-sentence pairs is maximised

while the similarity between mismatched pairs is minimised.

The potential of visual input for modelling the learning of linguistic units has

long been recognised. In 1998, Roy and Pentland introduced their model of early

word learning (Roy and Pentland, 1998). While many models at the time (and

even today) relied on phonetic transcripts or written words, they implemented

a model that learns solely from co-occurrences between the visual and auditory

inputs. This model builds an ‘audio-visual lexicon’ by finding clusters in the vi-

sual input and looking for reoccurring units in the acoustic signal. It performs

many tasks that are still the focus of research today: unsupervised discovery of

linguistic units, retrieval of relevant images, and generation of relevant utter-

ances. However, the model was limited to colours and shapes (utterances such

as ‘this is a blue ball’) and has not been shown to learn from more natural, less

restricted input.
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The tasks performed by Roy and Pentland’s model involve challenges for both

computer vision and natural language processing. Advances in both fields have

led to renewed interest in multi-modal learning, and with it increased the need

for multi-modal datasets. In 2013, Hodosh, Young and Hockenmaier intro-

duced Flickr8k (Hodosh et al., 2013), a database of images accompanied by

written captions describing their contents, which was quickly followed by simi-

lar databases such as MSCOCO Captions (Chen et al., 2015). These datasets are

now widely used for image-caption retrieval models (e.g., Karpathy and Fei-Fei

2015; Klein et al. 2015; Ma et al. 2015; Vendrov et al. 2016; Wehrmann et al.

2018; Dong et al. 2018 and Chapter 2) and caption generation (e.g., Karpathy

and Fei-Fei 2015; Xu et al. 2015).

Harwath and Glass collected spoken captions for the Flickr8k database and

used it to train the first neural network based VGS model (Harwath and Glass,

2015). Since then, there have been many improvements to the model architec-

ture (Harwath et al. 2016; Chrupała et al. 2017; Havard et al. 2020; Harwath

et al. 2020b; Scharenborg et al. 2020; Kamper and Roth 2018 and Chapter 4),

as well as new applications of VGS models such as semantic keyword spotting

(Kamper et al. 2017b,a, 2019), image generation (Wang et al., 2021), recov-

ering of masked speech (Srinivasan et al., 2020), and even the combination of

speech and video (Palaskar et al., 2018).

Many studies have since investigated the properties of the representations

learned by such VGS models (e.g., Harwath et al. 2020a; Chrupała et al. 2018;

Hsu et al. 2020; Chrupała et al. 2020 and Chapter 5). Perhaps the most promi-

nent question is whether words are encoded in these utterance embeddings even

though VGS models are not explicitly trained to encode words and are only

exposed to complete sentences. The VGS model presented by Harwath et al.

(2020b) showed that representations of a speech unit and a visual patch are

often most similar when the visual patch contains the speech unit’s visual refer-

ent. Chrupała et al. (2017) and our results in Chapter 4, show that VGS models

encode the presence of individual words that can reliably be detected in the

resulting sentence representation.

Räsänen and Khorrami (2019) made a VGS model that was able to discover

words from even more naturalistic input than image captions: recordings from

head-mounted cameras worn by infants during child-parent interaction. The

authors showed that their model was able to learn utterance representations

in which several words (e.g., ‘doggy’, ‘ball’) could reliably be detected. Even

though their model used visual labels indicating the objects the infants were
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paying attention to rather than the actual video input, this study is an important

step towards showing that VGS models can acquire linguistic units from actual

child-directed speech.

While the presence of individual words is encoded in the representations of a

VGS model, the model does not explicitly yield any segmentation or discrete lin-

guistic units. A technique which allows for the unsupervised acquisition of such

discrete units is Vector Quantisation (VQ). VQ layers were recently popularised

by van den Oord et al. (2017), who showed that these layers could efficiently

learn a discrete latent representational space. Harwath et al. (2020a) have re-

cently applied these layers in a VGS model, and showed that their model learned

to encode phones and words in its VQ layers.

Havard and colleagues went beyond simply detecting the presence of words in

sentence representations: they presented isolated nouns to a VGS model trained

on whole utterances, and showed that the model was able to retrieve images of

the nouns’ visual referents (Havard et al., 2019). This shows that their model

does not merely encode the presence of these nouns in the sentence represen-

tations, but actually ‘recognises’ individual words and learns to map them onto

their visual referents. So, regarding the example mentioned above, the model

learned to link the auditory signal for ‘dog’ to the visual representation of a dog.

However, the model by Havard et al. (2019) was trained on synthetic speech.

Word recognition in natural speech is known to be more challenging, as shown

for instance by a large performance gap between VGS models trained on syn-

thetic and real speech (Chrupała et al., 2017). Dealing with the variability of

speech is an important aspect of human speech recognition. If VGS models are

to be plausible as computational models of speech recognition, it is important

that these models implicitly learn to extract words from natural speech.

6.1.2 Current study

The goal of this study is to investigate whether a VGS model discovers and recog-

nises words from natural, as opposed to synthetic, speech. We furthermore go

beyond earlier work because we investigate the model’s cognitive plausibility

by testing whether its word recognition performance is affected by word com-

petition known to take place during human speech comprehension. We aim to

answer the following questions:

1. Does a VGS model trained on natural speech learn to recognise words, and

does this generalise to isolated words?
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88 6 Modelling human word learning and recognition

2. Is the model’s word recognition process affected by word competition?

3. Does the model learn the difference between singular and plural nouns?

4. Does the introduction of VQ layers for learning discrete linguistic units aid

word recognition?

Our first experiment is a continuation of our previous work (Scholten et al.,

2021) and the work by Havard et al. (2019). Following Havard et al. (2019), we

present isolated target words to the VGS model and measure its word recognition

performance by looking at the proportion of retrieved images containing the

target word’s visual referent. If the model is indeed able to recognise a word in

isolation, it should be able to retrieve images depicting the word’s visual referent,

indicating that the model has learned a representation of the word from the

multi-modal input. Whereas previous work focused on the recognition of nouns,

we also include verbs as our target words.

For this experiment, we collect new speech data, consisting of words pro-

nounced in isolation. On the one hand, such data can be thought of as ‘cleaner’

than words extracted from sentences (as in Scholten et al. 2021) due to the ab-

sence of co-articulation. On the other hand, the model was trained on words in

their sentence context, co-articulation included, and might have learned to rely

on this contextual information too heavily to also recognise words in isolation.

Thus, to answer our first research question, we investigate whether our VGS

model learns to recognise words independently of their context. Furthermore,

we investigate whether linguistic and acoustic factors affect the model’s recog-

nition performance similarly to human performance. For instance, we know

that faster speaking negatively impacts human word recognition (e.g. Koch and

Janse 2016).

In our second experiment we investigate the time course of word recognition

in our VGS model. This allows us to test whether the model’s word recognition

performance is affected by word competition as is known to take place during

human speech comprehension. For this experiment, we look at two measures of

word competition: word-initial cohort size and neighbourhood density. In the

Cohort model of human speech recognition (Marslen-Wilson, 1987), the incom-

ing speech signal is mapped onto phone representations. These activated phone

representations activate every word in which they appear. As more speech infor-

mation becomes available, activation reduces for words that no longer match the

input. The word that best matches the speech input is recognised. The number

of activated or competing words is called the word-initial cohort size and plays a
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role in human speech processing: the larger the cohort size (i.e., the more com-

petitors there are), the longer it takes to recognise a word (Norris et al., 1995).

Words with a denser neighbourhood of similar sounding words are also harder

to recognise as they compete with more words (Luce and Pisoni, 1998).

We also use our model to test the interaction between neighbourhood density

and word frequency. Several studies have investigated this interaction, with in-

conclusive results. In a gating study, Metsala (1997) found an interaction where

recognition was facilitated by a dense neighbourhood for low-frequency words

and by a sparse neighbourhood for high-frequency words. Goh et al. (2009)

found that response latencies in word recognition were shorter for words with

sparser neighbourhoods. They furthermore found a higher recognition accuracy

for sparse-neighbourhood high-frequency words as opposed to the other condi-

tions (i.e., sparse-low, dense-high, dense-low). This means that, unlike Metsala,

they found no facilitatory effect of neighbourhood density for low-frequency

words. Others found no interaction between lexical frequency and neighbour-

hood density at all (Rispens et al., 2015; Garlock et al., 2001).

For this experiment, we use a gating paradigm, a well known technique bor-

rowed from human speech processing research (e.g., Cotton and Grosjean 1984;

Smith 2017). In the gating experiment, a word is presented to the VGS model

in speech segments of increasing duration, that is, with an increasing number of

phones, and the model is asked to retrieve an image of the correct visual referent

on the basis of the speech signal available so far. We then analyse the effects of

word competition and several control factors on word recognition performance.

In our third experiment we investigate whether our VGS model learns to dif-

ferentiate between singular and plural instances of nouns. By the same princi-

ple of co-occurrences between the visual and auditory streams that allows the

model to discover and recognise nouns, it may also be able to differentiate be-

tween their singular and plural forms. We test this by presenting both forms

of all nouns to the model, and analysing whether the retrieved images contain

single or multiple visual referents of that noun.

Our fourth question investigates VQ, a technique that was recently first ap-

plied to VGS models by Harwath et al. (2020a). Their model acquired discrete

linguistic units, including words. However, it is still an unanswered question

whether such VQ-induced word units also aid the recognition of words in iso-

lation. If they do, the addition of VQ layers should improve word recognition

results of our VGS model. Havard et al. (2020) improved retrieval performance

of their VGS model by providing explicit word boundary information, thereby
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showing that knowledge of the linguistic units is indeed beneficial to the model.

Rather than explicitly providing word-boundary information, VQ layers allow

units to emerge in an end-to-end fashion. Because prior knowledge of word

boundaries is not cognitively plausible, VQ layers are a more suitable approach

for our cognitive model. To investigate if the introduction of VQ layers indeed

aids word recognition, all our experiments compare the baseline VGS model to

a VGS model with added VQ layers.

To foreshadow our results, we find that (1) our VGS model does learn to recog-

nise words in isolation but performance is much higher on nouns than on verbs;

(2) word recognition in the model is affected by competition similarly to hu-

mans; (3) the model can distinguish between singular and plural nouns to a

limited extent; and (4) the use of VQ layers does not improve the model’s recog-

nition performance.

6.2 Methods

6.2.1 Visually Grounded Speech model

Model architecture

Our VGS model consists of two deep neural networks as depicted in Figure 6.1;

one to encode the images and one to encode the audio captions. The model is

trained to embed both input streams in a common embedding space; its train-

ing goal is to minimise the cosine distance between image-caption pairs while

maximising the distance between mismatched pairs. We do not fine-tune the

hyper-parameters of the model but use the best parameters found in Chapter 4

– this is because it is not our current goal to improve the training task score but

to perform experiments in order to learn more about the unsupervised discovery

and recognition of words in a VGS model.

It is common practice to use a pretrained image recognition network for the

image branch of a VGS model (e.g., Kamper et al. 2017a; Chrupała et al. 2017;

Harwath et al. 2020a). We use the ResNet-152 network (He et al., 2016),

which is a pretrained convolutional network that was trained on ImageNet (Deng

et al., 2009), to extract image features. This is done by taking the activations

of ResNet-152’s penultimate fully connected layer by removing the final object-

classification layer. Our image branch then is a single linear layer of size 2048

applied to these image features. Finally, we normalise the results to have unit L2

norm. The goal of the linear projection is to map the image features to the same
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2048-dimensional embedding space as the audio representations. The image

embedding i is given by:

i=
imgAT + b
||imgAT + b||2 , (6.1)

where Aand b are learned weight and bias terms, and img is the vector of ResNet-

152 image features.

The audio branch consists of a 1-d convolutional neural network of size 6,

stride 2 and 64 output channels, which sub-samples the signal along the tempo-

ral dimension. The resulting features are fed into a 4-layer bi-directional Long

Short Term Memory (LSTM) with 1024 units.1 The 1024 bi-directional units are

concatenated to create a 2048 feature vector. The self-attention layer computes

a weighted sum over all the hidden LSTM states:

at = softmax(V tanh(Wht + bw) + bv), (6.2)

where at is the attention vector for hidden state ht , and W , V , bw, and bv indicate

the weights and biases. The learnable weights and biases are implemented as

fully connected linear layers with output sizes 128 and 2048, respectively. The

applied attention is then the sum over the Hadamard product between all hidden

states (h1, ...,ht) and their attention vector:

Att(h1, ...,ht) =
∑

t

at ◦ ht . (6.3)

The resulting embeddings are normalised to have unit L2 norm. The caption

embedding c is thus given by:

c=
Att(LSTM(CNN(a1, ...,at)))
||Att(LSTM(CNN(a1, ...,at)))||2 , (6.4)

where a1, ...,at indicates the caption represented as t frames of MFCC vectors

and Att, LSTM and CNN are the attention layer, stacked LSTM layers, and con-

volutional layer, respectively.

Next, we also implement a VGS model with added VQ layers (van den Oord

et al., 2017). We will refer to our regular model and the model with VQ layers

as LSTM and LSTM-VQ models, respectively. Our implementation most closely

follows Harwath et al. (2020a), who were the first to apply these layers in a

VGS model, and showed that their model learned discrete linguistic units. VQ

1In Chapter 4 we used a 3-layer Gated Recurrent Unit, but it has since then become practi-
cally feasible to train larger models on our hardware.
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Figure 6.1: Model architecture: the model consists of two branches with the
image encoder depicted on the left and the caption encoder on the
right. The audio features consist of 13 MFCC with 1st and 2nd order
derivatives by t frames. Each LSTM hidden state ht has 1024 fea-
tures which are concatenated for the forward and backward LSTM
into 2048-dimensional hidden states. Vectorial attention weighs and
sums the hidden states resulting in the caption embedding. The lin-
ear projection in the image branch maps the image features to the
same 2048-dimensional space as the caption embedding. We calcu-
late the cosine similarity between the image and caption embedding.

layers consist of a ‘codebook’ which is a set of n-dimensional embeddings. A VQ

layer discretises incoming input by mapping it to the closest embedding in the

codebook and passing this embedding to the next layer:

VQ(x) = ek, where k = argmin j||x− e j||2, (6.5)

where x is the VQ layer input and e j are the codebook embeddings.

For the LSTM-VQ model we insert VQ layers in the LSTM stack after the first

and after the second LSTM layer, with 128 and 2048 codes, respectively. We use

two layers because, as shown by Harwath et al. (2020a), this made a hierarchy

of linguistic units emerge: the first layer best captured phonetic identity while

in the second layer, several codes emerged that were sensitive to specific words.

We use our own PyTorch implementation of the models and the VQ layer de-

scribed here, adapted from our previous work presented in Chapters 2 and 4,

which is in turn most closely related to, and based on, the VGS models presented

by Harwath et al. (2016) and Chrupała et al. (2017). Our implementation and
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data can be found on https://github.com/DannyMerkx/speech2image
/tree/CogComp2022.

Training data

We train the model on Flickr8k (Hodosh et al., 2013), a well-known dataset of

8,000 images from the online photo sharing platform Flickr.com, with five writ-

ten English captions per image. Annotators were asked to ‘write sentences that

describe the depicted scenes, situations, events and entities (people, animals,

other objects)’ (Hodosh et al., 2013). We use the spoken captions Harwath and

Glass (2015) collected by having Amazon Mechanical Turk (AMT) workers pro-

nounce the original written captions. We use the data split provided by Karpathy

and Fei-Fei (2015), with 6,000 images for training and a development and test

set of 1,000 images each.

Image features are extracted by resizing all images while maintaining the as-

pect ratio such that the smallest side is 256 pixels. Ten crops of 224 by 224 pixels

are taken, one from each of the corners, one from the middle and similarly for

the mirrored image. We use ResNet-152 (He et al., 2016) to extract visual fea-

tures from these ten crops and then average the features of the ten crops into a

single vector with 2,048 features.

The audio input consists of Mel Frequency Cepstral Coefficients (MFCCs). We

compute the MFCCs using 25 ms analysis windows with a 10 ms shift. The

MFCCs were created using 40 Mel-spaced filterbanks. We use 12 MFCCs and

the log energy feature, and add the first and second derivatives resulting in 39-

dimensional feature vectors. Lastly, we apply per-utterance cepstral mean and

variance normalisation.

Training

The model is trained to embed the images and captions such that the cosine

similarity between image and caption embeddings is larger for matching pairs

than the similarity between mismatching pairs. The batch hinge loss L as a

function of the network parameters θ is given by:

L(θ ) =
∑

(c,i),(c′,i′)∈B

�
max(0, cos(c, i′)− cos(c, i) +α)+

max(0, cos(i,c′)− cos(i,c) +α)
�

,

(6.6)

https://github.com/DannyMerkx/speech2image
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where (c, i) �= (c′, i′), B is a minibatch of matching caption-image pairs (c, i), and

the other caption-image pairs (c′, i′) in the batch serve to create mismatching

pairs: (c, i′) and (c′, i). We take the cosine similarity and subtract the similarity

of the mismatching pairs from the matching pairs such that the loss is only zero

when the matching pair is more similar than the mismatching pairs by a margin

α, which was set to 0.2.

Training-task performance is evaluated by caption-to-image and image-to-

caption retrieval score Recall@N on the 1000-image test set. For these retrieval

tasks, the caption embeddings are ranked by cosine distance to the image and

vice versa, and Recall@N is the percentage of test items for which the correct

image or caption was in the top N results. Furthermore, we evaluate the median

rank of the correct image or caption.

Because the VQ operation is indifferentiable, a trick called straight through

estimation is required to pass a learning signal to layers before the VQ layer

(Bengio et al., 2013). Put simply, as there is no gradient for the VQ operation,

the gradients for the VQ output are copied and used as an approximation of the

gradients for the VQ input.

The VQ layer learns to make the codebook codes more similar to their inputs

and vice versa. The first is accomplished by an exponential moving average.

When a code is activated, it gets multiplied by a decay factor γ and summed

with (1− γ)x, where x is the input that activated the code. Making the inputs

more similar to the codes is accomplished by a separate VQ loss, which is the

mean squared error between each input and its closest code.

The networks are trained using Adam (Kingma and Ba, 2015) with a cyclic

learning rate schedule based on the work by Smith (2017). The learning rate

schedule varies the learning rate smoothly between a minimum of 10−6 and

maximum of 2× 10−4.

We train the regular LSTM-based network for 16 epochs. Following Harwath

et al. (2020a), we warm start the LSTM-VQ model by taking the trained LSTM

network, inserting the VQ layers and training for another 16 epochs. While,

unlike Harwath et al. (2020a), we did not encounter a large performance loss

for cold started networks, we did find that a cold started VQ network frequently

suffered from codebook collapse (van Niekerk et al., 2020). This is an issue

where suddenly all VQ inputs are mapped to only a few (often even just one)

codes and from which the model never recovers.
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We trained 20 VGS models of each type (with and without VQ) using different

seeds for the pseudo-random number generator, to average over random effects

of weight initialisation and training data presentation order.

6.2.2 Data collection

Target words

Word learning by VGS models exploits the fact that words in the speech sig-

nal tend to co-occur with visual referents in the corresponding images. We can

therefore expect that any words the system learns to recognise will be words

with visual referents in the images. Hence, we limit our analysis to the recogni-

tion of nouns and verbs. We only look at high-frequency words that the model

has had ample opportunity to learn to recognise.

We selected the 50 nouns and 50 verbs with the most frequent lemma in the

Flickr8k database, excluding some words like ‘air’ and ‘stand’ as their referents

appear in nearly every picture and, consequently, whether the words are recog-

nised cannot be established. Other examples of rejected words are verbs such as

‘try’ for which it is not possible to set objective standards for the visual referent.

The selected words are shown in Table 6.1.

To test word recognition performance, we present the selected target verbs

and nouns in isolation. Two North American native speakers of English (one

male, one female), not present in the Flickr8k database, were asked to read

the target words out loud from paper. The words were recorded in isolation

by asking the speakers to leave at least a second of silence in between words.

To keep conditions close to those of the Flickr8k spoken captions (and other

captioning databases collected through AMT), the speakers recorded the words

at home using their own hardware. They were asked to find a quiet setting and

record the words in a single session. They received a $20 gift card for their

participation.

The nouns were presented in both their singular and plural form (where ap-

plicable)2. All verbs were recorded in root form, third person singular form,

and progressive participle form. We did not record past tense forms as these are

rarely, if ever, used in the image descriptions.

The speech data were recorded in stereo at 44.1kHz in Audacity. We down-

sampled the utterances to 16kHz and converted them to mono to match the

2‘Shorts’ and ‘sunglasses’ are syntactically plural, but we group them under the singular
nouns as their use in the data is most often in reference to a single object.
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Table 6.1: Selected target nouns and verbs in order of occurrence in the training
set transcripts. A * indicates nouns for which only the singular or
plural form was recorded, + indicates words that were not included
in the analysis because there were not enough images depicting their
visual referent in the test set.

Nouns Verbs
dog man play run
boy girl jump sit
woman water* hold walk
shirt ball ride climb
grass* beach smile pose
snow* group catch carry
street rock leap perform
camera bike fly dance
mountain hat swim eat
pool player pull hang
jacket ocean chase slide
basketball sand* splash point
car building kick throw
soccer* swing fight swing
football sunglasses* lie lay
shorts* park laugh ski
dress table surf drive
hand tree fall follow
lake hill race roll
toy baby hit reach
tennis*+ river wade lean
wave snowboarder push bite
bench game spray paddle
surfer stick light+ bend
team skateboard cross raise

conditions of the Flickr8k captions, after which we applied the same MFCC pro-

cessing pipeline used for the Flickr8k training data.

Image annotations

We test whether the VGS model learned to recognise the recorded target words

by presenting them to the model and checking whether the retrieved images

contain the words’ visual referents. The problem with this approach, however,

is that Flickr8k contains no ground truth image annotations for such a test. The

captions can serve as an indication: if annotators mention an action or object in

the caption we can be reasonably sure it is visible in the picture. In contrast, it is
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definitely not the case that if an object or action is not mentioned, it is not in the

picture. Hence, using captions as ground truth would lead to an underestimation

of model performance.

We created a ground truth labelling for the visual referents of our target words

by manually annotating the 1000 images in the Flickr8k test set for visual pres-

ence of each target word. For the nouns, we also indicate whether the visual

referent occurred only once or multiple times in the images, allowing us to test

whether the model learns to differentiate between plural and singular nouns.

There were two annotators, one covering the nouns and one the verbs. To

check the quality of the annotations, the first author annotated a sample of 5%

of the images. The inter annotator agreement based on this sample was κ= 0.70

for verbs and κ= 0.76 for nouns.

6.2.3 Word recognition

We take the retrieval of images containing a target word’s visual referent as in-

dicative of successful word recognition. As this is a retrieval task where multiple

correct images can be found per word, we use precision@10 (P@10) to measure

word recognition performance, following Havard et al. (2019). That is, for each

target word embedding we calculate the cosine similarity to all test image em-

beddings and retrieve the ten most similar images. P@10 is then the percentage

of those images that contains the visual referent according to our annotations.

We excluded two target words from this analysis as there were fewer than ten

test images containing their visual referent. Although we annotated whether

an image contains a single or multiple visual referents, unless stated otherwise,

multiple visual referents were counted as correct for a singular noun and vice

versa for the purpose of calculating P@10.

We also compute P@10 scores for two baseline models. Our random baseline

is simply the averaged score over five randomly initialised and untrained VGS

models. This results in a random selection of images but since some words’ visual

referents occur in dozens to hundreds of test images, the recognition scores are

far from zero. Our naive baseline is the recognition score of a model that always

retrieves the ten images with the highest number of visual referents (i.e., always

the same ten images, selected separately for the nouns and verbs). Note that this

baseline is not realistic and requires knowledge of the contents of the test set

(namely the number of visual referents per image). Still, it is useful to compare

our model performance to a model that has only a single response regardless of

the input.
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We then examine the influence of linguistic and acoustic factors on the model’s

word recognition performance as measured by P@10, using a Generalised Linear

Mixed Model (GLMM) with beta-binomial distribution3 and canonical logit link

function. We used the glmmTMB package in R (Brooks et al., 2017).

The GLMM examines the effects of signal duration (i.e., number of speech

frames), speaking rate (number of phones per second), number of vowels, num-

ber of consonants, morphology (singular or plural)4 and VQ (LSTM or LSTM-

VQ model), with the VGS model’s word recognition performance (P@10) as

the outcome variable. As control variables, we furthermore include the (log-

transformed) counts of the target word and its lemma in the training set as we

expect better recognition for words that are seen more often during training.

The correlation between lemma count and word count is .48, so they are ex-

pected to explain unique portions of variance. We also include speaker-ID to

account for differences in recognition performance between the two speakers.

Number of vowels and consonants are centered, all other non-categorical vari-

ables are standardised. VQ (LSTM = −1, LSTM-VQ = 1), morphology (plural

= −1, singular = 1) and speaker ID (#1= −1,#2= 1) were sum coded.

The GLMM includes by-lemma and by-model (each of the 20 random initial-

isations) random intercepts. We first included all fixed effects that vary within

lemma or model-ID as by-lemma or by-model random slopes but this model was

unable to converge. As a maximal model is thus not possible, we reduced the

model until it converged: we tried a zero-correlation-parameter GLMM, which

also did not converge. Next, we split the GLMM into one with only the by-lemma

and one with only the by-model random slopes (uncorrelated). The by-model

GLMM resulted in a singular fit for the speaker ID, morphology, and VQ random

slopes. After removing these by-model slopes, the combined GLMM, with all re-

maining uncorrelated by-lemma and by-model slopes, converged. None of the

removed random slopes could be added back into the combined GLMM without

causing convergence issues. The final GLMM formula is:

p@10 ∼ speaking rate + duration + lemma count + word count +

#vowels + #consonants + VQ + speaker id + morphology + (1 +

speaking rate + duration + word count + #vowels + #consonants + VQ +

speaker id + morphology || lemma) + (1 + speaking rate + duration +

3Our P@10 data, which is discrete and has a floor of 0 and a ceiling of 10, is not suited for
standard linear modelling. Our response variable is best described as a series of Bernoulli trails
with successes and failures in terms of correct and incorrect retrieval.

4As seen in Section 6.3.1, word recognition results on the verbs were overall a lot worse than
for the nouns so we decided not to continue our analysis on the verbs.
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lemma count + word count + #vowels + #consonants || model id), where the

double pipe symbol (||) means that correlations between random slopes are not

estimated.

6.2.4 Word competition

We perform a gating experiment to investigate word competition in our models.

We present the models with the target words in segments of increasing length,

using one gate per phone. Simply put, if the target word is ‘dog’ with the phones

/d-O-g/, we evaluate performance after the model has processed /d/, /d-O/, and

finally the whole word /d-O-g/. Performance is measured in P@10 as described

in 6.2.3.

For the gating experiment we need to know when each phone starts and ends.

We use the Kaldi toolkit to make a forced alignment of our target words and

their phonetic transcripts (Povey et al., 2011), taken from the CMU Pronouncing

Dictionary available at http://www.speech.cs.cmu.edu/cgi-bin/cmud
ict.

We define the word-initial cohort of a target word at a certain gate to be the

set of words in the Flickr8k dataset that share the target’s word-initial phone

sequence up to the gate. That is, the number of words in the word-initial cohort

equals the number of words that cannot be distinguished from the target given

the sequence so far, and thus the number of words competing for recognition.

We define neighbourhood density as the number of words in Flickr8k that dif-

fer by exactly one phone from the target word (Vitevitch and Luce, 2016). These

words are expected to compete for recognition and so affect word recognition.

Research shows that words with a dense neighbourhood are harder to recognise

than those with a sparse neighbourhood (Luce and Pisoni, 1998).

For both the word-initial cohort and the neighbourhood density, we use pho-

netic transcripts from the CMU pronouncing dictionary, which contains the tran-

scripts for a total of 6431 words in the Flickr8k captions.

We use a GLMM to test whether the neighbourhood density and word-initial

cohort size affect word recognition in our model. Furthermore, we are interested

in three interaction effects: as previously discussed, we test the interactions be-

tween neighbourhood density and the word and lemma counts. The third inter-

action is between VQ and the number of phones processed so far (gate number).

The VGS model with VQ layers is forced to map its inputs to discrete units even

as early as the first gate. As the second VQ layer has been shown to learn discrete

word-like representations (Harwath et al., 2020a), we might expect that words

http://www.speech.cs.cmu.edu/cgi-bin/cmud
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are recognised earlier, as would be indicated by a smaller effect of gate number

for the LSTM-VQ model.

The GLMM’s fixed effects are the neighbourhood density, gate number, the

size of the word-initial cohort, VQ, morphology, the number of vowels and the

number of consonants. Again we also add the occurrence frequencies of the

target word and its lemma in the training set and speaker-ID to account for

expected effects of training data frequency and speaker differences. The number

of vowels, number of consonants and gate number are centered, all other non-

categorical variables are standardised.

The GLMM has by-lemma and by-model random intercepts. We started with

maximal by-lemma and by-model random slopes but had to reduce the com-

plexity due to convergence issues, using the same procedure as described be-

fore. However, after removing all random slopes that yielded singular fits in the

GLMM with only by-model random effects, the combined model (with by-model

and by-lemma random effects) still failed to converge. We proceeded to use

the variance estimates of the separate GLMMs to remove the smallest variance

components until the combined GLMM converged. This led to the removal of

all by-model random slopes and the by-lemma slopes for number of vowels and

word count. The final GLMM formula for analysis of the gating experiment is:

p@10 ∼ (lemma count + word count) * density + VQ * gate +

initial cohort size + speaker id + morphology + #vowels +

#consonants + (1 + density + VQ + gate + initial cohort size +

speaker id + morphology + #consonants || lemma) + (1 | model id)

6.3 Results

All results presented here are averaged over the 20 random initialisations of the

VGS model. We first evaluate how well the models perform on the training task

and compare their performance to other VGS models. The scores in Table 6.2

show the result for the speech caption-to-image and image-to-caption retrieval

tasks. This indicates how well the model learned to embed the speech and im-

ages in the common embedding space. As expected, the VQ layers are beneficial

to the VGS model’s training task performance (Harwath et al., 2020a).
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Table 6.2: Image-caption retrieval results on the Flickr8k test set. R@N is the
percentage of items for which the correct image or caption was re-
trieved in the top N (higher is better) with 95% confidence interval.
Med r is the median rank of the correct image or caption (lower is
better). We compare our VGS models to previously published results
on Flickr8k. ‘-’ means the score is not reported in the cited work.

Model Caption to Image
R@1 R@5 R@10 med r

Harwath and Glass (2015) - - 17.9±1.1 -
Chrupała et al. (2017) 5.5±0.6 16.3±1.0 25.3±1.2 48
Chapter 4 8.4±0.8 25.7±1.2 37.6±1.3 21
Wang et al. (2021) 10.1±0.8 28.8±1.3 40.7±1.4 -
LSTM 12.5±0.2 33.8±0.3 46.8±0.3 12
LSTM-VQ 12.9±0.2 34.5±0.3 47.3±0.3 12
Model Image to Caption

R@1 R@5 R@10 med r
Harwath and Glass (2015) - - 24.3±2.7 -
Chapter 4 12.2±2.0 31.9±2.9 45.2±3.1 13
Wang et al. (2021) 13.7±2.1 36.1±3.0 49.3±3.1 -
LSTM 18.5±0.5 42.4±0.7 55.8±0.7 8
LSTM-VQ 19.6±0.6 45.4±0.7 58.1±0.7 7

6.3.1 Word recognition

In the first experiment, we presented isolated words to the model. Table 6.3

shows the average P@10 scores. The singular nouns are recognised best with

P@10 scores of .519 and .529 for the LSTM and LSTM-VQ model, respectively.

This means that, on average, more than five out of the ten retrieved images con-

tain the correct visual referent. For the plural nouns the average performance is

.479 and .449 for the LSTM and LSTM-VQ model, respectively. However, seven

target nouns have no plural form, so the scores for plural and singular nouns

are not directly comparable. Therefore, we also calculate singular noun perfor-

mance only on those words that also have a plural form. The results show that

singular and plural forms are recognised equally well by the LSTM model. How-

ever, the LSTM-VQ model recognises plural target words slightly less accurately

than singular words.

The histograms in Figure 6.2 show the distribution of the P@10 scores by

word type (noun or verb), morphology and whether the VGS model included VQ

layers. This highlights that the recognition of the verbs is overall much worse

than for the nouns: many verbs have a P@10 of zero, meaning they are not

recognised at all. For the nouns on the other hand, only two words are not
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Table 6.3: Word recognition results for each noun and verb type for the trained
models, the random model, and the naive baseline. In parentheses
are the recognition scores when only evaluating the subset of target
words that also have plural forms.

Baseline
Morphology LSTM LSTM-VQ Random Naive
singular noun .519(.479) .529(.485) .137 .278
plural noun .479 .449 .140 .267
root verb .185 .193 .082 .188
third-person verb .176 .164 .078 .188
participle verb .246 .260 .083 .188

Figure 6.2: Histograms of the word recognition experiment results for each word
type.

recognised at all. While both LSTM models outperform the random baseline on

verb recognition, only on the participles is performance better than the naive

baseline’s, with scores over .7 on some words. As the recognition performance

for the verbs is obviously a lot worse than for nouns, we continue our analysis

on the nouns only.

Havard et al. (2019) reported a median P@10 of 0.8 on 80 nouns (from the

synthetic speech database MSCOCO), while our models achieve median P@10

scores of 0.6 and 0.5 on singular and plural nouns, respectively. Even though the

models recognise most nouns and even their plural forms (with only two words



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 103PDF page: 103PDF page: 103PDF page: 103

6 Modelling human word learning and recognition 103

Table 6.4: Estimated model effects for the word recognition GLMM and the re-
sults of Type III Wald χ2 tests. Plural, LSTM and speaker 1 are the
reference levels for Morphology, VQ and Speaker id respectively.

Effect Estimate Std. error χ2 p
Intercept −0.26 0.70 1.20 0.27
Speaking rate −2.03 0.91 4.98 0.03
Duration −0.88 0.60 2.14 0.14
Lemma count 1.98 0.70 7.97 0.005
Word count 0.33 0.40 0.69 0.41
#Vowels 1.33 1.35 0.98 0.32
#Consonants 2.06 0.81 6.46 0.01
VQ 0.02 0.04 0.34 0.56
Speaker id −0.37 0.25 2.13 0.14
Morphology −0.28 0.44 0.42 0.52

per model not being recognised at all), this indicates a large drop in recogni-

tion performance going from the synthetic speech dataset used by Havard et al.

(2019) to our natural speech. Note, however, that as Havard et al. used the

most frequent nouns for their dataset (MSCOCO), the target words do not fully

overlap with ours.

The results of the GLMM for the word recognition experiment are summarised

in Table 6.4. Speaking rate and number of consonants have a significant effect

on the VGS model’s word recognition performance. The positive coefficient of

the number of consonants indicates that words with more consonants are on

average recognised better. The negative coefficient for speaking rate indicates

that words are harder to recognise if they are spoken faster. Unsurprisingly,

lemma count also has a significant effect on word recognition: lemmas that

were seen more often during training are recognised better. The results further

confirm that plural and singular nouns are recognised equally well and that there

is no difference in recognition performance between the two speakers.

While overall these results show no difference in word recognition perfor-

mance between the LSTM-VQ and the LSTM models, it is notable that only LSTM-

VQ has a performance difference between singular and plural nouns. Similarly,

LSTM-VQ performs best on the participle verb form and worse on the third per-

son and root forms. Third person and root verbs are less frequent than partici-

ples, and plural nouns are less frequent than singulars. Hence, it may be the case

that the codebook simply learns to encode frequent words better, and struggles

with the less frequent word(form)s.
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Table 6.5: Estimated model effects for our post-hoc testing of interaction effects
and the results of Type III Wald χ2 tests. LSTM and speaker 1 are
the reference levels for VQ and Speaker id respectively. Plural and
Participle are the Morphology reference levels for the noun and verb
models respectively.
Effect Estimate Std. error χ2 p

Nouns
VQ 0.03 0.01 3.69 0.06
Word count:VQ 0.10 0.02 23.17 < 0.001
Morphology

Singular 1.34 0.86 2.45 0.12
Singular:VQ 0.12 0.02 38.42 < 0.001

Verbs
VQ -0.04 0.01 11.02 < 0.001
Word count:VQ 0.07 0.01 38.42 < 0.001
Morphology

Root −0.05 0.22
Third 0.46 0.33 6.85 0.03
Root:VQ −0.07 0.02
Third:VQ −0.002 0.02 30.86 < 0.001

To further investigate whether the VQ models recognises frequent words more

accurately, we performed a post-hoc test where we refit the word recognition

GLMM with an interaction between VQ and word count and between VQ and

morphology. We fit separate GLMMs on the noun and verb targets, the results

of which can be seen in Table 6.5. We find the expected interactions between

VQ and morphology where recognition on the less frequent word forms (plural,

third and root) is worse than on the more frequent forms (singular, participle)

for the VQ network. Furthermore, we also find positive interactions between

word count and VQ, further indicating that frequency of exposure has a greater

effect on the LSTM-VQ models than on the LSTM models.

6.3.2 Word competition

The results of the GLMM for the word competition experiment are summarised in

Table 6.6. Of the fixed effects of interest, neighbourhood density, gate number,

word-initial cohort size and number of consonants have significant effects on

word recognition performance. Furthermore, we found significant interaction

effects between word count and neighbourhood density, and between VQ and

gate number.
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Table 6.6: Estimated model effects for the gating GLMM and the results of Type
III Wald χ2 tests. Plural, LSTM and speaker 1 are the reference levels
for Morphology, VQ and Speaker id respectively.

Effect Estimate Std. error χ2 p
Intercept −0.66 0.24 7.30 0.007
Lemma count 0.87 0.20 18.1 < 0.001
Word count 0.06 0.14 0.17 0.68
#Vowels −0.08 0.29 0.07 0.79
#Consonants 0.57 0.21 7.39 0.007
Density 0.51 0.20 6.60 0.01
Gate 0.27 0.07 12.66 < 0.001
Initial cohort −0.98 0.20 23.0 < 0.001
Morphology 0.01 0.15 0.01 0.92
VQ 0.04 0.03 3.18 0.07
Speaker id −0.11 0.07 2.36 0.12
Lemma count:density 0.19 0.13 2.09 0.15
Word count:density −0.20 0.10 4.09 0.04
VQ:gate −0.016 0.005 11.61 < 0.001

As in the previous GLMM analysis, the number of consonants has a positive

effect. The gate number (number of phones processed so far) also has a positive

effect: unsurprisingly, the model is better able to recognise the target word as

more of the word has been presented. This effect is modulated by the presence

of VQ layers, where the negative coefficient indicates that the effect of gate is

slightly smaller in the LSTM-VQ than in the LSTM models. There is a significant

negative effect of word-initial cohort size. This means recognition performance

is lower the more candidates there are. While neighbourhood density has an

overall positive effect on word recognition, care should be taken in interpreting

this effect in light of the negative interaction with word count. The positive effect

would indicate that words with a higher neighbourhood density are recognised

better, however the interaction indicates this effect decreases with higher word

count and might become negative for the most frequent words.

6.3.3 Plurality

Using the plurality annotations of the visual referents for the noun target words,

we test whether the VGS models actually differentiate between singular and

plural nouns. That is, if we present it with a plural noun, does it return pictures

with multiple visual referents? For this we first select only those target words

which have both a plural and singular form. Then, we only keep those words
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Table 6.7: Confusion matrices for singular and plural nouns indicating how many
of the correctly retrieved images contained only one or multiple visual
referents to the target word.

Model #refs in
image

Noun morphology

LSTM singular plural
one 3048 (57%) 2940 (51%)
multiple 2281 (43%) 2881 (49%)

LSTM-VQ singular plural
one 2857 (56%) 2631 (49%)
multiple 2278 (44%) 2754 (51%)

which have at least ten images depicting a single visual referent and ten images

with multiple visual referents. So, in theory the VGS models can achieve a perfect

P@10 score on these words while also perfectly distinguishing between singular

and plural nouns. This results in a final target word set of 28 nouns.

Table 6.7 shows the confusion matrices for the LSTM and LSTM-VQ mod-

els, with numbers of single- versus multiple-referent images returned when the

model is presented with a singular versus plural target word. We see that both

VGS models, when presented with singular nouns, more often return images

with a single referent than with multiple referents. When presented with plu-

ral nouns, this difference decreases and, for LSTM-VQ, even reverses (LSTM:

χ2(1) = 49.8, p < 0.0001, N = 11150; LSTM-VQ: χ2(1) = 48.1,

p < 0.0001, N = 10520).

Recognition of plural nouns critically depends on the plural suffix, as this is

what indicates whether a target word is plural (although subtle prosodic cues

might also be at play, see Kemps et al. 2005). Figure 6.3 shows the P@10

scores from the gating experiment as a function of the gate number (number

of phones processed so far), averaged over words of the same length. Unsur-

prisingly, recognition scores tend to increase as more phones are processed. In-

terestingly, for the plural nouns, recognition scores tend to drop at the last phone

which, except for ‘men’ and ‘women’, is the plural suffix /z/ or /s/. The aver-

age P@10 value for plural target words drops from .517 to .479 between the

penultimate and final gate for the LSTM model and from .513 to .449 for the

LSTM-VQ model. It seems both VGS models have difficulty processing this suf-

fix, the LSTM-VQ model even more so than the LSTM model.

A possible explanation for the P@10 drop is that, although the plural suffix

causes the model to retrieve fewer images with single visual referents and more

images with multiple referents (see Table 6.7), the decrease in single-referent
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Figure 6.3: Recognition scores as a function of the gate number (the number of
phones processed so far). The solid lines represent averaged P@10
scores over words with an equal number of phones (the length and
colour of each line indicates the number of phones). The dotted and
dashed lines represent the naive and random baseline scores, respec-
tively.

Table 6.8: Confusion matrices for singular and plural nouns indicating how many
of the correctly retrieved images contained only one or multiple visual
referents to the target word. Here we show the counts at the penulti-
mate phone and (parenthesised) the increase or decrease after having
processed the final phone.

Model #refs in
image

Noun morphology

LSTM singular plural
one 2470 (578) 3339 (−399)
multiple 1851 (430) 2694 (187)

LSTM-VQ singular plural
one 2374 (483) 3171 (−540)
multiple 1704 (574) 2565 (189)

images is greater than the increase in multiple-referent images. Table 6.8 shows

the same confusion matrices as Table 6.7 but for the phone sequence up to the

penultimate gate instead of the full word. The numbers between brackets in-

dicate how the number of retrieved images changes upon processing the final

phone. In case of plural nouns, the plural suffix is missing at the penultimate

gate, so the model retrieves more images with a single referent, and fewer with
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multiple referents, than after also presenting the final phone. As can be seen in

Table 6.8, and as hypothesised above, processing the plural suffix causes a drop

in retrieval of single-referent images (−399) that is greater than the simultane-

ous increase in multiple-referent images (187), resulting in a drop in P@10 in

Figure 6.3.

6.4 Discussion

In this study we investigated the recognition of isolated nouns and verbs in a Vi-

sually Grounded Speech model. We were interested in whether visual grounding

allows the model to learn to recognise words as coherent linguistic units, even

though our model is trained on full sentences and at no point receives explicit

information about word boundaries or even that words exist at all. Havard et al.

(2019) used synthetic speech to test word recognition in their VGS model; we

used newly recorded real speech. We could have opted to extract the words from

spoken captions in the test set but this has a few disadvantages. Firstly, words

in a sentence context are often significantly reduced and reduced word forms

are hard to recognise in isolation even though they are perfectly recognisable

in their original sentence context (Ernestus et al., 2002). Secondly, due to co-

articulation, we would not really be testing for single-word recognition unless

the affected phones are removed, further reducing the word.

6.4.1 Word recognition

Our first goal was to investigate whether the VGS model can recognise words

in isolation after being trained on full utterances only. Our word recognition

results show that our VGS model is able to recognise isolated target nouns. We

have even shown that the LSTM model recognises both plural and singular nouns

equally well even though plurals occur less often in the training data than sin-

gulars. While our scores are lower than those reported by Havard et al. (2019),

some difference was to be expected when working on real as opposed to syn-

thetic speech. The average P@10 scores indicate that more than half of the top

10 retrieved images contain the visual referent and the models score well above

the baselines. In fact, only four words (two in the LSTM model and two in the

LSTM-VQ model) are not recognised at all, namely ‘river’ (in both models), ‘ball’

(LSTM) and ‘waves’ (LSTM-VQ). We saw that ‘river’ does return pictures of bod-

ies of water (e.g., lakes or the ocean), and indeed it can be hard to discern the
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difference between a lake and a river from a picture. The fact that ‘ball’ is not

recognised is a little baffling considering that ‘basketball’ has a P@10 score of

.8 and ‘football’ a score of .4 (and pictures of either are also annotated as just

‘ball’).

We also tested whether models are able to recognise verbs in root, third person

and participle form, the latter being the most common in the image descriptions.

But even when we look only at the scores on the participle form, recognition

scores for verbs are much lower than for nouns. In fact, most verbs are not

recognised at all, and only 11 (LSTM) or 12 (LSTM-VQ) verbs have P@10 scores

over .5. Looking at these words we see that many of them consistently occur

together with an object (e.g. ‘surfing’, ‘playing’, ‘skiing’, ‘holding’ and ‘racing’)

so the models might simply recognise the objects they co-occur with. This could

be explained by our use of image features from ResNet-152, a network trained

to recognise objects, not actions or body postures. However, it also recognises

‘running’, ‘walking’, ‘jumping’ and ‘smiling’, so the image features do seem to

contain more information than simply the presence of a human in the image.

Verb recognition in our model was far from good and this presents an interesting

avenue for further research. We think it is possible for the VGS model to also

learn to recognise actions, perhaps by fine-tuning parts of ResNet with the VGS

model or training the visual side of the model from scratch as done by Harwath

et al. (2020b).

6.4.2 Word competition

In our gating experiment, we investigated whether the model’s word recognition

is affected by word competition, as is the case in humans. The results show clear

evidence of word-competition effects in our model. There is a strong effect of

word-initial cohort size where recognition scores are lower when more words

are possible given the current input sequence. We also find a positive effect of

neighbourhood density that is modulated by a negative interaction with word

count. This means that the effect of neighbourhood density is higher for lower-

frequency words. This is in line with findings that, for humans, recognition of

low-frequency words is facilitated by dense neighbourhoods whereas recognition

of high-frequency words is facilitated by sparse neighbourhoods (Metsala, 1997;

Goh et al., 2009).

The positive effect of neighbourhood density is contrary to what we may ex-

pect if we assume more word competition (i.e. a denser neighborhood) makes

word recognition harder. Furthermore, given the strength of the interaction
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with word count, the neighbourhood density effect is only negative for highly

frequent words. (Metsala, 1997) gives a possible explanation for the interac-

tion between word count and neighbourhood density: during word learning,

dense neighbourhoods have a positive effect on word recognition because hear-

ing similar-sounding words facilitates learning. During word recognition, dense

neighbourhoods have a negative effect because similar-sounding words compete

for recognition. For infrequent words, the learning effect outweighs the compe-

tition effect, and vice versa. Our model may simply have been trained on too few

of the most frequent words for the competition effect to outweigh the learning

effect, explaining the overall positive effect of neighbourhood density. Together

with the strong effect of initial cohort size, we argue that we do indeed see

word-competition effects in our VGS model.

6.4.3 Plurality

We also investigated whether our VGS model learns the difference between sin-

gular and plural nouns. Our results show that not only is the model able to

recognise target nouns in both forms but, to a limited extent, it also learns to dif-

ferentiate between the two forms: when prompted with plural target nouns, the

model retrieves more images with multiple referents and fewer with single ref-

erents than when prompted with single nouns (see Table 6.7). Thus, the model

learns a meaningful difference between singular and plural nouns in terms of

their visual representations.

P@10 scores from our gating experiment showed that words are recognised

better when more of the word is processed. Yet, we also see that recognition

scores are well above the baselines before word offset, which means that the

model is able to recognise words from partial input. We take this to mean that

the model not only recognises words, but is also able to encode useful sub-lexical

information. However, at first glance, both models seemed to have trouble with

the plural suffix. As shown by the results of the gating experiment, before the

plural suffix recognition of plural target words is often more accurate than recog-

nition of singulars. However, at the final phone, recognition scores of plural

nouns drop and become equal or lower to that of singular nouns. While this

seems to be evidence against the encoding of useful sub-lexical information, our

results also show that presenting the model with plural nouns causes both mod-

els to retrieve more images with multiple visual referents and fewer images with

a single referent. This indicates that the model encodes the plural suffix in a way

that correctly affects recognition.
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Using the recognition results from the gating experiment, we found that it is

indeed only after the plural suffix that the distribution over single and multiple

referents in the retrieved images shifts. At the gate just before the plural suffix

(where the word is technically still singular), the model retrieves more single-

referent images and fewer multiple-referent images than after the plural suffix.

As previously said this is in contrast to human listeners, who are able to use subtle

prosodic cues to recognise plural nouns (Kemps et al., 2005). It is not surprising

that our current model, which is far from human performance in terms of word

learning and recognition, is not able to exploit such cues, but this is an interesting

avenue for further research.

Further analysis showed that after processing the plural suffix, the drop in

single-referent images is larger than the increase in multiple-referent images.

This may simply be caused by an imbalance in the test data; there are more anno-

tations of single visual referents (3,864) than multiple visual referents (2,203).

Further testing with a more balanced set of test images could show whether the

performance drop seen in our gating experiment is indeed due to correct recog-

nition of the plural suffix, as we would then expect the increase in retrieved

multiple-referent images to outweigh the decrease in retrieved single-referent

images.

6.4.4 Vector Quantisation

Our final research goal was to establish whether the addition of VQ layers to the

VGS model aids in the discovery and recognition of words. Previous research had

shown that VQ layers inserted into a VGS model learned a hierarchy of linguistic

units; a phoneme-like inventory in the first layer, and a word-like inventory in the

second layer (Harwath et al., 2020a). VQ layers discretise otherwise continuous

hidden representations by mapping neighbouring speech frames to the same

embedding in the codebook. We expected that this aids in the discovery of words

and perhaps even allows the LSTM-VQ model to recognise words earlier in the

gating experiment, as the model is forced to output discrete units from its word-

like VQ layer at every time step. Moreover, the codebook size (2048) is smaller

than the total number of unique words in Flickr8k so, if anything, one would

expect the model to prioritise highly frequent words, of which we took the top

50 as our targets.

In all of the experiments, however, we found no evidence of the VQ layers

aiding in the recognition of words: we showed that the LSTM-VQ model slightly

outperforms the LSTM model on the training task (image-caption retrieval) so it



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 112PDF page: 112PDF page: 112PDF page: 112

112 6 Modelling human word learning and recognition

cannot be the case that it is simply not a good VGS model. With regard to word

recognition performance, the LSTM-VQ model recognises singular nouns better

than the LSTM model, but it performs much worse at recognising plural nouns.

Also noticeable is a gap between singular versus plural noun recognition that is

not present in the LSTM model (when looking at the subset of words that have

both a plural and singular form).

Furthermore, both GLMMs showed no main effect of the presence of VQ layers

on recognition scores. We did find a negative interaction between VQ and gate

number, indicating that the effect of gate is smaller for the LSTM-VQ model

than for the LSTM model. Considering that final recognition performance is

similar between the two models, the smaller effect of gate means the LSTM-

VQ model performs better at early gates. That is, it recognises words earlier

than the LSTM model. Together, these results indicate that the addition of VQ

layers is neither beneficial nor detrimental to word recognition performance,

although the LSTM-VQ model requires less of the input sequence for correct

recognition. An interesting question for future research is which model performs

more ’human-like’, that is, which model recognises words closest to the point

where humans do.

Finally, we did a post-hoc test for the interaction between VQ and morphology

that shows the LSTM-VQ model has an advantage on the most frequent noun and

verb forms, but performs worse on the less frequent forms. Perhaps this is due

to the limited codebook size forcing the model to dedicate codes to the most

frequent words in the training data.

6.4.5 Limitations

In this study, we trained and tested a model on real speech, as opposed to syn-

thetic speech. As expected, overall recognition scores were lower than reported

on synthetic speech, as natural speech is known to be more challenging for cur-

rent models of speech recognition. However, the speech used in this study is

read aloud speech, which is itself cleaner than spontaneous speech. In the in-

terest of learning from data that is as natural as possible, spontaneous speech is

preferred as this is the type of speech humans are most exposed to.

Furthermore, while we have shown that our model is capable of recognising

words in isolation while only having seen those words in utterances, we selected

only a small number of words. The small number mainly results from selecting

only words with enough occurrences in the training data to reasonably expect

the model to be able to learn to recognise the word, and enough occurrences of
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their visual referents in the test images in order to evaluate the recognition per-

formance. On the other hand, given that the model was able to learn to recognise

the words in this study after relatively little exposure, it is not unreasonable to

expect the model to be able to learn more words if exposed to them.

Finally, our model depends on correlations between the speech signal and the

images in order to learn to recognise meaningful constituents in utterances. Fur-

thermore, our concept of ‘recognition’ of a word is defined as the retrieval of im-

ages containing its visual referent, limiting the model to ‘visible’ things, such as

object nouns and action verbs (and not even all of those). As our results showed,

the model especially struggles with verbs, even though we selected verbs with a

visual referent (the actions referred to were definitely ‘visible’ as we were able to

annotate their presence). As mentioned before, this may partly be due to the fact

that we use a pretrained object recognition network. However, it should be men-

tioned that the inter-annotator agreement for verbs was lower than for nouns,

so even for the annotators, it was harder to determine the presence of actions

than the presence of objects. We have argued here that visual information is an

important learning signal in learning language, however, still images are but a

single possible source of visual information. Actions can be partly defined by the

movements involved, and as such, video might be a more appropriate learning

signal.

6.5 Conclusion

We investigated whether VGS models learn to discover and recognise words from

natural speech. Our results show that our models learn to recognise nouns.

To a lesser extent, they are capable of recognising verbs but future research

should look into the image recognition side of the model to further improve

this. Our models even learned to encode meaningful sub-lexical information,

enabling it to interpret the visual difference signalled by the plural morphology.

Contrary to what we expected based on previous research, our results show no

evidence that vector quantisation aids in the discovery and recognition of words

in speech. Importantly, we investigated the cognitive plausibility of the model

by testing whether word competition influences our models’ word recognition

performance, as we know happens in humans. We have shown that two well-

known measures of word competition predict word recognition in our models

and found evidence in favour of a disputed interaction between word count and

neighbourhood density found in human word recognition.
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Taking inspiration from human learning processes, our research has shown

that using multiple streams of sensory information allows our model to discover

and recognise words without any prior linguistic information from a relatively

small dataset of scenes and spoken descriptions. Using realistic and naturally oc-

curring input is important for creating speech recognition models that are more

cognitively plausible, and visual grounding is an important step in that direc-

tion.



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 115PDF page: 115PDF page: 115PDF page: 115

7 | Human sentence processing: recurrence or

attention?

Recurrent neural networks (RNNs) have long been an architecture of interest

for computational models of human sentence processing. The recently intro-

duced Transformer architecture outperforms RNNs on many natural language

processing tasks but little is known about its ability to model human language

processing. We compare Transformer- and RNN-based language models’ ability

to account for measures of human reading effort. Our analysis shows Trans-

formers to outperform RNNs in explaining self-paced reading times and neural

activity during reading English sentences, challenging the widely held idea that

human sentence processing involves recurrent and immediate processing and

provides evidence for cue-based retrieval.

7.1 Introduction

Recurrent Neural Networks (RNNs) are widely used in psycholinguistics and

Natural Language Processing (NLP). Psycholinguists have looked to RNNs as

an architecture for modelling human sentence processing (for a recent review,

see Frank et al. 2019). RNNs have been used to account for the time it takes

humans to read the words of a text (Monsalve et al., 2012; Goodkind and Bick-

nell, 2018) and the size of the N400 event-related brain potential as measured

by electroencephalography (EEG) during reading (Frank et al., 2015; Rabovsky

et al., 2018; Brouwer et al., 2017; Schwartz and Mitchell, 2019).

Simple Recurrent Networks (SRNs; Elman 1990) have difficulties capturing

long-term patterns. Alternative RNN architectures have been proposed that ad-

dress this issue by adding gating mechanisms that control the flow of information

over time; allowing the networks to weigh old and new inputs and memorise or

forget information when appropriate. The best known of these are the Long

This chapter is based on: Danny Merkx and Stefan L. Frank. Human sentence processing:
recurrence or attention? In Proceedings of the Workshop on Cognitive Modeling and Computational
Linguistics, pages 12-22. ACL, 2021.
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Short-Term Memory (LSTM; Hochreiter and Schmidhuber 1997) and Gated Re-

current Unit (GRU; Cho et al. 2014) models.

In essence, all RNN types process sequential information by recurrence: each

new input is processed and combined with the current hidden state. While gated

RNNs achieved state-of-the-art results on NLP tasks such as translation, caption

generation and speech recognition (Bahdanau et al., 2015; Xu et al., 2015; Zeyer

et al., 2017; Michel and Neubig, 2018), a recent study comparing SRN, GRU

and LSTM models’ ability to predict human reading times and N400 amplitudes

found no significant differences (Aurnhammer and Frank, 2019).

Unlike the LSTM and GRU, the recently introduced Transformer architecture

is not simply an improved type of RNN because it does not use recurrence at all.

A Transformer cell as originally proposed by Vaswani et al. (2017) consists of

self-attention layers (Luong et al., 2015) followed by a linear feed forward layer.

In contrast to recurrent processing, self-attention layers are allowed to ‘attend’

to parts of previous input directly.

Although the Transformer has achieved state-of-the art results on several NLP

tasks (Devlin et al., 2019; Hayashi et al., 2019; Karita et al., 2019), not much is

known about how it fares as a model of human sentence processing. The success

of RNNs in explaining behavioural and neurophysiological data suggests that

something akin to recurrent processing is involved in human sentence process-

ing. In contrast, the attention operations’ direct access to past input, regardless

of temporal distance, seems cognitively implausible.

We compare how accurately the word surprisal estimates by Transformer- and

GRU-based language models (LMs) predict human processing effort as measured

by self-paced reading, eye tracking and EEG. The same human reading data was

used by Aurnhammer and Frank (2019) to compare RNN types. We believe

the introduction of the Transformer merits a similar comparison because the

differences between Transformers and RNNs are more fundamental than among

RNN types. All code used for the training of the neural networks and the analysis

is available at https://github.com/DannyMerkx/next_word_predictio
n

https://github.com/DannyMerkx/next_word_predictio
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7.2 Background

7.2.1 Human sentence processing

Why are some words more difficult to process than others? It has long been

known that more predictable words are generally read faster and are more likely

to be skipped than less predictable words (Ehrlich and Rayner, 1981). Pre-

dictability has been formalised as surprisal, which can be derived from LMs.

Neural network LMs are trained to predict the next word given all previous words

in the sequence. After training, the LM can assign a probability to a word: it has

an expectation of a word w at position t given the preceding words w1, ..., wt−1.

The word’s surprisal then equals − log P(wt |w1, ..., wt−1).
Hale (2001) and Levy (2008) related surprisal to human word processing ef-

fort in sentence comprehension. In psycholinguistics, reading times are com-

monly taken as a measure of word processing difficulty, and the positive corre-

lation between reading time and surprisal has been firmly established (Mitchell

et al., 2010; Monsalve et al., 2012; Smith and Levy, 2013). The N400, a brain po-

tential peaking around 400 ms after stimulus onset and associated with semantic

incongruity (Kutas and Hillyard, 1980), has been shown to correlate with word

surprisal in both EEG and MEG studies (Frank et al., 2015; Wehbe et al., 2014).

In this paper, we compare RNN and Transformer-based LMs on their ability

to predict reading time and N400 amplitude. Likewise, Aurnhammer and Frank

(2019) compared SRNs, LSTMs and GRUs on human reading data from three

psycholinguistic experiments. Despite the GRU and LSTM generally outperform-

ing the SRN on NLP tasks, they found no difference in how well the models’

surprisal predicted self-paced reading, eye-tracking and EEG data.

7.2.2 Comparing RNN and Transformer

According to Levy (2008), surprisal acts as a ‘causal bottleneck’ in the compre-

hension process, which implies that predictions of human processing difficulty

only depend on the model architecture through the estimated word probabilities.

Here we briefly highlight the difference in how RNNs and Transformers process

sequential information. The activation flow through the networks is represented

in Figure 7.1.1

1Note that the figure only shows how activation is propagated through time and across lay-
ers, not how specific architectures compute the hidden states (see Elman 1990; Hochreiter and
Schmidhuber 1997; Cho et al. 2014; Vaswani et al. 2017 for specifics on the SRN, LSTM, GRU
and Transformer, respectively).



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 118PDF page: 118PDF page: 118PDF page: 118

118 7 Human sentence processing: recurrence or attention?

Figure 7.1: Comparison of sequential information flow through the Transformer
and RNN, trained on next-word prediction.

In an RNN, incoming information is immediately processed and represented

as a hidden state. The next token in the sequence is again immediately processed

and combined with the previous hidden state to form a new hidden state. Across

layers, each time-step only sees the corresponding hidden state from the previ-

ous layer in addition to the hidden state of the previous time-step, so processing

is immediate and incremental. Information from previous time-steps is encoded

in the hidden state, which is limited in how much it can encode so decay of pre-

vious time-steps is implicit and difficult to avoid. In contrast, the Transformer’s

attention layer allows each input to directly receive information from all previous

time-steps.2 This basically unlimited memory is a major conceptual difference

with RNNs. Processing is not incremental over time: processing of word wt is

not dependent on hidden states H1 through Ht−1 but on the unprocessed in-

puts w1 through wt−1. Consequently, the Transformer cannot use implicit order

information, rather, explicit order information is added to the input.

However, a uni-directional Transformer can also use implicit order information

as long as it has multiple layers. Consider H1,3 in the first layer which is based on

w1, w2 and w3. Hidden state H1,3 does not depend on the order of the previous

inputs (any order will result in the same hidden state). However, H2,3 depends

on H1,1, H1,2 and H1,3. If the order of the inputs w1, w2, w3 is different, H1,3 will be

the same hidden state but H1,1 and H1,2 will not, resulting in a different hidden

state at H2,3.

Unlike Transformers, RNNs are inherently sequential, making them seemingly

more plausible as a cognitive model. Christiansen and Chater (2016) argue

2Language modelling is trivial if the model also receives information from future time-steps,
as is commonly allowed in Transformers. Our Transformer is thus uni-directional, which is
achieved by applying a simple mask to the input.
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for a ‘now-or-never’ bottleneck in language processing; incoming inputs need

to be rapidly recoded and passed on for further processing to prevent interfer-

ence from the rapidly incoming stream of new material. In line with this the-

ory, Futrell et al. (2020) proposed a model of lossy-context surprisal based on a

lossy representation of memory. Recurrent processing, where input is forgotten

as soon as it is processed and only available for subsequent processing through

a bounded-size hidden state, is more compatible with these theories than the

Transformer’s attention operation.

7.3 Methods

We train LMs with Transformer and GRU architectures and compare how well

their surprisal explains human behavioural and neural data. Although a state-of-

the-art pretrained model can achieve higher LM quality, we opt to train our own

models for several reasons. Firstly, the predictive power of surprisal increases

with language model quality (Goodkind and Bicknell, 2018), so to separate the

effects of LM quality from those of the architectural differences, the architectures

must be compared at equal LM capability. We also need to make sure both mod-

els have seen the same sentences. Training our own models gives us control over

training material, hyper-parameters and LM quality to make a fair comparison.

Perhaps most importantly, we test our models on previously collected human

sentence processing data. Most popular large-scale pretrained models use effi-

cient byte pair encodings (BPEs) as input rather than raw word tokens. This is

a useful technique for creating the best possible LM, but also a crucial mismatch

with how our test material was presented to the human subjects. It is not possi-

ble to directly compare the surprisal generated on BPEs to whole-word measures

such as gaze durations and reading times.

7.3.1 Language Model architectures

We first trained a GRU model using the same architecture as Aurnhammer and

Frank (2019): an embedding layer with 400 dimensions per word, a 500-unit

GRU layer, followed by a 400-unit linear layer with a tanh activation function,

and finally an output layer with log-softmax activation function. All LMs used in

this experiment use randomly initialised (i.e., not pretrained) embedding layers.

We implement the Transformer in PyTorch following Vaswani et al. (2017). To

minimise the differences between the LMs, we picked parameters for the Trans-
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former such that the total number of weights is as close as possible to the GRU

model. We also make sure the embedding layers for the models share the same

initial weights. The Transformer model has an embedding layer with 400 dimen-

sions per word, followed by a single Transformer layer with 8 attention heads

and a fully connected layer with 1024 units, and finally an output layer with log-

softmax activation function. The total number of parameters for our single-layer

GRU and Transformer models are 9,673,137 and 9,581,961 respectively.

We also train two-layer GRU and Transformer models. Neural networks tend

to increase in expressiveness with depth (Abnar et al., 2019; Giulianelli et al.,

2018) and a second layer allows the Transformer to use implicit order infor-

mation, as explained above. While results (see Section 7.4.2) showed that the

two-layer Transformer outperformed the single-layer Transformer in explaining

the human reading data, the Transformer did not further benefit from an in-

crease to four layers so we include only the single and two layer models. We did

not see a performance increase in the two-layer GRU over the the single-layer

GRU and therefore did not try to further increase its layer depth.

7.3.2 Language Model training

We train our LMs on Section 1 of the English Corpora from the Web (ENCOW

2014; Schäfer 2015), consisting of sentences randomly selected from the web.

We first exclude word tokens containing numerical values or punctuation other

than hyphens and apostrophes, and treat common contractions such as ‘don’t’

as a single token. Following Aurnhammer and Frank (2019) we then select the

10,000 most frequent word types from ENCOW. 134 word types from the test

data (see Section 7.3.3) that were not covered by these most frequent words are

added for a final vocabulary of 10,134 words. We select the sentences from EN-

COW that consist only of words in the vocabulary and limit the sentence length

to 39 tokens (the longest sentence in the test data). Our training data contains

5.9M sentences with a total of 85M tokens.

The LMs are trained on a standard next-word prediction task using cross-

entropy loss. In the Transformer, we apply a mask to the upper diagonal of

the attention matrix such that each position can only attend to itself and pre-

vious positions. To account for random effects of weight initialisation and data

presentation order we train eight LMs of each type and share the random seeds

between LM types so each random presentation order and embedding layer ini-

tialisation is present in both LM types. The LMs were trained for two epochs

using stochastic gradient descent with a momentum of 0.9. Initial learning rates



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 121PDF page: 121PDF page: 121PDF page: 121

7 Human sentence processing: recurrence or attention? 121

(0.02 for the GRU and 0.005 for the Transformer) were chosen such that the lan-

guage modelling performance of the GRU and Transformer models are as similar

as possible. The learning rate was halved after 1
3 , 2

3 , and all sentences during the

first epoch and then kept constant over the second epoch. LMs were trained on

minibatches of ten sentences.

7.3.3 Human reading data

We use the self paced reading (SPR, 54 participants) and eye-tracking (ET, 35

participants) data from Frank et al. (2013) and the EEG data (24 participants)

from Frank et al. (2015). In these experiments, participants read English sen-

tences from unpublished novels. In the SPR and EEG experiments, the partici-

pants were presented sentences one word at a time. In the SPR experiment the

reading was self paced while in the EEG experiment words had a fixed presen-

tation time. In the ET experiment, participants were shown full sentences while

an eye tracking device monitored which word was fixated. The SPR stimuli con-

sist of 361 sentences, with the EEG and ET stimuli being a subset of the 205

shortest SPR stimuli. The experimental measures representing processing effort

of a word are reading time for the SPR data (time between key presses), gaze

duration for the ET data (time a word is fixated before the first fixation on a

different word) and N400 amplitude for the EEG data (average amplitude at the

centroparietal electrodes between 300 and 500 ms after word onset; Frank et al.

2015).

We exclude from analysis sentence-initial and -final words, and words directly

followed by a comma. From the SPR and ET data we also exclude the word

following a comma, and words with a reading time under 50 ms or over 3500

ms. From the EEG data we exclude datapoints that were marked by Frank et al.

(2015) as containing artefacts. The numbers of data points for SPR, ET, and EEG

were 136,727, 33,001, and 32,417, respectively.

7.3.4 Analysis procedure

At 10 different points during training (1K, 3K, 10K, 30K, 100K, 300K, 1M, 3M

sentences and after the first and second epoch) we save each LM’s parameters

and estimate a surprisal value on each word of the 361 test sentences.
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Linear Mixed Effects Regression

Following Aurnhammer and Frank (2019), we analyse how well each set of sur-

prisal values predicts the human sentence processing data using linear mixed

effects regression (LMER) models with the MixedModels package in Julia (Bates

et al., 2019). For each dataset (SPR, ET, and EEG) we fit a baseline LMER model

which takes into account several factors known to influence processing effort.

The dependent variables for the SPR and ET models are log-transformed read-

ing time and gaze duration, respectively; for the EEG model it is the size of

the N400 response. All LMER models include log-transformed word frequency

(taken from SUBTLEXus; Brysbaert and New 2009), word length (in characters)

and the word’s position in the sentence as fixed effects.

Spill-over occurs when word processing is not yet completed when the next

word is read (Rayner, 1998). To account for spill-over in the SPR and ET data

we include the previous word’s frequency and length. For the SPR data, we

include the previous word’s reading time to account for the high correlation

between consecutive words’ reading times. For the EEG data, we include the

baseline activity (average amplitude in the 100 ms before word onset). All fixed

effects were standardised, and all LMER models include two-way interaction

effects between all fixed effects, by-subject and by-item (word token) random

intercepts, and by-subject random slopes for all fixed effects.

After fitting the baseline models, we include the surprisal values (for SPR and

ET also the previous word’s surprisal) as fixed effects, but no new interactions.

For each LMER model with surprisal, we calculate the log-likelihood ratio with

its corresponding baseline model, indicating the decrease in model deviance due

to adding the surprisal measures. The more the surprisal values decrease the

model deviance, the better they predict the human reading data. We call this log-

likelihood ratio the goodness-of-fit between the surprisal and the data. Surprisal

from the early stages of training often received a negative coefficient, contrary

to the expected longer reading times and higher N400 amplitude for higher sur-

prisal. This could be caused by collinearity, most likely between surprisal and

the log-frequency, which was confirmed by their very high correlation (> .9)

and Variance Inflation Factors (> 15) (Tomaschek et al., 2018). Apparently, the

neural networks are very sensitive to word frequency before they learn to pick

up on more complex relations in the data. We indicate affected goodness-of-fit

scores by adding a negative sign and excluded these scores from the next stage

of analysis.
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Generalised Additive Modelling

As said before, it is well known that surprisal values derived from better LMs

are a better fit to human reading data (Monsalve et al., 2012; Frank et al., 2015;

Goodkind and Bicknell, 2018). We use generalised additive modelling (GAM) to

assess whether the LMs differ in their ability to explain the human reading data

at equal language modelling capability, that is, because of their architectural dif-

ferences and not due to being a better LM. The log-likelihood ratios obtained

in the LMER analyses are a measure of how well each LM explains the human

reading data. We use each LM’s average log probability over the datapoints used

in the LMER analyses as a measure of the LM’s language modelling capability.

Separate GAMs are fit for each of the three datasets, using the R package mgcv

by Wood (2004). LM type (single-layer GRU, two-layer GRU, etc.) is used as

an unordered factor so that separate smooths are fit for each LM type. Further-

more, we add training repetition (i.e., the random training order and embedding

initialisation) as a random smooth effect.

7.4 Results

7.4.1 LM Quality and Goodness-of-Fit

Figure 7.2 shows the goodness-of-fit values from the LMER models and the

smooths fit by the GAMs. Overall we see the expected relationship where higher

LM quality results in higher goodness of fit. The LM quality increases monoton-

ically during training, meaning the clusters seen in the scatter-plots correspond

to the points during training where the network parameters were stored. The

models do seem to reach similar levels of LM quality at the end of training:

the average log probability of the best LM (two-layer Transformer) is only 0.17

higher than the worst LM (two-layer GRU).

7.4.2 GAM comparisons

The bottom row of Figure 7.2 shows the estimated differences between the GAM

curves in the middle row. The two-layer GRU does not seem to improve over the

single-layer GRU. It outperforms the single-layer GRU only in the early stages of

training on the EEG data, with the single-layer GRU outperforming it in the later

stages and on the SPR data. The two-layer GRU also reaches lower LM quality

on all datasets. For the Transformers we see the opposite, with the two-layer
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Figure 7.2: Top row: results of the linear mixed effects regression analy-
sis grouped by LM type. These scatter-plots show the resulting
goodness-of-fit values plotted against the average log-probability
over the included test data. Negative goodness-of-fit indicates effects
in the unexpected direction. Middle row: smooths resulting from the
GAMs fitted on the goodness-of-fit data (excluding negative values),
with their 95% confidence intervals. Bottom row: estimated differ-
ences in goodness-of-fit score. The markings on the x-axis and the
vertical lines indicate intervals where zero is not within the 95% con-
fidence interval. Each curve represents a comparison between two
models, with an estimated difference above zero meaning the first
model performed better and vice versa for differences below zero.

Transformer outperforming the single-layer Transformer on the N400 data at the

end of training and never being outperformed by its shallower counterpart. The

two-layer Transformer reaches a higher maximum LM quality on all datasets.
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For the comparison between architectures, we only compare the best model of

each type, i.e., the single-layer GRU and two-layer Transformer. The GRU out-

performs the Transformer in the early stages of training (3K-300K sentences) on

the N400 data, but the Transformer outperforms the GRU at the end of training

on both the SPR and N400 data. On the gaze duration data, there are some

performance differences with the Transformers and GRUs outperforming each

other at different points during training but there are no differences in the later

stages of training.

7.4.3 Shorter and longer sentences in SPR

The SPR data contains a subset of sentences longer (in number of characters)

than those in the EEG/ET data. As the Transformer has unlimited memory of

past inputs, the presence of longer sentences could explain why it outperformed

the GRU on the SPR data. We repeated the analysis of the single- and two-layer

GRUs and Transformers but only on those sentences from the SPR data that

also occurred in the EEG/ET data. On these shorter sentences, there are no no-

table performance differences between any of the LM architectures (Figure 7.3).

When we test on only those sentences that were not included in the EEG/ET

experiments (i.e., the longer sentences), the Transformers outperform the GRUs

as they did on the complete SPR dataset.

7.5 Discussion

We trained several language models based on Transformer and GRU architec-

tures to investigate how well these neural networks account for human reading

data. At equal LM quality, the Transformers generally outperform the GRUs. It

seems that their attention-based computation allows them to better fit the self-

paced reading and EEG data. This is an unexpected result, as we considered

the Transformer’s unlimited memory and access to past inputs implausible given

current theories on human language processing.

Notably, the Transformer outperformed the GRU on the two datasets where

sentences were presented to participants word by word (SPR and EEG). Neu-

rophysiological evidence suggests that natural (whole sentence) reading places

different demands on the reader than word-by-word reading, leading to different

encoding and reading strategies (Metzner et al., 2015). Metzner et al. speculate

that word-by-word reading places greater demand on working memory, leading
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Figure 7.3: Top row: the results of the linear mixed effects regression analysis
on the SPR data, where the data is split by whether the sentences
were present in the ET/EEG experiment or not. These scatter-plots
show the resulting goodness-of-fit values plotted against the average
surprisal over the included test data. Middle row: the smooths re-
sulting from the GAMs fitted on the goodness-of-fit data, with their
95% confidence intervals. Bottom row: the estimated differences in
goodness-of-fit score with intervals where 0 is not within the 95%
confidence interval marked by vertical lines and markers on the x-
axis. Each curve represents a comparison between two models, with
an estimated difference above zero meaning the first model per-
formed better and vice versa for differences below zero.

to faster retrieval of previously processed material. This seems to be supported

by our results; the Transformer has direct access to previous inputs and hidden

states and is better at explaining the RT and N400 data from the word-by-word



585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx585027-L-bw-Merkx
Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022Processed on: 1-11-2022 PDF page: 127PDF page: 127PDF page: 127PDF page: 127

7 Human sentence processing: recurrence or attention? 127

reading experiments. However, when we split the SPR data by sentence length,

the results suggest that the Transformer’s advantage is mainly due to perform-

ing better on the longer SPR sentences. On the other hand, the Transformer did

outperform the GRU on the EEG dataset which contains only the shorter subset

of sentences. The question remains whether the Transformer’s unlimited mem-

ory is an advantage on longer sentences only, or if it could also explain why it

performs better on data presented word-by-word. This question could be re-

solved with new data gathered in experiments where the same set of stimuli is

used in SPR and EEG. Furthermore, future research could do a more specific

error analysis to identify on which sentences the Transformer performs better,

and perhaps even on which sentences the GRU performs better. Such an analysis

may reveal the models are sensitive to certain linguistic properties allowing us

to form testable hypotheses.

Surprisingly, adding a GRU layer did not improve performance, and even hurt

it on reading time data, despite previous research showing that increasing layer

depth in RNNs allows them to capture more complex patterns in linguistic data

(Abnar et al., 2019; Giulianelli et al., 2018). The Transformers did show im-

provement when adding a second layer but did not improve much with four

layers. As explained in 7.2, a single-layer Transformer cannot make use of im-

plicit order information in the sequence. When adding a single layer to our

Transformer, the second layer operates no longer on raw input embeddings but

on contextualised hidden states allowing the model to utilise implicit input or-

der information. Further layers increase the complexity of the model but do

not make such a fundamental difference in how input is processed. In future

work we could investigate how powerful this implicit order information is, and

whether multi-layer Transformer LMs no longer require the additional explicit

order information.

Our results raise the question how good recurrent models are as models of hu-

man sentence processing if they are outperformed by a cognitively implausible

model. However, one could also interpret the results in favour of Transformers

(and the attention mechanism) being plausible as a cognitive model. While un-

limited working memory is certainly implausible, some argue that the capacity

of working memory is even smaller than often thought (only 2 or 3 items) and

that language processing depends on rapid direct-access retrieval of items from

storage (McElree, 1998; Lewis et al., 2006). Cue-based retrieval theory posits

that items are rapidly retrieved based on how well they match the cue (Parker

et al., 2017). This is compatible with the attention mechanism used in Trans-
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formers which, simply put, weighs previous inputs based on their similarity to

the current input. Cue-based retrieval models do have a recency bias due to

decaying activation of memory representations but it is possible to implement a

similar mechanism in Transformers (Peng et al., 2021).

Interestingly, Lewis et al. (2006) claim that serial order information is re-

trieved too slowly to support sentence comprehension. However, our two-layer

Transformer outperforms the single layer Transformer, presumably due to order

information implicitly arising as a natural result from the attention operation

being performed. The use of serial order information could be compatible with

cue-based retrieval models if the order information can naturally arise from the

retrieval operations.

In conclusion, we investigated how the Transformer architecture holds up as

a model of human sentence processing compared to the GRU. Our Transformer

LMs are better at explaining the EEG and SPR data which contradicts the widely

held idea that human sentence processing involves recurrent and immediate pro-

cessing with lossy retrieval of previous input and provides evidence for cue-based

retrieval in sentence processing.
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In this dissertation I presented a model that creates visually grounded linguistic

representations. I investigated two versions of the VGM: a text-based model

and a speech-based model. In this final chapter I summarise the results of the

studies presented in this dissertation, draw general conclusions about the VGM

as a model for learning linguistic representations and suggest avenues for future

research.

8.1 Summary of the results

8.1.1 Text model

In Chapter 2 I introduced my text-based implementation of the Visual Ground-

ing Model (VGM). The main goal was to investigate its viability as a cognitive

model because caption-image retrieval models had so far been used primarily

as NLP systems. I investigated whether the visually grounded sentence embed-

dings captured aspects of semantic sentence similarity without requiring prior

lexical knowledge in the form of pretrained word embeddings. I showed that

the distances between resulting sentence embeddings correlate well with hu-

man semantic similarity judgements. By using sentences from a wide range of

communicative domains, I showed that it generalises well to language that is

very different from the image descriptions my model is trained on. Importantly,

I compared the model to InferSent, at the time a state-of-the-art sentence em-

bedding model, and showed that the VGM performs on par with it and even

outperforms it on several sentence subsets. This indicates that the VGM learns

to create a semantic embedding space, and, unlike InferSent, does so without re-

quiring pretrained word embeddings. These results are a crucial first step to test-

ing the VGM’s viability as a cognitive model as 1) visual grounding seems helpful

in learning language, and 2) the model learns meaningful sentence representa-

tions without treating word learning as a separate and prior process, which I

argue is a more plausible order for learning language.
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After having shown that the model learns meaningful sentence representa-

tions from visual and textual input without requiring prior word-level know-

ledge, in Chapter 3 I investigated whether the model learns meaningful word

representations. Furthermore, while the results of Chapter 2 suggest that vi-

sual information is helpful to the model, the experiments in Chapter 3 were

specifically aimed at uncovering the contribution of the visual grounding to the

semantic knowledge captured in the word representations. I introduced changes

to the VGM and presented a method to create good quality word embeddings

from the model. Through two experiments using different types of human be-

havioural data I showed that the VGM can be used to create word representations

that reflect cognitive aspects of word meaning. Furthermore, by accounting for

the information captured by purely text-based methods, I showed that visual

grounding allows the model to capture information that is complementary to

what can be learned from text alone. In the experiment involving semantic sim-

ilarity judgements, I showed that the visually grounded embeddings can out-

perform text-based embeddings, and not just on databases concerning concrete

words that might be depicted in images. The results of the experiment involving

semantic priming data shows similar results, with the grounded embeddings hav-

ing more predictive value than the text-based embeddings. More importantly,

in both experiments I showed that the grounded embeddings explain a unique

portion of variance in the human behavioural data even after accounting for text-

based embeddings pretrained on billions of tokens of text. This study shows that

we cannot create representations that fully capture human word knowledge if

we ignore the wider range of human sensory experience.

8.1.2 Speech model

Having created a functioning text-based model and shown that it learns to cre-

ate meaningful word and sentence embeddings, I presented the speech-based

model in Chapter 4. The speech-based model is based on my own text-based

VGM and previous speech-based VGMs (e.g., Harwath and Glass 2015; Harwath

et al. 2016; Chrupała et al. 2017). I implemented several improvements to its

training and architecture that made it the top-performing model at the time.

These improvements concern combining and adapting several state-of-the-art

techniques from other types of deep learning models such as cyclical learning

rates, importance sampling and vectorial self-attention. An important differ-

ence with the text-based model is that the speech-based model embeds utter-

ances without explicit clues as to its constituent units (e.g., words). A probing
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experiment, where I trained simple classifiers to detect word presence in the

sentence embeddings, showed that word presence can be decoded from the sen-

tence embeddings. This shows that even though the model has no idea that

words even exist, it does encode word presence, showing that it finds mean-

ingful constituents in utterances. The results of this initial study show that the

model learns to create useful sentence-level embeddings, and also picks up on

the existence of meaningful sub-sentence units, two important prerequisites for

my further investigations.

In Chapter 5, I investigated whether the VGM learns to capture sentence se-

mantics. As no suitable evaluation data for this purpose existed, I collected spo-

ken versions of the sentences in the evaluation toolbox used in Chapter 2. The

results showed that the the speech-based model indeed learns to capture cog-

nitive aspects of sentence similarity. I furthermore investigated whether there

is more to creating good quality semantic embeddings besides database size.

Since starting this dissertation, several, increasingly larger, databases have been

released, and my best performing embedding model is trained on the smallest of

these datasets. In an experiment, I created five ‘new’ datasets using subsets of the

largest database (MSCOCO), where I vary the number of image descriptions per

image, while keeping the total number of image descriptions the same. I showed

that models with more descriptions per image perform better, even though the

total number of descriptions is the same (and the total number of images thus

lower), showing that paraphrases contain an important learning signal for the

model.

In Chapter 6 I showed that the VGM learns to recognise words presented in

isolation, even though the model has only been exposed to full sentences dur-

ing training. By collecting spoken nouns and verbs and new image annotations,

I showed that the model learns to recognise these words, as it is able to use

the embedded input words to retrieve images containing the objects and actions

these words refer to. Furthermore, the model’s word recognition performance

is influenced by word competition from the word-initial cohort and neighbour-

hood density, two competition effects known to influence human word recogni-

tion. This shows that the representations learned by the model encode phonetic

information. In an experiment, I showed that the embeddings encode informa-

tion which allows the model to differentiate between singular and plural nouns,

albeit not perfectly, showing that the model encodes a meaningful visual distinc-

tion between the two.
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8.1.3 Working memory in language processing

Lastly, in Chapter 7 I investigated the processing mechanisms involved in the

RNN and the recently introduced Transformer. I argued that the main difference

between these models is in the way they process and ‘remember’ previous inputs.

When used as cognitive models, these mechanisms are perhaps best understood

as representing the ‘working memory’ involved in language processing. The RNN

‘forgets’ input immediately after processing it and propagates past information

through a single, lossy representation of what has been seen so far, whereas the

Transformer has direct and lossless access to previous input. I analysed language

models based on both architectures and the results showed that the Transformer

best predicts human sentence processing effort as measured by reading times

and brain potentials. Even though, at face value, the Transformer’s process-

ing mechanism seems a cognitively implausible analogy to working memory, I

argued that it is actually quite compatible with cue-based theories of working

memory retrieval (Parker et al., 2017).

8.2 Overall conclusions

The results presented above show that the VGM is able to create representations

at the sentence and word levels that capture cognitive aspects of word and sen-

tence meaning. Importantly, the VGM is able to do so without using pretrained

word embeddings, and even encodes information that is complementary to such

pretrained embeddings from relatively little exposure to language. The speech-

based model goes even further, as it does not even receive the prior information

that words exist. It learns to create meaningful sentence embeddings while at the

same time learning to recognise words and encoding word-level semantics. The

results show that incorporating the visual modality into the learning process has

multiple benefits. Firstly, the VGM is able to exploit the correlations between the

spoken and visual inputs to identify patterns (i.e., words) in the speech signal.

Secondly, the model is able to incorporate visual information into its representa-

tions, capturing aspects of word meaning that purely text-based embeddings do

not. I showed for instance in Chapter 3 that the model learns information that

is complementary to word embeddings created from huge corpora and in Chap-

ter 6 I showed that the model learns the visual distinction between singular and

plural nouns.

Throughout this dissertation, I mentioned that my presentation of the VGM

as a cognitive model is inspired by two theories, namely the usage-based the-
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ory of language and the embodied cognition theory. I reiterate that the VGM is

not a full computational account of child language acquisition, usage-based lan-

guage theory or the embodied cognition theory. However, I tested here a model

that incorporates key aspects of these theories: from the usage-based theory of

language, the idea that the utterance is the basic unit of language, from which

smaller units follow through use and pattern finding; and from embodied cogni-

tion theory the idea that all our sensory experiences contribute to these linguistic

units.

So, what has the work in this dissertation taught us about these theories be-

sides converging evidence for their main tenets? As mentioned in the introduc-

tion, Tomasello considers pattern finding and intention reading the two most im-

portant cognitive skills that allow children to learn language (Tomasello, 2009).

Pattern finding amounts to learning to identify slots in utterances and learning

which utterance constituents can be ‘cut and pasted’ to create novel utterances

(Pine and Lieven, 1993; Tomasello, 2000). VGMs show that visual information

can play an important role in pattern finding, by exploiting the correlations be-

tween the spoken and visual input. Furthermore, joint visual attention between

parent and child might play an important role in child language acquisition as

shown for instance by the VGM work by Räsänen and Khorrami (2019). The

work presented here revealed an important connection between the usage-based

theory of language and embodied cognition theory. That is, the two most impor-

tant skills required for language learning, according to the usage-based theory,

might critically depend on the fact that human language processing utilises mul-

tiple sensory modalities.

8.3 Future work

In this dissertation I used a multi-modal model that combines vision with text or

speech. However, the VGM used in this dissertation is limited to learning from

still images, and descriptions thereof. While I showed that we can to a certain

extent learn language from this data, there is still much to gain in terms of the

‘naturalness’ of the data. One direction that research is already beginning to ex-

plore is using video rather than images, as for example by Palaskar et al. (2018)

and Nikolaus et al. (2022). In Chapter 6, I concluded that while the model is

capable of learning to recognise nouns, its recognition of verbs was bad enough

to not warrant further investigation in the following experiments. While some

actions (e.g., skateboarding) have strong visual correlates even in still images,
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an action is mostly defined by the movements involved. It makes sense that in

order to learn about actions, one needs to consider visual information that cap-

tures these movements. Furthermore, I considered here only read speech that

was recorded in relatively noiseless environments. More ‘natural’ unprepared ca-

sual speech sounds different from read speech, and research suggests we cannot

ignore these differences if we want to understand language processing (Tucker

and Ernestus, 2016).

Even though vision is probably the most important of our senses, the human

sensory experience is of course richer than that. What’s more, people are capa-

ble of learning language without vision, showing that our other senses do not

just complement vision, but can be sufficient to learn language. Furthermore,

according to embodied cognition theory, all our sensory experiences contribute

to meaning. In this dissertation, the auditory information stream consisted only

of linguistic input (spoken words). However, auditory information associated

with words entails more than just pronunciation. A dog barks, a fridge hums,

and one could say a tune is more defined by its sound than any of its other

properties. Kiela and Clark (2015) present a multi-modal learning model that

combines words with associated sounds, (e.g., ‘dog’ and barking), but this type

of multi-modal grounding has not received a lot of attention since. Other senses,

such as smell and taste, have received even less attention as a secondary source

of information in language learning models.

In the introduction I mentioned the intention to move away from the defini-

tion of linguistic units as ‘the things between spaces’ in alphabetic languages.

Indeed, one of the premises of the usage-based theory of language is that lin-

guistic units can be for instance multi-word expressions. Ironically, throughout

this thesis, I have still depended on the ‘the things between spaces’ definition of

words in the chapters concerning word representations. An important reason for

this is simply that the available evaluation datasets, such as the priming database

used in Chapter 3, all depend on this definition of a word as well. If you want

to test linguistic units that are not ‘the things between spaces’, you first need a

hypothesis about what these units are instead. So, there is a need for alternative

definitions and evaluation data to go with these. In a study of written language

processing, Yang et al. (2022) used the Less is Better (LiB) model (Yang et al.,

2020) to derive such hypotheses and validate them in an eye-tracking experi-

ment. Briefly put, the LiB model tries to find linguistic units in an unsupervised

manner by 1) trying to minimise the number of units in a text, while 2) trying

to minimise the number of unique tokens in the lexicon. This creates a trade-off
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between storing multi-word units and limiting the total number of units, where

multi-word expressions will only be stored in the lexicon if they are frequent

(e.g., treating entire sentences as single units reduces the number of units per

text, but results in a large amount of unique units in the lexicon). Importantly,

Yang et al. (2020) test the cognitive validity of these units, and show that the

units found by the LiB model better predict eye fixation during reading than the

words as defined as ‘the things between spaces’.

Furthermore, in this dissertation I offer a critical note on the trend in deep

learning to focus on larger models and larger datasets as a means of improving

models. Even if cognitive plausibility is not an issue (as in NLP applications), my

results show that by simply considering a different, complementary source of in-

formation, the model is able to do a lot with a little. Throughout this dissertation,

I mostly used Flickr8k, the first and smallest of the well known image-caption

databases, even though larger ones have been released since. In Chapters 2

and 5 I directly compared models trained on different databases and found that

the models trained on larger databases did not even perform that much better

if they performed better at all. Even still, the observation that bigger models

perform better is not that interesting and only serves to increase the start-up

costs of doing research. While others have moved on to bigger databases, there

is more to get out of Flickr8k and I think it is safe to say that such innovations,

unsurprisingly, generalise to bigger datasets as well. I hope the future trend in

deep learning will be the realisation that there are aspects that define a database

besides its size.

Lastly, in Chapter 7 I investigated the Transformer as a computational model

of human sentence processing. Since starting this dissertation, the Transformer

has caused quite a stir in the area of NLP and deep learning by breaking several

performance records. It has more recently also begun to gain some recognition in

the field of cognitive modelling. While I have tried to create a VGM implementa-

tion based on the Transformer, I could not get better results or even comparable

results to the models based on RNNs. Whether that is a problem with my im-

plementation or training settings remains to be seen, but the Transformer is an

obvious candidate for further improvements in the architecture of VGMs.

8.4 Closing remarks

While many computational linguistic models assume prior knowledge of linguis-

tic units, few models actually try to explain where these units come from and how
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they are learned. The representations learned by distributional semantics mod-

els, while useful, are cognitively implausible. In this dissertation, I argued that

in order to create better linguistic representations for cognitive models, we need

models that are informed by how humans learn language. Visually grounded

models of language learning take a step in this direction by 1) learning from

speech rather than text, as humans do, 2) considering the wider range of sensory

experiences humans have beyond linguistic exposure and 3) treating sentence

and word learning as a single end-to-end process rather than isolated consec-

utive processes. Furthermore, the fact that the VGM presented in this study

learns from relatively little linguistic exposure and is still competitive with and

complementary to models trained on databases far larger than any human can

read in their lifetime shows that learning language is about more than simply

the quantity of linguistic exposure.

This realisation is important for cognitive models and even for NLP appli-

cations. I believe that even though increasingly large training databases and

deeper, more complex neural networks might improve model performance for

now, the marginal benefits of adding a few billion more sentences or network

units will decrease without ever closing the gap between model and human per-

formance. In order to understand the human capacity for language, we need

to understand the linguistic representations involved. We should not forget that

human performance is still a golden standard in many machine learning tasks;

we need to create models of the mental lexicon that are informed by how hu-

mans learn language not just for the sake of being more cognitively plausible,

but because cognitively plausible linguistic representations will be better rep-

resentations. The human experience is rich and varied, and we need to look

beyond text data when trying to learn about language.
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Samenvatting

Hoewel bijna elk cognitief model van taalverwerking aanneemt dat mensen men-

tale representaties van woorden hebben, zijn er maar weinig modellen die verk-

laren waar die representaties vandaan komen. Makers van modellen gaan ervan

uit dat deze representaties er gewoon zijn, en gebruiken dan bijvoorbeeld zoge-

naamde woordvectoren die al door een ander model geleerd zijn. Hoewel deze

representaties hun nut veelvoudig bewezen hebben, zijn ze voor een cognitief

model niet heel erg plausibel; het leren van zulke woordvectoren is afhanke-

lijk van geschreven taal, en vergt meer data dan een mens ooit kan verwerken.

Kinderen leren hun moedertaal terwijl ze aan veel minder taal worden bloot-

gesteld dan onze computermodellen en bovendien leren ze om te praten en luis-

teren lang voordat ze kunnen lezen en schrijven. Centraal in dit proefschrift

staat het idee dat mensen dit kunnen omdat we informatie van al onze zintu-

igen gebruiken bij het leren, en dan met name ons zicht. Het doel van dit proef-

schrift was om meer cognitief plausibele taalrepresentaties te ontwikkelen, met

een model dat taal en visuele informatie combineert. Om dat doel te bereiken,

mocht het model geen voorkennis van taal meekrijgen, en moest het cognitief

plausibele hoeveelheden data gebruiken. Daarnaast werd er in de tweede helft

van het proefschrift geen tekstdata meer gebruikt, maar leert het model, net als

mensen, direct van spraak.

In Hoofdstuk 2 introduceerde ik het model. Dit model leert zinsrepresentaties

maken aan de hand van plaatjes met bijbehorende beschrijvingen. Ik onderzocht

hoe het model aspecten van zinssemantiek leerde encoderen in deze represen-

taties, en toonde aan dat de representaties correleren met menselijke intuïtie

over de gelijkheid in betekenis van zinsparen. Het model doet dit, anders dan

veel vergelijkbare modellen, zonder voorkennis over de betekenis van woorden

nodig te hebben. Het model behandelt het leren van woord- en zinsbetekenis dus

niet als twee aparte en opeenvolgende processen, wat een plausibelere manier

is om taal te leren.

De experimenten met menselijke gedragsdata in Hoofdstuk 3, toonden aan

dat het model gebruikt kan worden om woordrepresentaties te maken die correl-

eren met cognitieve aspecten van woordbetekenis. Cruciaal aan deze resultaten

was dat de combinatie van taal en visuele informatie een unieke deel van de vari-

antie in de gedragsdata verklaarde, bovenop wat er verklaart kon worden met

woordvectoren getraind op miljarden woorden aan geschreven tekst. Dit hoofd-

stuk laat zien dat de woordrepresentaties van onze modellen nooit de menselijke
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taalkennis kunnen benaderen zolang we niet kijken naar het hele scala van de

menselijke zintuiglijke ervaring.

In Hoofdstuk 4 presenteerde ik het model dat gebaseerd is op spraak. Het

spraakmodel leert van hele zinnen, en krijgt daarbij geen expliciete informatie

dat een zin uit meerdere betekenisvolle segmenten bestaat (zoals woorden).

Ook al krijgt het model geen informatie over het bestaan van woorden, de aan-

wezigheid van woorden kon wel uit de resulterende representaties gedecodeerd

worden. Dit experiment laat zien dat het model betekenisvolle segmenten in

zinnen leert coderen zonder expliciete supervisie.

In Hoofdstuk 5 onderzocht ik wat het spraakmodel leert over zinssemantiek.

Omdat hier nog geen beschikbare spraakdata voor bestond, heb ik deze eval-

uatiedata verzameld. De resultaten lieten zien dat de representaties van het

spraakmodel, net als eerder aangetoond voor het tekstmodel, correleren met

menselijke intuïtie over zinsbetekenis. In reactie op de recente trend in de

datawetenschap om modellen te verbeteren door telkens weer grotere databases

te gebruiken, heb ik onderzocht welke database eigenschappen, behalve de ho-

eveelheid data, nog meer belangrijk zijn voor het maken van goede semantis-

che representaties. De resultaten toonden aan dat modellen getraind op meer

beschrijvingen per plaatje beter presteren, ook al is het totale aantal beschrijvin-

gen gelijk (en het aantal plaatjes dus minder). Dit laat zien dat parafrasen een

belangrijk leersignaal voor het model vormen.

De experimenten in Hoofdstuk 6 toonden aan dat het spraakmodel woorden

leert herkennen, en dat de woordherkenning wordt beïnvloed door twee bek-

ende woordcompetitie-effecten die ook bij mensen de woordherkenning beïn-

vloeden. Verder toonde ik aan dat de woordrepresentaties onderscheid maken

tussen enkel- en meervoudige zelfstandige naamwoorden. Het model leert het

visuele verschil en laat bijvoorbeeld bij het horen van ‘hond’ plaatjes met een

enkele hond zien, en bij het horen van ‘honden’ plaatjes met meerdere honden.

Ten slotte heb ik in Hoofdstuk 7 de taalverwerkingsmechanismen van de

RNN en de recent geïntroduceerde Transformer vergeleken. Ik heb taalmodellen

gebaseerd op beide architecturen gebruikt om de leestijden en hersenpotentialen

van mensen tijdens het lezen van zinnen te voorspellen, en heb aangetoond dat

de Transformer dit het beste doet. Ondanks dat op het eerste gezicht het taalver-

werkingsmechanisme van de Transformer niet cognitief plausibel lijkt, betoog ik

dat het juist goed past in de ‘cue-based’ theorie van het menselijk werkgeheugen

(Parker et al., 2017).
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Concluderend heb ik in dit proefschrift een pleidooi gehouden voor cognitief

plausibele methoden om taalrepresentaties te creëren, door beter te kijken naar

hoe de mens taal leert. Modellen die taal en visuele informatie combineren

zetten een stap in de goede richting door 1) net als mensen te leren van spraak,

en niet van tekst, 2) het model bloot te stellen aan meer informatie dan slechts

taal, omdat bij mensen alle zintuigen bijdragen aan onze mentale representaties

en 3) het leren van zinnen en woorden in een geïntegreerd proces in plaats van

losse opeenvolgende processen. Ten slotte toont het feit dat het model getraind

is op relatief weinig data en toch vergelijkbaar presteert met modellen die meer

data nodig hebben dan een mens ooit kan verwerken aan dat het leren van taal

draait om meer dan slechts kwantiteit. Mensen hebben een rijke belevingswereld

en we moeten verder kijken dan slechts tekstdata om meer te leren over taal.
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Summary

While nearly all cognitive models of language processing assume that we have

mental representations of words, surprisingly few actually deal with where they

come from. Often, these representations are assumed given, for instance as pre-

trained word embeddings. While these representations have proven useful, they

are not cognitively plausible as creating high-quality embeddings requires more

data than any human can ever digest and is often dependent on text. Children

can learn language from relatively little linguistic exposure (compared to our

computational models) and learn to communicate long before they are able to

read. A central idea in this dissertation is that humans are able to do so because

all our sensory experiences are involved in learning language, most prominently

our visual experience. The goal of this dissertation was to create linguistic rep-

resentations in a more cognitively plausible way, using a model that combines

visual and linguistic information. I aimed to create high-quality representations

without any prior information, from cognitively plausible amounts and types of

data, the latter meaning that in the second half of the dissertation I focus on

learning directly from spoken input instead of text.

In Chapter 2 I introduced a model that learns to create sentence represen-

tations from images with corresponding captions. I investigated whether the

sentence representations captured aspects of semantic sentence similarity and

showed that they correlate well with human semantic similarity judgements.

The model learns meaningful sentence representations without requiring pre-

trained word embeddings and thus without treating word learning as a separate

and prior process, which I argue is a more plausible order for learning language.

In Chapter 3, experiments with human behavioural data showed that the

model can be used to create word representations that reflect cognitive aspects

of word meaning. More importantly, the experiments showed that by combining

linguistic and visual information, the model’s representations explain a unique

portion of variance in the human behavioural data even after accounting for text-

based embeddings pretrained on billions of tokens of text. This chapter shows

that we cannot create representations that fully capture human word knowledge

if we ignore the wider range of human sensory experience.

I presented the speech-based model in Chapter 4. An important difference

with the text-based model is that the speech-based model embeds utterances

without explicit clues as to its constituent units (e.g., words). A probing experi-

ment showed that word presence can be decoded from the sentence embeddings.

Even though the model has no idea that words even exist, it does encode word
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presence, showing that visual information can guide the model in finding mean-

ingful constituents in utterances.

In Chapter 5, I investigated whether the speech-based model learns to capture

sentence semantics. As no suitable evaluation data for this purpose existed, I col-

lected spoken evaluation data. The results showed that the speech-based model

indeed learns to capture cognitive aspects of sentence similarity. Responding

to the trend in deep learning research to use ever larger databases to improve

models, I investigated whether there is more to creating good-quality semantic

embeddings besides database size. I showed that models with more descriptions

per image perform better, even though the total number of descriptions is the

same (and the total number of images thus lower), showing that paraphrases

contain an important learning signal for the model.

In Chapter 6 I showed that the model learns to recognise words and that word

recognition performance is influenced by word competition from the word-initial

cohort and neighbourhood density, two competition effects known to influence

human word recognition. In an experiment, I showed that model encodes in-

formation which allows it to differentiate between singular and plural nouns,

albeit not perfectly, showing that the model encodes a meaningful visual distinc-

tion between the two.

Lastly, in Chapter 7 I investigated the processing mechanisms involved in

the RNN and the recently introduced Transformer. I analysed language mod-

els based on both architectures and the results showed that the Transformer

best predicts human sentence processing effort as measured by reading times

and brain potentials. Even though, at face value, the Transformer’s process-

ing mechanism seems a cognitively implausible analogy to working memory, I

argued that it is actually quite compatible with cue-based theories of working

memory retrieval (Parker et al., 2017).

Overall, in this dissertation I argued that in order to create better linguis-

tic representations for cognitive models, we need models that are informed by

how humans learn language. Models combining visual and linguistic informa-

tion take a step in this direction by 1) learning from speech rather than text,

as humans do, 2) considering the wider range of sensory experiences humans

have beyond linguistic exposure and 3) treating sentence and word learning as

a single end-to-end process rather than isolated consecutive processes. Further-

more, the fact that the model presented in this study learns from relatively little

linguistic exposure and is still competitive with, and complementary to, models

trained on databases far larger than any human can read in their lifetime shows
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that learning language is about more than simply the quantity of linguistic ex-

posure. The human experience is rich and varied, and we need to look beyond

text data when trying to learn about language.
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representation quality in a computational model of human spoken-word

recognition. In Proceedings of the Machine Learning in Speech and Language

Processing Workshop (MLSLP), pages 1-3, 2018.

• Odette Scharenborg, Laurent Besacier, Alan W. Black, Mark A. Hasegawa-

Johnson, Florian Metze, Graham Neubig, Sebastian Stüker, Pierre Godard,

Markus Müller, Lucas Ondel, Shruti Palaskar, Philip Arthur, Francesco Cian-

nella, Mingxing Du, Elin Larsen, Danny Merkx, Rachid Riad, Liming Wang

and Emmanuel Dupoux. Linguistic unit discovery from multi-modal in-

puts in unwritten languages: Summary of the “speaking rosetta” jsalt 2017

workshop. 2018 IEEE International Conference on Acoustics, Speech and Sig-

nal Processing (ICASSP), pages 4979–4983, 2018.
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Research data management

This section gives an overview of the data used and created for the purpose of

this dissertation.

Existing data

This section lists the existing databases I used, a url to where they can be found

(last checked 09-03-2022) or, if a url is not available, describes how I obtained

the data.

• Flickr8k: https://forms.illinois.edu/sec/1713398

• MSCOCO: https://cocodataset.org/#download

• Resnet-152: https://pytorch.org/hub/pytorch_vision_resnet/

• STS: http://ixa2.si.ehu.eus/stswiki/index.php/Main_Page

• SentEval: https://github.com/facebookresearch/SentEval

• Flickr8k audio captions: https://groups.csail.mit.edu/sls/dow
nloads/flickraudio/downloads.cgi

• Multi-lingual bottleneck features: https://github.com/lucasonde
l/multilingual-bottleneck-features

• ENCOW: https://www.webcorpora.org/register/

• SUBTLEX-US: https://www.ugent.be/pp/experimentele-psycho
logie/en/research/documents/subtlexus

• EEG, Eye-tracking and reading time data from (Frank et al., 2013, 2015):

requested from authors.

• Places205: http://places.csail.mit.edu/

• Places Audio: https://groups.csail.mit.edu/sls/downloads/p
lacesaudio/downloads.cgi

• SpokenCOCO: https://groups.csail.mit.edu/sls/downloads/p
lacesaudio/downloads.cgi

• Wordsim353: https://gabrilovich.com/resources/data/words
im353/wordsim353.html
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• SimLex999: https://fh295.github.io/simlex.html

• MEN: https://aclweb.org/aclwiki/MEN_Test_Collection_(St
ate_of_the_art)

• RareWords: https://nlp.stanford.edu/~lmthang/morphoNLM/

• Semantic Priming Project: https://www.montana.edu/attmemlab/
spp.html

• FastText vectors: https://fasttext.cc/docs/en/pretrained-vec
tors.html

• Google News Word2Vec vectors: https://code.google.com/archiv
e/p/word2vec/

• Glove 840B vectors: https://nlp.stanford.edu/projects/glove/

New data

This section lists the new data I created, how I dealt with privacy issues and

where the databases can be found. I collected a database called SpokenSTS

for Chapter 5 and a small collection of recorded nouns and verbs for the word

recognition experiments in Chapter 6

Overview

(SpokenSTS) I collected spoken data from 4 native English speakers. These

speakers were found through our network (colleagues and exchange interns).

This data-set consists of approximately 750 sentence pairs (1500 sentences)

taken at random (but balanced across STS subsets) from the Semantic Textual

Similarity database which are pronounced by the participants and recorded at

the CLS lab. The original recordings comprise of 11 recordings (1 per recording

session 2-3 recording sessions were required per participant) stored in the .wav

format. I have approximately 3 hours of recordings per participant. This is crit-

ical data concerning the recorded voices of participants. We do not store other

information about the participants except for the consent forms. An assistant

who annotated the raw data had secure access to the raw data.

I also created Text-to-Speech (TTS) versions of all the written STS sentences

using Google TTS in 6 different voices.
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(Word recognition stimuli) I collected spoken data from two native English

speakers. Finding such speakers locally was difficult due to the Covid situation

at the time, so I used my personal network to recruit two acquaintances in the

US who were willing to record the script.

The script concerned 100 nouns and 150 verbs. These come from Flickr8k,

selected as the most frequent words in their category. Recording the script takes

about 10 minutes. Participants were asked to record the script twice, as getting

back to them to re-record a few errors takes more time than simply having a

back-up recording. This resulted in four 10-minute recordings stored in .wav

format. This is critical data concerning the recorded voices of participants. I did

not store other information about the participants except for the consent forms.

I furthermore had an existing collection of images annotated for occurrence of

these words. The images to be annotated came from the Flickr8k database. This

data has no privacy risks or ethics involved. The assistants involved in annotating

this data had no access to the speech recordings.

Privacy

I list the types of data and the privacy concerns involved and then discuss how I

ensured that I did not collect more data than needed and protected the partici-

pants privacy as much as possible.

Data types Raw data: this data is critical and is the biggest potential privacy

risk. The scripts consisted of sentences and words that were read from a script

and are not associated with the participants feelings, opinions or preferences in

any way, but something they said to the experimenter during recording (e.g., ‘I

feel tired today’) might. This data should be kept safe and encrypted at all times

and does not need to be provided to others (i.e., our study can be reproduced

without the raw data). I did not require any questionnaires or information from

the participants other than on the consent forms.

Processed data: (SpokenSTS) segmented sentences (750 pairs × 4 partici-

pants = 6000 audio files) and information on which audio files form a pair and

a link to their ground truth semantic similarity rating. This data is also criti-

cal. The segmented sentences will be made available to other researchers as a

dataset for evaluating sentence embedding models.

(Word recognition stimuli) segmented words (250 words × 2 participants =
500 audio files). This data is also critical. The segmented words will be available

to other researchers as a dataset for evaluating multimodal speech recognition
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models. The collected image annotations consist of two Excel files, one for verbs

one for nouns. The files contain a row for each image and a column for each

word. The cells contain a marker if the word occurred in the image. This is

standard data and is not a privacy risk.

These audio files were further processed into MFCC features for the purpose of

modelling. These processed features need not be permanently stored and made

available (creation of said features is perfectly reproducible given parameter set-

tings and common/free software modules) and forms no privacy risk over and

above the audio data.

Analysed data: (SpokenSTS) the analysed data consists of the outcome of sta-

tistical tests which indicate the performance of the sentence embeddings models

such as correlation coefficients. (Word recognition stimuli) The analysed data

consisted of the outcome of statistical tests which indicate the performance of

the models such as recognition accuracy. These data need not be permanently

stored and made available (this can be perfectly reproduced using common/free

software modules). This is standard data.

Dealing with privacy concerns I required recorded sentences (SpokenSTS)

and words (Word recognition stimuli) which do not reflect participants’ feel-

ings, opinions or personal information. I dealt with these privacy concerns by

cleaning the raw data of anything but contents of the scripts such that the pro-

cessed data no longer contains information about the participant other than their

voice. The associated papers had to mention that the participants are adult

native speakers of English and balanced with 2 male and 2 female speakers (

SpokenSTS) and 1 male and 1 female speaker (Word recognition stimuli) to

establish the properties of the data (but I did not indicate which speakers are

male and female).

Given that the data concerns recordings of the participants voice, I cannot

make the data more anonymous than by processing it into segmented audio files

which are not linked to their name or traits nor contain their personal opin-

ions or feelings. Distorting the speech to make the voices unrecognisable would

render the data unusable for our purposes. So, inherently, the data cannot be

fully anonymous in the sense that their voice can be recognised. Participants

were informed of the privacy risks, such as that people who know them might

recognise their voice. The risk of third parties identifying the speaker or their

traits using speech technology is unlikely unless the speakers disclose recordings

of their voice in conjunction with personal information elsewhere. Participants
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were informed that identification of the speakers will not be supported by me

and is less likely to happen if they prevent sharing of recordings of their voice in

conjunction with personal information to a third party.

I did not collect any other information such as behaviour during recording or

questionnaires. I did not need to make notes during the recording that could

indicate the participants identity. The only other data collected were informed

consent forms, which are obviously not shared and only securely stored at Rad-

boud University for the purpose of scientific integrity.

Informed consent

I required informed consent from the participants. These forms are securely

stored at Radboud University and informed the participants about the following:

Participants are fully informed about our research goals. Participants are in-

formed that there are no foreseeable safety or discomfort risks but may still no-

tify us of any discomfort without risking their compensation. Participants are

informed that the data will be used in articles, and may be presented to others.

Participants are informed that the data concerns audio, but we will make it as

anonymous as possibly by not storing addition personal information in conjunc-

tion. Participants are informed that the data will be shared for replication or

further development of our embedding models. Furthermore participants are

made aware of what we see as the biggest privacy risk, namely speaker identifi-

cation. We inform them how they themselves can help mitigate this risk if they

so choose to. Participants are told they participate on a voluntary basis and may

retract participation and their data at any point during or up until 1 week after

making the recordings. Participants receive compensation for their participation

at a rate of 10 euros in gift cards an hour. Participants are given the necessary

information to contact me with questions about the study. Participants are told

they can contact the lab manager with complaints.

Ethics

(SpokenSTS) Concerning ethics, this study needed approval by the ethics com-

mittee. Ethics approval could not be given as the recording started before the

approval process. This error has been discussed by the committee and they de-

cided this was an incidental slip that merits no further consequences.

(Word recognition stimuli) Recordings were not made in the CLS lab and par-

ticipants were not recruited through SONA, so according to the rules of the Hu-

manities Ethics Committee, ethics approval was not required.
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Data security

(SpokenSTS) During all phases of the data collection and processing, the critical

data resided on Radboud University servers that make regular backups and are

protected by a user account and strong password.

(Word recognition stimuli) Due to the Covid situation at the time, participants

recorded the script remotely in a setting of their own choosing and on their own

hardware. This means that I had no control over the security of the data on

their platform. To aid the participants in keeping their data safe, I provided

them a way to transfer the data through a secure and encrypted cloud storage

and informed them as soon as I had stored the data on the secure Radboud

University servers so that they could delete the files from their own hardware.

Whether they have done so cannot be confirmed.

During all further phases of the data processing, the critical data resided on

Radboud University servers that make regular backups and are protected by a

user account and strong password.

Data sharing

(SpokenSTS) The processed speech recordings and the TTS data were published

as open access data in wav and flac format through DANS: https://doi.or
g/10.17026/dans-z48-3ev6

The shared data also includes instructions given to the annotator and speakers,

the recording script and descriptions of our collection and processing methods

and data structure. All data is also securely stored at Radboud University for the

purpose of scientific integrity.

Annotations and raw data are not shared and only securely stored at Radboud

University for the purpose of scientific integrity.

(Word recognition stimuli) The processed speech recordings (in wav and flac

format) and image annotations were published as open access data through

DANS (https://doi.org/10.17026/dans-22n-xh47).

The shared data also includes instructions given to the speakers, instructions

to the image annotators, the recording script and descriptions of our collection

and processing methods and data structure. All data is also securely stored at

Radboud University for the purpose of scientific integrity.

Raw speech data are not shared and only securely stored at Radboud Univer-

sity for the purpose of scientific integrity.
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Trained models

In all chapters of this dissertation, I trained PyTorch based deep learning mod-

els. These models have not been made publicly available, as I share the code that

can be used to reproduce all experiments. All trained models used for this dis-

sertation are securely stored at Radboud University for the purpose of scientific

integrity and will be shared upon request.

Code

All the code produced for this dissertation has been made publicly available. All

code is also securely stored at Radboud University for the purpose of scientific

integrity. Per chapter, there is a branch in the github repository containing the

code as it was at the time of submitting the associated paper. The links to these

repositories in order of the chapters are:

• https://github.com/DannyMerkx/caption2image

• https://github.com/DannyMerkx/speech2image/tree/CMCL20
22

• https://github.com/DannyMerkx/speech2image/tree/Inters
peech19

• https://github.com/DannyMerkx/speech2image/tree/Inters
peech21

• https://github.com/DannyMerkx/speech2image/tree/CogCom
p2022

• https://github.com/DannyMerkx/next_word_prediction

Papers

All papers associated with the chapters in this dissertation were published open

access and I provide links to the pdfs here. The LaTeX source code of all papers

are securely stored at the Radboud University.

• Learning semantic sentence representations from visually grounded lan-

guage without lexical knowledge. https://repository.ubn.ru.nl
/handle/2066/205977
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• Seeing the advantage: visually grounding word embeddings to better cap-

ture human semantic knowledge. https://aclanthology.org/2022.
cmcl-1.1.pdf

• Language learning using speech to image retrieval. https://reposito
ry.ubn.ru.nl/handle/2066/208191

• Semantic sentence similarity: size does not always matter. https://re
pository.ubn.ru.nl/handle/2066/235108

• Modelling human word learning and recognition using visually grounded

speech. https://arxiv.org/abs/2203.06937

• Human sentence processing: recurrence or attention? https://reposi
tory.ubn.ru.nl/handle/2066/235107
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