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Realizing a deep reinforcement learning
agent for real-time quantum feedback

Kevin Reuer 1,2 , Jonas Landgraf3,4, Thomas Fösel3,4, James O’Sullivan1,2,
Liberto Beltrán1,2, Abdulkadir Akin1,2, Graham J. Norris1,2, Ants Remm1,2,
Michael Kerschbaum1,2, Jean-Claude Besse 1,2, Florian Marquardt 3,4,
Andreas Wallraff 1,2 & Christopher Eichler 1,5

Realizing the full potential of quantum technologies requires precise real-time
control on time scales much shorter than the coherence time. Model-free
reinforcement learning promises to discover efficient feedback strategies
from scratch without relying on a description of the quantum system. How-
ever, developing and training a reinforcement learning agent able tooperate in
real-time using feedback has been an open challenge. Here, we have imple-
mented such an agent for a single qubit as a sub-microsecond-latency neural
network on afield-programmable gate array (FPGA).Wedemonstrate its use to
efficiently initialize a superconducting qubit and train the agent based solely
on measurements. Our work is a first step towards adoption of reinforcement
learning for the control of quantum devices and more generally any physical
device requiring low-latency feedback.

Executing algorithms on future quantum information processing
devices will rely on the ability to continuously monitor the device’s
state via quantum measurements and to act back on it, on timescales
much shorter than the coherence time, conditioned on prior
observations1,2. Such real-time feedback control of quantum systems,
which offers applications e.g. in qubit initialization3–6, gate
teleportation7,8 and quantum error correction9–11, typically relies on an
accurate model of the underlying system dynamics. With the increas-
ing number of constituent elements in quantum processors such
accurate models are in many cases not available. In other cases,
obtaining an accurate model will require significant theoretical and
experimental effort. Model-free reinforcement learning12 promises to
overcome such limitations by learning feedback-control strategies
without prior knowledge of the quantum system.

Reinforcement learning has had success in tasks ranging from
board games13 to robotics14. Reinforcement learning has only very
recently been started to be applied to complex physical systems, with
training performed either on simulations15–21 or directly in
experiments22–29, for example in laser22,25,29, particle23,24, soft-matter26

and quantum physics27,28. Specifically in the quantum domain, during
the past few years, a number of theoretical works have pointed out the
great promises of reinforcement learning for tasks covering state
preparation30–34, gate design35, error correction36–38, and circuit opti-
mization/compilation39,40, making it an important part of the machine
learning toolbox for quantum technologies41–43. In first applications to
quantum systems, reinforcement learning was experimentally
deployed, but training was mostly performed based on simulations,
specifically to optimize pulse sequences for the quantum control of
atoms and spins17,18,21. Beyond that, there are two pioneering works
demonstrating the training directly on experiments27,28 which was
used to optimize pulses for quantum gates27 and to accelerate the
tune-up of quantum dot devices28. However, none of these
experiments17,18,21,27,28 featured real-time quantum feedback. Real-time
quantum feedback is crucial for applications like fault-tolerant quan-
tum computing44. Realizing it using deep reinforcement learning in an
experiment has remained an important open challenge. Very recently,
a step into this direction was made in ref. 45, which demonstrates the
use of reinforcement learning for quantum error correction. In
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contrast to what we present in this paper, these experiments45 relied
on searching for the optimal parameters of a controller with fixed
structure.

Here, we realize a reinforcement learning agent that interacts with
a quantum system on a sub-microsecond timescale. This rapid
response time enables the use of the agent for real-time quantum
feedback control. We implement the agent using a low-latency neural
network architecture, which processes data concurrently with its
acquisition, on a field-programmable gate array (FPGA). As a proof of
concept, we train the agent using model-free reinforcement learning
to initialize a superconducting qubit into its ground state without
relying on a prior model of the quantum system. The training is per-
formeddirectly on the experiment, i.e., by acquiring experimental data
with updated neural network parameters in every training step. In
repeated cycles, the trained agent acquires measurement data, pro-
cesses it and applies pre-calibrated pulses to the qubit conditioned on
themeasurement outcomeuntil the agent terminates the initialization
process. We study the performance of the agent during training and
demonstrate convergence in less than three minutes wall clock time,
after training on less than 30,000 episodes. Furthermore, we explore
the strategies of the agent in more complex scenarios, i.e. when per-
forming weak measurements or when resetting a qutrit.

Results
Reinforcement learning for a qubit
In model-free reinforcement learning, an agent interacts with the
world around it, the so-called reinforcement learning environment
(Fig. 1). In repeated cycles, the agent receives observations s from the
environment and selects actions a according to its policy π and the
respective observation s. In the important class of policy-gradient
methods12, this policy is realized as a conditional probability distribu-
tion πθ(a∣s), which can be modeled as a neural network with para-
meters θ. To each sequence of observation-action pairs, called an
episode, one assigns a cumulative reward R. The goal of reinforcement
learning is to maximize the reward �R averaged over multiple episodes,
by updating the parameters θ e.g. via gradient ascent Δθ∼∇θ

�R12. Such
a policy-gradient procedure is able to discover an optimal policy even
without access to an explicit model of the dynamics of the reinforce-
ment learning environment.

In the present work, we use reinforcement learning to learn stra-
tegies for real-time control of quantum systems. Here, observations
are obtained via quantum measurements, actions are realized as uni-
tary gate operations, and the reward ismeasured in terms of the speed

and fidelity of initializing the quantum system into a target state, see
schematic in Fig. 1. In our experiment, the quantum system is realized
as a transmon qubit with ground g

�
�

�

, excited ej i, and second excited
state jf i dispersively coupled to a superconducting resonator46 (see
Supplementary Note 1 for details). We probe the qubit with a micro-
wave field, which scatters off the resonator and is amplified and digi-
tized to result in anobservation vector s = (I,Q),where I andQ are time
traces of the two quadrature components of the digitized signal47–49

(see Supplementary Note 2 for details and Supplementary Note 3 for
averaged time traces). Depending on s the agent selects, according to
its policy π, one of several discrete actions in real time. In the simplest
case, it either idles until the next measurement cycle, it performs a bit-
flip as a unitary swap between g

�
�

�

and ej i or it terminates the initi-
alization process.

To train the agent, we transfer batches of episodes to a personal
computer (PC) serving as a reinforcement learning trainer. The rein-
forcement learning trainer computes the associated reward for each
episode and updates the agent’s policy accordingly (see Supplemen-
tary Note 4 for details), before returning the updated network para-
meters θ to the FPGA.

Implementation of the real-time agent
We implement this scheme in an experimental setup, in which the
agent, for each episode, can performmultiple measurement cycles j,
in each of which it receives a qubit-state-dependent observation s j

and selects an action aj, until it terminates the episode, see Fig. 2a. If
the agent selects the bit-flip action, a π-pulse is applied to the qubit
after a total latency of τEL,tot = 451 ns, dominated by analog-to-digital
and digital-to-analog converter delays. The agent’s neural network
contributes only τNN = 48 ns to the total latency as it is evaluated
mostly during qubit readout and signal propagation (see Supple-
mentaryNote 2 for detaileddiscussion of the latency). To provide the
agent with a memory about past cycles we feed downsampled
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Fig. 1 | Concept of the experiment. A reinforcement learning (RL) agent, realized
as a neural network (NN, red) on a field-programmable gate array (FPGA), receives
observations s (Observ., blue trace) from a quantum system, which constitutes the
reinforcement learning environment. Here, the quantum system is realized as a
transmon qubit coupled to a readout resonator fabricated on a chip (see photo-
graph). The agent processes observations on sub-microsecond timescales to
decide in real time on the next action a applied to the quantum system. The update
of the agent’s parameters is performed by processing experimentally obtained
batches of observations and actions on a PC.

Fig. 2 | Schematic of neural-network-based real-time feedback control. aTiming
diagram of an experimentally realized reinforcement learning episode. In each
cycle j, the observation s j resulting from a measurement (Meas., blue) is con-
tinuously fed into a neural network (NN, red) which determines the next action aj

(green). The process is terminated after a number of cycles determined by the
agent. Then, a verification measurement is performed. b Schematic of the neural
network implemented on an FPGA. The neural network consists of fully connected
(red lines) layers of feed-forward neurons (red dots) and input neurons (blue dots
for observations, green dots for actions). The first layers form the preprocessing
network (yellow background). During the evaluation of the low-latency network
(blue background), newdata points from the signal trace s j are fed into the network
as they become available. The network outputs the action probabilities for the
three actions. Only the execution of the last layer (red background) contributes to
the overall latency.
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observations (s j−1, . . . , s j−l) and actions (a j−1, . . . , a j−l) from up to l = 2
previous cycles into the neural network. To characterize the perfor-
mance of the agent, we perform a verification measurement sver after
termination.

Any neural-network agent used for real-time system control
greatly benefits from short latencies in the signal processing. For our
FPGA implementation we therefore introduce a network architecture,
in which new measurement data is processed as soon as it becomes
available, thereby keeping latencies at a minimum. More specifically,
we sequentially feed elements I jk ,Q

j
k of the digitized time trace

s j = (Ij,Qj) into each layer of the neural network concurrent with its
evaluation, see Fig. 2b and Supplementary Note 5 for details. We have
also explored the use of the same type of neural network for quantum
state discrimination, in a supervised-learning setting50–52 (see Supple-
mentary Note 3).

Training with experimental data
We train the agent based on experimentally acquired episodes to
maximize the cumulative reward R = Vver/ΔV − nλ (see Supplementary
Note 4 for details). Here, Vver is the integrated observation in the final
verification measurement Vver =wssver with weights ws chosen to
maintain the maximal signal-to-noise ratio under Gaussian
noise49,50,53,54. Therefore, Vver/ΔV is a good indicator for the ground-
state population, with a normalization factor ΔV =wsðhsgi � hseiÞ set-
ting the scale. The second term penalizes each cycle by a constant λ.
For larger λ, trajectories requiring more cycles till termination will

achieve a lower reward. Consequently, the strategy minimizing the
averaged reward 〈R〉 for larger λ results in shorter trajectories, i.e. a
lower average number of cycles 〈n〉, while the initialization error 1 − Pg
is larger. Thus, λ controls the trade-off between short episode length
and high initialization fidelity. We note that for training and applying
the agent, we do not require the explicit functional forms of 〈n〉(λ) and
(1 − Pg)(λ), which in general depend on the properties of the quantum
system.

We first train the agent to initialize the qubit using fast, high-
fidelity readout. In this regime, an initialization strategy based on
weighted integration and thresholding is close-to-optimal, and we can
thus easily verify and benchmark the strategies discovered by the
agent. To study the agent’s learning process, we monitor the average
number of cycles 〈n〉 until termination and the initialization error
1 − Pg, inferred from a fit to the measured distribution of Vver (see
Supplementary Note 2 for details), see Fig. 3a, b. The agent learns how
to initialize the qubit for both prepared initial states, starting from
either the equilibrium state (red) or its counterpart with populations
inverted by a π-pulse (dark blue). The initialization error 1 − Pg con-
verges to about 0.2 % after training with only about 30,000 episodes,
which includes 100 parameter updates by the reinforcement learning
trainer on the PC. The training process takes only three minutes wall
clock time. This relatively short training duration, limited mainly by
data transfer between the PC and FPGA, enables frequent readjust-
ment of the neural network parameters and thus allows to account for
drifts in experimental parameters.

Fig. 3 | Experimental data for reinforcement learning with a network-based
real-time agent. a Initializationerror 1 − Pg andb averagenumber of cycles 〈n〉until
termination vs. number of training episodes NTrain, when preparing an equilibrium
state (red squares) and when inverting the population with a π-pulse (dark blue
circles) for three independent training runs (solid and transparent points). Each
datapoint is obtained from an independent validation data set with ~180,000 epi-
sodes. c Probability of choosing an action P(a) vs. the integrated measurement
signal V. Actions chosen by the threshold-based strategy are shown as background
colors (also for (e)).d Initialization error 1 − Pg vs. average numberof cycles 〈n〉until
termination for an equilibrium state for the reinforcement learning agent (red

circles) and the threshold-based strategy (black crosses). Stars indicate the stra-
tegies used for the experiments in (c) and (e). The dot-dashed black indicates the
thermal equilibrium (thermal eq.). Error bars indicate the standard deviation of the
fitted initialization error 1 − Pg. eHistogramof the integratedmeasurement signalV
for the initial equilibrium state (blue circles), for the verificationmeasurement (red
triangles) and for the measurement in which the agent terminates (green dia-
monds). Lines are bimodal Gaussian fits, from which we extract ground state
populations as shown in the inset. The dashed black line in (d) and (e) indicates the
rethermalization (retherm.) limit (see main text).

Article https://doi.org/10.1038/s41467-023-42901-3

Nature Communications |         (2023) 14:7138 3



Policy for strong measurements
After the training has been completed,we visualize the agent’s strategy
by plotting the action probabilities P(a) vs. V, see Fig. 3c. We compare
this strategy to a thresholding strategy, in which the action is chosen
based on the value of V only. We observe that the agent follows this
simple strategy in regimes of high certainty. In between, the transitions
of the individual probabilities are smooth. This is not due to some
deliberate randomization of action choices, but rather a sign that the
agent’s policy depends on additional information beyond the inte-
grated signal V shown here, as the agent has access to the full mea-
sured time trace.

To evaluate the agent’s performance we analyze the tradeoff
between initialization error 1 − Pg and average cycle number 〈n〉 as a
function of the control parameter λ, see Supplementary Note 4 for
details. As expected, we find that an increase in 〈n〉, controlled by
lowering λ, results in a gain of initialization fidelity until 1 − Pg con-
verges to about 0.18% (for 〈n〉 ≥ 1.1 cycles), about a tenfold reduction
compared to the equilibrium state, see Fig. 3d, e. We attribute the
remaining infidelity mostly to rethermalization of the qubit between
the termination and the verification cycle, and, possibly, state mixing
during the final verification readout. In our experiment, this rether-
malization rate is Neq/T1 ≈ 1 kHz withNeq = 1.4%, contributing ~0.07% to
the infidelity. As anticipated, the agent’s performance matches the
performance of simple, close-to-optimal, thresholding strategies,
where we vary the acceptance threshold to control the average cycle
number 〈n〉 (black crosses). This indicates that the strategies dis-
coveredby the agent are alsoclose tooptimal. In addition,we alsonote
that state transitions are rare, because the measurement time is sig-
nificantly shorter than the relaxation time τ≪ T1. Therefore, the ability
of the neural network to detect state transitions from the readout time
trace does not result in a significant change in performance in the
presented experiments. We have also studied the ability of the neural
network to distinguish different quantum states in dependence on the
measurement time τ (see Supplementary Note 3) for which we observe
pronounced improvements in performance when increasing τ.

Weak measurements and qutrit readout
The observations until this point demonstrate that our real-time agent
performs well and trains reliably on experimentally obtained rewards.
Next, we discuss regimes where good initialization strategies aremore
complex. As a first example, we investigate the agent’s strategy and
performance when only weakly measuring the qubit. We reduce the
power of the readout tone, while keeping its duration and frequency
unchanged, such that bimodal Gaussian distributions of a prepared
ground and excited state overlap by 25% (see Supplementary Note 2).
In this case, we find that the agent benefits from memory, if it is per-
mitted to access information from l previous cycles, see Fig. 4a.
Whenever the current measurement hints at the same state as the
previous measurement (upper right and lower left in each panel) the
agent gains certainty about the state and thus becomes more likely to
terminate the process (green region in the lower left corner) or swap
the g

�
�

�

and the ej i state (blue region in the upper right corner). As for
strong measurements, we find a trade-off between 〈n〉 and 1 − Pg when
varying λ, see Fig. 4b. Importantly, we observe that agents making use
of memory (l = 2, red circles) require fewer rounds 〈n〉 to reach a given
initialization error than agents without memory (l = 0, green triangles)
or a thresholding strategy (black crosses). In addition, we note that the
agent without memory (l = 0) needs slightly more rounds than the
thresholding strategy to reach a certain initialization error, although
both methods have an approximately equal amount of information
available. We have not investigated this effect in detail, but one pos-
sible explanation are decay and rethermalization rates varying during
the several days of acquisition time of the data.

In addition, we have studied the performance of the agent when
also considering the second excited state j f i, whichwe have neglected

so far. The j f i state is populated with a certain probability due to
undesired leakage out of the computational states g

�
�

�

and ej i during
single-qubit, two-qubit and readout operations54. Thus, schemeswhich
also reset j f i into g

�
�

�

are required. For this purpose, we enable the
agent to also swap j f i and g

�
�

�

states by adding a fourth action, and
train the agent on a qutrit mixed state with one third g

�
�

�

, ej i and j f i
population. For this qutrit system, state assignment typically processes
two different projections of the measurement trace V =wVsver and
W =wWsver, where wV and wW form an orthonormal set of weights.
Here, we use V and W to visualize the agent’s strategy. Whenever the
measurements firmly indicate that the qutrit is in some given state, the
agent proceedswith the corresponding action, while the agent’s policy
is more complex and harder to predict when measurements fall in-
between such clear outcomes, see Fig. 4c.

We find that an agent that can swap j f i to g
�
�

�

, in addition to the
other actions, efficiently resets the transmon from a qutrit mixed state
with an initialization error 1 − Pg ≈0.2% for an average number of cycles
〈n〉 ≈ 2 (blue squares), see Fig. 4d. In contrast, an agent which cannot
access the gf-flip action needs significantly more rounds till termina-
tion to reach a similar initialization error, as the agent needs to rely on
decay from the j f i level, which in our setup had a lifetime of T ðf Þ

1 = 6 μs.
For the agent that cannot access the gf-flip action, we also observe a
sudden increase in 〈n〉 from 2.2 to 3.4 when decreasing λ from 0.22 to
0.10. Above λ >0.1, the agent only resets the ej i level, as the loss in R
associated with the additionally required cycles would be larger than
the gain associated with the increase in initialization fidelity from
resetting the jf i level.

These examples demonstrate the versatility of the reinforcement
learning approach to discovering state initialization strategies under a
variety of circumstances.

Discussion
In conclusion, we have implemented a real-time neural-network agent
with a sub-microsecond latency enabled by a network design which
accepts data concurrently with its evaluation. The need for such
optimized real-time control will increase due to the ever more strin-
gent requirements on the fidelities of quantum processes as quantum
devices grow in size and complexity. We have successfully trained the
agent using reinforcement learning in a quantum experiment and
demonstrated its ability to adapt its strategy in different scenarios,
including those for which memory is beneficial. Our experiments are
an example of reinforcement learning of real-time feedback control on
a quantum platform.

While our experiments focused on the initialization of a single
qubit into its ground state, it turns out that a range of other con-
ceivable real-time quantum feedback tasks operating on a single
qubit are straightforward extensions of the demonstrated protocol.
Initialization into an arbitrary superposition state can be achieved by
realizing a suitable final unitary operation after qubit initialization.
Alternatively, one can perform allmeasurements in a suitably rotated
basis where the target state is one of the measurement basis states.
The weak measurement scenario which we explored could be
extended as well by measuring in different bases, slowly steering a
quantum state towards the desired target without immediate
projection.

There are a number of other possible scenarios for real-time
quantum feedback control on a single qubit which are less directly
related towhatwe have demonstrated in this work. For example, in the
qutrit scenario, one may realize a measurement which does not dis-
tinguish between two of the three qutrit states. Realizing such a
measurement would enable the detection of decay processes out of
that subspace and allow for a subsequent reset into the subspace. One
could also extend the presented work to settings in which the qubit is
driven, e.g., designing an agent to learn the stabilization of Rabi
oscillations, in the spirit of the approach discussed in ref. 55. Finally, in
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the future multi-qubit scenarios can be explored expanding on the
techniques presented in this paper.

Understanding the scaling of neural networks with the size of the
quantum system and overcoming hardware restrictions on FPGAs are
important steps towards applying these methods to larger systems.
Such advances will enable the discovery of new strategies for tasks like
quantum error correction36–38 and many-body feedback cooling31–34.

Data availability
The data supporting the findings of this letter and corresponding
Supplementary Information file havebeendeposited in the ETHZurich
repository for research data under https://doi.org/10.3929/ethz-b-
000637125.

Code availability
The code used for data analysis is available from the corresponding
authors upon request.
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