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ABSTRACT
Observed supermassive black holes in the early universe have several proposed formation channels, in part because most of
these channels are difficult to probe. One of the more promising channels, the direct collapse of a supermassive star, has several
possible probes including the explosion of a helium-core supermassive star triggered by a general relativistic instability. We
develop a straightforward method for evaluating the general relativistic radial instability without simplifying assumptions and
apply it to population III supermassive stars taken from a post Newtonian stellar evolution code. This method is more accurate
than previous determinations and it finds that the instability occurs earlier in the evolutionary life of the star. Using the results
of the stability analysis, we perform 1D general relativistic hydrodynamical simulations and we find two general relativistic
instability supernovae fueled by alpha capture reactions as well as several lower mass pulsations, analogous to the puslational
pair instability process. The mass range for the events (2.6-3.0 ×104 M�) is lower than had been suggested by previous works
(5.5 ×104M�) because the instability occurs earlier in the star’s evolution. The explosion may be visible to, among others, JWST,
while the discovery of the pulsations opens up additional possibilities for observation.
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1 INTRODUCTION

For much of the history of astronomy, the post recombination early
universe has been inaccessible to observation. While this state of
affairs still holds broadly, inroads are being made. Observers have
detected a star at redshift 6 (Welch et al. 2022), galaxies as early
as redshift 11 (Oesch et al. 2016), long gamma ray bursts (GRB)
at redshifts 8 and 9 (Tanvir et al. 2009; Cucchiara et al. 2011), and
quasars at redshifts 6 and 7 (Mortlock et al. 2011; Wu et al. 2015;
Bañados et al. 2018; Matsuoka et al. 2019; Wang et al. 2021). These
high redshift observations have greatly increased our knowledge of
the early universe, but they also raise questions— most notably,
where did the high redshift quasars and their supermassive black
hole (SMBH) engines come from?
Several theories have been put forward to explain the existence

of SMBHs so soon after the big bang (e.g. Rees 1984; Inayoshi
et al. 2020). These include, but are not limited to, the direct col-
lapse scenario (Bromm & Loeb 2003; Lodato & Natarajan 2006),
super-Eddington accretion onto solar mass black holes (Haiman &
Loeb 2001; Madau et al. 2014; Volonteri et al. 2015), runaway stellar
mergers in nuclear star clusters (Devecchi & Volonteri 2009; Katz
et al. 2015; Das et al. 2021), and rapid mergers of either primordial
(Bean &Magueĳo 2002) or astrophysical black holes (Omukai et al.
2008). Of these scenarios, the direct collapse scenario may be the
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easiest to test observationally; Population III (Pop III) stars are the
first generation of stars and because of the lack of metals in the pri-
mordial gas out of which they form, a small fraction of these stars
may be supermassive stars (SMS). These SMSs are potentially di-
rectly observable by JWST and, with the assistance of strong lensing,
by Euclid (Surace et al. 2018, 2019; Vikaeus et al. 2022). Some of
these Pop III SMSs may undergo a general relativistic instability su-
pernova (GRSN)(Chen et al. 2014; Nagele et al. 2020), and Whalen
et al. (2013c) and Moriya et al. (2021) have showed that the GRSN
should be visible to JWST (Gardner et al. 2006; Kalirai 2018), even
at high redshift. The GRSN may leave other observable imprints on
the proto-galaxy, specifically Pop III starbursts, metal enrichment
or X-ray emission from the remnant (Whalen et al. 2013a; Johnson
et al. 2013; Whalen et al. 2013b) . Pop III SMSs may also produce
GRBs (Sun et al. 2017) and gravitational waves (Shibata et al. 2016;
Li et al. 2018) visible to future detectors such as THESEUS (Am-
ati et al. 2018), LISA (Amaro-Seoane et al. 2017), and DECIGO
(Kawamura et al. 2011).
Primordial star formation in the early universe is commonly

thought to be disrupted in two scenarios. First, if a strong UV-Lyman
Werner background exists, H2 molecules will be photodissociated
and the the gas will have no way to cool below 104 K given the pri-
mordial composition and thus cannot fragment to form Pop III stars
(Dĳkstra et al. 2008; Agarwal et al. 2012; Latif et al. 2014b). Next,
supersonic baryon-dark matter streaming can prevent fragmentation
and thus Pop III star formation (Latif et al. 2014a; Schauer et al.
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2 C. Nagele et al.

2017; Hirano et al. 2017). In both of these scenarios, the gas does
not collapse until it reaches a mass of around 107 M� , after which
gravitational instability leads to the formation of a single object with
mass up to 105 M� (Wise & Abel 2008; Latif et al. 2013; Regan
et al. 2017).
Two subsequent scenarios are studied, the first assumes that accre-

tion onto the central protostar eventually terminates (e.g. from UV
feedback during a quiescent phase Sakurai et al. 2015), after which
the star enters the main sequence, and it is thus referred to as the
non accreting scenario (Fuller et al. 1986; Montero et al. 2012; Chen
et al. 2014; Nagele et al. 2020; Woods et al. 2020). The second,
where the protostellar accretion occurs at a constant rate, is known
as the accreting scenario (Hosokawa et al. 2012, 2013; Schleicher
et al. 2013; Umeda et al. 2016; Woods et al. 2017; Haemmerlé et al.
2018a). One subtlety is that if the early accretion occurs too rapidly,
hydrogen burning cannot ignite and the star will become rotationally
supported, eventually collapsing to a black hole (Shibata & Shapiro
2002). Even if the star does not become rotationally supported, it is
thought to rotate near the Ω − Γ limit (Haemmerlé et al. 2018b).
Considering the non accreting scenario, Chen et al. (2014) dis-

covered that for a small mass range around 55000 M� the general
relativstic instability (Chandrasekhar 1964) occurs when the SMS
has a large reserve of helium, and the subsequent collapse triggers
explosive helium burning which disrupts the star in a GRSN. Pre-
viously, we investigated this phenomenon using a post Newtonian
stellar evolution code (as in Chen et al. 2014) followed by a general
relativistic hydrodynamical code adapted from pair instability and
core collapse supernovae simulations (Nagele et al. 2020). We found
slightly different results from Chen et al. (2014), but did confirm that
a GRSN was possible. In Nagele et al. (2020), our main difficulty
had been determining when to connect the two codes. In this paper,
we perform a general relativistic stability analysis for a better deter-
mination, and using this we find a significantly altered mass range
for the GRSN.
This paper is organized as follows. In Sec. 2 we discuss the various

codes and methods of analysis as well as the numerical models. In
Sec. 3.1 we compare the results of the stability analysis to other meth-
ods. In Sec. 3.2 we present simulations of GRSNe using the results
of the stability analysis and compare the resulting ejecta to obser-
vations of metal poor stars. In Sec. 3.3, we discuss how this change
might effect the neutrino emission of collapsing SMSs. Finally, we
conclude with a discussion in Sec. 4.

2 METHODS

The GRSN occurs when a non accreting SMS experiences the gen-
eral relativstic (GR) instability during helium burning. The star then
contracts before rapidly burning a fraction of its helium and then
exploding.
Tomodel this phenomenon, we first evolve the star from just before

the onset of nuclear burning, using a stellar evolution code (Sec. 2.1).
At each timestep in the evolutionary calculation, we use a general
relativistic stability analysis to check if the star is stable (Sec. 2.2).
When the star becomes unstable according to the stability analysis,
we map the evolutionary model to a hydrodynamical code and follow
the evolution until the star collapses, explodes, or pulsates (Sec. 2.3).

2.1 Stellar Evolution

TheHOSHI code is a stellar evolution codewhich, in thiswork, solves
the hydrodynamical equations in post Newtonian (PN) gravity using a

Henyey type implicit method (Newton-Raphson method), taking the
density, entropy, radius, and luminosity as the independent variables
(Takahashi et al. 2016, 2018, 2019; Yoshida et al. 2019; Nagele et al.
2020). Although we describe HOSHI as a stellar evolution code (it
solves the stellar structure equations, including energy transport), the
code is able to follow hydrodynamical evolution to a degree, though
it does not include a shock capture scheme. This, along with the lack
of full GR, is why we require HYDnuc to model the GRSN. HOSHI
includes a nuclear reaction network (52 isotopes), neutrino cooling,
mass loss (though it is minimal for non rotating primordial stars),
and rotation. The equation of state includes contributions from pho-
tons, averaged nuclei, electrons, and positrons. We use the Rosseland
mean opacity of theOPAL project (Iglesias&Rogers 1996) and solve
the Saha equation to determine the ionization of hydrogen, helium,
carbon, nitrogen, and oxygen. Several effects of convection are mod-
eled including chemical mixing through diffusion in convective and
semi-convective regions. Finally, energy transfer due to convection
is treated according to 1D mixing length theory.
The star is initiated with Log 𝑇𝑐 < 7.7 in a high entropy state

relative to ZAMS and has a primordial composition except for deu-
terium which we have removed to avoid the proto-stellar burning
phase, which is not important for the evolution (see e.g. Hosokawa &
Omukai 2009). Because we initialize the star as a supermassive pro-
tostar, its structure is very nearly that of an 𝑛 = 3 polytrope. The star
will undergo a moderate period (∼ 1012 s) of contraction. The p-p
chain is insufficient to stop this contraction and so the star must reach
a central temperature around Log𝑇𝑐 = 8.2 at which point the triple al-
pha reaction produces enough carbon to ignite the CNO cycle, which
stabilizes the star. The star continues to be supported by the CNO
cycle until hydrogen is exhausted, at around one million years. The
star then contracts, with the central temperature increasing to Log
𝑇𝑐 = 8.5 before helium burning stabilizes the star. The stars in this
paper become unstable to the GR radial instability (Sec. 2.2) in late
hydrogen burning or in helium burning. Fig. 1 shows a Kippenhahn
diagram for the M=3×104M� model. At the beginning of hydrogen
burning, the star is nearly fully convective (diagonal hatches), though
towards the end of this period, a core and envelope form. The core
remains convective until the instability while the envelope has sev-
eral convective layers separated by areas of non convection (dots) or
semi-convection (crosses). Hydrogen shell burning proceeds in the
non convective layer just above the core. The onset of the instability is
sudden, as is the case with the pair instability, and is not precipitated
by major changes in the composition (see color-bar) as in the case
with core collapse.
HOSHI uses the first order PN approximation to the Tolman Op-

penheimer Volkoff (TOV) equation. However, unlike in Chen et al.
(2014); Nagele et al. (2020), we include the correction of energy to
density:

𝜌 = 𝜌0

(
1 + 𝜖

𝑐2

)
(1)

where 𝜌0 is the baryonic density and 𝜖 is the specific internal energy
in units of ergs g−1. We use the convention that the rest mass energy
due to the mass excess of isotopes is included in the internal energy.
𝜖/𝑐2 is between 0.01 and 0.001 throughout the star and its inclusion
is necessary to correctly model the SMS envelope. Fig. 2 shows the
results of the stellar evolution calculation compared to Nagele et al.
(2020).
Beyond correctly modeling the SMS envelope, the inclusion of

internal energy is necessary for consistency between HOSHI and
HYDnuc. If we only use the baryonic density when calculating the
TOV PN terms in HOSHI, then the O(1%) difference in the gravity
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Stability analysis of supermassive stars. 3

Figure 1. Kippenhahn diagram for the lowest mass model (2 × 104 M�). The color shows the log of the mean molecular weight. Diagonal hatches show
convective regions, dotted hatches show non convective regions, and cross hatches show semi-convective regions. Note that the time-step of HOSHI at this point
in the evolution is roughly 109 s.

Figure 2. Comparison of radial time snapshots for the 2 ×104 M� model in
the HOSHI code used in this work (dotted lines) and the one used in Nagele
et al. (2020) (dashed lines). The inclusion of internal energy to the GR density
when evaluating the PNTOV equation causes amore compact inner envelope,
while the outer envelope remains largely unchanged.

will perturb the star too strongly in HYDnuc, causing most models—
even some stable configurations— to collapse to black holes.
This work contains twenty supermassive stars with different

masses, where we have chosen those masses to be centered around
the explosion window. The explosion window is heavily dependent
on when the GR instability triggers, as an explosion is only possible
if the instability occurs during helium burning.

2.2 GR Stability Analysis

The question of when a SMS collapses due to the GR instability is
a challenging one because the collapse takes place on timescales far
smaller than the typical timestep of an evolutionary calculation. In
addition, the TOV equation lacks the dynamical GR terms which
make the collapse so rapid. It would likely require a relativistic
stellar evolution code to fully address the problem of SMS collapse.
In Nagele et al. (2020), we relied on the PN stellar evolution code to
determine when collapse would occur, and our results were in rough
agreement with those of Chen et al. (2014). In this work we perform
a stability analysis on the normal modes of radial perturbations of a
star in GR (Chandrasekhar 1964).
Consider an infinitesimal, radial, Lagrangian perturbation which

varies in time (𝑡) as 𝜉 ∝ 𝑒𝑖𝜔𝑡 for 𝜔2 ∈ R. In Newtonian gravity, this
perturbation obeys the equation (Shapiro & Teukolsky 1983)

d
d𝑟

[
Γ1
𝑃

𝑟2
d
d𝑟

(𝑟2𝜉)
]
− 4
𝑟

d𝑃
d𝑟
𝜉 + 𝜔2𝜌0𝜉 = 0 (2)

where 𝑃 is the pressure, 𝑟 is the radius, 𝜌0 is the baryonic density
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Figure 3. Numerical convergence of the stability analysis code for numerical
polytropes with spacing d𝜉 . These polytropes are evaluated at Γ1 = 4/3 for
the Newtonian analysis and Γ1 = 4/3 + 𝜅𝐺𝑀/(𝑟𝑐2) for the GR analysis
so that we should find 𝜔20 = 0. Thus, the y axis can be regarded as the
error associated with our method, and its amplitude decreases for increasing
numerical resolution. The number of mesh points in HOSHI is variable, but
is usually between 1000 and 2000, translating to somewhere on the left side
of this plot.

and Γ1 is the local adiabatic index at constant entropy (s):

Γ1 =
𝜕 ln 𝑃
𝜕 ln 𝜌0

����
𝑠

. (3)

Solving this differential equation for 𝜉 and 𝜔 is a Sturm–Liouville
eigenvalue problem. Finding any solution with 𝜔2 < 0 is a suffi-
cient condition for instability, as the motion of the perturbation will
be exponential. Sturm–Liouville equations have the property that a
sequence of solutions exist

𝜔20 < 𝜔
2
1 < 𝜔

2
2 < ... (4)

corresponding to 𝜉𝑖s where 𝑖 is the number of nodes in the per-
turbation. Because of the above property, a necessary condition for
instability is

𝜔20 < 0. (5)

The corresponding equation in GR is (Chandrasekhar 1964)

𝑒−2𝑎−𝑏
d
d𝑟

[
𝑒3𝑎+𝑏Γ1

𝑃

𝑟2
d
d𝑟

(𝑒−𝑎𝑟2𝜉)
]
−4
𝑟

d𝑃
d𝑟
𝜉+𝑒−2𝑎−2𝑏𝜔2 (𝑃+𝜌𝑐2)𝜉

−8𝜋𝐺
𝑐4

𝑒2𝑏𝑃(𝑃 + 𝜌𝑐2)𝜉 − 1
𝑃 + 𝜌𝑐2

(
d𝑃
d𝑟

)2
𝜉 = 0 (6)

where 𝑎, 𝑏 are the metric coefficients as in Haemmerlé (2021) and
the density is defined in Eq. 1.
In order to solve Eqs. 2,6 for 𝜔20, we adopt an iterative method

similar to that outlined in exercise 6.11 of Shapiro & Teukolsky
(1983) (for a detailed discussion, see Appendix A). For a given stellar
profile (𝑟, 𝑚𝑟 (𝑟), 𝜌(𝑟), 𝑃(𝑟)), we choose a value of 𝜔2 and integrate
Eq. 6 (or Eq. 2, the procedure is identical) to find 𝜖 . This is done
twice, once starting from the center and once starting from the stellar
surface. If the two solutions match at some test radius, then 𝜔2 is a
solution to Eq. 6. If not, we repeat the procedure, extrapolating new
values of 𝜔2 based on the Wronskian of the two solutions at the test

Figure 4. GR stability analysis (Sec. 2.2) applied to the results of the 3
×104 M� model in HOSHI. Upper panel — amplitude of the fundamental
mode frequency as a function of time for the General Relativistic (blue)
and Newtonian (red) analyses. Unstable models, having a negative value
of frequency squared, are denoted by filled circles while stable models are
denoted by crosses. Lower panel — Central mass fraction of various isotopes
as a function of time. The first instability occurs during helium burning.

radius. Once a solution is found, we check if it is the fundamental
mode by determining the number of nodes in 𝜉. If the number of
nodes is zero, we have found 𝜔20, and if it is not, we repeat the
procedure for a lower initial value of 𝜔2 (see Eq. 4).
In order to test our method, we construct numerical Lane-Emden

Polytropes. We check that the polytropes satisfy 𝜔2 = 0 at Γ1 = 4/3
in the Newtonian case and Γ1 = 4/3 + 𝜅 2𝐺𝑀

𝑅𝑐2
in the relativistic

case, where 𝑀 is the mass of the star, R the radius, and 𝜅 is a
constant determined numerically (Chandrasekhar 1964). Fig. 3 shows
the accuracy of these relations for increasing numerical resolution
of the polytropes. We also verify 𝜉0 ∝ 𝑟 for these values of Γ1, a
condition that should hold for all polytropes.
Once an unstable model is found in the stellar code (e.g. Fig. 4),

the calculation is mapped to the hydrodynamical code (HYDnuc,
Sec. 2.3). There, the star will either begin to collapse or stabilize due
to nuclear burning. It is important to note that the stability analysis
considers the stellar structure at a single moment, and cannot account
for the energy generated by nuclear burning.
Thus, from the start of the HYDnuc calculation, there is a competi-

tion between the growing perturbation of the unstable model and nu-
clear energy generation. For lowermassmodels (𝑀 ≤ 2.7×104 M�),
energy generation can sometimes stabilize the star. Fig. 5 shows the
stability analysis applied to a HYDnuc model which stabilizes (M
= 2 ×104 M� , first instability). The stability analysis assumes zero
velocity, so we cannot rely on it too heavily in a dynamical scenario,
but it can be illustrative. The model is initially unstable and begins

MNRAS 000, 1–15 (2022)
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Figure 5. Stability analysis performed on the results of the HYDnuc calcu-
lation for the first unstable model of 2 ×104 M� . Upper panel — stability
analysis. Lower panel — central temperature.

to contract; the star continues to contract, but the stability analysis
fluctuates between ’stability’ and ’instability’. Here, ’instability’ and
’stability’ refer towhether the contraction is growing exponentially or
not. In order for the star to become stable in the usual sense, nuclear
burning must increase to counteract the perturbation, which occurs
around 105 s. Afterwards, the temperature decreases and reaches a
new equilibrium which is higher than that of the initial model.
For the high mass models (and later time low mass models), the

perturbation overcomes the energy generation, and the SMS moves
onto a collapsing phase that triggers rapid alpha capture burning and
may lead to a GRSN.
If the result of the hydrodynamical code is that the star stabilizes (as

in Fig. 5), we map the next instability in the stellar code to HYDnuc
and repeat until a model either explodes, pulsates, or collapses. In
the case of e.g. 2 ×104 M� , the first such model has burned most of
its helium (Table 1).

2.3 Hydrodynamics

HYDnuc is a 1DGR implicit Lagrangian code (Takahashi et al. 2016,
2018, 2019; Yoshida et al. 2019; Nagele et al. 2020, 2021) based on
the nuRADHYD code (Yamada 1997; Sumiyoshi et al. 2005; Nagele
et al. 2021) which includes a Boltzmann solver for neutrino trans-
port not present in HYDnuc. HYDnuc uses a Roe-type approximate
linearized Riemann solver. The independent variables are density,
velocity, internal energy, entropy, electron fraction, radius, baryonic
mass, enthalpy, and the two components of the Misner Sharp met-

ric (Misner & Sharp 1964). Internal energy changes primarily via
energy generation from a nuclear network or cooling from thermal
neutrino reactions. The equation of state is the same as in HOSHI.
In order to transport a model from HOSHI to HYDnuc, we first

determine the radial values of the HYDnuc mesh according to the
frequency function in Appendix B of Takahashi et al. (2019). This
method is used to provide appropriate resolution to both the core and
envelope of the SMS. Other variables are then inferred using linear
radial interpolation of the log values of those variables, which we
have found is the most accurate method of ensuring the fidelity (as
a function of enclosed mass) of the remapping. Care must be taken
at this step so as not to introduce unphysical perturbations. This is
the same reason that we introduced the relativistic energy density to
HOSHI (Sec. 2.1). However, an unavoidable coordinate perturbation
due to numerical error will always be present when changing mesh
definitions, and this is a potential source of error in our simulation.
We continue the calculations for the explosions until there are con-

vergence problems due to poor spatial resolution in the outer regions
of the star. This typically occurs when the shock reaches 1015−16
cm. For the pulsations, a similar stopping condition is reached, but in
this case we excise the ejected material from the simulation and ver-
ify that the remaining material becomes hydrostatic. For the models
which collapse, we continue the calculation to a central temperature
of 1 MeV, at which point neutrino heating begins to play a role.
In order to set the numerical parameters for HYDnuc, we perform

several numerical convergence tests using the the explosion energy,
which is defined as the total energy when the shock reaches the
stellar surface. Fig. 6 shows the explosion energy as a function of
mesh point number, total isotope number, and V, the limit on the
maximum variation of the independent variables

V(𝑘) > maxi,j

�����xi (j, k − 1)xi (j, k)

�����±1 (7)

where 𝑥𝑖 is one of the independent variables of HYDnuc (Yamada
1997), j is the mesh point number, and k is the time-step. If the limit
in Eq. 7 is violated for a time-step k, that time-step is repeated with a
reduced value of dt. Thus, a smallerV will require more time-steps
which increases the time resolution of the simulation, making it more
physically accurate. The simulations with greater resolution tend to
reach slightly higher temperature, which correlates to an increase in
𝐸exp. In this paper, we useV = 10−5, a 61 isotope network, and 767
mesh points. The 61 isotope network includes the p-p chain, CNOand
hot CNO cycles, triple alpha, detailed alpha process until silicon, a
more basic alpha process up to nickel, and photodissociation of heavy
elements.
The explosion energy depends on V and mesh point number in

straightforwardways, but the dependence on isotope number requires
explanation. The main driver of the explosion is alpha capture reac-
tions, but not all of these reactions proceed at the same rate. In
particular, the carbon alpha capture rate is lower than the reactions
involving 20Ne and 24Mg; we use 1.5 × the rate of Caughlan &
Fowler (1988), but have verified that the explosion energy depends
very weakly on this reaction rate. O(10%) of the mass of the star
is carbon, and very little of this is burned via carbon alpha capture
on the timescale of the explosion. However, if nucleons are present,
catalysis enhances the carbon alpha capture rate with
12C(p, 𝛾)13N, 13N(𝛼, p)16O. (8)

In the networks with isotope number less than 61 (Fig. 11, left
panel), a reservoir of free nucleons is built up during the explosion
(Appendix B), and these then serve as the catalyst for carbon burning.

MNRAS 000, 1–15 (2022)



6 C. Nagele et al.

Figure 6. Numerical convergence of explosion energy for three parameters of HYDnuc for the 3 ×104 M� model. Left panel — dependence on V (Eq. 7) with
total mesh point number = 255 and isotope number = 52. Middle panel — dependence on number of isotopes in the nuclear network (52, 58, 61, 79, 89, 153,
300; see Appendix B, Table 4) with total mesh point number = 255 and V = 5 × 10−4. Right panel — dependence of explosion energy on number of mesh
points, with V = 5 × 10−4 and isotope number = 52.

In the networks with higher isotope numbers, however, the nucleons
are absorbed in reactions such as
24Mg(p, 𝛾)25Al. (9)

Indeed, aluminium is of particular importance (Fig. 11, right panel)
because the inclusion of its isotopes is the only difference between
the 58 isotope network and the 61 isotope network, and from Fig. 6,
we can see that this is the isotope number where the explosion energy
converges. Appendix B contains a steady state calculation verifying
this explanation.
Usually, the inclusion of a larger network increases the nuclear

energy generation, but in this case, a threshold number of elements
is required to properly follow the nucleonic reactions. Nagele et al.
(2020) used a 49 isotope network and Chen et al. (2014) used a 19
isotope network, so it is possible that the explosion energies found in
those works are overestimated. In this work, the maximum explosion
energy is a factor of 3-4 smaller than in the previous works. One
reason for this is that the lower mass means there is less fusion
material, but the effect of the nuclear network also plays a role. For
a more detailed discussion of how this work compares to previous
ones, see Sec. 4.

3 RESULTS

The primary advantage of this paper is the GR stability analysis, so
before discussing applications, we will compare this analysis to two
previous methods.

3.1 Comparison to previous works

First, and most common in the literature (e.g. Fuller et al. 1986;
Umeda et al. 2016; Woods et al. 2017) is the polytropic criterion.
SMSs have high entropy and are supported mostly by radiation pres-
sure and this invites analytic approximations. In particular, it is often
assumed that the SMS core is very nearly an 𝑛 = 3 polytrope.

Figure 7. Illustration of the polytropic criterion for the models in this paper.
Upper panel—mass of the helium core fromHOSHI, determined by themass
outside which X(1H) > 1e-5. Middle panel — critical density (Sec. 3.1) of a
pure helium core with the mass from the top panel. Lower panel — central
density of the HOSHI models at the maximum central helium mass fraction.
A comparison of the middle and lower panels shows that these models are
not yet unstable according to the polytropic criterion.

The explosion in the next section involves explosive helium burn-
ing, so we will calculate the instability condition for a polytrope
consisting of pure helium, as a function of the mass of the helium
core (𝑀He) which is taken from the stellar evolution calculation.
Once the mass of the helium core is known, the radiation entropy
may be approximated as 𝑠𝑟 ∝ 𝑀

1/2
He (Shapiro & Teukolsky 1983).

From here, the polytropic constant is determined

𝐾 =
𝑎

3

(
3𝑠𝑟
4𝑚𝑝𝑎

)4/3
. (10)

Next, we calculate the outer radius at which the star will be unstable,
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Stability analysis of supermassive stars. 7

Table 1. Summary table for all models. The columns are total mass, outcome of HYDnuc, mass of the isentropic core, central helium mass fraction at the start
of HYDnuc, change in helium mass fraction, explosion energy, maximum central temperature, and maximum velocity of the outermost mesh point, denoted 𝑣𝑅 .

M [104 M�] Outcome 𝑀core [M�] 𝑋c (4He) Δ 𝑋c (4He) 𝐸exp [ergs] max 𝑇c [K] max 𝑣𝑅 /c

2 Collapse 10926 1.37e-3 — — — —
2.1 Collapse 11368 2.23e-4 — — — —
2.2 Collapse 11729 1.22e-4 — — — —
2.3 Collapse 12595 3.17e-2 — — — —
2.4 Collapse 13180 3.44e-18 — — — —
2.5 Collapse 13798 2.69e-3 — — — —
2.6 Pulsation 14772 0.104 0.104 4.32e53 7.58e8 0.032
2.7 Pulsation 14964 0.222 0.147 4.70e52 6.62e8 0.021
2.8 Collapse 15596 0.713 — — — —
2.9 Pulsation 16183 0.589 0.153 7.56e53 7.33e8 0.041
2.95 Explosion 16504 0.599 0.168 1.23e54 7.69e8 0.046
3 Explosion 16817 0.652 0.152 1.43e54 8.06e8 0.048
3.05 Collapse 17144 0.734 — — — —
3.1 Collapse 17516 0.794 — — — —
3.15 Collapse 17793 0.815 — — — —
3.2 Collapse 18091 0.815 — — — —
3.3 Collapse 18888 1.000 — — — —
3.4 Collapse 19460 1.000 — — — —
3.5 Collapse 19933 0.950 — — — —
4 Collapse 23891 0.960 — — — —

Table 2.Mass ejecta by isotope for the explosions and the pulsations. Except for the first column which is consistent with Table 1, values are recorded in units
of M� . Yield tables for the explosions are available online.

M [104 M�] Mej M(1H) M(4He) M(12C) M(16O) M(20Ne) M(24Mg) M(28Si) M(32S)

2.6 2808 1877 974 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
2.7 2299 1584 759 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
2.9 2078 1465 651 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
2.95 29500 5441 16946 3006 2505 481 812 306 1.2
3 30000 5537 18077 2986 1829 367 702 497 5.1

Figure 8. Comparison of the first instability reached by two methods, Sec.
2.2 and that of Haemmerlé (2021). Note that the values in this figure differ
from Table 1 for lower masses because the first instability does not always
collapse in HYDnuc (Sec. 2.2).

𝑅crit by setting the SMS Γ equal to the general relativistic Γ1,

4
3
+ 𝛽

6
+ O(𝛽2) = 4

3
+ 2𝐺𝑀He𝜅

𝑅crit𝑐2
(11)

where 𝛽 ≈ 4.3/𝜇(𝑀/M�)−1/2 is the ratio of the gas pressure to
total pressure, and 𝜅 = 2.249 for 𝑛 = 3 (this form of 𝜅 differs from
Chandrasekhar (1964) by a factor of 2). Eq. 11 can be solved for 𝑅crit
as a function of 𝑀He, so that we finally arrive at an expression for
the critical density (Shapiro & Teukolsky 1983)

𝜌crit =

[
𝑅crit
𝜉1

(
𝐾

𝜋𝐺

)−1/2]−3
∝ 𝑀

−7/2
He (12)

as a function of 𝑀He, where 𝜉1 = 6.897 is determined numerically.
Thus, we have an expression for the critical density of a purely

helium SMS core as a function of 𝑀He. By construction, the SMS
models in this paper are near to this point according to the GR
stability analysis from Sec. 2.2. Fig. 7 shows that, for these models,
the central density when the star is pure helium is more than an order
of magnitude below the critical density. So, the polytropic criterion
underestimates the GR instability in comparison to Sec. 2.2.
Next we compare our method to the results of Haemmerlé (2021),

who also evaluate Eq. 6, though they make the simplifying assump-
tion 𝜉 ∝ 𝑟. This assumption is valid for polytropic stars and possibly
for higher mass hydrogen SMSs, but for our models, the perturbation
is not always proportional to the radius (see Appendix A).
Fig. 8 shows the helium mass fraction at the first instability —

that is, the first model in the HOSHI calculation which is unstable
— determined by either method. The central helium mass faction for
an explosion or pulsation is roughly 0.1 < 𝑋c (4He) < 0.7, c.f. Table
1. Our method uses a necessary condition for instability while the
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Figure 9. Left panel — local energy as a function of mass coordinate for the 2.6 ×104 M� model (pulsation). The ejection criterion is 𝑒tot > 0 for all
𝑚𝑟 > M−Mej at the time of shock breakout. Right panel — illustration of the stability of the ejection criterion. We measure the ejected mass at shock breakout
and this quantity is roughly consistent with the post Newtonian escape velocity criterion near the end of the simulation. .

method of Haemmerlé (2021) uses a sufficient condition. This means
that there are models which would be stable according to the method
of Haemmerlé (2021), but not according to ourmethod. Furthermore,
any model which is unstable according to the method of Haemmerlé
(2021) will also be unstable according to our method. Thus, our
method will find an instability earlier in the evolutionary calculation
than the method of Haemmerlé (2021). The longer the time before
the instability in the evolutionary calculation, the higher the mass
range for the explosion, because lower mass models which would
explode if the instability occurred earlier instead burn all of their
helium (𝑀 < 3×104 in Fig. 8). This means that the explosion would
occur at larger mass, if we were to use the method of Haemmerlé
(2021), although that being said, the explosion mass range found
by their method would still be significantly smaller than the case
of 𝑀 ∼ 5 × 104 M� discussed in Chen et al. (2014); Nagele et al.
(2020).

3.2 Application to GRSNe

3.2.1 HYDnuc explosion

As hinted at in previous sections, we find two GRSNe as well as
several pulsations (Table 1). The pulsations are less energetic events
which eject a portion of the envelope (Table 2). The relationship
between the GRSNe and these pulsations is likely similar to the rela-
tionship between pair instability supernovae and the pulsational pair
instability process (Woosley 2017). In Nagele et al. (2020), we did
not find any pulsations because by the time we switched to HYDnuc
(at the end of the HOSHI calculation), the star was extremely unsta-
ble, meaning it could only collapse or, in one somewhat unique case,
explode. The GR stability analysis allows us to find stars which have
only just become unstable, and thus can achieve multiple outcomes
(stabilize, explode, pulsate, collapse) when ported to HYDnuc. The
widening of the mass window for the explosion and the discovery of
pulsations are thus natural consequences of utilizing the GR stability
analysis.
For the pulsations, we determine the ejecta mass in Table 1 using

the local energy, e(r) (Fig. 9, left panel), which is the integrand of
the global energies defined in Nagele et al. (2020). We measure this
quantity at shock breakout (right panel), when some of the energy
is still in the form of thermal energy. The energy evolution after
shock breakout may not be completely accurate because the energy
is evolved using the entropy equation, and energy conservation is not
guaranteed, especially in extremely low density regions where the
accuracy of the EOS suffers. We confirm that the escape velocity
criterion (right panel) converges roughly to this same value, validat-
ing the use of this ejection criterion. Note that 2.9 × 104 M� is a
marginal case. Although it is not an explosion, it does not have the
steady behaviour of Fig. 9 after shock breakout, and we expect the
value in Table 2 to underestimate the ejecta mass for this case.
Themass range for the explosion follows from straightforward con-

siderations. Models which experience the instability before helium
burning has reduced the binding energy of the star cannot explode.
On the other hand, models with helium mass fractions less than ten
percent also do not explode or pulsate because they lack fuel for
alpha capture reactions sufficient to halt the collapse.
The pulsating models all have lower mass than the exploding mod-

els and the most massive model being the most energetic before a
sharp drop-off is reminiscent of Fig. 6 of Nagele et al. (2020). This
is a likely characteristic of the GRSNe even if the mass range found
by the current analysis is not completely correct.
Fig. 10 shows the behavior of the central temperature, baryonic

density, nuclear energy generation rate, and entropy as a function of
time. For the exploding and pulsating models (left column), temper-
ature and density increase and decrease smoothly, as was the case for
the GRSNe in Chen et al. (2014); Nagele et al. (2020), and the nuclear
energy generation rate is also smooth. The models which collapse
(right column) also show relatively smooth increases in temperature
and density, but the energy generation rate and change in entropy
are more complicated, as the stars enter different phases of burning
and photodissociation. Roughly speaking, the first three peaks in ¤𝜖𝑐
(first peak at 109 K) correspond to carbon burning, sulfur burning,
and calcium to iron peak element burning. Stars with a more evolved
core, such as 2.4 × 104 M� do not have much carbon remaining,
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Figure 10. Time evolution of central temperature (1st panel), density (2nd panel), rate of change of specific internal energy (3rd panel) and entropy relative to
the initial value (4th panel). The legend groups models by outcome, whereas colors vary with mass. The left column shows the exploding and pulsating models
as a function of time. The right column shows the temperature as a function of time, while the other three panels are functions of temperature.

MNRAS 000, 1–15 (2022)



10 C. Nagele et al.

Figure 11. Upper panel — comparison of central isotope mass fractions for the M = 3 ×104 M� model with a 58 isotope model (left) and a 61 isotope model
(right). The high mass fraction of protons and 13N in the left panel facilitates artificially high carbon burning. Lower panel — time evolution of central ¤𝜖 .

Figure 12. Total energy, kinetic energy, gravitational energy, and thermal
energy (as defined in Nagele et al. (2020)) in HYDnuc as a function of
time for the explosion of the 3 ×104 M� model. Unless otherwise specified,
subsequent figure will show the 3 ×104 M� model.

and the first peak corresponds to neon burning. At the other extreme,
stars with reserves of hydrogen, such as 4 × 104 M� do not exhibit
peaks because the presence of protons increases the number of pos-
sible reactions. After the core becomes iron/nickel, the next major
reactions are assisted by free nucleons created by photodissociation
(one peak), which is finally followed by photodissociation of nickel
(one peak) and photodissociation of helium (two peaks). In reality,
neutrino reaction would then begin to dominate, but HYDnuc does
not include most of the relevant neutrino reactions.
For the explosion of 3×104M�—whichwewill use as an example

in the figures— Fig. 12 shows the time evolution of the energy

quantities, including the total energy which eventually determines
the explosion energy (Table 1). There are three phases, the initial
contracting phases with 𝐸tot < 0, the pre-shock breakout phase with
𝐸tot > 𝐸kin > 0, and the post-shock breakout phase with 𝐸tot =
𝐸kin > 0. Fig. 13 shows the isotope mass fraction as a function of
mass coordinate for the initial (upper) and final (lower) time steps.
The SMS cores are initially isentropic and shell hydrogen burning
often occurs. The envelope is divided into many convective layers,
the exact layout of which can alter the stability of the star (Nagele
et al. 2020). The final isotope distributions show that the majority
of the nuclear burning takes place within the inner 5000 M� for the
pulsating model and the inner 10000 M� for the exploding model.
For the exploding model, the star is totally disrupted (e.g. Fig. 14),
so these elements will be ejected into the inter stellar medium (ISM)
(Table 2).
After the explosive nuclear burning, the inwards velocity rapidly

reverses and the shock propagates towards the surface of the SMS
(Fig. 14) with a typical velocity of a few percent the speed of light
(Table 1); shock breakout occurs on a timescale of 105 s. The initial
inwards velocity is largest in the envelope, and we emphasize that
the GRSN involves the collapse of the entire star, not just the core.
This is another reason why the analysis in Sec. 2.2 is necessary, as an
analysis of the core alone will not always capture the instability. In
the exploding case (Fig. 14, left), the final velocity is monotonically
increasing, while in the pulsating case (Fig. 14, central) the final
velocity nears zero in most of the star, is slightly negative at the edge
of the remnant, before rapidly increasing with the ejected material.
In the bottom row of this figure, the corresponding discontinuity in
radius is clearly visible.

3.2.2 Comparison to observed metal poor stars

We find a wider explosion window than previous works, as well
as pulsations which could later explode. However, the explosion
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Figure 13. Initial (upper panel) and final (lower panel) isotope mass fractions as a function of the mass coordinate for the pulsation, M = 2.6 ×104 M� (left) and
the explosion, M = 3 ×104 M� (right).

window is still narrow compared to the feasible mass range of SMSs.
This narrowness, in combination with the probable paucity of SMSs
themselves, means that the likelihood of a GRSN having occurred
in the Milky Way volume where its archaeological imprints might
feasibly be observed is low. With that disclaimer in place, however,
we will now compare the GRSN ejecta to observed metal poor stars.
In this section, we will consider only the mono-enrichment sce-

nario (see e.g. Hartwig et al. 2018, 2019), so that the metals in the
metal poor star have come exclusively from the GRSN ejecta and
thus we ignore potential pollution from ISM accretion. we determine
the minimum mass of ISM material with which the ejecta could mix
via Eq. 2 of Magg et al. (2020) where the explosion energy is taken
from Table 1 and we use the fiducial value of the number density
from Magg et al. (2020), 𝑛0 = 1 cm−3. We combine this mass with
our ejecta and plot the inferred abundances relative to hydrogen, rel-
ative to solar (Fig. 15). Since the mixing mass is a lower limit, the
abundance ratios are an upper limit.
Also shown are the inferred abundances of the twenty stars in

the SAGA database (Suda et al. 2008) with the lowest values of
Fe / H: Keller et al. (2014); Ezzeddine et al. (2019); Aguado et al.
(2018); Aoki et al. (2006); Frebel et al. (2008); Christlieb et al.
(2004); Bonifacio et al. (2018, 2015); Frebel et al. (2015); Caffau
et al. (2016); Norris et al. (2007); Caffau et al. (2011); Hansen et al.

(2014, 2015); Starkenburg et al. (2018); Roederer et al. (2014b,a).
We select these stars because the GRSN produces negligible amounts
of iron. Fig. 15 shows that our inferred yields do not match any of
the observed stars. Even for the star of Keller et al. (2014) which has
strict upper limits on [Fe/H], our yield misses the observed value of
calcium by several orders of magnitude.
While we can seemingly rule out the mono-enrichment scenario

for observed metal poor stars (which may not be reflective of the
entire population of metal poor stars) in the vicinity of our galaxy,
the multi-enrichment scenario is more challenging to rule out. The
bestwe can do at current is to note that althoughmanymetal poor stars
are carbon enriched, they are not generally silicon and magnesium
enriched, which is evidence against an SMS being involved in the
multi-enrichment scenario for metal poor stars. We further note that
it would be nearly impossible to rule out GRSN enrichment near
the galactic center, because of chemical dilution and observational
difficulties.

3.3 Application to SMS Collapse and neutrino emission

We compare the neutrino light-curves of the lowest (2 ×104 M�)
and highest (4 ×104 M�) mass models in this study with the results
from our previous work (Nagele et al. 2021). The nuRADHYD code
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Figure 14. Upper panel — velocity snapshots at several time-steps (𝑡𝑖 is the first time-step in HYDnuc, 𝑡 𝑓 the last, and 𝑡𝑇 the time-step with maximum central
temperature, see Table 1) for an exploding model (left), a pulsating model (middle) and a collapsing model (right). Lower panel — same as upper but for radius.

is unchanged so the only difference is the amount of time the star
spends in the evolutionary stage. Both stars have higher entropy than
in our previous work because there is less time for neutrino cooling
during the evolutionary stage, and even though the models in this
work have different chemical compositions at the start of collapse,
theywill eventually undergo the same reactions, namely alpha capture
until sulfur, then production of calcium through nickel, followed by
photodisassociation, first into helium and then into nucleons.

In our previous paper, we identified that many physical quantities
scaled with the entropy at fixed density. Thus, the stars in this paper
having higher entropywould suggest that they should also have higher
temperature, and neutrino luminosity. Both of these turn out to be
true, but while the hydrodynamical quantities match the trends in
Fig. 8 of Nagele et al. (2021), the neutrino quantities do not. Thus,
the neutrino luminosity, and number flux are all increased relative to
the previous work, but not by as much as we expected. Of particular
interest, the total neutrino number increased by 13% for 2 ×104 M�
and 42% for 4 ×104M� . Furthermore, although we would expect the
average neutrino energy to decrease because of the higher entropy,
they increase by small fractions, 2% for 2 ×104 M� and 11% for 4
×104 M� .

Although these both trend in the right direction regarding detection
of the diffuse SMS neutrino background, they are not large enough
increases to alter our previous conclusion that if SMSs collapse in
this mass range, then the detection of this background is not feasible
using current methods.

4 DISCUSSION

Using the general relativistic stability analysis in Sec. 2.2, we can
more accurately predict when a SMS will be unstable and will col-
lapse explode or pulse. This is necessary because the timescale of
the collapse is many orders of magnitude shorter than the evolution-
ary timescale, meaning that our stellar evolution code often misses
the GR instabilities. For some models, the instability is countered
by increased nuclear burning, but for masses around 3 ×104 M� ,
this is not the case. The 2.95 ×104 M� and 3 ×104 M� models ex-
plode in GRSNe, while several lower mass models pulsate and eject
portions of their envelope. The final fate of the pulsating models
is unclear, as they will reenter the evolutionary track with different
properties, most notably the chemical composition of the core and
total energy. If multiple pulsations were to occur, it could cause a
collisional supernova.
In comparison to the GRSNe from Chen et al. (2014); Nagele et al.

(2020), our GRSNe have much lower explosion energies. There are
a few differences between the current work and Chen et al. (2014).
The most important of these is likely the timescale over which the
explosion takes place. The PN approximation employed in Chen et al.
(2014) is extremely accurate (although see Fig. 2), but it only includes
the approximation to the hydrostatic terms in the equation of motion.
In a dynamical scenario, such as the GRSN, the velocity becomes
large, and the hydrodynamical PN terms should also be included
to properly follow the dynamics. Because of this, the approach of
Chen et al. (2014) likely underestimates the acceleration of the in-
falling matter, and thus the timescale of the explosion. With a longer
timescale, sub-dominant reactions, such as 3𝛼 and 12C(𝛼, 𝛾)16O can
proceed and the resultant 16O can then fuel further explosive alpha
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Figure 15. Explosion yield (lines) compared with observed metal poor stars
(crosses are observations, triangles upper limits). The line shows the fraction
relative to a minimum mass of hydrogen with which it would have to mix
Magg et al. (2020), and can thus be regarded as an upper limit.

process reactions. From this viewpoint, it is natural to expect the total
energy produced to be several times greater than in our calculations
where the 3𝛼 and 12C(𝛼, 𝛾)16O do not meaningfully contribute. We
also note that in their simulation, the carbon mass does not change
(Δ12C = -3 M� , Table 1 of Chen et al. 2014) which may indicate
that 3𝛼 and 12C(𝛼, 𝛾)16O do not in fact occur, contrary to what is
written in the text. If this is the case, then the explanation for the
discrepancy in total energy may be simply that the shorter timescale
of our explosion leads to less nuclear burning (though using the same
reactions), along with other factors such as the difference in max 𝑇𝑐 ,
our fully relativistic code, and our smaller progenitor mass.
The GRSNe in this work also have lower energies than the one

found in Nagele et al. (2020). This is due to the lower progenitor mass
and to the catalysis discussed in Sec. 2.3. Despite the differences in
explosion energy, the composition of our explosion ejecta is similar
to previous works (Table 2). The main difference between the GRSN
in Nagele et al. (2020) and the GRSNe in this work is the wider mass
range and the discovery of pulsations, which widens the mass range
for observations even further.
Moriya et al. (2021) found that the observational duration of a

GRSN will be on the order of 102−3 seconds for the peak emission
and 102−3 days for the plateau, which shares some similarities with
Type IIP SNe. Because the GRSN would have to occur in the high
redshift universe, this means that the observer duration is longer by
about a factor of ten. Moriya et al. (2021) demonstrated that the
GRSN plateau may be differentiated from other persistent sources if
it is observed in multiple bands. Whalen et al. (2013c) studied the
same GRSN using different spectral codes. They also assume two
different circum-stellar media, one being a wind driven by the SMS
and the other being in-falling matter. In the former case, they find
that the emission could last 400 to 1000 days. They also find that
stars at redshift 30 will be clearly visible to JWST. In the latter case,
the emission is longer and more sporadic, with the observer duration
stretching from roughly 1000 to 4000 days. In the future, we plan to

investigate if the lower energy of our GRSN would significantly alter
any of these findings.
We determined that none of the observed metal poor stars match

the inferred abundance pattern from the GRSNe, and from this we
conclude that none of these stars were singly enriched by a GRSN.
However, we note that the multi-enrichment scenario cannot be ruled
out.
As in all numerical studies, there are numerous uncertainties. In

HOSHI, alongwith the usual sources of numerical error, we also need
to consider the error due to using the post Newtonian approximation.
After the inclusion of internal energy to density (Eq. 1) in the TOV
equation, the post Newtonian pressure gradient matches the TOV
pressure gradient to one part in 105. Although this level of accuracy
likely supersedes numerical error, we have to keep in mind that
the TOV equation assumes a hydrostatic configuration, which, for
instance, is not true as the star contracts towards the end of hydrogen
burning. Finally, and perhaps most importantly, our evolutionary
models are not rotating, whereas real SMSs are expected to initially
bemedium rotators (Haemmerlé et al. 2018b)whichmay spin up over
the course of their lifetimes (Maeder & Meynet 2001). We intend to
more fully investigate the effects of rotation in the future. Finally,
we would like to point out that this paper has focused exclusively on
the GR radial instability, but it is also possible that the SMS could
experience other instabilities earlier in its lifetime.
Regarding the GR stability analysis, we were able to quantify the

error of |𝜔20 | for polytropes (Fig. 3) as being around 10
−7,−8. As seen

in Fig. 4, typical values of𝜔20 are greater than this error. Although we
demonstrated that the error decreases for increasing resolution (Fig.
3) the gain in accuracy is low compared to the gain in computational
time that an increased mesh point number of an order of magnitude
or two would require.
As far as sources of error in HYDnuc, Chen et al. (2014) showed

that multidimensional effects may not play a big role in the GRSN
(besides increasing the explosion energy), and they are also not
thought to contribute to the instability (Chandrasekhar 1965). We
verified that radiative and convective energy transport do not effect
the explosion outcome and tested that the explosion energy does not
depend on the choice of the carbon alpha capture rate.
In the future, we plan to apply the GR stability analysis to rotating

SMSs, as well as verifying our current results with multidimensional
simulations. We also intend to asses the observability of the GRSN
using methods similar to those in Moriya et al. (2021). Finally, we
will investigate the possibility of multiple pulsations.
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5 APPENDIX A: ITERATIVE METHOD FOR SOLVING
THE PERTURBATION EQUATIONS

As mentioned in the text, we adopt a straightforward numerical ap-
proach to solving the perturbation equation (Eqs. 2, 6). From the
stellar evolution calculation, we take a stellar profile (for a particular
time step), so that the only unknowns in Eqs. 2, 6 are 𝜉 and 𝜔. Our
aim, then, is to find a perturbation 𝜉 and its associated frequency 𝜔
which satisfy the equations for the particular stellar structure. Note
that the below discussion can be applied either to Eq. 2 or Eq. 6.
First an initial guess is made for 𝜔20, and the equation is spatially

integrated once from the inner boundary 𝜉inner (𝜉 (0) = 0, 𝜉 ′(0) = 1)
and once from the outer boundary 𝜉outer (𝜉 (𝑅) = 1, 𝜉 ′(𝑅) = 0). The
integration is performed using second order Euler’s method, where
the simplicity of the method is due to the limited number of grid
points in the stellar evolution calculation. Finally, the values of 𝜉 ′(0)
and 𝜉 (𝑅) should be non zero.
Next, we compare 𝜉inner to 𝜉outer at some radius 𝑝 where 0 <

𝑝 < 𝑅 using the Wronskian of the two solutions normalized by their
amplitude:

X(𝑝) = 2W(𝑝)
𝜉inner (𝑝) + 𝜉outer (𝑝)

(13)

where we have divided by the amplitude in order to prevent 𝜉 from
becoming too small. In general, 𝑝 may be chosen freely though for
numerical models with finite resolution it should not be too close to
either boundary. We choose 𝑝 to be at min|X(𝑟) |.
The goal is to find 𝜉inner, 𝜉outer, 𝜔20 such that |X(𝑝) < T |, where

T is a threshold we set at 10−10 × 𝜉 ′(0) for 𝜔20 > 0 and 10
−5 × 𝜉 ′(0)

for 𝜔20 < 0 (the latter being smaller due to computational costs).
This is accomplished iteratively by linear extrapolation of X(𝑝) in
the space of 𝜔20 for two sets of 𝜉inner, 𝜉outer, 𝜔

2
0.

If a solution is not found within a set number of iterations, or if a
solution is found for a higher order mode (for instance if it finds 𝜔21
instead of𝜔20), we redo the calculation with a different value of 𝜉

′(0).
This step circumvents numerical overflow which may occur if our
initial guess of the slope is wrong. This step only becomes necessary
when 𝜉 is extremely nonlinear, which may occur for 𝜔20 � 0.
Figs. 16, 17 show examples of the perturbation found using this

method. In Fig. 16, we show the time evolution of the fundamental
mode of the perturbation (𝜉0) from the beginning of the HOSHI
simulation until the first instability. In Fig. 17, we show the first six
modes of the perturbation for a SMS and for a polytrope, which
are noticeably different from one another. Our choices for T ,X are
somewhat arbitrary, but we have at least demonstrated their efficacy
with tests on numerical polytropes (Sec. 2.2).

6 APPENDIX B: STEADY STATE CALCULATION

In this section, we will compare the 58 and 61 isotope networks
(Table 4), the latter of which contains aluminum isotopes and isomers

allowingmagnesium to absorb excess protons, which in turn prevents
an unrealistic enhancement of the carbon alpha capture rate.
Assume a steady state for the number fraction of protons

¤𝑌 (𝑝) = 0.

Ignoring the 13N catalysis reactions for now, the proton number
changes as

¤𝑌 (𝑝) = Λ24𝑀𝑔 (𝛼,𝑝)27𝐴𝑙𝑌 (
24𝑀𝑔)𝑌 (𝛼)−Λ27𝐴𝑙 (𝑝,𝛾)28𝑆𝑖𝑌 (

27𝐴𝑙)𝑌 (𝑝)

−Λ24𝑀𝑔 (𝑝,𝛾)25𝐴𝑙𝑌 (
24𝑀𝑔)𝑌61 (𝑝) + ...

where we have written 𝑌61 (𝑝) in the third reaction to show that this
reaction only occurs in the 61 isotope network. We can solve for
𝑌 (𝑝):

𝑌 (𝑝) =
Λ24𝑀𝑔 (𝛼,𝑝)27𝐴𝑙𝑌 (24𝑀𝑔)𝑌 (𝛼) + ...

Λ27𝐴𝑙 (𝑝,𝛾)28𝑆𝑖𝑌 (27𝐴𝑙) + Λ24𝑀𝑔 (𝑝,𝛾)25𝐴𝑙𝑌 (24𝑀𝑔)𝑌61 (𝑝) + ...

so Y(p) will be smaller in the 61 network calculation by a factor of

𝑌61 (𝑝)
𝑌58 (𝑝)

=
Λ27𝐴𝑙 (𝑝,𝛾)28𝑆𝑖𝑌 (27𝐴𝑙) + ...

Λ27𝐴𝑙 (𝑝,𝛾)28𝑆𝑖𝑌 (27𝐴𝑙) + Λ24𝑀𝑔 (𝑝,𝛾)25𝐴𝑙𝑌 (24𝑀𝑔)𝑌61 (𝑝) + ...

which is order 10−5 (Fig. 18). Including the above reactions gives us
the correct order of magnitude, but additionally including the 13N
catalysis reactions would give the precise behaviour, as can be seen
by the dotted lines in Fig. 18. Next, consider carbon,

¤𝑌 (12𝐶) = Λ12𝐶 (𝛼,𝛾)16𝑂𝑌 (
12𝐶)𝑌 (𝛼)+Λ12𝐶 (𝑝,𝛾)13𝑁𝑌 (

12𝐶)𝑌 (𝑝)+...

where the only difference between the two networks is 𝑌 (𝑝).

¤𝑌61 (12𝐶)
¤𝑌58 (12𝐶)

=
Λ12𝐶 (𝛼,𝛾)16𝑂𝑌 (12𝐶)𝑌 (𝛼) + Λ12𝐶 (𝑝,𝛾)13𝑁𝑌 (12𝐶)𝑌61 (𝑝) + ...
Λ12𝐶 (𝛼,𝛾)16𝑂𝑌 (12𝐶)𝑌 (𝛼) + Λ12𝐶 (𝑝,𝛾)13𝑁𝑌 (12𝐶)𝑌58 (𝑝) + ..

which is order 10−2 (Fig. 18). So, the 58 isotope network overesti-
mates carbon burning by a factor of 100, which significantly alters
the course of the simulation.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure 16. Normalized amplitude of the fundamental mode of the perturbation at various time snapshots leading up to the first instability (denoted by 𝑡𝑖). The
left panel shows the 2 ×104 M� model which has a nearly linear perturbation at 𝑡𝑖 while the right panel shows 2.6 ×104, which has more amplitude concentrated
at smaller radius at 𝑡𝑖 . The perturbations have been normalized to 𝜉0 (𝑅) = 1.

Figure 17. First six modes of the perturbation for the first timestep in the 2.1 ×104 M� calculation (left panel) and an 𝑛 = 3 polytrope (right panel). The
perturbations have been normalized to 𝜉𝑛 (𝑅) = 1.

MNRAS 000, 1–15 (2022)
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Table 3. Summary table for nuclear networks. Entries show the range in A
for the specified element.

Element 52 58 61 79 89 153 300

n 1 1 1 1 1 1 1
p 1-3 1-3 1-3 1-3 1-3 1-3 1-3
He 3-4 3-4 3-4 3-4 3-4 3-4 3-4
Li 6-7 6-7 6-7 6-7 6-7 6-7 6-7
Be 7-9 7-9 7-9 7-9 7-9 7-9 7-9
B 8-11 8-11 8-11 8-11 8-11 8-11 8-11
C 12-13 12-13 12-13 12-13 12-13 12-13 11-16
N 13-15 13-15 13-15 13-15 13-15 13-15 13-18
O 14-18 14-18 14-18 14-18 14-18 14-18 14-20
F 17-19 17-19 17-19 17-19 17-19 17-19 17-22
Ne 18-20 18-20 18-20 18-22 18-22 18-22 18-24
Na 23 23 23 23 21-23 21-23 21-26
Mg 24 24-26 24-26 22-26 22-26 22-26 22-28
Al 27 27 25-27 25-27 25-27 25-27 25-30
Si 28 28-30 28-30 26-32 26-32 26-32 26-32
P 31 31 31 31 29-33 29-33 27-34
S 32 32-34 32-34 30-36 30-36 30-36 30-37
Cl 35 35 35 35 33-37 33-37 32-38
Ar 36 36 36 34-40 34-40 34-40 34-43
K 39 39 39 39 39 37-41 36-45
Ca 40 40 40 40 40 38-43 38-48
Sc 43 43 43 43 43 41-45 40-49
Ti 44 44 44 44 44 43-48 42-51
V 47 47 47 47 47 45-51 44-53
Cr 48 48 48 48 48 47-54 46-55
Mn 51 51 51 51 51 49-55 48-57
Fe 52-56 52-56 52-56 52-56 52-56 51-58 50-61
Co 55-56 55-56 55-56 55-56 55-56 53-59 51-62
Ni 56 56 56 56 56 55-62 54-66
Cu — — — — — 57-63 56-68
Zn — — — — — 60-64 59-71
Ga — — — — — — 61-73
Ge — — — — — — 63-75
As — — — — — — 65-76
Se — — — — — — 67-78
Br — — — — — — 69-79

Table 4. Yields of all isotopes in the network in units of M� for each of the
two GRSNe. Full table available online.

Isotope 2.95 × 104 M� 3.00 × 104 M�

n 3.269403297e-45 7.494798495e-34
p 5.441498563e+03 5.536626361e+03
d 3.420657731e-14 8.386696275e-11
t 1.536980840e-22 3.756248063e-15
he3 1.136117283e-02 1.218897594e-02
he4 1.694646913e+04 1.807698033e+04
li6 2.101344385e-15 4.646143231e-13
li7 2.921447296e-07 3.798748682e-07
... ... ...

Figure 18. Upper panel — proton number fraction from the steady state cal-
culation, and from the simulation, for the 58 and 61 isotope networks. Dotted
lines include the 13N catalysis reactions. Lower panel — time derivative of
carbon number fraction.
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