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ABSTRACT: Volcanic aerosol forcing has previously been found to cause a weak global mean temperature response, as
compared with CO2 radiative forcing of equal magnitude: its efficacy is supposedly low, but for reasons that are not fully
understood. To investigate this, we perform idealized, time-invariant stratospheric sulfate aerosol forcing simulations with
the MPI-ESM-1.2 and compare them with 0.5 3 CO2 and 2 3 CO2 runs. While the early decades of the aerosol forcing
simulations are characterized by strong negative feedback (i.e., low efficacy), the feedback weakens on the decadal to cen-
tennial time scale. Although this effect is qualitatively also found in CO2-warming simulations, it is more pronounced for
stratospheric aerosol forcing. The strong early and weak late cooling feedbacks compensate, leading to an equilibrium effi-
cacy of approximately 1 in all simulations. The 0.5 3 CO2 cooling simulations also exhibit strong feedback changes over
time, albeit less than in the idealized aerosol forcing simulations. This suggests that the underlying cause for the feedback
change is not exclusively specific to aerosol forcing. One critical region for the feedback differences between simulations
with negative and positive radiative forcing is the tropical Indo-Pacific warm-pool region (308S–308N, 508E–1608W). In the
first decades of cooling, the temperature change in this region is stronger than the global average, whereas it is stronger
outside it for 2 3 CO2 warming. In cooling scenarios, this leads to an enhanced activation of the warm-pool region’s
strongly negative lapse-rate feedback.

SIGNIFICANCE STATEMENT: Large volcanic eruptions can enhance the scattering aerosol layer in the strato-
sphere, which leads to a global cooling for a few years. Surprisingly, Earth has been found to cool less from radiative
flux perturbations from stratospheric aerosol forcing, in comparison with how much it warms as a result of increases in
CO2 concentration. We find that specific surface temperature change patterns after volcanic eruptions cause this effect.
The temperature change in the tropical Indian and western Pacific Ocean determines how much global temperature
change is needed to regain radiative equilibrium. Our findings contribute to understanding the climate response to volca-
nic eruptions and are relevant for understanding the mechanisms of climate change due to changes in CO2 concentration.

KEYWORDS: Atmospheric circulation; Climate sensitivity; Volcanoes; Feedback; Sea surface temperature;
Radiative forcing

1. Introduction

Following large volcanic eruptions, volcanic aerosols are
added to the natural stratospheric aerosol layer and persist
for a few years. The aerosol layer globally increases the al-
bedo in the shortwave (SW) and absorption in the longwave
(LW) spectrum. This constitutes a net negative radiative
forcing, which cools Earth. We study volcanic aerosol forc-
ing (VAF) in the broader sense of stratospheric sulfate
aerosol forcing (SSAF), independent of the volcano-specific
characteristic forcing evolution in time.

VAF has been found to produce smaller temperature change
per unit radiative forcing than CO2 forcing (Hansen et al. 2005;
Boer et al. 2007; Gregory and Andrews 2016; Gregory et al.

2016, 2020; Marvel et al. 2016; Modak et al. 2016; Ceppi and
Gregory 2019; Zhao et al. 2021). This is equivalent to the state-
ment that the feedback parameter is more negative for VAF
than for CO2 forcing. In model simulations with a slab ocean,
and with fixed sea surface temperatures (SSTs) and sea ice, the
strongly negative feedback parameter has been shown to be
connected to differences in atmospheric stability, which ulti-
mately arise from different SST patterns (Ceppi and Gregory
2017, 2019). We aim to compare the climate feedbacks with
SSAF and positive and negative CO2 radiative forcing on an-
nual to centennial time scales in a coupled atmosphere–ocean
model, explain the differences between them, and identify the
key regions that cause the distinct climate responses.

First, we introduce the necessary building blocks for our ex-
planation: efficacy, the feedback parameter, and the pattern
effect (section 2). This is followed by a literature review, show-
ing that the strong feedback to VAF is a broad consensus
from earlier studies (section 3).

To tackle the question of why the feedback parameter ap-
pears to be stronger for VAF, we perform three types of simula-
tion with the coupled climate model Max Planck Institute Earth
SystemModel 1.2 (MPI-ESM 1.2; Mauritsen et al. 2019): abrupt
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0.5 3 CO2, abrupt 2 3 CO2, and an idealized SSAF simulation
(section 4). With these simulations we not only shed light on
the differences between the responses to stratospheric
aerosol and CO2 forcing, but also more generally elaborate
disparities between the responses to negative and positive
radiative forcing.

We show the different time dependencies of the feedback
parameter for simulations with negative and positive radiative
forcing in section 5 and establish a relationship to the pattern
effect. Thereafter we discuss the origin of the modified tem-
perature change pattern. In section 6 we shift the focus back
from SSAF to VAF to show that our results also hold for
more realistic simulations of volcanic eruptions. For this pur-
pose, we compare our simulations with a large ensemble of
volcanically forced simulations (MPI EVA ensemble; Azoulay
et al. 2021) and simulations from phase 6 of the Coupled
Model Intercomparison Project (CMIP6; Eyring et al. 2016).

2. Concepts

a. Efficacy and feedback

We describe the increased feedback parameter of VAF fol-
lowing Hansen et al. (2005): VAF has been claimed to have
lower than unity efficacy, where efficacy is the ratio of global
mean near-surface air temperature change T per unit radia-
tive forcing F of VAF and 23 CO2 forcing:

Efficacy 5
T/F

T23CO2

/
F23CO2

: (1)

A forcing agent produces less temperature change than
CO2 forcing of equal magnitude if the efficacy is lower than 1.

The concept of efficacy is closely related to the feedback
parameter l 5 dN/dT, where N is the top-of-the-atmosphere
(TOA) flux anomaly. Forcing, feedback, and surface tempera-
ture are linked by the linearized equation N 5 F 1 lT. A
more negative feedback parameter l indicates a more stable
climate system, since for a strongly negative feedback less sur-
face temperature change is required to offset a given radiative
forcing. Therefore, the efficacy of a forcing in equilibrium can
be computed as the ratio of its inverse feedback parameter
to the inverse feedback parameter of a 2 3 CO2 forcing [see
Eq. (1) herein and Zhao et al. (2021)]:

Efficacy 5 lCO2

/
l: (2)

Rugenstein and Armour (2021) discuss three closely related
but distinct definitions of the feedback parameter, of which only
two are relevant to this work: the equilibrium and the differen-
tial feedback parameter. For an illustration, see their Table 1.

The equilibrium feedback parameter is defined as the ratio
of forcing and equilibrium temperature change and therefore
compares two equilibrated states. The differential feedback
parameter is obtained by a regression of N(T) over a certain
number of years. Its value depends on the chosen period for
the regression and can differ more from the equilibrium feed-
back parameter the more that N(T) deviates from a linear
relationship.

While Hansen et al. (2005) define efficacy with respect to
the equilibrium efficacy, we use the term in a broader sense as
a ratio of feedback parameters in general. Efficacy can de-
pend sensitively on the employed feedback parameter defini-
tion. We use the words equilibrium efficacy and differential
efficacy to refer to efficacies calculated with Eq. (2), using the
definitions of the equilibrium feedback parameter and the dif-
ferential feedback parameter, respectively.

b. The pattern effect

Variations of the feedback parameter have been investi-
gated not only with respect to the forcing agent, such as CO2,
VAF/SSAF, and so on, but also with respect to changes over
time in CO2 step forcing experiments (Senior and Mitchell
2000). For most climate models, a weakening of feedback
over time has been reported (Andrews et al. 2012, 2015;
Armour 2017). The TOA flux anomaly N has been found to
depend not only on the global average T, but also on its pat-
tern, which gives rise to the term “pattern effect” (Stevens
et al. 2016). The pattern of SST anomalies is subject to
changes over time (Armour et al. 2013; Zhou et al. 2016;
Ceppi and Gregory 2019; Dong et al. 2019; Andrews et al.
2018) and therefore the feedback parameter changes with
time, too. Indeed, the feedback parameter spread in CMIP5
and CMIP6 models can be explained by SST pattern differ-
ences (Dong et al. 2020). This has been linked to changes in
cloud feedback and lapse-rate feedback (Andrews et al. 2015;
Zhang et al. 2010; Stevens et al. 2016; Andrews and Webb
2018; Andrews et al. 2018; Ceppi and Gregory 2019), which
depend on the spatial distribution of SST.

A useful framework to understand the pattern effect is pro-
vided by Armour et al. (2013), who suggest that some regions
intrinsically exhibit stronger feedback than others, indepen-
dent of time or state. Only the temperature change pattern
varies in time and activates the local feedbacks differently.

TABLE 1. Efficacy of VAF in previous studies. Values marked
with an asterisk are not directly reported in the source but rather
are calculated by us on the basis of the reported feedback
parameters. In the case of Boer et al. (2007), the 4 3 CO2

feedback parameter was taken from Andrews et al. (2015). For
definitions of differential and equilibrium feedback parameter,
see section 2 of Rugenstein and Armour (2021).

Source Efficacy Method

Hansen et al. (2005) 1.00 Differential
0.88 Equilibrium

Marvel et al. (2016) 0.73; 5%–95%
CI: (20.61, 2.06)

Differential

Ceppi and Gregory (2019) 0.45* Differential
0.71* Differential

Boer et al. (2007) 0.81* Differential
Gregory et al. (2016) 0.69 6 0.09 Differential
Merlis et al. (2014) 0.84*–0.94* Equilibrium

0.69*–0.92* Differential
Zhao et al. (2021) 0.66* (low lat)–

1.16* (high lat)
Equilibrium

Modak et al. (2016) ,1 Differential
Gregory et al. (2020) ,1 Differential
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The global feedback is the temperature change-weighted aver-
age over the local feedbacks. Therefore, the global feedback
gets weaker, as the temperature change gets relatively stronger
in regions with weak local feedback (Rugenstein et al. 2016).
Zhou et al. (2017) and Dong et al. (2019) expand on this view
by using a Green’s function approach, which accounts for the
fact that local SST perturbations can modify feedbacks also in
remote regions (Ceppi and Gregory 2017; Andrews and Webb
2018; Lin et al. 2019). In this work, we will refer mostly to this
framework.

There is evidence that the strong feedback to VAF could
be related to the specific temperature change pattern after
volcanic eruptions. Gregory and Andrews (2016) propose that
the variations of the differential feedback parameter during
the historical period could be related to specific SST patterns
following volcanic eruptions, among other reasons. The effi-
cacy of VAF has been connected to changes in tropospheric
stability, which arise from different SST patterns and lead to
changes in lapse-rate and cloud feedback (Ceppi and Gregory
2017, 2019). Similarly, the efficacy of anthropogenic aerosol
forcing has been interpreted with respect to changes in stabil-
ity that arise from specific SST patterns (Salvi et al. 2022).

More generally, the feedback parameter was found to
depend on the latitude of the radiative forcing. Forcing in
higher latitudes produces weaker feedbacks (Hansen et al.
1997; Forster et al. 2000; Rose et al. 2014; Rose and Rayborn
2016; Rugenstein et al. 2016; Ceppi and Gregory 2019), possi-
bly because of the resulting high-latitude temperature change
pattern (Haugstad et al. 2017; Salvi et al. 2022). In a multimo-
del analysis Po-Chedley et al. (2018) derive a theoretical basis
for a relationship between the meridional temperature change
pattern and the global feedback parameter, which was already
found by Soden and Held (2006). In the model of Po-Chedley
et al. (2018) more tropical temperature change leads to stron-
ger global mean lapse-rate and water-vapor feedback. More
specifically, Dong et al. (2019) show that it is the warm-pool
region of the tropical Indian Ocean and the tropical western
Pacific Ocean that dominates the negative feedback. There,
the strong convective coupling yields a strongly negative lapse-
rate feedback due to the moist adiabatic lapse rate (Manabe
and Wetherald 1975; Bintanja et al. 2012; Pithan and Mauritsen
2014; Andrews and Webb 2018), partially compensated by the
positive water-vapor feedback. Together with strong negative
cloud feedbacks, absent positive surface-albedo feedback, and
strong negative Planck feedback due to warm background
conditions, this region exhibits the most negative local feed-
back, and controls the global feedback strength. Changes in
feedback parameter over time in abrupt CO2 forcing simula-
tions can be attributed to changes in the relative warming of
the Indo-Pacific warm-pool region to the global warming
(Dong et al. 2020).

3. Earlier studies indicate that the efficacy of VAF is
lower than unity

There are several modeling studies that report the efficacy
or the feedback parameter of VAF. All of them point toward
a low efficacy of VAF. An overview is given in Table 1.

No two author teams use exactly the same method. The re-
sults stem from different models, and some use time-constant
forcings (Hansen et al. 2005; Gregory et al. 2016; Ceppi and
Gregory 2019; Zhao et al. 2021) while others use transient
forcings (Marvel et al. 2016; Boer et al. 2007). The differential
feedback parameters are regressed over a different numbers
of years, between two years (Ceppi and Gregory 2019) and
the entire historical period (Marvel et al. 2016; Gregory et al.
2020). In two cases, the feedback parameter of CO2 forcing is
taken from a 4 3 CO2 simulation instead of the 2 3 CO2 sim-
ulation (Boer et al. 2007; Gregory et al. 2016).

Additional studies suggest or show a lower-than-unity effi-
cacy without reporting a specific value (Modak et al. 2016;
Gregory et al. 2020). We conclude from this literature review
that VAF likely exhibits a low efficacy.

4. Methods

a. Model and experiments

We employ the coupled climate model MPI-ESM 1.2 in its
low-resolution version. It consists of the atmosphere component
ECHAM6 (192 3 96 grid points horizontally and 47 vertical
levels; Stevens et al. 2013), coupled to the ocean component
MPI-OM (256 3 220 grid points horizontally and 40 vertical
levels; Jungclaus et al. 2013). Furthermore, land processes
and ocean biogeochemistry are simulated in the Jena Scheme
for Biosphere–Atmosphere Coupling in Hamburg (JSBACH;
Reick et al. 2021) and the Hamburg ocean carbon cycle model
(HAMOCC; Ilyina et al. 2013), respectively. Since no interac-
tive atmospheric chemistry processes are included, aerosols
and trace gases are prescribed with monthly fields.

Based on a control simulation with preindustrial conditions
(piControl), three sets of simulations are performed (Table 2).
For each forcing type (0.5 3 CO2, 2 3 CO2, and idealized
SSAF) we prescribe a step-like radiative forcing and perform
18 simulations of the first 10 years, one simulation of 1000 years,
and one simulation of 30 years with fixed SST.

The aerosol optical properties for the idealized SSAF are
calculated with the EVA forcing generator (Toohey et al.
2016). The monthly and zonal mean fields of aerosol extinc-
tion, single scattering albedo, and the asymmetry factor are
precomputed offline for a sulfur injection of 20 Tg, once for a
January eruption and once for a July eruption. We then shift
the July eruption by 6 months to phase match it with the
January eruption and then compute the average of both. This
eliminates the seasonal transport asymmetry but retains a real-
istic annual-average sulfate transport toward the poles. We
then average over the first three post-eruption years and pre-
scribe this profile to MPI-ESM. It is time-constant by construc-
tion, but representative of the time-averaged forcing structure

TABLE 2. Type and number of performed simulations.

0.5 3 CO2 2 3 CO2 Idealized SSAF

Years 1–10, coupled 18 18 18
Years 1–1000, coupled 1 1 1
Years 1–30, fixed SST 1 1 1
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after a volcanic eruption. The sulfur mass is chosen so that the
time-averaged global-mean effective forcing is approximately
the same as in the 0.5 3 CO2 experiment to preclude forcing
strength-dependent effects on the feedback (Rohrschneider
et al. 2019).

The simulations with fixed SST are only used to calculate
the effective radiative forcing. The 18-member ensembles of
the first decade are intended to reduce the uncertainty in re-
gressions over the early phase of the temperature change,
where there are only few data points.

b. Calculation of effective forcing, feedback parameter,
and temperature change pattern

We calculate the effective forcing as the average TOA flux
imbalance of the simulations with fixed climatological SST
(Forster and Taylor 2006). Although the SST are fixed, there
is nonnegligible temperature change over land. Therefore, we
correct the effective forcing by subtracting lT in each year
from the TOA flux imbalance, where l is the differential feed-
back parameter of the first decade from the coupled runs (see
section 4).

The equilibrium feedback parameters are calculated as de-
scribed in section 2. Since the simulations still deviate from
equilibrium by about 0.3 W m22 K21 after 1000 years, we ex-
trapolate N(T) to zero based on a linear fit over the years
100–1000. The intercept with the T axis yields the equilibrium
surface temperature change. This choice is roughly equivalent
to Rugenstein and Armour’s (2021) method M5, which they
apply to estimate the equilibrium temperature change in al-
most equilibrated models. Their method of extrapolating the
years 100–400 fromN(T) toN5 0 underestimates the equilib-
rium T in our simulations, likely because of the pronounced
curvature of N(T) in our cooling simulations.

In addition, we obtain differential feedback parameters by
regressing over the first 10 years (early period) or years 100–400
(late period). The latter choice is based on the recommenda-
tions by Rugenstein and Armour (2021). The results are not
sensitive to the exact choice of boundary years for the periods.
Derived quantities for the first 10 years (e.g., feedback param-
eter and temperature change pattern) are calculated from the
ensemble average, as opposed to first calculating them individ-
ually for each ensemble member and averaging thereafter
following the recommendations of Gregory et al. (2020). The
results are the same to within a few percent when the order of
regression and averaging is reversed.

Analogous to the differential feedback parameter, differen-
tial temperature change patterns are calculated by regressing
the local against the global average change in T. Based on the
findings of Dong et al. (2019, 2020) we define the warm-pool
index (WPI) as the regression slope of the temperature change
in the tropical warm-pool region (308S–308N, 508E–1608W)
against the global surface temperature change, similar to the
ratio of tropical to global temperature change of Soden and
Held (2006).

All regressions are performed over annual-mean values. The
method to compute errors of the feedback parameters depends
on the feedback parameter definition. The uncertainty of the

equilibrium feedback parameter is equal to the uncertainty of
F/Teq, propagated from the standard deviations of F and Teq.
The differential feedback parameters are computed from the
slope of N(T), and therefore their uncertainties are described
by the least squares regression slope’s standard deviation.

5. Results

a. Cooling is characterized by strong early feedback

As pointed out in section 3, other authors have found
lower-than-unity efficacies for VAF, but not under a uniform
procedure. To emphasize the importance of the methodologi-
cal approach, we show N(T) plots (Fig. 1), the global equilib-
rium and differential feedback parameters (Fig. 2, left panel),
and the corresponding efficacies from our simulations (Fig. 2,
right panel).

The effective radiative forcing magnitude for CO2 halving
is approximately 15% lower than for CO2 doubling, in line
with the previously reported 10% from Chalmers et al. (2022).
All quantities we show are normalized by effective forcing or
temperature change, so that this does not compromise our
findings.

The equilibrium feedback parameter is very similar in all
three simulations. In equilibrium, SSAF produces only slightly
less temperature change per unit forcing than a halving or
doubling of CO2. Differences between the three forcing agents
are pronounced in the early differential feedback parameter,
which is obtained from an ensemble average of the regression
slopes of N(T) over the first 10 years of each ensemble mem-
ber. This method is closest to what most authors did to cal-
culate the efficacy of VAF (see section 3). We find a more
negative feedback parameter in both cooling cases for the

FIG. 1. The N(T) (Gregory) plots. All values from 0.5 3 CO2

and SSAF experiments are multiplied by 21 so as to show them
in the same quadrant as the 2 3 CO2 results. Linear regressions
are shown for the early period (years 1–10) and the late period
(years 100–400). Crosses mark the fixed SST effective forcings
and the equilibrium temperatures, which were extrapolated
from a linear regression of N(T) over years 100–1000. The first
10 points of each simulation type are the ensemble averages
from the 18-member ensembles of the first decade. The slope of
each regression line is the differential feedback parameter.
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early period. By contrast, the late regression feedback pa-
rameter (years 100–400) is less negative for the cooling cases
than for the 2 3 CO2 simulation.

These findings suggest the following picture: Relative to the
2 3 CO2 warming case, the cooling simulations (0.5 3 CO2

and SSAF) exhibit stronger feedback in the first decades.
Therefore the efficacy is low in transient simulations of VAF,
as previously reported (section 3). Later on, the feedbacks
weaken and become even weaker than in the warming case.
Since most authors focus on one specific time period for re-
gressing the differential feedback parameter, this change in
feedback strength has not been reported before for cooling
simulations. All in all, the early stronger and the late weaker
feedback almost compensate, so that the equilibrium feedback
parameters of SSAF, CO2 -induced cooling, and warming are
almost equal (i.e., the equilibrium efficacy is approximately 1).
Efficacy differences exist in transient states, but not in
equilibrium.

Note that also in the 2 3 CO2 simulation the feedback pa-
rameter decreases over time, albeit less than in the other
two simulations. The weakening of the feedback of 2 3 CO2

simulations is a well-known feature of the majority of CMIP5
and CMIP6 models (Senior and Mitchell 2000; Andrews et al.
2012; Winton et al. 2010; Armour et al. 2013; Ceppi and
Gregory 2017; Armour 2017) and explained by pattern ef-
fects (see section 2).

The feedback parameter change over time is more pro-
nounced in our cooling simulations than in the warming
simulations and is largest for SSAF. Two questions arise
immediately:

1) Why do the cooling simulations produce initially stronger
global mean feedback than the warming simulation?

2) Which processes change over time that lead to the en-
hanced weakening of the feedback parameter in the cool-
ing simulations?

In the following we will argue that these questions can be an-
swered on grounds of different temperature change patterns
and their temporal evolution.

b. The temperature change pattern explains feedback
differences

The temperature change patterns are shown as zonal aver-
ages in Fig. 3, and spatially resolved in Fig. 4. All patterns
show some common characteristics in the early period: ampli-
fied temperature change in the Arctic, intermediate tempera-
ture change in the tropics, and small temperature change in
the southern mid and high latitudes, except close to the South
Pole. The qualitative temperature change pattern with re-
duced Southern Ocean and Antarctic temperature response
after volcanic eruptions was found before by Yang et al. (2019)
and confirmed in a multimodel large ensemble comparison
(Pauling et al. 2021). In the late period, the pattern becomes
more El Niño–like, consistent with the long-term temperature
change pattern in other models (Cai and Whetton 2001; Held
et al. 2010).

Despite the generally similar shape of the patterns, there
are important differences: While the zonal mean temperature
change is smaller than or equal to the global average at almost

FIG. 2. (left) Feedback parameter and (right) efficacy, calculated from the equilibrium method and the differential
method for the early and late period. The efficacy of 23 CO2 simulations is 1 by definition.

FIG. 3. Zonal mean temperature change pattern for the early
(years 0–10) and late (years 100–400) periods. Values greater than
1 indicate stronger temperature change than the global average. A
value of 0 indicates no temperature change.
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FIG. 4. Spatially resolved temperature change pattern for (top) the early period (years 0–10), and (bottom) the
late period (years 100–400). The lower two panels of each subfigure show the difference to the 2 3 CO2 simula-
tion. Values greater than 1 indicate stronger temperature change than the global average. A value of 0 indicates
no temperature change. The solid and dotted lines indicate the boundaries of the warm-pool region and the
tropics, respectively.
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all latitudes in the tropics in the first decade of the 2 3 CO2

simulation, the opposite is true in both cooling cases. This pic-
ture is reversed over time: In the late period, the deep tropical
temperature change is enhanced relative to the global mean
for the 2 3 CO2 simulation (see Fig. 3; difference between
dashed and dotted line between 208S and 208N). The opposite
is true for the cooling simulations, which have a lower temper-
ature change in the late period than in the early period in
most tropical latitudes, when compared with the global aver-
age. During the late period, in contrast with the early period,
the southern high latitudes show much larger temperature
changes in both cooling experiments, but especially in the
0.5 3 CO2 case.

We propose that the global feedback is strongly negative in
the cooling simulations in the early period, because the tem-
perature change is concentrated in the tropical warm-pool re-
gion (308S–308N, 508E–1608W). In this region the combined
lapse-rate and water-vapor feedback is stronger than in the
global average (Po-Chedley et al. 2018; Dong et al. 2019,
2020), and the surface-albedo feedback is zero. Using the ra-
diative kernels from Block and Mauritsen (2013), we perform
a kernel decomposition of the total feedback into its compo-
nents (Soden et al. 2008). This yields that lapse-rate, water-
vapor, and surface-albedo feedback together account for 85%
of the feedback differences between 2 3 CO2 and SSAF radi-
ative forcing in the early period (not shown). The same feed-
back processes cause 100% of the feedback differences between
2 3 CO2 and 0.5 3 CO2, where additional small differences in
cloud and Planck feedback compensate. In contrast to the multi-
model comparison of Dong et al. (2019), in which the cloud
feedback plays an important role for feedback parameter differ-
ences, it is approximately zero in all our simulations during the
early period.

The most striking differences in the temperature patterns
are not located in the warm-pool region, but rather at higher
latitudes. However, temperature changes in the warm pool
have much larger global radiative effects than changes in any
other region, such that even moderate differences in the
warm-pool region can dominate the global response (Dong
et al. 2019, their Fig. 5). For this reason, we focus on the
warm-pool region, although the temperature pattern differ-
ences there are only moderate.

We show the relationship between the temperature change
pattern and the feedback parameter in Fig. 5, where the WPI
is a simple measure for the temperature change pattern. A
WPI greater than 1 means that the tropical warm-pool region
warms or cools more than the global average. The feedback
parameter is more negative in simulations with enhanced tem-
perature change in the tropical warm-pool region. The scatter
points of SSAF and 2 3 CO2 simulations are well separated
in the early period. The negative correlation between WPI
and feedback parameter exists not only for the three simula-
tion types together, but also for each of the three ensembles
individually.

As time passes, the temperature change pattern in the
SSAF and 0.5 3 CO2 simulations is shifted away from the
warm-pool region, and more generally from the tropics to-
ward the extratropics. This enhances the less negative lapse-

rate feedback of the non–warm-pool regions and the posi-
tive surface-albedo feedback of the high latitudes. For this
reason, the overall feedback is initially stronger when cool-
ing and becomes weaker later on.

However, the scatter points from the late period (squares in
Fig. 5) do not fall on the regression line from the early period.
Apparently, the simple WPI cannot explain completely the
shift from strong to weak feedback between the decadal and
centennial time scale. This shift has been found to be related
to the temperature change pattern over ascent and descent
regions within the tropics (Dong et al. 2019, 2020), and to
the delayed southern ocean temperature change (Senior
and Mitchell 2000). Additionally, the relationship between
local SST and global radiation changes might not be invari-
ant to climate change, which could alter the relationship
between WPI and feedback parameter in warmer or cooler
climates.

Although the WPI cannot explain the change in feed-
back from the decadal to the centennial time scale entirely,
it does explain the efficacy differences between simulations
within each period. While we point out the importance of
the tropical warm-pool region for efficacy differences be-
tween 0.5 3 CO2 forcing, 2 3 CO2 forcing, and SSAF, we
acknowledge that temperature change in other regions also
influences the feedback. Interestingly, the cloud feedback of
all our simulations is approximately the same in the early period
(0.0–0.1 6 0.1 W m22 K21), although cloud feedbacks are the
most important contribution to the differences between early
and late feedback of CMIP5 and CMIP6 4 3 CO2 simulations
(Dong et al. 2020), including MPI-ESM (Block and Mauritsen
2013). Either MPI-ESM is an outlier in this regard, or the pro-
cesses that lead to differences between early and late feedback
are not exactly the same processes that distinguish SSAF,
0.5 3 CO2, and 2 3 CO2 forcing in the early period.

FIG. 5. Scatterplot of feedback parameter vs WPI (ratio of tem-
perature change in the tropical warm-pool region to global mean
temperature change). Each circle represents one ensemble mem-
ber from the early period; crosses show ensemble mean6 standard
error; squares and error bars mark values from the late period
(years 100–400) 6 standard error. The gray dashed line is a linear
regression through all 3 3 18 5 54 ensemble members from the
first decade. Marginal distributions are plotted on the axes.
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Repeating the analysis including the whole tropics in-
stead of only the warm-pool region, [i.e., using the “ratio of
tropical to global warming” from Soden and Held (2006);
Po-Chedley et al. 2018] yields similar results, albeit with
weaker correlations (Fig. S1 in the online supplemental
material). The conclusions are the same for both variants.
While there is a theoretical foundation for the link between
the ratio of tropical to global warming and the feedback pa-
rameter (Po-Chedley et al. 2018), this relation might actu-
ally originate from the dominance of the tropical warm-pool
region. Of course, WPI and the ratio of tropical to global
warming are correlated.

SST pattern changes can lead to changes in large-scale tro-
pospheric stability (Ceppi and Gregory 2019). They can be
quantified by the differential stability change dS/dT, where S
is the area-averaged estimated inversion strength (Wood and
Bretherton 2006) between 508S and 508N. Increased stability
leads to more low clouds in the tropical subsidence regions
and a more-negative lapse-rate feedback (Ceppi and Gregory
2019). Exchanging the WPI for dS/dT in Fig. 5 yields a quali-
tatively similar result (Fig. S2 in the online supplemental
material). The SST pattern measure WPI and the stability
measure dS/dT are well correlated (correlation coefficient
r 5 0.81; Fig. S3 in the online supplemental material),
which corroborates the relationship between changes in
SST patterns, stability, and feedback (Ceppi and Gregory
2019; Salvi et al. 2022).

c. Sign, pattern of radiative forcing, and stratospheric
heating cause temperature change pattern differences

While we have shown that the differences in temperature
change patterns explain the differences between the feedback
parameters within the same period, it is not clear what causes
the former. We propose that three factors combine to elicit
different WPI values.

One logical explanation would be that the WPI differences
are caused by different radiative forcing patterns, which we
show in Fig. 6. The high aerosol concentration and the strong
insolation in the tropics cause the SSAF to be stronger in the
tropics than in the extratropics. Specifically, the warm-pool
region experiences stronger relative effective forcing from
aerosols than from either doubling or halving the CO2 con-
centration. Since this pattern only weakly appears in the
instantaneous forcing, the warm-pool-enhanced effective
forcing pattern must largely originate from atmospheric
adjustments (not shown). It could lead to more temperature
change in the tropical warm-pool region. However, the two
simulations with altered CO2 concentrations have almost
the same forcing pattern (see Fig. 6), yet their temperature
change patterns are very different (see Figs. 3 and 4), and so
are the feedback parameters (see Figs. 2 and 5). Hence, the
forcing pattern alone is not sufficient.

Another conceivable explanation is that the temperature
change pattern differences arise from the distinction between
negative and positive radiative forcing. Ocean heat transport

FIG. 6. (top) Relative effective forcing (effective forcing normalized by its global average). (bottom) The difference to the 23 CO2 simulation.
The solid and dotted lines indicate the boundaries of the warm-pool region and the tropics, respectively.
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is projected to decrease with warming (Li et al. 2013; Previdi
et al. 2021), which leads to more negative radiative feedbacks
(Singh et al. 2022), consistent with our interpretation of the
decreased activation of more positive extratropical feedbacks.
If the poleward ocean heat transport strengthens in cooler
conditions, that would explain why the temperature change
shifts from the tropical warm-pool region to the extratropics
on the centennial time scale. The reduced ocean heat trans-
port in warmer conditions could be the reason that the tem-
perature change pattern, as measured by the WPI, remains
relatively constant in the 2 3 CO2 simulation. Furthermore,
warming stabilizes the ocean and therefore suppresses vertical
mixing, whereas cooling leads to destabilization. This might
cause differences in mixing time scales, surface fluxes, and con-
sequentially SST patterns. The enhanced mixing from cooling
would enhance the relative importance of ocean heat uptake,
when compared with radiative feedbacks. Ocean heat uptake
has been interpreted as a forcing with weak feedback (Winton
et al. 2010; Rose et al. 2014). Therefore a cooling/warming
asymmetry of the relative role of ocean heat uptake could af-
fect the global mean feedback. We present no evidence cor-
roborating or rejecting this hypothesis, but suggest it as a
possible reason for a cooling versus warming feedback asym-
metry. Still, if cooling versus warming were the only impor-
tant distinction, the 0.5 3 CO2 and SSAF ensemble means
would not be separated in Fig. 5.

Third, the altitude of the aerosol layer has been shown to
influence the efficacy through stratospheric heating and water-
vapor feedback (Zhao et al. 2021). Therefore the heating by
absorption of LW radiation influences the feedback parame-
ter, but our results show that this process is mediated by the
temperature change pattern. This would reconcile the findings
of Zhao et al. (2021) with those of Gregory and Andrews
(2016), Shindell et al. (2015), and Haugstad et al. (2017), who
show that the surface temperature change pattern and not
the existence/nonexistence of aerosol determines the feed-
back strength.

Our results do not allow us to conclude what exactly causes
the distinct temperature change patterns, but it is likely a
combination of the sign (possibly also the magnitude) of the
radiative forcing, its pattern, and the stratospheric heating
from the aerosols. None of these factors is sufficient to explain
the differences on its own.

6. EVA ensemble and CMIP6 simulations confirm
increased warm-pool temperature change

a. EVA ensemble

Our SSAF simulations are highly idealized: they are based
on time-independent radiative forcing and do not reflect the
seasonally varying transport of stratospheric aerosol. To verify
if the enhanced temperature change in the tropical warm-pool
region also holds for time-dependent VAF, we compare them
with the MPI “idealized volcanic forcing ensemble” (EVA-ENS).
Azoulay et al. (2021) created 100-member ensembles of ideal-
ized equatorial volcanic eruption with sulfur injections of
2.5 to 40 Tg. For comparison, it has been estimated that the

Mount Pinatubo eruption injected approximately 5–10 Tg of
sulfur (TgS; Timmreck et al. 2018) into the stratosphere.
Their aerosol optical depth distributions are, as in our case,
obtained from the EVA forcing generator. The simulations
of EVA-ENS assume an eruption in June 1991, and are
branched off of 100 different realizations of the MPI Grand
Ensemble of historical simulations (Maher et al. 2019). We
determine the temperature change pattern in years 1991–93
and compute the WPI. The results are shown in Fig. 7. For
low sulfur injections of 5 Tg or less, the standard error is
very large and no reliable statement can be made on the
spatial structure of the temperature change. For injections
of 10 TgS or more, the temperature change is robustly con-
centrated in the tropical warm-pool region. After the ideal-
ized volcanic eruptions with injections greater than 5 TgS
the WPI is approximately between 1.2 and 1.5. This is
higher than the values from the idealized SSAF simulation
(1.1), which could be related to the even shorter time scale
of 3 years for the simulations of EVA-ENS, as compared
with the time scale of 10 years of the idealized SSAF
simulations.

b. Volcanic eruptions in CMIP6 historical simulations

For a multimodel comparison we examine the CMIP6
“historical” simulations and warming signals from the
“abrupt 4 3 CO2” simulations. We use the years 1883–85
and 1991–93 from the CMIP6 historical simulations for
VAF, because in these periods the radiative forcings from
the eruptions of Krakatau in May–August 1883 and Mount
Pinatubo in June 1991 dominate the total effective forcing
from all sources. The signal-to-noise ratio is still poor, and
the average simulated annual mean global mean cooling
amounts to only 0.3 K for Krakatau and 0.2 K for Mount Pi-
natubo. This is on the order of internal variability, so that
individual realizations may exhibit only small negative or
even positive temperature anomalies. We compute the WPI
for all ensemble members from the participating models
with at least 10 historical realizations. After removing three
outliers with a WPI .. 6, we compare these WPI values
with those from the first three years of the abrupt 4 3 CO2

simulations. The results for each model and for the whole
ensemble are shown in Fig. 7. Figures showing results for
each individual simulation from all models (including those
with less than 10 realizations) are provided in Figs. S4 and S5 in
the online supplemental material.

There are multiple sensible possibilities of averaging the
results: for example, giving each realization the same weight
(realization average) or giving each model the same weight
(model average). Both methods yield qualitatively the same
result: the temperature change pattern is more concentrated
in the tropical warm-pool region in the periods of historical
VAF than in the 4 3 CO2 simulations.

However, the WPI spread is large for the Pinatubo and
Krakatau periods of the historical simulations, both within
models and between models. Most models agree that the WPI
is larger in periods of VAF, especially those with more real-
izations, but not all of them do. Many realizations can be
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found with higher WPI in the abrupt 4 3 CO2 simulations
than in the historical simulations during periods of VAF. If the
variability of the CMIP6 simulations is representative of
the real world, observed temperature change patterns and
therefore also observed feedback parameters and efficacies
for any individual eruption might substantially deviate from
the expected value. The high WPI of VAF is robust in the

multimodel ensemble mean, and in some but not all single-
model ensemble means. Even in our own ensemble of highly
idealized forcing scenarios some realizations exhibit a WPI,
which is substantially different from the ensemble mean,
causing an overlap of the WPI values of SSAF and 2 3 CO2

simulations (but no overlap of the estimated uncertainties;
see Fig. 5).

FIG. 7. Comparison of the WPI in our 18-member, 10-yr ensemble of idealized SSAF simulations, simulations from EVA-ENS, and
volcanic periods of the CMIP6 historical simulations. Numbers in parentheses indicate the number of ensemble members; models with
less than 10 members are not shown. Error bars represent standard errors and are slightly shifted up and down to avoid indistinguishable
overlaps. For 4 3 CO2 there are generally only one or a few realizations per model. The error bar of the 2.5-TgS EVA-ENS simulations
exceeds the figure limits.
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The comparison with the CMIP historical simulations and
the EVA ensemble shows that the increased WPI of SSAF in
the early period is also found in simulations of VAF.

c. 0.5 3 CO2 simulations from CFMIP

To verify our results from the 0.5 3 CO2 simulations, we
analyze a set of five models that performed 0.5 3 CO2 and
23 CO2 simulations in the framework of the Cloud Feedback
Model Intercomparison Project phase 3 (CFMIP3; Webb et al.
2017). Since the CFMIP simulations span only 150 years, the
feedback parameter can only be computed for the early pe-
riod. Three of four models that provide the necessary output
to compute the feedback parameter show at least a moder-
ately stronger feedback in the 0.5 3 CO2 simulations than in
the 2 3 CO2 simulations (Table 3). However, there is no clear
relationship between WPI and feedback parameter. While this
seems to indicate that our results are not supported by the
CFMIP3 ensemble, we stress that these are only five models
with only one realization per model (two 2 3 CO2 simulations
for GISS-E2-1-G) of relatively weak forcings. In our 18-member
ensembles, the ranges of feedback parameters are large and
there is an overlap between the ensembles of cooling and warm-
ing. A larger ensemble from CFMIP would be necessary to con-
clude this more definitely. If indeed MPI-ESM is an outlier in
that regard, then the conclusions on the importance of the
sign (or magnitude) of the radiative forcing pattern might be
wrong. Mitevski et al. (2022) found no feedback differences
between 0.5 3 CO2 forcing and 2 3 CO2, although this might
be explained by the fact that they examine the differential
feedback parameter of years 1–150, which is exactly between
our early period (years 1–10, characterized by strong feedback)
and our late period (years 100–400, characterized by weak
feedback). On the other hand, our results match those from
Chalmers et al. (2022), who also report stronger feedbacks in
0.5 3 CO2 than in 2 3 CO2 simulations, although they find an
elevated importance of cloud feedbacks in addition to lapse-
rate and surface-albedo feedbacks.

7. Discussion and summary

There is a broad consensus in the literature that VAF is
characterized as producing stronger feedback than 2 3 CO2

forcing (i.e., low efficacy). Using idealized simulations of
0.5 3 CO2 forcing, 2 3 CO2 forcing, and step-like SSAF, we
tackle the question why the feedback parameter appears to be
stronger for VAF.

The finding that the feedback to SSAF is stronger than that
of 2 3 CO2 forcing holds only for differential feedback pa-
rameters in the early decade, whereas on the centennial time
scale the feedback weakens considerably. This weakening is
more pronounced in the 0.5 3 CO2 and SSAF simulations
than in the 2 3 CO2 simulation. In equilibrium, there are al-
most no efficacy differences between SSAF, CO2 warming,
and CO2 cooling, due to a compensation of early strong and
late weak cooling feedbacks.

This pronounced change in feedback over time might have
implications for climate engineering by solar radiation man-
agement. Because of the low early efficacy a comparably large
negative radiative forcing would be necessary to balance the
surface temperature change from CO2 on the decadal time
scale. On the centennial time scale the efficacy of SSAF is
larger than unity. Therefore a particular CO2 radiative forcing
could be balanced by a weaker (in magnitude) negative radia-
tive forcing from aerosols in the long term. However, it is not
clear how our results might change in the presence of strong
CO2 radiative forcing. Since part of the pronounced changes
in the efficacy of aerosol forcing seems to be related to the fact
that Earth is cooling, this would not be observed in a world of
approximately constant or slightly rising mean temperature.

The responses to cooling and warming differ and there are
substantive feedback changes over time. Hence it is not possi-
ble, or at least not straightforward, to estimate the equilib-
rium climate sensitivity to CO2 forcing from the observed
response to volcanic eruptions. This has been argued before,
but partly on different grounds (Wigley et al. 2005; Stowasser
et al. 2006; Boer et al. 2007; Gregory et al. 2020; Kummer and
Dessler 2014; Merlis et al. 2014). Feedback differences were
often interpreted to originate from the SW/LW nature of the
radiative forcing (Joshi et al. 2003; Bony et al. 2006) or from
differences in ocean heat uptake (Stowasser et al. 2006; Boer
et al. 2007), but less from its sign.

Changes of the feedback parameter in time are related to
varying temperature change patterns. The temperature change
pattern causes the differences in feedback strength between
warming and cooling simulations, which explains the early low
efficacy of SSAF. In comparison with a doubling of the CO2

concentration, a halving of the CO2 concentration}and even
more so a cooling with SSAF}lead to stronger temperature
changes in the tropical warm-pool region in the first decade, rel-
ative to the global mean. The slightly enhanced temperature
change in the warm-pool region substantially increases near-
global stability S and strengthens the global feedback parameter.

TABLE 3. Early WPI and feedback parameter for the simulations from CFMIP. MRI-ESM2-0 did not provide the necessary output to
compute the feedback parameter. GISS-E2-1-G provides two realizations of the 2 3 CO2 experiment.

0.5 3 CO2 2 3 CO2

WPI l (W m22 K21) WPI l (W m22 K21)

MRI-ESM2-0 0.87 } 0.65 }

CNRM-CM6-1 0.75 21.10 0.92 21.03
IPSL-CM6A-LR 0.88 21.16 0.82 21.40
GISS-E2-1-G 0.79 21.66 0.92; 0.93 21.04; 21.60
MIROC6 0.84 21.89 0.94 21.61
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The differences between cooling and warming simulations in the
first decade mainly originate from lapse-rate, water-vapor, and
surface-albedo feedback. In the cooling simulations, the temper-
ature change progresses to the high southern latitudes on the de-
cadal to centennial time scale, which leads to an activation of the
less negative/more positive high-latitude feedbacks. Therefore,
the global feedback weakens more in the cooling simulations
than in the 2 3 CO2 simulation. In our simulations, this effect is
common to CO2-induced and SSAF-induced cooling, but more
pronounced in the SSAF case. This highlights that the radiative
forcing’s pattern, its sign (possibly also the magnitude), and the
stratospheric heating from the aerosols (Zhao et al. 2021) likely
contribute to setting the temperature change pattern. The atmo-
spheric and oceanic circulations blur differences in the forcing
patterns when translating them to a temperature change pattern.

A comparison with effects of the Mount Pinatubo and
Krakatau eruptions in the CMIP6 historical simulations shows
that the enhanced temperature change in the tropical warm-
pool region is an average feature of climate models after vol-
canic eruptions, although the spread is large. Moreover, we
find this characteristic in the EVA ensemble, a large ensemble
of simulations of idealized volcanic eruptions in MPI-ESM
1.2-LR.

Our simulations and the eruptions of Krakatau and Pinatubo
in the CMIP6 historical simulations are characterized by tropi-
cally concentrated SSAF. Can the results be transferred to solar
forcing and extratropical SSAF?

Other studies have found the efficacy of solar forcings to
be lower than unity (Schmidt et al. 2012; Modak et al. 2016;
Hansen et al. 2005), specifically when cooling. We speculate
that this might be explained by the fact that solar forcing pre-
dominantly affects the tropics, and therefore leads to a tropi-
cally enhanced temperature change pattern, similar to SSAF.
It is furthermore possible that the forcing pattern helps ex-
plain nonunity efficacies of other forcing agents (Hansen et al.
2005; Ceppi and Gregory 2019). For anthropogenic aerosol
forcing, the link between an extratropically concentrated radi-
ative forcing pattern and high efficacy has already been dem-
onstrated (Salvi et al. 2022).

Zhao et al. (2021) found that extratropically concentrated
volcanic aerosols lead to a less negative equilibrium feedback
parameter than in the case of mostly tropical aerosol load.
Therefore, the finding of low efficacy from SSAF might not
hold for eruptions at higher latitudes. Extratropical eruptions
likely elicit a temperature change pattern, which is shifted to-
ward the extratropics, and therefore cause weaker feedback.
In that case, the efficacy could increase and be on the order of
or even larger than 1. While differences in LW feedbacks are
also important in the simulations of Zhao et al. (2021), the
efficacy is mostly explained by differences in clear-sky and
cloudy-sky SW feedbacks, suggesting an elevated impor-
tance of SW-cloud and surface-albedo feedbacks.

The exact reason why the temperature patterns of cooling
and warming differ remains open. In our simulations, they in-
volve different degrees of polar amplification. The mechanisms
that drive polar amplification include lapse-rate feedback, ice-
albedo feedback (Pithan and Mauritsen 2014), and a changing
balance of moist versus dry static poleward energy transport

(Alexeev et al. 2005; Hahn et al. 2021; Armour et al. 2019). An
explanation for the differences in WPI between the radiative
forcings and its changes in time could be based on these pro-
cesses, but is beyond the scope of this work. The physical origin
of the differences between the transient temperature change
patterns of warming and cooling should be the focus of further
research.
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