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Abstract— This paper studies formal synthesis of controllers
for continuous-space systems with unknown dynamics to satisfy
requirements expressed as linear temporal logic formulas. For-
mal abstraction-based synthesis schemes rely on a precise math-
ematical model of the system to build a finite abstract model,
which is then used to design a controller. The abstraction-
based schemes are not applicable when the dynamics of the
system are unknown. We propose a data-driven approach that
computes the growth bound of the system using a finite number
of trajectories. The growth bound together with the sampled
trajectories are then used to construct the abstraction and
synthesise a controller.

Our approach casts the computation of the growth bound
as a robust convex optimisation program (RCP). Since the
unknown dynamics appear in the optimisation, we formulate
a scenario convex program (SCP) corresponding to the RCP
using a finite number of sampled trajectories. We establish
a sample complexity result that gives a lower bound for the
number of sampled trajectories to guarantee the correctness
of the growth bound computed from the SCP with a given
confidence. We also provide a sample complexity result for the
satisfaction of the specification on the system in closed loop
with the designed controller for a given confidence. Our results
are founded on estimating a bound on the Lipschitz constant
of the system and provide guarantees on satisfaction of both
finite and infinite-horizon specifications. We show that our data-
driven approach can be readily used as a model-free abstraction
refinement scheme by modifying the formulation of the growth
bound and providing similar sample complexity results. The
performance of our approach is shown on three case studies.

I. INTRODUCTION

One of the major objectives in the design of safety-critical
systems is to ensure their safe operation while satisfying
high-level requirements. Examples of safety-critical systems
include power grids, autonomous vehicles, traffic control, and
battery-powered medical devices. Automatic design of con-
trollers for such systems that can fulfil the given requirements
have received significant attention recently. These systems
can be represented as control systems with continuous state
spaces. Within these continuous spaces, it is challenging to
leverage automated control synthesis methods that provide
satisfaction guarantees for high-level specifications, such as
those expressed in Linear Temporal Logic [2], [4], [32], [13].

A common approach to tackle the continuous nature of
the state space is to use abstraction-based controller design
(ABCD) schemes [32], [4], [21], [29]. The first step in the
ABCD scheme is to compute a finite abstraction by discretis-
ing the state and action spaces. Finite abstractions are con-
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nected to the original system via an appropriate behavioural
relation such as feedback refinement relations or alternating
bisimulation relations [25], [32]. Under such behavioural
relations, trajectories of the abstraction are related to the
ones of the original system. Therefore, a controller designed
for the simpler finite abstract system can be refined to a
controller for the original system. The controller designed by
the ABCD scheme is described as being formal due to the
guarantees on satisfaction of the specification by the original
system in closed loop with the designed controller.

ABCD schemes generally rely on a precise mathematical
model of the system. This stems from the fact that estab-
lishing a behavioural relation between the original system
and its finite abstraction uses reachability analysis over the
dynamics of the original system that require knowledge of
the dynamical equations. Although such equations can in
principle by derived for instance by using physics laws,
the real-world control systems are a mixture of differential
equations, block diagrams, and lookup tables. Therefore,
extracting a clean analytical model for systems of practical
interest could be infeasible. A promising approach to tackle
this issue is to develop data-driven control synthesis schemes
with appropriate formal (probabilistic) guarantees.

The main contribution of this paper is to provide a data-
driven approach for formal synthesis of controllers to satisfy
temporal specifications. We focus on continuous-time non-
linear dynamical systems whose dynamics are unknown but
sampled trajectories are available. Our approach constructs
a finite abstract model of the system using only a finite
number of sampled trajectories and the growth bound of
the system. We formulate the computation of the growth
bound as a robust convex program (RCP) that has infinite
uncountable number of constraints. We then approximate
the solution of the RCP with a scenario convex program
(SCP) that has a finite number of constraints and can be
solved using only a finite set of sampled trajectories. We
establish a sample complexity result that gives a lower
bound for the required number of trajectories to guarantee
the correctness of the growth bound over the whole state
space with a given confidence. We also provide a sample
complexity result for the satisfaction of the specification on
the system in closed loop with the designed controller for a
given confidence. Our result requires estimating a bound on
the Lipschitz constant of the system with respect to the initial
state, that we obtain using extreme value theory. As our last
contribution, we show that our approach can be extended
to a model-free abstraction refinement scheme by modifying
the formulation of the growth bound and providing similar
sample complexity results. We demonstrate the performance
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of our approach on three case studies.

The remainder of this paper is organised as follows. After
discussing the related work, Section II covers preliminaries
on dynamical systems and finite abstractions, and provides
the problem statement. In Section III, we present the assump-
tions and theoretical results needed for connecting RCPs
and their corresponding SCPs. In Section IV, we present
our approach on data-driven computation of the growth
bound and the abstraction, and prove our sample complexity
result. Estimation of the Lipschitz constant of the system
for computing the number of samples is also discussed
in this section. Section V discusses the extension of our
approach to a data-driven abstraction refinement scheme.
Several numerical examples are provided in Section VI
that support the theoretical findings of our paper. Finally,
Section VII contains concluding remarks and future research
directions.

Related Work. There is an extensive body of literature
on model-based formal synthesis for both deterministic and
probabilistic systems. We refer the reader to the books
[2], [32], [4] and seminal papers [13], [1]. Data-driven
approaches for analysis, verification, and synthesis of sys-
tems have received significant attention recently to improve
efficiency and scalability of model-based approaches, and to
study problems in which a model of the system is either not
available or costly and time-consuming to construct.

Given a prior inaccurate knowledge about the model of
the system, a research line is to use data for refining the
model and then synthesise a controller. Such approaches
assume a class of models and improve the estimation of
the uncertainty within the model class. These approaches
range from using Gaussian processes [23], [3], differen-
tial inclusions [10], rapidly-exploring random graphs [15],
piecewise affine models [27], and model-based reinforcement
learning algorithms [8]. A data-driven framework is proposed
in [12] for verifying properties of hybrid systems when the
continuous dynamics are unknown but the discrete transitions
are known.

Data-driven model-free approaches compute the solution
of the synthesis problem directly from data without con-
structing a model. In [16], authors provide a reach-avoid
Q-learning algorithm with convergence guarantees for an
arbitrarily tight conservative approximation of the reach-
avoid set. The paper [34] proposes a falsification-based
adversarial reinforcement learning algorithm for metric tem-
poral logic specifications. Satisfying signal temporal logic
specifications is studied in [33] using counterexample-guided
inductive synthesis on nonlinear systems, and using model-
free reinforcement learning in [17] for Markov decision
processes. A learning framework for synthesis of control-
affine systems in provided in [31]. The authors of [35] study
learning from demonstration while preventing the violation
of safety under the learned policy.

The research on data-driven constructions of abstract mod-
els is very limited. Legat et al. [19] provide an abstraction-
based controller synthesis approach for hybrid systems

by computing Lyapunov functions and Bellman-like Q-
functions, and using a branch and bound algorithm to solve
the optimal control problem. Makdesi et al. [22] studied
unknown monotone dynamical systems and sampled a set
of trajectories generated by the system to find a minimal
map overapproximating the dynamics of any system that
produces these transitions. Consequently, they calculate an
abstraction of the system related to this map and prove that
an alternating bisimulation relation exists between them. In
contrast, our approach is not restricted to monotone systems
and is applicable to any nonlinear dynamical system.

The closest work to our problem formulation is the work
by Devonport et al. [9], where a data-driven abstraction
technique is provided for satisfying finite-horizon specifi-
cations. Our results are more general than the work [9]
in two main aspects. First, our constructed abstraction can
be used for synthesising a controller against any linear
temporal logic specification. Our sample complexity result
is independent of the horizon of the specification and does
not limit using the approach on finite-horizon specifications.
Second, the guarantee provided in [9] is based on a Probably
Approximately Correct (PAC) approach. It means that the
constructed abstraction is always wrong on a small subset of
the state space whose size can be made smaller at the cost of
high computational efforts. Our formulated guarantee ensures
that the abstraction is valid on the entire state space with high
confidence. The confidence is interpreted from the frequentist
view of probability: if we run our algorithm multiple times,
we always get a correct abstraction except a small number
of times reflected in the confidence value.

In our approach, we formulate the synthesis problem as a
robust convex program and approximate it with a scenario
program. Such approximations have been studied for the past
two decades. Calafiore and Campi [6] provide an approxi-
mately feasible solution for the associated chance constrained
program by solving a scenario program, and give a sample
complexity result. Relaxing the convexity assumption is
studied in [30] by assuming additional properties of the
underlying probability distributions. We will use the results
by Esfahani et al. [11], where the optimality of the robust
program is connected directly to the scenario program. These
results are also used recently in the papers [18], [28] for
performing data-driven verification and synthesis. Inspired
by the works [37], [36], we will use extreme value theory
to estimate the Lipschitz constant needed for the sample
complexity results.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

Notation. We denote the set of natural, real, positive real,
and non-negative real numbers by N, R, R>0, and R≥0,
respectively. The set of natural numbers including zero is
denoted by N≥0. We use superscript n > 0 with these
sets to denote the Cartesian product of n copies of these
sets. The power set of a set A is denoted by 2A and
includes all the subsets of A. For any x, y ∈ Rn with



x = (x1, . . . , xn) and y = (y1, . . . , yn), and a relational
symbol . ∈ {≤, <,=, >,≥}, we write x . y if xi . yi for
every i ∈ { 1, 2, . . . , n }. A matrix M ∈ Rn×n is said to be
non-negative if all of its entries are non-negative. We use the
operators | · | and ‖ · ‖ to denote the element-wise absolute
value and the infinity norm, respectively. We use the notation
Ωε(c) := {x ∈ Rn | ‖x− c‖ ≤ ε } to denote the ball with
respect to infinity norm centred at c ∈ Rn with radius
ε ∈ Rn>0. We consider a probability space (Ω,FΩ,PΩ),
where Ω is the sample space, FΩ is a sigma-algebra on Ω
comprising its subsets as events, and PΩ is a probability
measure that assigns probabilities to events.
Control Systems. A continuous-time control system is a
tuple Σ = (X,xin, U,W, f), where X ⊂ Rn is the state
space, xin ∈ X is the initial state, U ⊂ Rm is the input space,
and W ⊂ Rn is the disturbance space which is assumed
to be a compact set containing the origin. The vector field
f : X × U → X is such that f(·, u) is locally Lipschitz for
all u ∈ U . The evolution of the state of Σ is characterised
by the differential equation

ẋ(t) = f(x(t), u(t)) + w(t), (1)

where w(t) ∈W represents the additive disturbance.
We consider the class of input and disturbance signals

u : R≥0 → U and w : R≥0 → W to be piecewise constant
with respect to a sampling time τ > 0, i.e., u(t) = u(kτ)
and w(t) = w(kτ) for every kτ ≤ t < (k + 1)τ and
k ∈ N≥0. Given a sampling time τ > 0, an initial state
x0 ∈ X , a constant input u ∈ U , and a constant disturbance
w ∈W , define the continuous-time trajectory ζx0,u,w of the
system on the time interval [0, τ ] as an absolutely continuous
function ζx0,u,w : [0, τ ] → X such that ζx0,u,w(0) = x0,
and ζx0,u,w satisfies the differential equation ζ̇x0,u,w(t) =
f(ζx0,u,w(t), u)+w for almost all t ∈ [0, τ ]. The solution of
(1) from x0 for the constant control input u with w(t) = 0
for all t ≥ 0 is called the nominal trajectory of the system.
For a fixed τ , we define the operators

ϕ(x, u, w) := ζx,u,w(τ) and
Φ(x, u) := {ϕ(x, u, w) | w ∈W }

respectively for the trajectory at time τ and the set of such
trajectories starting from x.

In this paper, we consider control systems Σ =
(X,xin, U,W, f) whose vector field f is not known, but
we can observe their time-sampled trajectories. A sequence
x0, x1, x2, . . . is a time-sampled trajectory of Σ if for each
i ≥ 0, we have xi+1 ∈ Φ(xi, ui) for some ui ∈ U .
Finite-state Abstraction of Control Systems. Let Σ =
(X,xin, U,W, f) be a control system with a sampling time
τ > 0. We consider abstract models constructed by using
uniformly sized rectangular partitioning of X and U . We
select representative points from these partition sets to obtain
X̂ and Û . We assume that the radius of these partition sets are
provided as vectors ηx ∈ Rn>0 and ηu ∈ Rm>0, respectively.
Parameters ηx, ηu are inputs to the abstraction procedure. A
finite-state abstraction of Σ is characterised by the tuple Σ̂ =

(X̂, Û , f̂), where X̂ is the set of representative points from
a finite partition of X , Û is the set of representative points
from a finite partition of U , and f̂ : X̂ × Û → 2X̂ is a set-
valued map. For any x̂ ∈ X̂ and û ∈ Û , x̂′ ∈ f̂(x̂, û) if there
is a pair of states x ∈ Ωηx(x̂) and x′ ∈ Ωηx(x̂′) such that
x′ ∈ Φ(x, û). Note that, the larger ηx is (where comparison
is made dimension-wise), the smaller is the cardinality of
X̂ resulting in a coarser abstraction. On the other hand, the
smaller ηx is, the more precise the abstraction Σ̂ will be,
increasing the chance of a successful controller synthesis
(see, e.g., [32] for more details on this construction).

Feedback Controller. A feedback controller for Σ̂ is a
function Ĉ : X̂ → Û . We denote by Ĉ ‖ Σ̂ the feedback
composition of Σ̂ and Ĉ. The set of trajectories of the
closed-loop system Ĉ ‖ Σ̂ consists of all finite trajectories
x̂0, x̂1, x̂2, . . . such that for all i ∈ N≥0, we have x̂i+1 ∈
f̂(x̂i, Ĉ(x̂i)).

We can relate a finite abstraction Σ̂ to Σ for control syn-
thesis purposes. Simulation relations or feedback refinement
relations [32], [25] established between Σ and Σ̂ enable us
to refine a controller Ĉ designed for Σ̂ to a controller C for
Σ. In its general form, such a refined controller C maps the
current states x ∈ Ωηx(x̂) into an input u = Ĉ(x̂) for Σ.
The purpose of designing Ĉ is that the closed-loop system
C ‖ Σ satisfies the given objective. Our synthesis objective
is expressed as Linear Temporal Logic (LTL) specifications.
We refer to [2] and references therein for detailed syntax and
semantics of LTL. For the details of the controller synthesis
and tool implementation using abstract models we refer to
[25] and [26], respectively.

B. Problem Statement

We study abstraction-based control design (ABCD) for
systems with unknown dynamics using available data from
the system such that a given specification is satisfied with
high confidence on the closed-loop system.

Assumption 1. The vector field f of the control system
Σ = (X,xin, U,W, f) in unknown, but sampled trajectories
of the system can be obtained in the form of SN :=
{(xk, uk, x′k) |x′k ∈ Φ(xk, uk), k = 1, 2, . . . , N}.

Problem 1 (Data-driven ABCD). Inputs: Control system
Σ = (X,xin, U,W, f) with unknown vector field f ,
specification Ψ, sampled trajectories SN , and confidence
parameter β ∈ (0, 1).

Outputs: Abstract model Σ̂, abstract controller Ĉ, and
refined controller C for Σ, such that C ‖ Σ satisfies Ψ
with confidence (1− β).

The first step of the ABCD is to compute a finite abstrac-
tion Σ̂ for Σ. Once such an abstraction is computed, synthesis
of the controller Ĉ and refining it to C follow the model-
based ABCD scheme. Therefore, the main challenge is to
provide a data-driven computation of the abstraction Σ̂ that
is a true overapproximation of Σ with confidence (1− β).



Problem 2 (Data-driven Abstraction). Inputs: Control
system Σ = (X,xin, U,W, f) with unknown vector field
f , sampled trajectories SN , discretisation parameters ηx
and ηu, and confidence parameter β ∈ (0, 1).

Outputs: Finite model Σ̂ that is an abstraction of Σ with
confidence (1− β).

In this paper, we tackle Problem 2 by showing how to
construct Σ̂ from sampled trajectories SN , and provide a
lower bound on the data size N in order to ensure correctness
of the abstraction with confidence (1 − β). The required
theoretical tools are presented in the next section.

III. ROBUST CONVEX PROGRAMS

In this section, we describe robust convex programs
(RCPs) and data-driven approximation of their solution. In
Sections IV and V, we show how such an approximation can
be used for solving the data-driven abstraction in Problem 2.

Let T ⊂ Rq be a compact convex set for some q ∈ N and
c ∈ Rq be a constant vector. Let (D,B,P) be the probability
space of the uncertainty and g : T ×D → R be a measurable
function, which is convex in the first argument for each d ∈
D, and bounded in the second argument for each θ ∈ T . The
robust convex program (RCP) is defined as

RCP:

{
minθ c

>θ

s.t. θ ∈ T and g(θ, d) ≤ 0 ∀d ∈ D.
(2)

Computationally tractable approximations of the optimal
solution of the RCP (2) can be obtained using scenario
convex programs (SCPs) that only require gathering finitely
many samples from the uncertainty space [24]. Let (di)

N
i=1

be N independent and identically distributed (i.i.d.) samples
drawn according to the probability measure P. The SCP
corresponding to the RCP (2) strengthened with γ ≥ 0 is
defined as

SCPγ :

{
minθ c

>θ

s.t. θ ∈ T, and g(θ, di) + γ ≤ 0 ∀i ∈ {1, 2, . . . , N}.
(3)

We denote the optimal solution of RCP (2) as θ∗RCP and the
optimal solution of SCPγ (3) as θ∗SCP . Note that θ∗RCP is a
single deterministic quantity but θ∗SCP is a random quantity
that depends on the i.i.d. samples (di)

N
i=1 drawn according

to P. The RCP (2) is a challenging optimisation problem
since the cardinality of D is infinite and the optimisation
has infinite number of constraints. In contrast, the SCP (3)
is a convex optimisation with finite number of constraints
for which efficient optimisation techniques are available [5].
The following theorem provides a sample complexity result
for connecting the optimal solution of the SCPγ to that of
the RCP.

Theorem 1 ([24]). Assume that the mapping d 7→ g(θ, d) in
(2) is Lipschitz continuous uniformly in θ ∈ T with Lipschitz
constant Ld and let h : [0, 1]→ R≥0 be a strictly increasing
function such that

P(Ωε(d)) ≥ h(ε), (4)

for every d ∈ D and ε ∈ [0, 1]. Let θ∗RCP be the optimal
solution of the RCP (2) and θ∗SCP the optimal solution of
SCPγ (3) with

γ = Ldh
−1(ε) (5)

computed by taking N i.i.d. samples (di)
N
i=1 from P. Then

θ∗SCP is a feasible solution for the RCP with confidence (1−
β) if the number of samples N ≥ N(ε, β), where

N(ε, β) := min

{
N ∈ N

∣∣∣ q−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β

}
,

(6)
with q being the dimension of the decision vector θ ∈ T .

IV. DATA-DRIVEN ABSTRACTION

In this section, we first discuss the steps required for
model-based abstraction of control systems. We then show
how this can be formulated as an RCP and present its
associated SCP. Finally, we use the connection between
the RCPs and SCPs in Theorem 1 to provide a lower
bound for number of required samples to certify a desired
confidence. The simplifying assumption used in this section
is that samples from the nominal trajectories of the system
Σ in also available in the form of {(xk, uk, x′k) |x′k =
ϕ(xk, uk, 0), k = 1, 2, . . . , N}. We discuss in the next
section how this assumption can be relaxed by modifying
the inequality of the growth bound.

A. Growth bound for reachable sets

Consider a control system Σ = (X,xin, U,W, f) with the
disturbance set W = [−w̄, w̄] for some vector w̄ ∈ Rn≥0.
Let ηx and ηu be discretisation parameters for the state and
input spaces X and U used to construct X̂ and Û of sizes nx
and nu, respectively. The first step of ABCD is to compute
a finite abstraction Σ̂ = (X̂, Û , f̂) using overapproximations
of the reachable sets for every pair of abstract state and input.
The reachable set for every pair (x̂, û) ∈ X̂ × Û is defined
as

Reach(x̂, û) := {x′ ∈ Φ(x, û) | x ∈ Ωηx(x̂)}.

The set Reach(x̂, û) is usually overapproximated using the
growth bound of the system dynamics [25].

Definition IV.1. The growth bound of a control system Σ
with abstract state and input spaces X̂, Û is a function
κ : Rn≥0 × X̂ × Û → Rn≥0 that satisfies

|ϕ(x, û, w)− ϕ(x̂, û, 0)| ≤ κ(|x− x̂|, x̂, û) (7)

∀x̂ ∈ X̂, ∀û ∈ Û , ∀x ∈ Ωηx(x̂), ∀w ∈W.

Note that ϕ(x̂, û, 0) is the nominal (disturbance-free)
trajectory of the system. Using this definition, for every
abstract state-input pair (x̂, û) ∈ X̂ × Û , the reachable set
Reach(x̂, û) is overapproximated with a ball centered at
z(x̂, û) := ϕ(x̂, û, 0) with radius λ(x̂, û) := κ(ηx, x̂, û).

When the system dynamics are known, it is shown in [25]
that the growth bound can be computed as

κ(r, x̂, û) = eL(û)τr +

∫ τ

0

eL(û)sw̄ds, (8)



for all r ∈ Rn≥0, x̂ ∈ X̂ , and û ∈ Û , where L : Û → Rn×n
is a matrix such that the entries of L(û) satisfy the following
inequality for all x ∈ X:

Li,j(û) ≥
{
Djfi(x, û) i = j
|Djfi(x, û)| i 6= j,

(9)

for all i, j ∈ {1, 2, . . . , n}, where fi(x, u) is the ith element
of the vector field f(x, u) and Djfi is its partial derivative
with respect to the jth element of x.

B. SCP for the computation of growth bound

When the model of the system is unknown, the matrix
L(û) defined using (9) is not computable, thus the growth
bound in (8) is not available. To tackle this bottleneck, we
use the parameterisation

κ(θ)(r, x̂, û) := θ1(x̂, û)r+θ2(x̂, û),∀r ∈ Rn≥0, x̂ ∈ X̂, û ∈ Û ,
(10)

where θ1 ∈ Rn×n and θ2 ∈ Rn. We denote by θ ∈ Rn2+n

the concatenation of columns of θ1 and θ2.

Remark 1. The parameterised growth bound in (10) is linear
with respect to r similar to (8), but is more general and less
conservative by allowing θ1, θ2 to depend on x̂ (i.e., they are
defined locally for each abstract state).

Theorem 2. The inequality (7) with the parameterised
growth bound (10) can be written as the robust convex
program

minθ c
>θ

s.t. 0 ≤ θ ≤ θ̄, and ∀x ∈ Ωηx(x̂), ∀w ∈W,
|ϕ(x, û, w)− ϕ(x̂, û, 0)| − κ(θ)(|x− x̂|, x̂, û) ≤ 0,

(11)

where c = [1, 1, . . . , 1] ∈ Rn2+n and θ̄ is a sufficiently large
positive vector.

Proof. We first show that the optimisation (11) is in fact a
robust convex programme. Let D = Ωηx(x̂) × W be the
uncertainty space and

g(θ, x, w) := |ϕ(x, û, w)− ϕ(x̂, û, 0)| − κ(θ)(|x− x̂|, x̂, û)

for all x ∈ Ωηx(x̂) and w ∈W and fixed (x̂, û) ∈ X̂×Û . We
need to show that g is convex in θ for each (x,w) ∈ D and
bounded in (x,w) for every θ ∈ [0, θ̄]. The convexity holds
due to the parameterisation of κ(θ) in (10) being linear with
respect to the optimisation variables in θ. The boundedness
holds due to the set D being compact and trajectories of the
system being continuous.

We note that any feasible solution for the optimisation (11)
gives a function κ that satisfies the inequality (7) for Σ. Such
a system will also have a growth bound of the form (8) that
is a feasible solution for (11). To see this, we show that θ1 =
eL(û)τ and θ2 =

∫ τ
0
eL(û)sw̄ds are always non-negative. By

definition, all the entries of L(û) are non-negative except
the diagonal entries. We decompose this matrix as L(û) =
Q+D, where D is a diagonal matrix with all diagonal entries
equal to the constant maxi

∑
j |Li,j(û)| and Q = L(û)−D

is a sub-stochastic matrix as (i) its non-diagonal entries are
non-negative (Qi,j = Li,j(û) ≥ o for i 6= j), (ii) its diagonal
entries are non-positive (Qi,i ≤ 0), and finally (iii) all of its
row sums are non-positive. Note that D is a multiple of
identity matrix and therefore, DQ = QD and e(Q+D)τ =
eQτeDτ . Further, we define the matrix

Q̄ =

Q
... −Q1

. . . . . . . . .

0>
... 0

 ,
where 0 and 1 represent n−dimensional vectors with all
entries equal to zero and one, respectively. Note that Q̄ is a
stochastic matrix since Q̄i,i = −

∑
j 6=i Q̄i,j for every 1 ≤

i ≤ n+ 1 and Q̄i,j ≥ 0 for i 6= j. Therefore, matrix Q̄ cor-
respond to the transition probability matrix of a continuous-
time Markov chain with state space { 1, 2, . . . , n+ 1 } (see,
e.g., [2] for more details). Therefore, the entry (i, j) of eQ̄τ

is the probability that the Markov chain reaches the jth state
from the ith state at time τ , which is a non-negative quantity.
Further, we have

eQ̄τ =

e
Qτ

... 1− eQτ1
. . . . . . . . .

0>
... 1

 .
Therefore, eQτ is non-negative, which gives eL(û)τ =
eQτeDτ since eDτ ≥ 0. This naturally results in θ1 and
θ2 being non-negative as the integral of non-negative func-
tions.

To construct the SCPγ associated with the RCP (11), we
fix x̂ ∈ X̂ and û ∈ Û , consider a uniform distribution on the
space D = Ωηx(x̂) ×W and obtain N i.i.d. sample trajec-
tories SN = { (xi, û, x

′
i) | x′i ∈ Φ(xi, û), i = 1, 2, . . . , N }.

Note that every x′i corresponds to a random disturbance
wi ∈W . The SCPγ is

minθ c
>θ

s.t. 0 ≤ θ ≤ θ̄ and ∀i ∈ {1, . . . , N},
|x′i − x′nom| − θ1(x̂, û)|xi − x̂|+ θ2(x̂, û) + γ ≤ 0,

(12)

where x′nom := ϕ(x̂, û, 0) and γ ∈ R≥0.

Theorem 3. For any x̂ ∈ X̂ constructed with discretisation
size ηx, any û ∈ Û , and the disturbance set W = [−w̄, w̄],
the optimal solution of (12) gives a growth bound for the
system Σ corresponding to (x̂, û) with confidence (1 − β),
when the number of samples N ≥ N(ε, β) and

γ = 4Lϕ(û) 2n

√√√√ε

n∏
i=1

ηx(i)

n∏
i=1

w̄(i), (13)

where ε ∈ [0, 1], n is the dimension of the state space and
Lϕ(û) is the Lipschitz constant of the system trajectories
ϕ(x, û, w) with respect to (x,w).



Proof. We apply Theorem 2 to the RCP (11) for fixed x̂ ∈ X̂
and û ∈ Û . Define

g(θ, x, w) := max{|ϕ(x, û, w)− ϕ(x̂, û, 0)| (14)
− θ1(x̂, û)|x− x̂| − θ2(x̂, û)},

where the max{·} is applied to the elements of its argument
that belongs to Rn. Since the distribution on D = Ωηx(x̂)×
W is uniform, we choose

h(ε) = P(Ωε(d)) =
(ε/2)2n∏n

i=1 ηx(i)
∏n
i=1 w̄(i)

to satisfy the inequality (4). Note that h(ε) gives the probabil-
ity of choosing a point within the 2n−ball Ωε(d) uniformly
at random. We use Equation (5) as γ = Ldh

−1(ε) to get the
value of γ in (13). It only remains to show that g(θ, x, w) is
Lipschitz continuous with constant Ld = 2Lϕ(û). Note that
Lϕ(û) is the Lipschitz constant of ϕ(x, û, w) with respect
to (x,w), and satisfies

‖ϕ(x, û, w)− ϕ(x′, û, w′)‖ ≤ Lϕ(û)‖(x,w)− (x′, w′)‖
(15)

for all x, x′ ∈ Ωηx(x̂) and w,w′ ∈W . Since ‖θ1(x̂, û)‖ can
be bounded by Lϕ(û), we get that

‖g(θ, x, w)− g(θ, x′, w′)‖
≤ ‖ϕ(x, û, w)− ϕ(x′, û, w′)‖+ ‖θ1(x̂, û)‖‖x− x′‖
≤ Lϕ(û)‖(x,w)− (x′, w′)‖+ Lϕ(û)‖x− x′‖
≤ 2Lϕ(û)‖(x,w)− (x′, w′)‖,

Therefore, g(θ, x, w) is Lipschitz continuous with constant
2Lϕ(û). This completes the proof.

Remark 2. The value of γ in (13) depends on the Lipschitz
constant Lϕ. We provide an algorithm in the next subsection
for estimating this constant using sampled trajectories of the
system. Note that as the above proof shows, the estimated
quantity θ1 = Lϕ1n×n can be used to construct the ab-
straction, but this would give conservative results without
any formal guarantee. We will demonstrate this observation
on a case study in Section VI.

Corollary 1. The abstract model constructed using the
growth bounds as solutions of SCPγ with confidence (1−β)

for state-input pairs (x̂, û) ∈ X̂×Û is a valid abstract model
for Σ with confidence at least (1 − nxnuβ), where nx and
nu are respectively the cardinality of X̂ and Û .

Proof. Denote the optimal solution of SCPγ in (12) by θ∗.
The ball centered at z(x̂, û) := x′nom with radius λ(x̂, û) =
κ(θ∗)(ηx, x̂, û) + γ is a valid overapproximation of the
reachable set from the state-input pair (x̂, û) with confidence
at least 1−β. Since the number of pairs (x̂, û) is nxnu, the
chance of getting an invalid growth bound in at least one
instance of SCPγ is bounded by nxnuβ. Therefore, we get a
sound abstraction that truly overapproximates the behaviour
of the system with confidence (1− nxnuβ).

Remark 3. The parameter ε ∈ [0, 1] gives a tradeoff
between the required number of samples and the level of

conservativeness applied to the SCP. Smaller ε results in a
larger number of sample trajectories, but reduces the value
of γ in (13) (less conservative constraints in the SCP and
higher chance of finding a feasible solution). In contrast,
larger ε results in a smaller number of sample trajectories
but increases the value of γ.

Remark 4. The quantity 2n used in (13) is in fact the
dimension of the sample space D = Ωηx(x̂) × W . If the
system does not have any disturbance (i.e., the system can
be modeled as an ODE having deterministic trajectories),
the sample space will be D = Ωηx(x̂) and its dimension
n can be used in (13): γ = 4Lϕ(û) n

√
ε
∏n
i=1 ηx(i). This

will substantially reduce the number of required sample
trajectories. Similarly, if the disturbance does not affect some
of the state equations, 2n can be replaced by (n+ q) where
q is the dimension of the disturbance set considered as a
non-zero measure set.

Algorithm 1 uses the result of Corollary 1 to provide an
algorithmic solution for Problem 2. This algorithm receives
a confidence parameters β, divides it by the cardinality of
X̂ × Û (i.e., nxnu), computes the growth bounds for each
pair (x̂, û) ∈ X̂× Û using the SCPγ in (12) with confidence
1 − β/(nxnu), and constructs the abstraction using these
growth bounds.

Algorithm 1: Data-Driven Abstraction
Data: (X,U,W ) of a control system Σ, confidence

β, discretisation parameters ηx, ηu
1 Compute the finite state and input sets X̂ and Û

using ηx, ηu;
2 Define nx and nu as cardinalities of X̂ and Û ;
3 Choose ε ∈ [0, 1];
4 Set N = N(ε, β

nxnu
) using Eq. (6);

5 Compute γ using Eq. (13);
6 for x̂ ∈ X̂ do
7 for û ∈ Û do
8 f̂(x̂, û) = ∅;
9 Consider the uncertainty space

D = Ωηx(x̂)×W ;
10 Select N i.i.d sample trajectories using

uniform distribution over D;
11 Simulate the nominal trajectory (x̂, û, x′nom);
12 Solve the SCPγ (12) to get the optimiser

θ∗(x̂, û);
13 z ← x′nom;
14 λ← κ(θ∗)(ηx, x̂, û) + γ;
15 Find all states x̂′ ∈ X̂ for which

Ωηx(x̂′) ∩ Ωλ(z) 6= ∅ and add them to
f̂(x̂, û);

16 end
17 end

Result: Σ̂ = (X̂, Û , f̂) as a finite abstraction of Σ
with confidence (1− β), θ∗(x̂, û) as a
growth bound for x̂ ∈ X̂, û ∈ Û



The finite abstraction Σ̂ constructed by Algorithm 1 is a
valid abstraction for Σ with confidence (1− β). This means
any controller Ĉ synthesised on Σ̂ and refined to a controller
C for Σ will satisfy the desired specification with confidence
(1−β) on the closed loop system Σ ‖ C. In the next section,
we extend our approach to make it suitable for abstraction
refinement in case there is no controller Ĉ satisfying the
specification due to the conservatism of the approach.

C. Lipschitz Constant Estimation

For estimating the Lipschitz constant Lϕ in (15), we
estimate an upper bound for the fraction

∆(û) :=
‖ϕ(x, û, w)− ϕ(x′, û, w′)‖
‖(x,w)− (x′, w′)‖

that holds for all x, x′ ∈ X and w,w′ ∈ W . We follow the
line of reasoning in [37], [36] and use the extreme value
theory for the estimation.

Let us fix a δ > 0 and assign uniform distribution to the
pairs (x,w) and (x′, w′) over the domain

{x, x′ ∈ X, w,w′ ∈W with ‖(x,w)− (x′, w′)‖ ≤ δ}.
(16)

Then ∆(û) is a random variable with an unknown cumulative
distribution function (CDF). Based on the assumption of Lip-
schitz continuity of the system, the support of the distribution
of ∆(û) is bounded from above, and we want to estimate an
upper bound for its support. We take n sample pairs (x,w)
and (x′, w′), and compute n samples ∆1,∆2, . . . ,∆n for
∆(û). The CDF of max{∆1,∆2, . . . ,∆n} is called the limit
distribution of ∆(û). Fisher-Tippett-Gnedenko theorem says
that if the limit distribution exists, it can only be one of
the three family of extreme value distributions – the Gumbel
class, the Fréchet class, and the reverse Weibull class. These
CDF’s have the following forms:

Gumbel class: G(s) = exp

[
− exp

[
s− a
b

]]
, s ∈ R

Fréchet class: G(s) =

{
0 if s < a

exp
[
−[ s−ab ]−c

]
if s ≤ a

Reverse Weibull class: G(s) =

{
exp

[
−[a−sb ]c

]
if s < a

1 if s ≤ a

where a ∈ R, b > 0, c > 0 are respectively the location,
scale and shape parameters of the distributions.

Among the above three distributions, only the reverse
Weibull class has a support bounded from above. Therefore,
the limit distribution of ∆(û) will be from this class and the
location parameter a is such an upper bound. As a result, we
can estimate the location parameter of the limit distribution
of ∆(û) to get an estimation of the Lipschitz constant.

The approach is summarised in Algorithm 2. The most
inner loop computes samples of ∆(û). The middle loop
computes samples of max{∆1, . . . ,∆n}. The outer loop
estimates the Lipschitz constant for each û by fitting a reverse
Weibull distribution.

Algorithm 2: Lipschitz Constant Estimation
Data: (X,U,W ) of a control system Σ, abstract

input space Û
1 Select number of samples n and m for the estimation
2 Select δ > 0

3 for û ∈ Û do
4 for j = 1 : m do
5 for i = 1 : n do
6 Sample pairs (x,w), (x′, w′) uniformly

from the domain in (16)
7 Run Σ to get trajectories ϕ(x, û, w) and

ϕ(x′, û, w′)

8 Compute ∆i := ‖ϕ(x,û,w)−ϕ(x′,û,w′)‖
‖(x,w)−(x′,w′)‖

9 end
10 Γj := max{∆1, . . . ,∆n}
11 end
12 Fit a reverse Weibull distribution to the sample

set {Γ1,Γ2, . . . ,Γm}
13 Lϕ(û) is the location parameter of the fitted

distribution
14 end

Result: Estimated value of Lϕ(û) for all û ∈ Û

V. SYNTHESIS VIA ABSTRACTION REFINEMENT

The data-driven synthesis discussed in Section IV inherits
the soundness property from the ABCD approach: they both
work with overapproximations of the dynamics and may
not return a controller despite one may exists. Therefore,
there is a need for refining the abstraction in order to
check for controllers using less conservative abstractions.
While the method of Section IV is good for a given fixed
discretisation parameter ηx, it is not suitable for reducing
ηx, which requires re-computing all local parameters of the
growth bounds θ1(x̂, û), θ2(x̂, û). Another shortcoming of
the method is related to the data collection: the nominal
trajectories of the system should be available and are used
in the constraints of the SCP. In this section, we discuss an
extension of the approach of Section IV, in order to

• enable reducing ηx without the need for re-computing
the growth bound, and

• relax the assumption of having access to the nominal
trajectories of the system.

Let us define a modified growth bound as a function
κe : Rn≥0 × X̂ × Û → Rn≥0 that is strictly increasing in its
first argument and satisfies

|ϕ(x1, û, w1)− ϕ(x2, û, w2)| ≤ κe(|x1 − x2|, x̂, û)

∀x̂ ∈ X̂, ∀û ∈ Û , ∀x1, x2 ∈ Ωηx(x̂), ∀w1, w2 ∈W. (17)

This definition is more conservative than (7) in comparing
trajectories under two arbitrary disturbances, and we always
have that κe satisfies (7). Using this new definition, for every
pair of abstract state and input (x̂, û), the corresponding
overapproximation of the reach set can be computed as a



ball centred at any z(x̂, û) ∈ Φ(x̂, û) with radius λ(x̂, û) =
κe(ηx, x̂, û).

we choose a parametrisation for κe similar to (10), i.e.,

κe(θ)(r, x̂, û) = θ1(x̂, û)r + θ2(x̂, û), (18)

where r ∈ R≥0, θ1 ∈ Rn×n, θ2 ∈ Rn, and θ ∈
Rn2+n is constructed by concatenating columns of θ1

and θ2. The SCP associated with this growth bound is
constructed by considering a uniform distribution over
Ωηx(x̂)×W and obtain 2N i.i.d. sample trajectories S2N =
{ (xi, ûi, x

′
i) | x′i ∈ Φ(xi, û), i = 1, 2, . . . , 2N } so that ev-

ery x′i corresponds to a random disturbance wi ∈ W . The
modified SCPγ is defined as

min c>θ

s.t. 0 ≤ θ ≤ θ̄ and ∀i ∈ {1, . . . , N}
|x′2i−1 − x′2i| − θ1(x̂, û)|x2i−1 − x2i| − θ2(x̂, û) + γ ≤ 0

where c = [1, 1, . . . , 1] ∈ Rn2+n is a constant vector, θ̄ ∈
Rn

2+n
>0 is sufficiently large, and γ ≥ 0.

Theorem 4. For any x̂ ∈ X̂ constructed with the dis-
cretisation size ηx, any û ∈ Û , and the disturbance set
W = [−w̄, w̄], the optimal solution of (19) gives a growth
bound for the system Σ corresponding to (x̂, û) that satisfies
(17) with confidence (1 − β), when the number of samples
2N ≥ N(ε, β) and

γ = 8Lϕ
4n

√√√√ε

[
n∏
i=1

ηx(i)

n∏
i=1

w̄(i)

]2

, (19)

where ε ∈ [0, 1], ,n is the dimension of the state space, and
Lϕ(û) is the Lipschitz constant of the system trajectories
ϕ(x, û, w) with respect to (x,w).

Proof. The proof of this theorem is similar to that of
Theorem 3. Define

g(θ, x1, w1, x2, w2) :=max{|ϕ(x1, û, w1)− ϕ(x2, û, w2)|
− θ1(x̂, û)|x1 − x2| − θ2(x̂, û)}.

To satisfy the inequality (4), we can choose

h(ε) = P(Ωε(d)) =
(ε/2)4n

[
∏n
i=1 ηx(i)

∏n
i=1 w̄(i)]2

,

since the distribution on (Ωηx(x̂) × W )2 is uniform. Us-
ing Equation (5), we have γ = Ldh

−1(ε). In order to
prove that γ takes the value in (19), we must show that
g is Lipschitz continuous with constant Ld = 4Lϕ(û).
Bounding ‖θ1(x̂, û)‖ by Lϕ, for all (x1, w1, x2, w2) and
(x′1, w

′
1, x
′
2, w

′
2) we have

‖g(θ, x1, w1, x2, w2)− g(θ, x′1, w
′
1, x
′
2, w

′
2)‖

≤ ‖ϕ(x1, û, w1)− ϕ(x′1, û, w
′
1)‖

+ ‖ϕ(x2, û, w2)− ϕ(x′2, û, w
′
2)‖

+ ‖θ1(x̂, û)‖(‖x1 − x′1‖+ ‖x2 − x′2‖)
≤ 4Lϕ(û)‖(x1, w1, x2, w2)− (x′1, w

′
1, x
′
2, w

′
2)‖.

TABLE I: Results for the DC-DC boost converter.

Case-study Dimension Disturbance Fixed Discretisation
X U W N time (min) |V|

DC-DC boost converter 2 1
{0} 1, 807 22.2 37, 783

[−0.01, 0.01] 2, 285 30.6 37, 414

Therefore, g is Lipschitz continuous with constant 4Lϕ(û).
This completes the proof.

A statement similar to Corollary 1 holds for the growth
bound computed using (19).

VI. EXPERIMENTAL EVALUATION

To demonstrate our approach, we apply it to a DC-
DC boost converter and a path planning problem. These
case studies are taken from [26], [14] and will be used as
black-box models to generate sample trajectories. We also
introduce a case study from power systems based on [20],
that is implemented in the Power System Toolbox (PST) [7].
We will will use trajectories from the black-box reduced
model of the 30 state power system model. We apply our
approach to construct finite abstractions of these systems and
employ SCOTS [26] to design controllers. Our algorithms are
implemented in C++ on a 64-bit Linux cluster machine with
two Intel Xeon E5 v2 CPUs, 1866 MHz, and 50GB RAM.

A. DC-DC boost converter

The objective in the DC-DC boost converter problem is to
design a controller to enforce a reach and stay specification.
The DC-DC boost converter can be modelled as a two
dimensional linear switching system with two functional
modes. The state vector of the system at time t ∈ R≥0 is
x(t) = (il(t), vc(t)), where il is the inductor current and
vc is the capacitor voltage. The system’s evolution can be
controlled by selecting the appropriate mode u(t) ∈ { 1, 2 }
at every time t ∈ R≥0. The system’s dynamics under the
two modes can be represented as ẋ = Au(t)x(t)+ b+ cw(t),
u ∈ {1, 2}, with matrices A1, A2, b, c as reported in [14]. The
state and input spaces are X = [0.65, 1.65]× [4.95, 5.95] and
U = [1, 2]. The initial state is (il0(t), vc0(t)) = (0.7, 5.4) and
the target set is [1.1, 1.6]× [5.4, 5.9]. The target set is shown
in red colour in Figure 1.

Our implementation results are reported in Table I for
the system without disturbance (w̄ = (0, 0)) and with
disturbance bound w̄ = (0.01, 0). These results are obtained
with discretisation parameters ηx = (0.005, 0.005) and
ηu = 1, confidence parameter β = 0.01, ε = 0.01 and
estimation for Lϕ = 0.9935. The resulted finite abstraction
has cadinalities nx = 40, 000 and nu = 2. The required
number of sample trajectories, N , for each (x̂, û) ∈ X̂ × Û
is computed using equation (6). Runtimes and the resulting
winning region sizes, |V|, for the DC-DC boost converter are
given in Table I.

We have used Algorithm 1 to compute the finite-state
abstraction by collecting sample trajectories of the system.
Subsequently, SCOTS is used for designing the controller.
The performance of the controller is shown in Figures 1
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Fig. 1: The closed-loop trajectory of the DC-DC boost
converter with w̄ = (0, 0) under the controller designed by
our data-driven abstraction approach. The rectangle in red
colour represents the target region and the area in grey shows
the winning region of the controller.
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Fig. 2: The closed-loop trajectory of the DC-DC boost
converter with w̄ = (0.01, 0) under the controller designed
by our data-driven abstraction approach. The rectangle in red
colour represents the target region and the area in grey shows
the winning region of the controller.

and 2 for the system without and with the disturbance. These
figures show one sample closed-loop trajectory of the system
under the controllers designed by our data-driven ABCD
approach. In both cases, without and with disturbance, it
can be noticed from Figures 1 and 2 that our approach has
been successful in finding controllers satisfying the given
reach and stay specification, despite the the dynamics being
unknown.

B. Path Planning Problem with Partition Refinement

We consider a path planning problem for a vehicle that is
modelled as

ẋ = v cos(α+ θ)/ cos(α) + w
ẏ = v sin(α+ θ)/ cos(α)

θ̇ = v tan(ω),
(20)

TABLE II: Results for the path planning case study.

Case-study Dimension Disturbance Abstraction Refinement
X U w̄ N time (min) |V|

Path planning 3 2
(0, 0, 0) 3, 127 225 405, 493

(0.01, 0, 0) 4, 277 513 447, 212

where the state variables x, y, θ represent the position of the
vehicle in the 2-dimensional space and the orientation of
the vehicle, respectively. Inputs are (v, ω), the disturbance is
w, and α := arctan(tan(ω)/2). The state and input spaces
are X = [0, 10] × [0, 10] × [−π − 0.4, π + 0.4] and U =
[−1, 1]2, respectively. The goal is to find a controller to steer
the vehicle from the initial state (x0, y0, θ0) = (0, 1.2, 0) to
the target set (x, y) ∈ [9, 9.51] × [0, 0.51] while avoiding
the obstacles. These obstacles are shown in blue colour in
Figures 3 and 4.

We computed the growth bounds with a coarse discretisa-
tion ηx = (1.6, 1.6, 1.6) and reduced it iteratively with the
factor of two. The algorithm successfully finds a controller
for the system after five iterations. The implementation
results are reported in Table II. These results are obtained
with ηu = (0.3, 0.3), the confidence parameter β = 0.01,
ε = 0.01 and estimated constant Lϕ = 1.46. The resulted
abstraction has cardinalities nx = 88, 500 and nu = 24. For
the case of disturbance-free model we set w̄ = (0, 0, 0),
and for the case of dynamics with disturbance, we set
w̄ = (0.01, 0, 0). The required number of sample trajectories
for each (x̂, û) is computed using Equation (6) and marked
with N in the table. Finally, runtimes and size of the winning
regions |V| are reported.

We have used the synthesis method based on abstraction
refinement presented in Section V, to construct the finite-
state abstraction by collecting sample trajectories of the
system. We used SCOTS to design the controller fulfilling
the given specification. The performance of the controller is
shown in Figures 3 and 4 for the system without and with the
disturbance, respectively. These figures compare the closed-
loop trajectories of the system under the controllers designed
by our data-driven abstraction refinement algorithm approach
(black) and by the model-based approach of SCOTS (red).
Our data-driven approach successfully finds a controller for
the system that satisfies the specification without the need
for knowing the dynamics of the system.

C. Three Area Three Machine Power System

We consider a three area three machine (3A3M) power
system adapted from [20] and is shown in Figure 5. The
system consists of three buses, which are each connected to
a power source (generator) and a load. At bus 1 we consider
a load which is bidirectional, meaning it can both draw
power and inject power into the system. The loads at buses
2 and 3 can only draw power from the system; when these
loads increase, more power will be drawn from the system,
causing an imbalance between generation and consumption
which may result in reduction of the network frequency. The
nominal frequency of the network is set to 60 Hz.



Fig. 3: Comparison between the closed-loop trajectories of
the system (20)without disturbance under the controllers
designed by our data-driven abstraction refinement approach
(black) and by the model-based approach of SCOTS (red).
Blue blocks represent the obstacles, the green dot represents
the initial state, and the orange rectangle shows the target
region.

Fig. 4: Comparison between the closed-loop trajectories of
the system (20) with disturbance bound w̄ = (0.01, 0, 0)
under the controllers designed by our data-driven abstrac-
tion refinement approach (black) and by the model-based
approach of SCOTS (red).

We consider a worst case scenario when a sudden increase
occurs in the loads at buses 2 and 3 by 0.2 and 0.3 per unit
(pu), respectively. The control task is for the load at bus 1 to
balance the load increase at buses 2 and 3 by either reducing
its load or injecting power into the network. The simulation
is run using PST on a 30 state model of this power system.
Balanced realisation of the system reduces its dynamics to
three states. To compute the data-driven finite abstraction,
sample trajectories are gathered using a black-box approach
of the reduced system representation for the original model.
The dynamics of the reduced system are given by

ẋ = Ax+Bu+ Ew
y = Cx,

(21)

Fig. 5: 3A3M power system with generators (G) and loads
(L). L1 represents a bidirectional load such as Electric
Vehicles or Energy Storage Systems.

where

A =

0.00027563 0 0
0 −0.3951 0.687
0 −0.6869 −0.016


B =

0.00031166
0.1359
0.0230


E =

0.00033103 0.00031244
0.1309 0.1308
0.0250 0.0233


C =

[
−0.0115 −0.2296 0.0412

]
. (22)

The state and input spaces are X = [−0.02, 0.02] ×
[−0.05, 0.05] × [−0.12, 0.12] and U = [0, 0.5]. Further, we
set W = [−0.2, 0.2] × [−0.3, 0.3], ηu = 0.025, τ = 0.4,
ηx = (0.0015, 0.0015, 0.0015), β = 0.01 and ε = 0.01. The
resulted abstraction has nx = 228, 480 and nu = 20. The
estimated Lipschitz constant is Lϕ = 1.5715. The target set
is given by −0.008 < y < 0.008 and the avoid set is given
by y < −0.015. Multiplying by the nominal frequency to get
the specification in Hertz, the target region is [59.52, 60.48]
and the avoid region is (−∞, 59.1). Figure 6 shows that the
specification is violated when no control is applied.

We apply the data-driven approaches of Section IV
(fixed discretisation) and Section V (abstraction refinement).
Both controllers are synthesised with disturbance W =
[−0.2, 0.2] × [−0.3, 0.3]. A comparison of the two control
approaches is shown in Table III. The required number of
sample trajectories for each (x̂, û) is computed using equa-
tion (6) and marked with N in the table. The abstraction re-
finement starts with ηx = 0.012 and refines the discretisation
iteratively with a factor of two. The algorithm successfully
finds a controller after five iterations. The runtimes and the
resulting winning region sizes |V| are also given in Table III.
The abstraction refinement synthesises the controller a factor



Fig. 6: 3A3M power system frequency without applying
any control input. The frequency falls below 59.1 Hz thus
violates the specification.

of 100 times faster than the fixed discretisation by iteratively
decreasing the value of ηx.

TABLE III: Results for the 3A3M power system.

Control Approach Dimension Disturbance
X U w̄ N time (min) |V|

Fixed Discretisation
3 1

(0.2, 0.3) 3, 290 5, 253 230, 760

Adaptive Refinement (0.2, 0.3) 4, 460 50.25 314, 802

The data-driven control approach with fixed discretisation
is simulated in PST and is reported in Figures 7 and 8. The
controlled system successfully keeps the frequencies of the
three areas outside of the avoid set (i.e., always above 59.1
Hz) and bring them back to the target set (i.e., above 59.52
Hz). Figure 8 shows the load changes in the system. Load at
bus 1 is able to maintain the frequencies of the three areas
above the avoid region and facilitate the system returning to
the target set for the maximum disturbances applied at buses
2, 3. Figures 9 and 10 show the results of simulating the
system in PST with the control obtained from the abstraction
refinement approach. The controlled system has the same
performance in satisfying the specification.

D. Comparison with PAC Learning

In this subsection, we compare our approach with the
results provided by Xue et al. [38] that is based on probably
approximately correct (PAC) learning on the 3A3M power
system case study. The abstraction approach of [38] has no
bias term γ, but uses confidence parameter β ∈ (0, 1), error
level ε ∈ (0, 1), and cardinality of the parameter vector θ
denoted by q ∈ N. The required number of samples is

N ≥ 2

ε
(ln

1

β
+ q), (23)

which allows the constructed abstraction to hold for the entire
state space except a subset measured by parameter ε.

We implement our data-driven robust scenario approach
(RSA), the PAC approach in [38] with parameters β = 0.01

Fig. 7: 3A3M power system frequencies for the three areas,
with the frequency of an area is measured at the correspond-
ing bus in that area. The control synthesised by the fixed
discretisation approach successfully keeps the frequencies of
the three areas outside of the avoid set. The frequencies leave
the target set for around 4.4 seconds before staying in the
target set.
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Fig. 8: 3A3M power system load changes for the three
areas. Loads at buses 2 and 3 increase by 0.3 and 0.2 pu,
respectively. Load at bus 1 is used to control the frequency
using our data-driven approach with fixed discretisation.

TABLE IV: Comparing the winning domain of controllers
obtained from our RSA method, PAC method of [38], and the
model-based approach of [25]. The pairwise comparison is
made by computing the intersections (∩) and set differences
(row\ column). The results are reported both in cardinalities
and percentages.

Winning Domain RSA PAC Model-based
∩ \ ∩ \ ∩ \

RSA 230, 760 0 230, 760 0 230, 760 0

% 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%

PAC 230, 760 15, 664 246, 424 0 245, 345 1, 079

% 93.64% 6.36% 100.00% 0.00% 99.56% 0.44%

Model-based 230, 760 22, 216 245, 345 7, 631 252, 976 0

% 91.22% 8.78% 96.98% 3.02% 100.00% 0.00%



Fig. 9: 3A3M power system frequencies for the three areas,
with the frequency of an area is measured at the corre-
sponding bus in that area. The control synthesised by the
abstraction refinement approach successfully satisfies the
specification. The frequencies leave the target set for around
4.2 seconds before staying in the target set.
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Fig. 10: 3A3M power system load changes for the three
areas. Loads at buses 2 and 3 increase by 0.3 and 0.2 pu,
respectively. Load at bus 1 is used to control the frequency
using our data-driven approach with abstraction refinement.

and ε = 0.01, and the model-based approach of [25].
Table IV compares the winning domain of the controllers
by reporting the intersections (∩) and set differences (row \
column). It can be seen that the winning domain obtained
by our RSA method is a subset of the ones computed
by PAC and the model-based approaches. This shows that
our approach is more conservative than the model-based
approach but correctly finds a subset of the winning domain.
In contract, the PAC approach gives a winning domain that
includes states not identified winning by the model-based
approach. It includes 1079 states outside of the winning
domain obtained by the model-based approach. Due to
the nature of the PAC learning, some of these states are

incorrectly identified as winning. The main reason is that the
PAC method may miss to capture some of the transitions and
does not always generate an overapproximation of the system
behaviours. Among these 1079 states, a counter example can
be found, demonstrating a lack of guarantee provided by the
PAC method. At state (0.0187, 0.0262,−0.1163) the PAC
controller calculates u = −0.075 to be an input which will
transition to a safe state under any disturbances. However, the
system under disturbances W1 = 0.2 and W2 = 0.3 will lead
to the state (0.0188, 0.0131,−0.1167) that is outside of the
winning domain of the controller. In comparison, the winning
domain provided by our RSA method is a subset of the one
from the model-based method and provides full guarantees
on the satisfaction of the specification and correctness of
the controller. This guarantee is obtained at the cost of
increased number of samples and a bias term included in
the growth bound calculations, which makes the controller
more conservative.

As a final point on this case study, note that our sampling
approach uses the Lipschitz constant estimated using sample
trajectories. This Lipschitz constant can in turn be used to
construct the abstraction. The direct use of the estimated
Lipschitz constant does not provide a formal guarantee as it
is an estimated value that converges to the true value only in
the limit (i.e., the number of samples goes to infinity), and
is likely to provide an overly conservative controller. On this
particular case study, the direct use of the Lipschitz constant
gives a controller that covers only 78.8% of the winning
domain of the model-based approach.

E. Parameter Optimisation

In this subsection, we discuss how selection of different
parameters can affect the sample complexity and conser-
vativeness of our method. We fix the path planning case
study with the estimated Lipschitz constant 1.46. Figures 11
and 12 illustrate the effect of changing parameters ε, β on the
number of samples N required for each pair (x̂, û) in order to
compute the growth bound with confidence (1−β). Figure 11
illustrates the effect of increasing the confidence parameter
β on reducing the sample complexity, for a fixed ε = 0.01.
Figure 12 shows that for a fixed β = 0.01, increasing ε leads
to a rapid drop in N . In both Figures 11 and 12, the sample
complexity increases in the presence of disturbance as the
dimension of the sample space becomes larger.

Figure 13 demonstrate the effect of changing ε on the
value of the bias term γ that makes the inequalities of the
SCP more conservative. The bias term γ increases for larger
values of ε. Therefore, increasing ε can decrease the sample
complexity while increasing γ. Finally, it can be observed
that the value of γ is larger in the presence of disturbance.

VII. DISCUSSION AND FUTURE WORK

We proposed a data-driven method for computing finite
abstractions of continuous systems with unknown dynamics.
Our approach casts the computation of an overapproxima-
tion of reachable sets as a robust convex program (RCP).
A feasible solution for the RCP is then obtained with a
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Fig. 11: Required number of samples for our approach as a
function of β for a fixed ε = 0.01.
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Fig. 12: Required number of samples for our approach as a
function of ε for a fixed β = 0.01.
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Fig. 13: The bias term γ as a function of ε.

given confidence by solving a corresponding scenario convex
program (SCP). The SCP does not need the dynamics of the
system and requires only a finite set of sample trajectories.
We provided a sample complexity result that gives a lower-
bound on the number of trajectories to achieve a certain
confidence. Our sample complexity results requires knowing
a bound on the Lipschitz constant of the system, that we
estimated using extreme value theory.

We guaranteed that with high confidence, the computed
abstraction is a valid abstraction of the system that over-
approximates its behaviours on its entire state space. We
showed that our data-driven approach can be embedded into
abstraction refinement schemes for designing a controller and
enlarging the winning region of the controller with respect
to satisfaction of temporal properties. Finally, we evaluated
our approach on three case studies.

In the future, we plan to extend our approach by enlarging
the class of disturbances beyond piece-wise constant ones
(i.e., tackling the issue of infinite dimensional sampling
spaces), improve scalability of the approach by providing
more efficient parallel implementation of the approach, and
apply it to large case studies that are combinations of
differential equations, block diagrams, and lookup tables.
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