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Fig. 1. Our pipeline optimizes for a geometry that achieves a target release curve. Left: starting from the density field at the current iteration, we simulate the

release process by 1 computing the dissolution time as the solution to a variable-speed Eikonal equation and 2 evaluating the release curve by calculating

an integral over the domain. The deviation from the target release profile is then measured and differentiated with respect to the density variables 3 to

obtain the design objective gradient and update the design 4 . Right: visualization of the volumetric density fields describing the evolving 3D design along

with the final extracted object and fabricated result.

Objects with different shapes can dissolve in significantly different ways

inside a solution. Predicting different shapes’ dissolution dynamics is an

important problem especially in pharmaceutics. More important and chal-

lenging, however, is controlling the dissolution via shape, i.e., designing

shapes that lead to a desired release behavior of materials in a solvent over

a specific time. Here, we tackle this challenge by introducing a computa-

tional inverse design pipeline. We begin by introducing a simple, physically-

inspired differentiable forward model of dissolution. We then formulate our

inverse design as a PDE-constrained topology optimization that has access

to analytical derivatives obtained via sensitivity analysis. Furthermore, we

incorporate fabricability terms in the optimization objective that enable

physically realizing our designs. We thoroughly analyze our approach on a

diverse set of examples via both simulation and fabrication.
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1 INTRODUCTION

The dissolution process is a ubiquitous yet fascinating phenome-

non. Objects with the same mass but different shapes can dissolve

via different dynamics, resulting in vastly different release profiles.

This property can be exploited, particularly in pharmaceutics, when

designing controlled-release systems for drugs, food, and cosmetics.

The surge of 3D printing with its unique capabilities for fabricating

complex shapes opens new doors for devising novel controlled-

release designs [Goole and Amighi 2016].

The first step toward design of controlled-release structures is to

understand and model the dissolution process as a function of the

shape. Such forward models of dissolution have been developed at

different levels of abstraction from submolecular simulations [Sagui
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and Darden 1999] to more approximate but efficient Monte Carlo

approaches [Briese et al. 2017] to continuum mechanics models

[Zunino et al. 2009]. However, finding a design that matches a de-

sired release profile using only a forward model would require a

painstaking manual trial-and-error approach. An outright inverse

design strategy, where the design is directly optimized to match a

target release profile, is crucial to efficiently discover performant

designs. Although a handful of existing works address the problem

of tuning release profiles [Lu and Anseth 1999], they are limited to

predefined setups, such as multi-laminated systems and handicap-

ping assumptions, such as one-dimensional dissolution. To the best

of our knowledge, we are the first to consider the problem of shape

from release for freeform 3D printable geometries.

We propose a gradient-based inverse design framework for the

problem of architected release. The backbone of our solution is a

simple forward model, based on a geometric abstraction, that is

governed by the Eikonal equation. We formulate our problem as

a PDE-constrained topology optimization whose objective is to fit

the release curve computed from the Eikonal equation solution to

the target release profile. We present an exact sensitivity analy-

sis of the discrete fast marching solution and obtain a robust and

efficient simulation model with analytical derivatives. Our formu-

lation enables gradient-based optimization for discovering shapes

achieving novel release behaviors and exploring trade-offs between

release curve closeness and fabricability. We thoroughly analyze

our approach on a diverse set of release profiles, both hand crafted

and from known shapes. In summary, our contributions are:

• A simple and efficient geometric approach to the release sim-

ulation problem that is competitive in accuracy with past

methods while being differentiable.

• An adjoint sensitivity analysis for our forward model to sup-

port fast gradient calculation.

• A topology optimization algorithm for inverse design of 3D

printable geometries that match a prescribed release curve.

• A novel image-based measurement setup for acquiring the

physical release curves of 3D printed objects.

2 RELATED WORK

Inverse Design for Functional Fabrication. Functional fabrication

refers to generating designs that follow functional goals, or perfor-

mances [Bermano et al. 2017]. The computational design and fabri-

cation community has invented many inverse design frameworks

to achieve a diverse set of functional goals related to mechanical

properties [Schumacher et al. 2015; Stava et al. 2012; Bickel et al.

2010; Prévost et al. 2013], appearance [Sumin et al. 2019; Babaei

et al. 2017; Matusik et al. 2009; Mitra and Pauly 2009; Schüller et al.

2014; Schwartzburg et al. 2014; Piovarči et al. 2020], motion [Bächer

et al. 2014; Tang et al. 2020; Coros et al. 2013], photonics [Auzinger

et al. 2018; Minkov et al. 2020], buoyancy [Wang andWhiting 2016],

acoustics [Li et al. 2016], and more. Most computational approaches

solve functional fabrication problems by first simulating the for-

ward process and then inverting the simulation in order to estimate

designs meeting a given target performance. In recent years, addi-

tive manufacturing has raised new opportunities and challenges for

computational design. The most important challenge is navigating

the vast design space, leading to the increasing popularity of topol-

ogy optimization (TO). Once primarily concerned with structural

performance [Bendsoe and Sigmund 2013], TO is now the go-to

tool for many computationally complex design problems spanning

a broad range of physics and application domains [Osanov and

Guest 2016]; it enables the discovery of optimal geometries entirely

from scratch, requiring no application-specific design parametriza-

tion, prior knowledge of the design’s topology, or expert-provided

initial guess. Our work demonstrates that, thanks to our geometric

abstraction of the dissolution process, the functional fabrication

problem of inverse release curve design can be tackled by an effi-

cient TO algorithm.

Additive Manufacturing of Release Structures. 3D printing of de-

vices (e.g., tablets) with controlled release has a relatively long

history in pharmaceutics (Goole and Amighi [2016] provide a com-

prehensive review). Multi-material printing, mostly binder-jetting,

offers considerable flexibility for designing release profiles as active

ingredients can be encapsulated in placebo barrier scaffolds [Katstra

et al. 2000; Lam et al. 2002; Thakral et al. 2013]. Filament Deposi-

tion Modelling (FDM) has recently gained significant popularity

for 3D printing tablets with controlled release [Goyanes et al. 2015;

Skowyra et al. 2015; Pietrzak et al. 2015]. So far, most studies of

FDM printed structures have focused on empirical evaluation of

the effect of the geometry and infill patterns on the release profile.

In this work, we employ an FDM 3D printer as our fabrication plat-

form and use a water-soluble filament, typically used as the support

material, as the solute.

Forward and Inverse Release. The dissolution process, and other

phenomena emerging from intermolecular interactions, are stud-

ied in thermodynamics and physical chemistry. These molecular

(and submolecular) phenomena can be modeled from first princi-

ples via, for example, Density Functional Theory (DFT) [Dreizler

and Gross 2012]. Although these first-principles simulations are

powerful and general [Sagui and Darden 1999], they are limited at

most to a few thousands of atoms. Therefore, higher-level methods

like stochastic simulations are popular for capturing the dynamics

of larger systems, including the dissolution process [Briese et al.

2017]. Nisser et al. [2019] use a Monte Carlo (MC) approach to pre-

dict the overall dissolution time of 3D printed water-soluble support

structures. In their approach, each voxel is considered as an atom

in a crystalline lattice structure and is eroded with some probability

at each simulation time step depending on its connectivity to other

voxels. In this work, we compare our proposed distance-based for-

ward model to the MC approach. Siepmann and Siepmann [2008]

provide a broader survey of the mathematical models of the release

process that have been developed for various device types; most

either neglect the effects of geometry or are derived for simple ge-

ometries like spheres and cylinders, for which analytical formulas

can be obtained. Our method can be seen as a generalization of

the semi-empirical formulas derived in [Hopfenberg 1976; Cooney

1972], reformulating the simulation as an Eikonal equation to ad-

dress arbitrary geometries.

To the best of our knowledge, the problem of computational

inverse design of controlled release structures has only been con-

sidered for multi-laminates, i.e., matrix devices where strata with
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different concentrations or thicknesses are juxtaposed [Georgiadis

and Kostoglou 2001; Nauman et al. 2010; Zhang 2020; Lu and Anseth

1999]. The common goal of these works is to achieve a desired re-

lease profile by tuning the concentrations and/or thicknesses of a

handful of layers. For computational simplicity, all but one face of

the matrix are insulated using an impermeable shell resulting in

a one-dimensional diffusion problem. The forward simulation is

then modelled using Fick’s law [Fick 1855; Treybal 1980] and the

inverse design is formulated as a continuous optimization which

is solved via variational calculus [Lu et al. 1998]. Our computa-

tional approach works for single-material designs, thus removing

the need for a second material, i.e., an impermeable placebo shell.

Furthermore, compared to the multi-stage manufacturing of multi-

laminates, our method enjoys a practical advantage.

Optimal Control of the Eikonal Equation. Using our geometric ab-

straction, the controlled release design problem can be posed as a

PDE-constrained optimization where the state equation (constraint)

is the Eikonal equation. This same mathematical formulation has

been used to solve travel-time tomography problems in seismology

and electromagnetism [Leung and Qian 2006] and, on the design

side, to control the propagation of light within amedium by optimiz-

ing its composition [Seyyedrezaei and Dadashzadeh 2016]. These

works use the iterative fast sweeping method to solve both the for-

ward and adjoint equations, but [Deckelnick et al. 2011] show how

both can be solved using the efficient fast marching method; the ap-

proach we take is essentially equivalent, but we provide a more ac-

cessible derivation (Section 3.5) and address fully general objective

functions rather than the specific tomography objective. Finally,

Ospald and Herzog [2017] use the Eikonal equation to estimate

the fiber orientation produced by the injection molding process for

fiber-reinforced plastics, whose anisotropic stiffness strongly influ-

ences the elastic behavior of the resulting structure; they propose

a compliance minimization TO problem constrained by both linear

elasticity and the Eikonal equation to account for this anisotropy

during structural optimization.

3 METHOD

Our central goal is to formulate a differentiable forward model of

the release process for a given object geometry Ω ⊂ R3 and then

employ it in a gradient-based design optimization framework. The

following subsections detail the components of our full system for

designing 3D printable geometries to achieve an input release curve.

3.1 Simulation of a Fully Solid Object

Motivated by the Noyes-Whitney equation (Appendix A), we pro-

pose a simplified geometric model for simulating the release of an

object into a stirred solvent that is competitive with other more

established simulation approaches and yet is amenable to efficient

sensitivity analysis. The fundamental underlying assumption of

our model is that the entire exposed boundary of the object dis-

solves at the same rate. This rate will depend on the current con-

centration level in the solvent, but to simplify the exposition, we

further suppose that the rate is constant. We show in Appendix B

that concentration-dependent rates can be handled by a nonlinear

Fig. 2. Left: our geometric abstraction approximates the dissolution time

of each point in a solid shape as the distance-to-boundary 𝑢, visualized

here on a cross-section of a star geometry. Right: geometries with enclosed

voids and variable densities are handled by solving a variable-speed Eikonal

equation on a rectangular domain, demonstrated here for a sphere nested

in a spherical shell. Note that the entire inner void shell region (𝜌 = 0)

dissolves at the same instant, releasing zero mass.

remapping of the simulation time, however this was not necessary

in the concentration regime of our dissolution experiments.

By defining the simulation time unit to be the length of time re-

quired to dissolve through a thickness of 1mm, we conclude that

the time at which a given point x within a fully solid design Ω dis-

solves is the point’s distance 𝑢 (x) to the boundary 𝜕Ω (Figure 2).

Accordingly, the cumulative release at simulation time 𝜏 can be

computed directly from the distance field 𝑢 : Ω → R
+:

𝐶 (𝜏) =

∫

Ω

𝜌0 {𝑢 < 𝜏} dx =

∫

Ω

𝜌0 𝐻 (𝜏−𝑢) dx, 𝐻 (𝑡) :=

{
1 𝑡 > 0

0 𝑡 ≤ 0
,

where 𝜌0 is the mass density of the fabricationmaterial, and𝐻 is the

Heaviside step function. The distance field 𝑢 can be computed in a

number of ways (e.g., fast marching [Sethian 1999] or the Geodesics

in Heat approach [Crane et al. 2017]) and can be characterized as a

viscosity solution of the unit-speed Eikonal equation:

∥∇𝑢∥ = 1 in Ω

𝑢 = 0 on 𝜕Ω.

3.2 Simulation of a Density Field

The formula for𝐶 (𝜏) just presented has a few limitations. It can sim-

ulate only fully solid objects without holes, and it is not clear how

to incorporate it in a topology optimization. To address both limi-

tations, we generalize our simulation model by adopting a density-

based object representation. Denoting the rectangular design do-

main (e.g., a 3D printer’s build volume) by D ⊂ R3, we represent

the object by a design density function 𝜌 : D → [0, 1] (distinct from

the physical material density 𝜌0, which we assume in the following

to be 𝜌0 = 1 without loss of generality). For instance, to represent

Ω ⊆ D, now possibly with holes, we take 𝜌 to be the indicator

function 𝜒Ω , which assumes value 1 inside Ω and 0 outside. Our

insight for simulating an object of this type is to interpret low den-

sity values as material that dissolves at extremely high speed and

solve a variable-speed Eikonal equation on D:

∥∇𝑢∥ = 𝑛 in D

𝑢 = 0 on 𝜕D,
(1)
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where 𝑛 : D → (0,∞) is the reciprocal dissolution speed field

sometimes called the łslowness fieldž (speed is 1/𝑛). This formula-

tion automatically handles structures like interior holes and nested

shells, where the inner shell starts dissolving immediately after the

outer shell fully dissolves (Figure 2). We use an interpolation law

to define 𝑛 in terms of the design density:

𝑛 = 𝜌 + (1 − 𝜌)𝑛min, (2)

where 𝑛min is a small value used to avoid numerical issues in the

Eikonal equation solver associated with extreme speeds (we set

𝑛min = 10−6 for all experiments). This simplest choice of a linear

interpolation law is natural since one would expect, e.g., a half-

occupied voxel to dissolve in half the time. Note that since we will

penalize our final designs to be nearly binary, the precise choice of

interpolation law only influences intermediate designs evaluated

during the optimization.

After solving for the łdissolution timež field 𝑢, we evaluate the

cumulative release curve by integrating over the full design domain:

𝐶 (𝜏) =

∫

D
𝜌 𝐻 (𝜏 − 𝑢) dx. (3)

3.3 Topology Optimization Formulation

Given a target release curve𝐶∗ (𝜏), we formulate the inverse design

problem as the optimization:

min
0≤𝜌≤1

𝐽fit (𝜌) +𝑤𝑏 𝐽binary (𝜌) +𝑤 𝑓 𝐽fab (𝜌)

𝐽fit :=
1

𝑇

∫ 𝑇

0
(𝐶 (𝜏) −𝐶∗ (𝜏))2 d𝜏

𝐽binary :=

∫

D
𝜌 (1 − 𝜌) dx

𝜌 =project(smooth(𝜌, 𝑟 ), 𝛽),

(4)

where smooth(·, 𝑟 ) is a standard smoothing filter with a kernel that

linearly decays to 0 over the smoothing radius 𝑟 [Bruns and Tor-

torelli 2001], and project is the threshold projection filter from

[Wang et al. 2011]:

project(𝜌, 𝛽) :=
tanh

(
𝛽/2

)
− tanh

(
𝛽 (𝜌 − 1/2)

)

2 tanh
(
𝛽/2

) .

Together, these filters avoid nonphysical mesh-dependency issues

like checkerboard patterns while retaining a binary design. 𝐽binary
is a standard term penalizing non-binary designs [Schumacher et al.

2015], and 𝐽fab defined in Section 3.6 is a term promoting robustly

printable designs. The total simulation duration𝑇 is determined by

the maximum possible dissolution time for a fully solid design; for

a cube-shaped D, this is half the cube width.

3.4 Discretization and Solvers

We discretize the design domain D with a regular grid of 𝑁 cube

voxels having edge length Δ𝑥 . The density 𝜌 is discretized as a

piecewise constant field, meaning we define one design variable

per voxel. When solving (1), we pad the grid with a layer of zero-

density voxels on which the 𝑢 = 0 boundary condition is applied.

This is to ensure that parts of the object that intersect the domain

boundary are not considered already dissolved at 𝜏 = 0.

Fig. 3. Simulation process in 2D: using the density and fast marching dis-

solution time fields, (a) we sum each voxel’s linear ramp release curve

(visualized in (b) for the three highlighted voxels) to obtain the discrete re-

lease curve (c). Under grid refinement, the resulting discrete approximation

exhibits first-order convergence to the continuous release curve𝐶 (𝜏) , vali-

dated in (d) using an analytical ground-truth formula for the disk’s release.

We solve (1) using the implementation of the fast marching

method provided by scikit-fmm [Furtney 2021], which we mod-

ified to track the information necessary for performing the exact

adjoint sensitivity analysis discussed in the next subsection. This

method is based on a finite difference discretization of the Eikonal

equation, and the code supports a second-order scheme for im-

proved accuracy. Unfortunately, the more complicated stencil selec-

tion rules involved in the second-order scheme degrade the differ-

entiability of solution 𝑢 (and thus the computed release curve), and

so we used the first-order scheme for all inverse design. Denoting

the dissolution time at voxel 𝑖 by 𝑢𝑖 and the neighbor of voxel 𝑖 in

the positive or negative direction along the 𝑑 axis as N(𝑖,±𝑑), the

first-order scheme in 3D solves the discrete equation:

3∑︁

𝑑=1

1

(Δ𝑥)2
max(𝑢𝑖 − 𝑢N(𝑖,𝑑) , 𝑢𝑖 − 𝑢N(𝑖,−𝑑) , 0)

2
= 𝑛2𝑖 ∀𝑖 . (5)

Note that the max operation automatically selects the correct up-

wind stencil for each dimension.

The dissolution time 𝑢𝑖 determined by (5) indicates the time at

which the voxel 𝑖 has fully dissolved; this interpretation is appar-

ent from studying a 1D version of the discretization. It would be

both nonphysical and yield a nondifferentiable model to assume

that the entire voxel dissolves instantaneously at time 𝑢𝑖 . Instead,

we assume that the voxel dissolves at a constant rate over the time

interval (𝑢𝑖 − 𝑛𝑖Δ𝑥,𝑢𝑖 ). In other words, voxel 𝑖 contributes to the

release curve a scaled linear ramp function:

𝐶𝑖 (𝜏) := 𝜌𝑖 (Δ𝑥)
3 clamp

(
𝜏 − 𝑢𝑖

𝑛𝑖Δ𝑥
+ 1, 0, 1

)
. (6)

Summing these contributions over the voxels obtains the following

discretization of (3):

𝐶 (𝜏) :=

𝑁∑︁

𝑖=1

𝐶𝑖 (𝜏) =

𝑁∑︁

𝑖=1

𝜌𝑖�̃�

(
𝜏 − 𝑢𝑖

𝑛𝑖Δ𝑥

)
(Δ𝑥)3, (7)
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where we recognize �̃� (𝜏) := clamp(𝜏 + 1, 0, 1) to be a smeared ver-

sion of the Heaviside function.

We discretize the time integral in 𝐽fit by picking a time step

size Δ𝜏 and computing 1
𝑇

∑
𝑖 (𝐶 (𝑖Δ𝜏) −𝐶

∗ (𝑖Δ𝜏))2Δ𝜏 . We use Δ𝜏 =

𝑇 /1000 for our results. We note that a literal implementation of (7),

summing up the full vector of concentration samples 𝐶 (𝑖Δ𝜏), has

computational complexity 𝑂
(
𝑁 𝑇

Δ𝜏

)
, which becomes a bottleneck

when high temporal resolution is requested. This can be acceler-

ated to𝑂
(
𝑁 + 𝑇

Δ𝜏

)
by exploiting the fact that the second derivative

of ramp function (6) is highly sparse, consisting of just two delta

functions; therefore, we can accumulate the second finite difference

of the discrete release curve in 𝑂 (𝑁 ) and then integrate it twice

(with cumulative sums) to obtain 𝐶 (𝑖Δ𝜏).

We solve the discrete version of (4) using Knitro’s L-BFGS im-

plementation. This algorithm requires the gradients of the design

objectives 𝐽fit, 𝐽binary, 𝐽fab with respect to the filtered density vari-

ables 𝜌 which are then back-propagated through the density filter

chain to obtain the gradients with respect to the design variables 𝜌 .

𝐽binary =

∑𝑁
𝑖=1 𝜌𝑖 (1 − 𝜌𝑖 ) (Δ𝑥)

3 can be directly differentiated, and

𝐽fab will be defined and differentiated in Section 3.6. Differentiating

𝐽fit is more challenging since it requires derivatives of our forward

model; we obtain these efficiently with exact sensitivity analysis

using the adjoint method as described in the next section.

3.5 Sensitivity Analysis

While a continuous adjoint equation can be derived for (1), care

must be taken to discretize it consistently with the discretization of

(1) itself. We prefer to derive the consistent adjoint equation for the

discrete equation directly. We begin with an abstract formulation

of the discrete Eikonal equation (5):

c(u, n) = 0, (8)

where u and n are vectors collecting the dissolution times and recip-

rocal speeds of each voxel, and c is a vector of nonlinear constraint

functions, one per voxel. Interpreting this equation as implicitly

defining a dissolution time function u(n), we consider a generic

objective function 𝐽 (n) = 𝐽 (u(n), n) and seek its gradient:

𝜕𝐽

𝜕n
=

𝜕𝐽

𝜕u

𝜕u

𝜕n
+
𝜕𝐽

𝜕n
, (9)

where 𝜕u
𝜕n is the derivative of the solution to the discrete Eikonal

equation that we obtain by differentiating both sides of (8):

𝜕c

𝜕u

𝜕u

𝜕n
= −

𝜕c

𝜕n
⇐⇒

𝜕u

𝜕n
= −

(
𝜕c

𝜕u

)−1
𝜕c

𝜕n
.

Substituting this expression into (9) obtains an explicit gradient:

𝜕𝐽

𝜕n
= −

𝜕𝐽

𝜕u

(
𝜕c

𝜕u

)−1
𝜕c

𝜕n
+
𝜕𝐽

𝜕n
= −𝜆

𝜕c

𝜕n
+
𝜕𝐽

𝜕n
= 𝜆 diag(2n) +

𝜕𝐽

𝜕n
,

which is efficient to calculate after solving the adjoint equation:

(
𝜕c

𝜕u

)⊤
𝜆 =

𝜕𝐽

𝜕u
.

Structure of the Adjoint Equation. Sparse Jacobian matrix 𝜕c
𝜕u can

be interpreted as a (weighted) adjacency matrix for the Eikonal

equation’s data flow graph: the 𝑖th equation of (8) determines 𝑢𝑖 ,

and the nonzero entries in this row indicate the variables influenc-

ing 𝑢𝑖 (the upwind stencil neighbors). This data flow graph has

a special acyclic structure that is exploited by the fast marching

method to solve the equation in a single pass: sorting the entries

of u in the order the marcher visits them (i.e., ascending) makes

matrix 𝜕c
𝜕u lower triangular, and the marching algorithm effectively

performs a forward substitution process. The adjoint equation fea-

tures the transpose of 𝜕c
𝜕u ; transposition reverses all graph edges and

results in an upper triangular system that can be solved efficiently

in a single backward substitution sweep. We implement this sweep

efficiently by recording the order in which voxels are visited by the

fast marcher and then simply visiting them in reverse order.

Formulas for the Adjoint Sweep. To simplify notation, the follow-

ing assumes that voxels are sorted in ascending order of 𝑢𝑖 so that
𝜕c
𝜕u is lower triangular. The 𝑖th adjoint equation is:

∑︁

𝑗

𝜕𝑐 𝑗

𝜕𝑢𝑖
𝜆 𝑗 =

𝜕𝐽

𝜕𝑢𝑖
⇐⇒

𝜕𝑐𝑖

𝜕𝑢𝑖
𝜆𝑖 =

𝜕𝐽

𝜕𝑢𝑖
−

∑︁

𝑗>𝑖

𝜕𝑐 𝑗

𝜕𝑢𝑖
𝜆 𝑗 , (10)

where we used the fact that 𝜕c
𝜕u

⊤
is upper triangular to ignore en-

tries 𝑗 < 𝑖 in the sum. This formula makes it clear that 𝜆𝑖 can be

calculated directly once 𝜆 𝑗 is found for 𝑗 > 𝑖 , motivating the reverse

sweep. The łboundary conditionsž for this reverse sweep appear

naturally as well in this equation: any voxel𝑚 with no downwind

neighbors (i.e., a local maxima of arrival time) will have an empty

sum on the right-hand-side, and so its corresponding adjoint equa-

tion is simply 𝜆𝑚 =

𝜕𝐽
𝜕𝑢𝑚

/
𝜕𝑐𝑚
𝜕𝑢𝑚

.

3.6 Fabrication Constraints

To simplify fabrication, we 3D print our geometries without support

structures. Therefore they must be free of overhanging features.

We do this in one of two ways: (1) generating 2D extruded designs

or (2) using the layer-by-layer additive manufacturing approach

proposed in [Allaire et al. 2017] that we have adapted to our setting

of density-based topology optimization.

For our 2D extrusion design space, we define the density vari-

ables on a 2D grid that is replicated in the third dimension up to

an extrusion height ℎ, which the user can specify according to, e.g.,

packaging concerns. We perform the fast marching simulation and

sensitivity analysis on the 3D grid and then backpropagate the 3D

gradient through the replication step to get the gradient in the 2D

design space.

For our fully 3D designs, we evaluate the structural compliance

under self weight of a small number of partial designs created at

intermediate steps of the incremental, layer-by-layer fabrication

process. We refer to the average compliance across all simulations

as the incremental compliance objective (ICO), which we use as

𝐽fab. Specifically, we divide the design along the build direction

into 𝐿 layers, and for the design consisting of layers 1 through

𝑙 , we perform a linear elasticity finite element simulation under

self weight load f
(𝑙) (𝜌). This entails solving the linear system

ACM Trans. Graph., Vol. 41, No. 6, Article 274. Publication date: December 2022.



274:6 • Julian Panetta, Haleh Mohammadian, Emiliano Luci, and Vahid Babaei

𝐾 (𝑙) (𝜌)u(𝑙) = f
(𝑙) (𝜌) for the displacements u(𝑙) , and we use a high-

performance multigrid-preconditioned conjugate gradient solver.

The stiffness matrix 𝐾 is determined from 𝜌 using the standard

SIMP interpolation law using the typical penalization parameter

setting 𝑝 = 3. We then evaluate the incremental compliance:

𝐽fab :=
1

2𝐿

𝐿∑︁

𝑖=1

f
(𝑙) (𝜌) · u(𝑙) .

Structural compliance is self-adjoint, meaning we can efficiently

compute its gradient without solving an adjoint equation:

𝜕𝐽fab
𝜕𝜌

=

1

𝐿

𝐿∑︁

𝑙=1

(
𝜕f (𝑙)

𝜕𝜌
· u(𝑙) −

1

2
u
(𝑙) ·

𝜕𝐾 (𝑙)

𝜕𝜌
u
(𝑙)

)
.

4 EXPERIMENTAL SETUP

We validate our simulation model and inverse design pipeline by

3D printing geometries and measuring their release using a custom

experimental setup detailed in the following subsections.

4.1 Fabrication

We fabricate all models using a consumer-level, FDM 3D printer

(Prusa i3 MK3s) equipped with a 0.2 mm Kaika nozzle from Tec-

dia Co. We use AquaSys® 12O from Infinite Materials Solutions™,

a water-soluble filament typically used as support structure. We

tune the printing profile (CURA 4.13 slicer) to achieve a consistent

average print density across different objects (1.32 g/cm3) and set

the nozzle and bed temperatures to the manufacturer recommen-

dations of 245 ◦C and 85 ◦C, respectively. The line width is set to

0.2 mm, layer height to 0.1 mm, infill to 100%, and print speed to

200 mm/s. We also found that the concentric infill pattern results

in prints that more closely match our simulation model (Figure 5).

4.2 Image-Based Release Measurement

Measuring the dissolution process is important for both the eval-

uation of our approach and for calibration (Section 4.3). In the

pharmaceutical industry, the dissolution process is typically mea-

sured using relatively high-cost, specialized dissolution testing in-

struments. Although devices based on viscosity gauging could be

employed, we opt for an image-based setup. This is because our

printing material absorbs visible light and allows for a simple, on-

line measurement system using an off-the-shelf digital camera. Our

setup (Figure 4a) is based on a Nikon D750 DSLR, a Walimex pro

LED Sirius 160 Bi Color 65W LED panel, Fisherbrand 600 mL Boro

3.3 beakers (FB33114), and a Heidolph Instruments MR Hei-Tec

145 mm diameter hotplate. We use distilled water from Dr. Starke®

as our solvent. The LED panel is oriented parallel to the image

plane and positioned such that its center coincides with the image

center. An additional diffusing board is placed in front of the LED

panel. We turn on the light and the camera around 30 minutes be-

fore the capture to let them reach a steady state. We fill the beaker

with 500 g of water and cover it with a silicone-edged lid to prevent

evaporation. Throughout the experiment, we maintain the water

at a constant temperature (70◦C) and use a stirring magnet (at 150

rpm) to homogenize the solution. We place the stirring magnet in-

side a hand-designed holder that reduces turbulence. We capture

an image of the water to use as reference and then drop the object

inside the beaker. We record images of the dissolution process ev-

ery 11 seconds using an f/22 aperture, 1/125 s exposure, and native

160 ISO. We stop the capture when we observe the concentration to

be steady. The release curve measurement (including heating the

water to 70◦C) can take up to 3-4 hours depending on the shape of

the object.

We map the intensity of the captured images to the correspond-

ing concentrations of the solution. We find this mapping through a

fitting procedure. We dissolve known quantities of the filament in

a fixed amount (500 g) of water and take pictures once the solution

is homogeneous. We add pieces of filament to the solution incre-

mentally, waiting for each to completely dissolve before adding the

next. As shown in Figure 4b, we select a square crop region of the

image inside the beaker and then subdivide this area into a 10x10

grid. To safeguard against possible light variation, we normalize

the pixels within the grid by dividing their intensities channel-wise

by the intensities of their mirrored counterparts outside the beaker

(mirroring across a vertical axis running through the image center).

We then average the normalized values over each square, obtaining

for each square a single normalized transmittance value per capture.

Then, separately for each square, we fit an exponential function to

the series of known concentration and normalized transmittance

pairs. Our choice of an exponential function is motivated by the

negligible scattering of the filament, meaning that Beer-Lambert’s

law is applicable. The result is a separate map from known con-

centrations to transmittances for each square that we invert and

then average to obtain the final mapping from transmittance to

concentration. Images can be noisy due to capture errors or intru-

sions of the object into the crop region, which manifests as noise

in the measured release curves; we employ a SavitzkyśGolay filter

to smooth the curves [Savitzky and Golay 1964].

4.3 Calibration

Our measurements and simulations of dissolution have different

time and concentration units. While measurement is done in physi-

cal units (g/kg and seconds), the simulation uses non-physical units

for both time and concentration. Calibrating the system consists

of building a mapping between these units. For this purpose, we

print a set of different shapes of equal mass, measure their release

profiles, and simulate them using our forward model. We assume

that there exist two decoupled linear mappings between the physi-

cal concentration and time units and their simulation counterparts.

The scalar coefficient defining the linear map for concentration

is given simply by the ratio of the final solution concentration in

physical units (determined precisely by weighing the object before

dissolution) to the simulated final concentration 𝐶 (𝑇 ). The time

mapping is computed by minimizing the following cost function

for the scalar coefficient 𝑘 ∈ R :

L(𝐶𝑠 ,𝐶𝑟 , 𝑘) =

∫
𝑤𝑠

��𝑘𝐶 ′
𝑠 (𝑘𝑡) −𝐶

′
𝑟 (𝑡)

�� +
��𝐶𝑠 (𝑘𝑡) −𝐶𝑟 (𝑡)

�� d𝑡,

where 𝐶𝑠 and 𝐶𝑟 are the cumulative release profiles in simulation

time and in real time, respectively, and weight parameter𝑤𝑠 (set to

1 in our implementation) adjusts the relative importance of fitting

the curve slopes.
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Fig. 5. The same cylinder printed with different infill patterns shows a sig-

nificantly different release behavior.

The calibration step also compensates for mismatches between

our digital designs and their fabricated counterparts. While our

forward model assumes a homogeneously filled, isotropic solid,

the parts fabricated using FDM exhibit prominent infill-dependent

heterogeneities and highly anisotropic properties aligned with the

filament direction. In this work, we use the concentric infill pat-

tern for printing all objects as it yielded the highest density. Fig-

ure 5 shows a single geometry printed with various infill patterns

and measured using our image-based setup. We compare all mea-

surements against the simulated release curve of the digital model,

which has been transformed into physical units using our calibra-

tion (performed on a set of objects printed with concentric infill).

Thanks to the calibration, the measured release profile of the print

with concentric infill matches the simulation significantly better

than the other infill prints’ curves.

5 EVALUATION

We first evaluate the accuracy of our forward model (in conjunction

with the calibration step) and compare it with a standard Monte

Carlo approach. Then, we put our inverse design pipeline to work,

showing an extensive set of experiments both in simulation and

with physical measurements.

5.1 Forward Model Evaluation

We evaluate the accuracy of our forward model by fabricating 5

objects with different shapes but roughly the same mass (∼ 1.75

g). For each model, we measure and simulate their release profiles.

The simulated release profiles are converted into physical units us-

ing our calibration step (Section 4.3) and shown side-by-side with

measured release curves in Figure 8. We follow a cross-validation

approach where the measurement and simulation data of each in-

dividual shape is excluded for computing its calibration. We also

include the results of the Monte Carlo simulation, which has been

used in the past for forward modeling of the release of 3D printing

materials [Nisser et al. 2019]. We tune two important parameters

of the MC simulation, namely the pre-exponential factor and the

activation energy in the Arrhenius equation, by searching over a

grid of 16 combinations [Pauling 2014]. Figure 8 shows the results

of the forward model evaluation. The release curves simulated by

our method show good agreement with the measured curvesÐon

par with or better than the MC predictions. Apart from its accuracy,

our method is distinguished from MC by its differentiability.

5.2 Inverse Design Evaluation

In order to factor out the effects of calibration, our first set of in-

verse design validation experiments starts from a source shape,

simulates its release profile using our forward model, and sets that

profile as the target 𝐶∗ (𝜏) for inverse design. For each target, we

run three variants of our inverse method with: no fabricability con-

straint (NFC), the extrusion of a 2D density field (Extruded), and a

fully 3D solution with incremental compliance (ICO) penalized by

𝐽fab. Figure 6 shows the resulting set of diverse inverse-designed

geometries. We observe that our inverse method in all of its vari-

ants is able to accurately fit to the target release curve. Note that

the plotted release profiles are a result of a full forward simulation

of the solid geometries shown in Figure 6 and not simply the release

curve evaluated on the density field found by inverse optimization.

Specifically, we extracted the 𝜌 =
1
2 contour of the optimal den-

sity field and then voxelized the resulting solid into a purely binary

design for simulation.
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Fig. 6. Inverse designs evaluated in simulation. Starting from a source shape (a), we simulate its release curve (solid green line in (b)) and optimize for release-

equivalent shapes (c-e) with different fabricability constraints. The resulting release curves are plotted in dashed lines in (b). All axes use simulation units.

ACM Trans. Graph., Vol. 41, No. 6, Article 274. Publication date: December 2022.



Shape from Release: Inverse Design and Fabrication of Controlled Release Structures • 274:9

D
e
s
i
g
n
-
1

0 1 2 3 4
0

1000

2000

3000

4000

0 1 2 3 4
0

1000

2000

D
e
s
i
g
n
-
2

0 1 2 3 4
0

1000

2000

3000

4000

0 1 2 3 4
0

1000

2000

D
e
s
i
g
n
-
3

0 1 2 3 4
0

1000

2000

3000

4000

0 1 2 3 4
0

1000

2000

D
e
s
i
g
n
-
4

0 1 2 3 4
0

1000

2000

3000

4000

0 1 2 3 4
0

1000

2000

D
e
s
i
g
n
-
5

0 1 2 3 4
0

1000

2000

3000

4000

0 1 2 3 4
0

1000

2000

D
e
s
i
g
n
-
6

0 1 2 3 4
0

1000

2000

3000

4000

0 1 2 3 4
0

1000

2000

(a) Cumulative release (b) Instantaneous release (c) NFC (d) Extruded (e) ICO
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Apart from the high accuracy in matching the release profiles

(apparent in Figure 6b), it is interesting to see the release equivalency

between wildly different shapes. This observation highlights the

large degree of multi-modality of the shape-from-release problem.

The first row, sphere, is a simple validation where, when not con-

strained, our method recovers the sphere shape from our uniform

initialization. Note also how the ICO constraint helps obtain a shape

that does not require support by avoiding problematic overhang

angles; the NFC solution without this term features unprintable

overhangs. The extruded solutions show high accuracy given that

they are fast to compute and lend themselves to a wide range of

manufacturing methods. We note that the release of the extruded

designs match those of sources with extruded geometries (Pill and

CSG-1) perfectly. This is because the extrusion constraint regular-

izes the problem very well. However, the extruded design space

ACM Trans. Graph., Vol. 41, No. 6, Article 274. Publication date: December 2022.



274:10 • Julian Panetta, Haleh Mohammadian, Emiliano Luci, and Vahid Babaei

2000 4000 6000 0 1000

0 2000

0.0

2.5

0 2000 0 2000

Time (s)

C
o
n
c
e
n
tr

a
ti
o
n
 (

g
/k

g
)

Measured MCOurs

0.0

2.5

0

Fig. 8. Evaluation of our forward model in conjunction with our proposed calibration and in comparison with the Monte Carlo simulation (MC).

lacks sufficient expressiveness to emulate more complex source

shapes like the Polyhedral bow and Dodecahedron geometries.

To demonstrate the performance of our designs in a real-world

setup, Figure 9a shows a set of printed and measured release-

equivalent shapes selected from Figure 6 based on the printability

of the source geometry. Note that the computed inverse designs are

in general more complex than the geometries used in our forward

model evaluation (Figure 8). Except for the ICO design counter-

part to the source shape CSG-1, we observe reasonable agreement

between the target release curve (obtained by simulating the re-

lease of the source geometry and converting it into real units using

our calibration) and the measured release of the printed geome-

tries. However, the ICO design for CSG-1 has a significantly slower

measured release behavior than predicted by its simulation (which

nearly coincides with the target curve shown). We hypothesize that

the main source of this inconsistency is the relatively narrow chan-

nels within this design. To verify this, we remove the channels from

the mesh, print the resulting geometry, and measure its release. As

Figure 10 shows, this modification results in a close match between

simulation and measurement. Since we verify printing accuracy

before each dissolution experiment, the problem occurs during dis-

solution. Due to the chemistry of our printing material, we observe

that the object swells (Figure 11) inside the solution, causing its nar-

rower channels to become blocked. While the simulation assumes

that each layer in contact with water will dissolve at the same time,

the blocked channels lead to locally different dissolution dynamics

as water cannot flow freely even with mixing.

The previous results validated our inverse design on target re-

lease curves known to be feasible as they originate from different

source shapes. However, the true power of our framework lies in

discovering shapes achieving novel release behavior. In Figure 7,

we test our pipeline on synthetic input release curves. While the

first two curve are hand-drawn, the rest are analytical curves featur-

ing a variety of constant-acceleration release behaviors. Of particu-

lar interest to pharmaceutical applications is the zero-acceleration,

constant release rate shown by Design-4. We observe good agree-

ment between the desired and optimized release profiles, though

the extruded design space is insufficiently rich to achieve the more

challenging behaviors. Imperfections in the fits for the NFC and

ICO designs are introduced almost entirely by the density rounding

step (contouring and re-voxelizing the continuous densities, which

exhibit near-perfect fits). We note that target curves must obey a

simple geometric condition to be feasible: the isoperimetric inequal-

ity. In particular, at every instant in time, the rate of release must

exceed a lower bound established by the surface area of a sphere

enclosing the volume remaining to be dissolved (spheres minimize

the ratio of surface area to enclosed volume). Finally, in Figure 9b,

we verify the performance of our inverse designs for hand-crafted

input release profiles using a physical dissolution and measurement.

Implementation details. We initialize the optimization with uni-

form density, picking the spatially constant 𝜌 field such that its total

mass equals the target final released mass, i.e.
∫
D
𝜌 (𝜌) dx = 𝐶∗ (𝑇 ).

After the optimization terminates, we obtain the solid design’s

boundary representation by extracting the 𝜌 =
1
2 contour of the

optimal density field. To accelerate simulation and optimization of

high-resolution designs, we enforce reflectional symmetry across

all three coordinate planes for the designs without fabrication con-

straints and across the build platform’s coordinate axes for the ex-

truded and ICO designs. We use grids with 256 elements along each

dimension and divide the design into 𝐿 = 8 layers to evaluate 𝐽fab.

Performance. The computational bottlenecks of our method are

the dense linear algebra operations within Knitro’s L-BFGS im-

plementation; at 𝑁 = 2563 resolution, and leveraging reflectional

symmetry, these take ∼ 8 s per iteration; the fast marching, ob-

jective evaluation, and gradient computation together take ∼ 2.5 s

per iteration, and the elasticity solves for evaluating the ICO term

take ∼ 3.5 s per iteration. Inverse design using the extruded design

space is significantly faster due to the smaller number of optimiza-

tion variables, taking ∼ 0.6 s per iteration in total. These reported
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Fig. 10. Comparison of the accuracy of our forward model for a shape with

internal channels and the same shape with filled channels. We note that in

the physical dissolution process, the inner channels are blocked by swelling

material, leading to a mismatch with our prediction.

times are measured on a Ryzen 5750X CPU. Inverse designs were

computed with a maximum of 500 iterations.

Hyperparameter tuning. The hyperparameters of our method are:

the binary and ICO term weights 𝑤𝑏 and 𝑤 𝑓 , the radius 𝑟 of the

smoothing filter in voxel units, and the steepness 𝛽 of the projection

filter. Typically, for each input release profile, we tune these param-

eters to obtain a desired shape. The most important performance

criterion during tuning is fabricability as the release behavior gener-

ally can be obtained without extensive tuning. In case of extrusion,

we also manually select the layer height ℎ (in voxels). We seek de-

signs that emerge as a single connected piece and do not exhibit

Fig. 11. The evolution of a printed object in undisturbed water. Water seeps

into the material, forming a jelly-like substance. This interferes with our

release model as the swelling impedes the free flow of water. Though the

solution is constantly mixed during our dissolution measurements, here we

avoid stirring to simulate local conditions where the flow is minimal.

sharp features. In our experience, the most important hyperparam-

eters are the weights of the binary and ICO terms. After finding

reasonable settings for these two, we further tune the parameters

of our projection and smoothing filters. We have summarized the

hyperparameters used for our designs in Tables 1 and 2. Moreover,

Figure 12 demonstrates designs that are release-equivalent to the

CSG-1 object but optimized with different hyperparameter settings.

6 LIMITATIONS AND FUTURE WORK

Some challenging target release profiles are hard to obtain with

a single material. Instead of pushing our optimized density field

toward binary values, an interesting alternative would be to dither

mid-range densities. For single-material 3D printing technologies,

such as FDM, this can be achieved, for example, using microstruc-

tures [Martínez et al. 2018]. On the other hand, we believe our
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(a) 𝑤𝑏 = 20 (b) 𝑤𝑏 = 30 (c) 𝑤𝑏 = 120 (d) 𝑤𝑏 = 240

(e) 𝑤𝑓 = 50 (f) 𝑤𝑓 = 100 (g) 𝑤𝑓 = 120 (h) 𝑤𝑓 = 200

(i) 𝑟 = 2 (j) 𝑟 = 3 (k) 𝑟 = 4 (l) 𝑟 = 5

(m) 𝛽 = 2 (n) 𝛽 = 3 (o) 𝛽 = 4 (p) 𝛽 = 5

Fig. 12. Effect of different hyperparameter settings on optimal designs. From top to bottom: the binary objective term weight 𝑤𝑏 , the ICO term weight 𝑤𝑓 ,

the smoothing filter radius 𝑟 (in voxels), and the projection filter parameter 𝛽 .

Table 1. Hyperparameters used to compute designs shown in Figure 6.

ICO Extruded

𝑤𝑏 𝑤 𝑓 𝑟 𝛽 𝑤𝑏 ℎ 𝑟 𝛽

Sphere 30 50 4 3 20 160 4 3

Pill 30 120 5 3 20 70 4 3

Spinner top 20 100 4 3 50 120 4 3

CSG-1 30 200 5 3 20 120 4 3

Polyhedral bow 20 120 5 3 20 35 4 3

Dodecahedron 20 50 4 3 50 60 4 3

CSG-2 50 100 4 3 50 120 4 3

computational workflow lends itself well to designing, at least, two-

material release composites, especially in a scenario where one of

the materials acts as a placebo barrier. More exciting will be to

Table 2. Hyperparameters used to compute designs shown in Figure 7.

ICO Extruded

𝑤𝑏 𝑤 𝑓 𝑟 𝛽 𝑤𝑏 ℎ 𝑟 𝛽

Design-1 40 200 9 7 50 80 9 7

Design-2 40 200 4 3 50 90 7 5

Design-3 20 10 4 9 40 80 4 9

Design-4 10 10 4 9 10 200 4 9

Design-5 20 10 4 7 20 80 4 3

Design-6 20 10 4 7 20 100 4 7

design composites in which both release profiles corresponding to

both materials are controlled. Our distance-based, forward model

proved to be reliable enough for predicting the release behavior

for a wide range of shapes under stirred conditions. A potential

ACM Trans. Graph., Vol. 41, No. 6, Article 274. Publication date: December 2022.
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approach for improving our geometric model’s accuracy is to take

into account the relationship between release dynamics and other

shape descriptors. For example, it is reasonable to assume that re-

gions belonging to the same isosurface but different curvatures can

dissolve differently. To implement this modification, we can bene-

fit from research in front-propagation simulation of other physical

phenomena [Sethian 1985], such as fire animation. This will, how-

ever, require non-trivial changes to our topology optimization.

7 CONCLUSION

The shape of an object can be inferred from a surprisingly wide

range of properties, such as shading [Woodham 1980] or inter-

reflections [Nayar et al. 1991]. We introduced a computational

framework for computing shapes from a new physical property:

its release behavior. Both our physically-inspired, but purely geo-

metric forward modelling, and our PDE-constrained topology op-

timization proved to be practical solutions for forward prediction

and inverse design, respectively. We observed that the problem is

highly multi-modal and therefore can be regularized by different

fabricability constraints depending on the fabrication technology.

With the emergence of pharmaceutical drug 3D printing, we look

forward to applying our method in real-world settings and with

practically relevant materials.
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A PHYSICAL PLAUSIBILITY OF OUR FORWARDMODEL

Our simulation is based on the Noyes-Whitney equation, the stan-

dard pharmacokinetic model for predicting dissolution of a solid

[Shargel et al. 2016]:

d𝑚

d𝑡
= 𝐷𝐴

(𝐶𝑠 −𝐶𝑏 )

ℎ
, (11)

where𝑚 is the dissolved mass (kg); 𝐷 is the diffusion coefficient

(m2/s); 𝐴 is the exposed surface area (m2); 𝐶𝑠 and 𝐶𝑏 are the con-

centrations of the solid and bulk solvent, respectively (kg/L); and

ℎ is the thickness of the concentration gradient between the solid

and the bulk solvent (m). This equation is based on Fick’s first

law of diffusion, which states that the mass flux is proportional to

the negative concentration gradient. Implicit in this model is an

assumption that, at each instant in time, a layer with uniform infin-

itesimal thickness is dissolved so that the rate of dissolved mass is

proportional to the exposed surface area. This means that, denoting

by 𝜏 the thickness of the cumulative layer dissolved by time 𝑡 :

𝜌𝐴
d𝜏

d𝑡
=

d𝑚

d𝑡
,

where 𝜌 is the mass density of the solid (kg/m3).

We make the following simplifying assumptions to obtain a com-

putational efficient and differentiable geometric simulation model:

• 𝐷 and ℎ do not depend significantly on the exposed geome-

try (being determined primarily by the choice of solvent and

the rate of mixing); and

• the solvent volume into which the geometry is dissolved

is sufficiently large that 𝐶𝑏 can be regarded as constant

(𝐶𝑏 (𝑡) −𝐶𝑏 (𝑡0) ≪ 𝐶𝑠 ). This assumption is not fundamental

to our approach, and we analyze the effects of allowing 𝐶𝑏
to depend on the dissolved mass in Appendix B.

Under these assumptions, we can regard the entire expression

𝐷
𝐶𝑠−𝐶𝑏

ℎ
:= 𝛼 as a constant with units kg/(m2 s):

d𝑚

d𝑡
= 𝛼𝐴,

d𝜏

d𝑡
=

𝛼

𝜌
.

We emphasize that d𝜏
d𝑡

is constant in this model, meaning that the

thickness of the dissolved shell 𝑆 (𝑡) grows at a constant rate.

B CONCENTRATION-DEPENDENT RATES

If the solid dissolved is too large or the solvent volume too small,

𝐶𝑏 cannot be teated as constant in (11). We can assume without

loss of generality that 𝐶𝑏 (𝑡0) = 0 (if it were nonzero, we could sub-

tract it from 𝐶𝑠 to obtain an equivalent simulation), in which case

the concentration in the solvent must come exclusively from the

dissolved solid: 𝐶𝑏 (𝑡) =
𝑚 (𝑡 )
𝑉 , where 𝑉 is the solvent volume (m3).

The assumption of a uniformly thick infinitesimal layer dissolving

at each instant remains unchanged (as we still assume the solvent

concentration is spatially homogeneous), and so:

d𝑚

d𝑡
=

𝐷𝐴

ℎ

(
𝐶𝑠 −

𝑚(𝑡)

𝑉

)
, 𝐴𝜌

d𝜏

d𝑡
=

d𝑚

d𝑡
.

We first apply a convenient change of variables, expressing the

released mass as a function of depth rather than time:

𝑚(𝑡) :=𝑚(𝜏 (𝑡)),

where 𝑚 =

∫
Ω
𝜌𝐻 (𝜏 − 𝑢) dx is straightforward to compute with

the same distance-based approach as before. To obtain the release

curve 𝑚, we simply must determine 𝜏 (𝑡), which can be done by

numerically integrating the autonomous nonlinear ODE:

d𝜏

d𝑡
=

d𝑚

d𝑡

/
𝐴𝜌 =

𝐷

𝜌ℎ

(
𝐶𝑠 −

𝑚(𝜏)

𝑉

)
, 𝜏 (𝑡0) = 0.

The derivative of the release curve objective can then be calcu-

lated as before, with an extra chain rule term accounting for the

derivative of this łtime remapping.ž
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