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Abstract: The engineering design process (e.g., control and forecasting) relies on mathemat-
ical modeling, describing the underlying dynamic behavior. For complex dynamics behavior,
modeling procedures, as well as models, can be intricated, which can make the design process
cumbersome. Therefore, it is desirable to have a common model structure, which is also simple
enough, for all nonlinear dynamics to enhance design processes. The simplest dynamical model—
one can think of — is linear, but linear models are often not expressive enough to apprehend
complex dynamics. In this work, we propose a modeling approach for nonlinear dynamics and
discuss a common framework to model nonlinear dynamic processes, which is built upon a lifting-
principle. The preeminent idea of the principle is that smooth nonlinear systems can be written
as quadratic systems in an appropriate lifted coordinate system without any approximation error.
Hand-designing these coordinates is not straightforward. In this work, we utilize deep learning
capabilities and discuss suitable neural network architectures to find such a coordinate system us-
ing data. We present innovative neural architectures and the corresponding objective criterion to
achieve our goal. We illustrate the approach using data coming from applications in engineering
and biology.

Keywords: Deep learning, lifting-principle for nonlinear dynamics, machine learning, neural
networks, nonlinear dynamics, quadratic models.

Novelty statement:
1. Proposed data-driven approach to learning nonlinear dynamical models.

2. Utilized a lifting-principle, allowing to write smooth nonlinear systems as quadratic systems
in appropriate coordinates, which we refer to as quadratic-embeddings.

3. Discovery of quadratic-embeddings using deep neural networks.

Code link: https://gitlab.mpi-magdeburg.mpg.de/goyalp/quadembed_nonlineardyns

1. Introduction

Mathematical modeling is a fundamental mainstay of engineering design, e.g., control, optimization, and
forecasting. Models accurately capturing dynamical behavior are essential to perform engineering studies.
Classically, such models are developed based on first principles or fundamental hypotheses by the field
experts. Although the approach is successful in many applications, modeling complex processes such as
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climate dynamics and modern robotics dynamics are still difficult. Hence, there is a need for data-driven
modeling of dynamical models using time-series data, supported by rapid development in sensor technology,
allowing access to a vast amount of data.

Data-driven modeling of dynamical systems from time-series data has been an active research field, see, e.g.,
[1-14]. With powerful approximation capability of deep neural networks (DNNs), several methods to model
dynamic behavior using DNNs has been proposed [15-23]. A beauty of DNN-based modeling is that to fit any
arbitrary function, we do not require any hand-design features. Instead, essential features to approximate
a function are learned by extracting patterns using data. Despite neural networks being very flexible to
model complex dynamical behavior from data, engineering studies such as control and optimization are
rather difficult using black back models obtained as DNNs. Therefore, it is desirable to have simple analytic
dynamical models capable of capturing complex dynamic behavior. Linear models are among the simplest
models for which several comprehensive methods to perform engineering studies have been developed, e.g.,
for stability and control analysis and prediction [24-26]. However, often linear models in the measured
space are not fully capable of capturing a rich nonlinear dynamical behavior. Hence, some rationales are
required to incorporate nonlinear behavior. In this direction, the Koopman operator theory provides a
tool to write nonlinear systems as linear systems in an infinite-dimensional Hilbert space [27]. Dynamic-
mode decomposition and its variants aim at determining a finite-dimensional approximation of the infinite-
dimensional Koopman operator using suitable coordinates or observables, see, e.g. [6,10,28-31]. Despite
being successfully applied in various applications, determining suitable observables for complex processes to
approximate the Koopman operator using DMD is not trivial. There has been an attempt to discover a
finite-dimensional approximation of the Koopman operator or linear embeddings by utilizing the powerful
approximation capabilities of DNNs [21]. Tt is a promising approach, but for models with eigenspectrum
containing continuous parts, it becomes intractably hard to determine a coordinate system whose dynamics
can be explained by a linear model. Moreover, mapping to the original measurement coordinates from the
discovered Koopman embedding is given by a nonlinear mapping using DNNs.

On the other hand, there exists a lifting principle that enables to write nonlinear dynamic models as
quadratic models in a lifted coordinate system, which is finite-dimensional, in contrast to Koopman operator
theory [32-34]. Moreover, a linear mapping can define the relationship between the lifted coordinates and
the space in which data are collected or the quantity of interest. One can determine such a lifted coordinate
system for a given analytical expression of a nonlinear system, but we seek to identify such coordinates
in a data-driven framework. To that end, in this work, we develop a DNN framework to learn the lifted
coordinates using data. Our approach involves a customized autoencoder design, in which a DNN defines an
encoder, and the decoder is just a linear function. Such an autoencoder structure enables the discovery of
lifted coordinates whose dynamics can be defined by a quadratic dynamical model. We depict our primary
objective in Figure 1.1. We determine the parameters of the autoencoder and quadratic models for the
lifted coordinates jointly. We demonstrate the success of our approach to learning dynamics via quadratic
embeddings using three examples: the nonlinear pendulum example, the Michaelis-Menten model explain-
ing enzymatic kinetics, and the high-dimensional spiral wave—a reaction-diffusion model. These examples
demonstrate the capabilities of the approach to obtain parsimonious dynamical models in lifted coordinates.
Notably, the proposed framework provides dynamical models in a state-space form whose structure is close
to linear state-space models, thus easing the engineering design process for nonlinear systems.

The remainder of the paper is structured as follows. The next section briefly recaps the lifting principle
to determine quadratic embeddings for nonlinear systems. In Section 3, we present a data-driven approach
to learning lifted coordinates and the corresponding quadratic models. Section 4 demonstrates the proposed
method using three examples from different disciplines. We finally conclude the paper with a short summary
and future avenues for further research in Section 5.

2. Quadratic-embeddings for nonlinear systems

McCormick in 1976 [35] proposed a convex relaxation to solve nonlinear non-convex optimization problems.
The central idea lies in lifting a given nonlinear non-convex optimization problem into a high-dimensional
using auxiliary variables. Despite increasing the dimension of the original problem, we can solve the lifted
problem more efficiently than the original one. A similar philosophy has been developed in the context of
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Figure 1.1.: The figure illustrates that nonlinear dynamical systems can be written as quadratic dynamical
systems in an appropriate finite-dimensional lifted coordinate system. Moreover, from the lifted coordinate,
we can obtain the quantity of interest by a linear projection. In the right plot, we depict a neural network
architecture to learn a lifted coordinate system that has the desired quadratic embeddings.

dynamical systems. To ease the engineering design process, particularly control-design for general nonlinear
systems, we can recast nonlinear systems as polynomial systems, e.g., [32,33]. Furthermore, for constructing
low-dimensional models for large-scale nonlinear dynamical systems, Gu [34] proposed a methodology that
first rewrites nonlinear systems as quadratic systems and then employs reduced-order modeling techniques for
quadratic systems. For given nonlinear analytic systems, there are approaches to rewrite them as polynomial
or quadratic systems [32-34]. It has been shown that nonlinear systems consisting of basic elementary
smooth nonlinear functions (e.g., trigonometric, exponential, rational), or a composition of these elementary
functions, can always be rewritten as a quadratic system in the lifted coordinates without any approximation
error. Moreover, the dimension of the lifted coordinates increases linearly with respect to the dimension of
the original nonlinear system, and one can bound the dimension of the lifted coordinate system as well.
Inspired by the lifting philosophy, we can transform all smooth nonlinear systems satisfying the above
assumptions as a quadratic system. Furthermore, we can construct the original state vector or our measure-
ment space using a linear projection of the lifted variables. To illustrate the approach, we consider a simple
rational nonlinear system that often appears in biological applications. The nonlinear model is as follows:

x(t) = —lj(i)(t). (2.1)

To write the above nonlinear system as a quadratic system, we define lifted coordinates as follows:

X
1
Lx):=] 1+x |=Y (2.2)
b4
(1+x)?
Note that x can be constructed using a linear projection of y; precisely, using a matrix C = [1,0,0], i.e.,
x = Cy. Moreover, the differential equation for y can be given as
Y1 —Y1Y2
Y2 | = Y2Y3 ) (2.3)
Y3 y3(y2 — 2y3)

which is a quadratic system with y; being the i-th component of y. These discussions indicate that given
an analytical form of a nonlinear system, we can find a lifted coordinate system in which we can write
the dynamics as quadratic systems. We highlight that the lifted variables are not unique. Since we only
have access to data, we do not have the gratification of hand-designing the lifted coordinate. Even if we
had, hand-designed coordinates are not straightforward for complex processes. Therefore, we next discuss a
data-driven approach to learning a desired lifted coordinate system.
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3. Data-driven discovery of quadratic-embeddings using deep learning

Inspired by the lifting principle, we highlight that smooth nonlinear systems can be rewritten as a quadratic
system in a lifted coordinate. Also, the coordinate allows the construction of the quantity of interest by a
linear projection, as depicted in Figure 1.1(a). In the following, we formulate our problem statement.

Problem 3.1. Given data {x(t1),...,x(tx)} and derivative information {X(t1),...,%x(tn)}, we seek to
determine a lifting x — z such that

(a) z satisfies
z(t)=Az+H(z®2z)+B, and (3.1)

(b) x can be recovered by a linear projection of z, i.e., x = Caz.

Since we only have access to data, we cannot identify the lifted coordinates analytically. We rather learn
such them using data. For this, we utilize the profound approximation capabilities of DNNs to learn the
lifting. To that end, we propose a particular autoencoder design, where the encoder is defined by a DNN
denoted by ¥, which is parameterized by 6, such that it provides a lifting for a given x, i.e., z = ¥(x).
The decoder is given by a linear function which maps the lifted variables back to the space of measurements
by a linear function, i.e., x = Cz. If we train the autoencoder alone, then we may obtain any arbitrary
mapping, and it is not necessary that the dynamics of the learned lifting can be described by a quadratic
model. Therefore, it is essential to learn the parameters of the autoencoder to determine liftings so that
among infinitely many possibilities, we can identify ones that fulfill the conditions (a) and (b) in Problem
3.1.

Towards achieving our goals, we assume to have access to the derivative information of x. Then, we
can compute the derivative of the lifted variable z using the chain-rule and automatic differentiation as
z = Vx U (x)%x. We enforce that a quadratic equation as in (3.1) can also provide the derivative information
of z; hence, we add the following term in the loss function:

Lo = |Vx¥(x)% — (Az+ H(z®2) + B)|| with z = ¥(x). (3.2)

Moreover, as in [20], we can also reconstruct the derivative information of the original variable x using the
derivative information of the lifted variable z. We know that there is a linear map between x and z, thus we
have

x=Cz=C(Az+H(z®z)+B). (3.3)

This gives rise to the second part of the loss function as follows:
Liz =|%x—C(Az+H(z®z)+B)]|. (3.4)
Naturally, the construction the original variable x through z can be obtained as follows:
x = Cz = C¥(x), (3.5)
yielding the third element of the loss function
Lencdee = [[x = CY(X)]- (3.6)
Combining all these elements (3.2), (3.3), and (3.6), we have the following total loss:
L = MLencdec + A2Lsxs + A3 Lk, (3.7)

where A(j 23y are the hyper-parameters. We optimize simultaneously the parameters of the autoencoder
{6, C} and the system matrices {A, H, B}, minimizing the loss £ in (3.7). Furthermore, we highlight that
once the autoencoder is trained and system matrices defining the dynamics are obtained, we require the
nonlinear encoder only to get the corresponding initial condition for the lifted variable z. We can obtain the
trajectory of z using a desired numerical integration method, so the trajectory of x can be determined using
the decoder. Hence, the acquired dynamic modeling is parsimonious by construction compared to DNNs,
which directly model the vector field of x.
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(a) A comparison of the trajectories obtained from the learned quadratic (b) Histogram of the La-error of the
model with the ground truth. trajectories.

Figure 4.1.: Nonlinear pendulum example: A comparison of the learned quadratic embedding and corre-
sponding dynamical model on the testing phase is presented.

4. Results

We demonstrate our approach for three applications from different disciplines: a nonlinear pendulum,
Michaelis—-Menten kinetics, and a 2D reaction-diffusion system. All the information about training and
hyper-parameters is given in the appendix.

4.1. A nonlinear pendulum

In the first example, we consider a nonlinear pendulum which is governed by the following second-order
equation:
X(t) = —sin(x(¢)) — 0.05x%, (4.1)

which, in the first-order companion form can be written as

Xx1(t)|  |—sin(x2(t)) — 0.05x1 (¢)
[xl(t)] = [ Taw (4.2)

where x;(t) = %(¢t) and x2(t) = x(t). We collect the data in time interval ¢ € [0,10]s with 1000 different
initial conditions. We choose an initial position and velocity of the pendulum in the range of [—2,2]. We
assume to know the gradient of x; and x5. We train the autoencoder and system matrices {A, H, B, C} by
setting the dimension of the lifted variables to 4. Having learned the lifted coordinates, we test the learned
autoencoder and quadratic model using 1000 initial conditions, which have not been part of training. We
show 6 exemplary trajectories, choosing every 200th one, in Figure 4.1 and plot the histogram of the Lo-
error of the truth trajectories and those obtained via lifting and by integrating the quadratic model. In the
testing phase, we test our system for time [0, 30]s, although in the training phase, the data are collected for
time [0, 10]s only. The figures indicate that the proposed methodology allows the construction of dynamical
models, capturing the dynamic behavior, and most of the error in the testing is around 10~4.

4.2. Michaelis-Menten model

Next, we consider an example coming from biology, namely Michalies-Menten kinetics model [36] which
explains enzymatic reactions. The dynamics are given by a one-dimensional differential equation of the form:

x(t) = W (4.3)
s
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Figure 4.2.: Michaelis-Menten model: A comparison of the learned quadratic embedding and corresponding
dynamical model in the testing phase is presented.

For this example, we collect data for 50 random initial conditions in the range of x(0) € [1,3] in the time
interval ¢ € [0,15]s. We learn a 2-dimensional lifted variable and a quadratic model describing its dynamics.
We then test our learned model for 1000 different initial conditions and compare the trajectories obtained
from the underlying truth and the learned models. The results are shown in Figure 4.2 which indicates the
accurate capture of the dynamics of x through the quadratic embeddings z. Moreover, the histogram plot
suggests most of the testing error is below 107%.

4.3. Reaction-diffusion model

In various complex applications, dynamics are governed by partial differential equations, resulting in a high-
dimensional dataset. These high-dimensional data are often highly spatially and temporarily correlated.
Hence, these data can be projected into a low-dimensional subspace by using the dominant subspace, which
can be determined using, for example, proper-orthogonal decomposition (POD) or principle-component anal-
ysis (PCA). Then, one can use these projected low-dimensional data to obtain a lifting and a corresponding
quadratic model to describe its dynamics which closely follows the operator inference approach [8,37].

To illustrate the methodology, we consider a nonlinear reaction-diffusion example as considered in [20],
which is governed by

(1= (u? +0*)u+ Bu? + v?)v + di (Ugy + uyy), (4.4a)
—B(u? +v?)u+ (1 — (u? + v2)v + do(Ver + vyy), (4.4b)

Ut

Ut

with parameters 8 = 1,d; = do = 0.1. The model exhibits a damped spiral wave behavior, which has two
most dominant modes. The coupled PDE is discretized using a uniform 100 x 100 mesh and we take 100
points from a uniform grid in the time interval [0, 5]s. Note that the dimension of the data is 2 - 10*, which
is projected on a 2-dimensional subspace using the first two dominant POD modes. Using the projected
low-dimensional data, we aim to learn a coordinate system whose dynamics can be explained by a quadratic
model. For this example, we consider the first 75 points for training and the remaining 25 points for testing.
Once the lifting and quadratic model are learned, we examine the model on the testing data. For this, we
integrate the learned lifted variables from ¢ = 0 to ¢ = 5 and project back the low-dimensional data on the
full grid using the POD modes. We first plot the evolution of the POD coefficients through the lifted variable
in Figure 4.3, which faithfully determines their values in the testing regime. Moreover, since we have an
analytic quadratic model for the lifted variable, we can integrate beyond the testing regime and extrapolate
the POD coeflicients trajectory. This nicely illustrates the underlying damped behaviors when we plot the
evolution of the POD coefficients for the time until 25s. Furthermore, We show a comparison for the testing
regime in Figure 4.4, which clearly indicates a faithful capturing of the important dynamics.
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Figure 4.3.: Reaction-diffusion model: Evolution of the POD coefficients in training, testing and extrapolation

regimes.

5. Discussions

In this work, we have discussed a unifying representation for nonlinear systems, namely quadratic embeddings.
It is inspired by the fact that smooth nonlinear dynamical systems can be written as quadratic systems in an
appropriate lifted coordinate system. One can potentially hand-design lifted variables for a given analytical
expression for nonlinear systems. But in a data-driven setting, where the aim is to learn dynamical models,
it is not straightforward to hand-design the lifting. Therefore, in this work, we have utilized profound
approximation capabilities of deep neural networks to learn a lifting so that its dynamics can be given by a
quadratic model, as well as the mapping between the learned coordinate system and the quantity of interest
is linear. To achieve the goal, we have proposed a particular autoencoder design and an objective function
for determining the parameters of the autoencoder and system matrices of the quadratic model. As a result,
we obtain parsimonious models since the learned differential equations have a simple analytical expression,
and the neural network for the encoder is only used to obtain initial conditions for the equation. We have
illustrated the methodology using three examples from mechanical, biology, and chemical applications.

This work opens several promising avenues for further research. Since the encoder that determines lifted
variables is associated with deep neural networks, it demands a diverse dataset and intense computational re-
sources. Although recent advancements in GPUs and efficient deep learning libraries such as TensorFlow [38]
and PyTorch [39] can allow overcoming computational difficulties, the interpretability and generalizability of
these networks still need further investigation. Often, deep learning models are good interpolating models,
but their extrapolation capabilities are questionable. Therefore, it is essential to incorporate physical knowl-
edge and any available prior knowledge about the origin of the data in the learning process. As a result, this
is not only expected to improve the interpretability and generalizability of the learned model but also may
extrapolate better outside the training regime. It may also reduce the data required for training as it can be
compensated by embedding physical laws. Moreover, one of the critical hyper-parameters in our approach
is the dimension of the lifted variables. It is desirable to find a minimal dimension of it while keeping the
desired accuracy. It would be worthwhile to develop a suitable automatic approach to determine the dimen-

sion of the lifted coordinate system. Additionally, using physical and domain knowledge in deep learning
frameworks can enhance the interpretability and provide some physics-informed quadratic embeddings, i.e.,
quadratic embeddings for Hamiltonian systems. The proposed framework can be extended to various other
classes, such as systems with parameters and control. Special treatment is required for noisy measurements,
for which ideas proposed in [23,40,41] can be combined with our methodology. In the future, we will apply
our approach to more challenging and important applications arising in science and technology to construct
models where first-principle modeling remains difficult, and the learned models can enhance the engineering

design process.

2022-11-02
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Figure 4.4.: Reaction-diffusion model: A comparison of the trajectories obtained from the learned quadratic
model with the ground truth in the testing regime which has not been a part of training.
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A. Implementation details

Here, we provide the necessary details used in our experiments. All the experiments are carried out on
Nvipia® P100 GPU. Table A.1 contains all the necessary hyper-parameters for our illustrative examples. In
our training, we have set A{1 23} in (3.7) to one for simplicity; however, we believe that determining a good
balance for these different losses using cross-validation can improve the performance of the approach. For
training, we have also utilized a decaying learning rate, for which we have reduced our learning rate by %th
after every 1000th epoch. Furthermore, we have utilized a hard-pruning feature in our training. After our
initial desired epochs for training, we set those coefficients in matrices {A, H, B} to zero, which are below
a tolerance (given in Table A.1). Then, we re-train all parameters for half the number of the initial epochs
with half of the initially-set learning rate.
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Pendulum | Michaelis-Menten | Reaction-diffusion
Parameters
example model model
Encoder layers [neurons] | [64,64, 64] 8,8, 8] [16, 16]
Lifted coordinate
4 2 2
system dimension
Learning rate 1073 1073 1073
Batch size 215 215 75
Activation function selu selu selu
Weight decay 1074 1074 10~4
Epochs 2500 2500 2500
Tolerance 5-1072 1-1072 5.1072

Table A.1.: The table contains all the hyper-parameters to learn the encoder parameters and matrices defining
lifted-coordinate dynamics.
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