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A B S T R A C T

The engineering design process often relies on mathematical modeling that can describe the underlying
dynamic behavior. In this work, we present a data-driven methodology for modeling the dynamics of nonlinear
systems. To simplify this task, we aim to identify a coordinate transformation that allows us to represent the
dynamics of nonlinear systems using a common, simple model structure. The advantage of a common simple
model is that customized design tools developed for it can be applied to study a large variety of nonlinear
systems. The simplest common model – one can think of – is linear, but linear systems often fall short in
accurately capturing the complex dynamics of nonlinear systems. In this work, we propose using quadratic
systems as the common structure, inspired by the lifting principle. According to this principle, smooth nonlinear
systems can be expressed as quadratic systems in suitable coordinates without approximation errors. However,
finding these coordinates solely from data is challenging. Here, we leverage deep learning to identify such
lifted coordinates using only data, enabling a quadratic dynamical system to describe the system’s dynamics.
Additionally, we discuss the asymptotic stability of these quadratic dynamical systems. We illustrate the
approach using data collected from various numerical examples, demonstrating its superior performance with
the existing well-known techniques.
1. Introduction

Mathematical modeling is a crucial part of engineering design for
control, optimization, and forecasting tasks. For those studies, it is
important to have models that accurately represent dynamic behavior.
Traditionally, such models are built based on fundamental principles
or hypotheses or by field experts. While successful in many cases, it is
challenging for complex processes like climate dynamics and modern
robotics. Therefore, there is a growing need for data-driven modeling of
dynamic systems using time-series data. Advances in sensor technology
provide access to extensive data, making the development of such
approaches more attractive and feasible.

Data-driven modeling of dynamical systems from time-series data
has been an active research field; see, e.g., [1–14]. With the pow-
erful approximation capability of deep neural networks (DNNs), sev-
eral methods to model dynamic behavior using DNNs have been pro-
posed [15–23]. One notable advantage of DNN-based modeling is
the ability to approximate arbitrary functions without the need for
manually designed features. Instead, DNNs learn essential features by
identifying patterns in the data. However, while neural networks excel

∗ Corresponding author.
E-mail address: goyalp@mpi-magdeburg.mpg.de (P. Goyal).

at capturing complex dynamical behavior, applying them to engineer-
ing tasks like control and optimization can be challenging due to the
black box nature of DNN models, particularly when DNNs directly
model the vector fields of dynamical systems, e.g., by using the Neu-
ralODEs framework [22]. Therefore, there is a need for simpler analytic
dynamical models that can still capture complex dynamic behavior.

Linear models offer simplicity for various engineering studies, such
as stability and control analysis and prediction, and extensive tools
are also developed to carry out those studies for linear systems [24–
26]. However, linear models often fail to capture intricate nonlinear
dynamical behavior accurately. To address this limitation, additional
rationales are required to incorporate nonlinear behavior. In this di-
rection, the Koopman operator theory enables the representation of
nonlinear systems as linear ones in an infinite-dimensional Hilbert
space [27]. Techniques like Dynamic mode decomposition (DMD) and
its variants aim at approximating the infinite-dimensional Koopman
operator in a finite-dimensional space using suitable coordinates or
observables [6,10,28–31]. Despite the success of DMD in various ap-
plications, identifying appropriate observables for complex processes
vailable online 6 April 2024
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Fig. 1. The figure illustrates that nonlinear dynamical systems can be written as quadratic dynamical systems in an appropriate finite-dimensional lifted coordinate system. In the
right plot, we depict a neural network architecture to learn a lifted coordinate system that has the desired quadratic embeddings.
to approximate the Koopman operator remains challenging. An alter-
native approach involves using DNNs to discover a finite-dimensional
approximation of the Koopman operator or linear embeddings [21].
While promising, this method faces difficulties when dealing with
models possessing continuous parts in their eigenspectrum. In such
cases, determining a coordinate system and a finite-dimensional linear
operator becomes difficult, see, e.g., [21,32].

On the other hand, there exists a lifting principle that enables
to write nonlinear dynamic models as quadratic models in lifted co-
ordinates in finite-dimensions [33–35]. This contrasts with Koopman
operator theory, which might require an infinite-dimensional coordinate
system. Determining such coordinates is feasible when we have analyt-
ical physics-based models for nonlinear dynamics, see, e.g., [35–37].
However, our aim is to discover such coordinates in a data-driven
framework since we only assume access to data.

To that end, in this work, we present a DNN framework to learn the
lifted coordinates using data. Our approach involves an autoencoder
to discover lifted coordinates in which the dynamics of the process
generating the times series data can be governed by a quadratic dy-
namical model. In this paper, we refer to those lifted coordinates as
quadratic embeddings. We depict our objective in Fig. 1. To achieve
this, we simultaneously determine the parameters of the autoencoder
and quadratic models for the lifted coordinates. Additionally, we delve
into the asymptotic stability of quadratic models, explaining how the
dynamics of embeddings are characterized and how stability can be
ensured through appropriate parameterization. We demonstrate the
success of our approach to learning dynamics via quadratic embeddings
using two low-dimensional examples: the nonlinear pendulum and the
Lotka–Volterra examples.

Additionally, we explore scenarios where data originates from com-
plex, high-dimensional dynamic systems. The considered systems are
known to evolve within a lower-dimensional subspace. When we have
knowledge of physics-based models, it is possible to identify this sub-
space and associated reduced models using linear or nonlinear manifold
projections; see, e.g., [38–40]. Another approach involves integrating
the lifting principle [37], followed by constructing quadratic models
in a reduced-dimensional space. Notably, the technique [37] employs
a linear projection to determine a low-dimensional space, which is ex-
tended to quadratic manifold projection in [41]. It is important to high-
light that all these methods rely on physics-based discretized models or
information at the partial differential equation (PDE) level. In our work,
we discuss the construction of low-dimensional coordinates for high-
dimensional systems using a convolution-based autoencoder so that a
quadratic system can describe the dynamics of the low-dimensional
coordinates. We illustrate this approach using the nonlinear Burgers
example.

The remainder of the paper is structured as follows. The next section
briefly recaps the lifting principle to determine quadratic embeddings
for nonlinear systems. Section 3 presents a data-driven approach to
learning lifted coordinates and the corresponding quadratic models.
In Section 4, we discuss a parameterization for quadratic systems to
2

ensure global asymptotic stability. Section 5 demonstrates the proposed
method using various numerical examples. We finally conclude the
paper with a summary and future avenues for further research in
Section 6.

2. Quadratic-embeddings for nonlinear systems

McCormick, in 1976 [42], proposed a convex relaxation to solve
nonlinear non-convex optimization problems. The central idea lies
in lifting a given nonlinear non-convex optimization problem into
a high-dimensional space using auxiliary variables. Despite increas-
ing the dimension of the original problem, we can solve the lifted
problem more efficiently than the original one. A similar philoso-
phy has been developed in the context of dynamical systems. Casting
nonlinear systems as polynomial systems can ease numerical analysis
and control design tasks, see, e.g., [33,34]. Furthermore, for con-
structing low-dimensional models for large-scale nonlinear dynamical
systems, Gu [35] proposed a methodology that first rewrites nonlinear
systems as quadratic systems and then employs reduced-order mod-
eling techniques for quadratic systems. In addition, once we have a
quadratic representation of a nonlinear system, we can apply design
tools, such as control design, developed for quadratic systems (see,
e.g., [43,44]) to nonlinear systems as well. For given nonlinear ana-
lytic systems, there are approaches to rewrite them as polynomial or
quadratic systems [33–35]. There it, has been shown that nonlinear
systems consisting of basic elementary smooth nonlinear functions
(e.g., trigonometric, exponential, rational) or a composition of these
elementary functions can always be rewritten as quadratic systems
in lifted coordinates without any approximation error. Moreover, the
dimension of the lifted coordinates increases linearly with respect to the
dimension of the original nonlinear system, and one can also determine
bounds on the dimension of the lifted coordinate system.

Inspired by the lifting philosophy, we can transform all smooth
nonlinear systems satisfying the above assumptions as a quadratic
system. Furthermore, we can construct the original state vector or
measurement space using a linear projection of the lifted variables. To
illustrate the approach, we consider a simple rational nonlinear system
often appearing in biological applications. The nonlinear model is as
follows:

𝐱̇(𝑡) = −
𝐱(𝑡)

1 + 𝐱(𝑡)
. (1)

To write the above nonlinear system as a quadratic system, we define
lifted coordinates as follows:

(𝐱) ∶=

⎡

⎢

⎢

⎢

⎢

⎢

𝐱
1

1 + 𝐱
𝐱

⎤

⎥

⎥

⎥

⎥

⎥

≡ 𝐲. (2)
⎣ (1 + 𝐱)2 ⎦
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Note that 𝐱 can be constructed using a linear projection of 𝐲; precisely,
using a matrix 𝐂 = [1, 0, 0], i.e., 𝐱 = 𝐂𝐲. Moreover, the differential
equation for 𝐲 can be given as

⎡

⎢

⎢

⎣

𝑦1
𝑦2
𝑦3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

−𝑦1𝑦2
𝑦2𝑦3

𝑦3(𝑦2 − 2𝑦3)

⎤

⎥

⎥

⎦

, (3)

which is a quadratic system with 𝑦𝑖 being the 𝑖th component of 𝐲.
These discussions indicate that given an analytical form of a nonlinear
system, we can find a lifted coordinate system to write the dynamics
as quadratic systems. We highlight that the lifted variables are not
unique. Since here we only assume to have access to data, we do
not have the possibility of hand-designing lifted coordinates. Even if
we had hand-designed coordinates, they are not straightforward for
complex processes. Therefore, we next discuss a data-driven approach
to learning a suitable lifted coordinate system.

3. Data-driven discovery of quadratic embeddings using deep
learning

The lifting principle suggests that smooth nonlinear systems can be
rewritten as quadratic systems in a suitable lifted coordinate system.
Additionally, this coordinate system allows the construction of the
quantity of interest by a nonlinear projection, as depicted in Fig. 1(a).
Inspired by these observations, we formalize our problem in the follow-
ing.

Problem 3.1. Given data {𝐱(𝑡1),… , 𝐱(𝑡 )} and derivative information
{𝐱̇(𝑡1),… , 𝐱̇(𝑡 )}, we seek to determine a lifting 𝐱 ↦ 𝐳 such that

(a) 𝐳 satisfies

𝐳̇(𝑡) = 𝐀𝐳(𝑡) +𝐇 (𝐳(𝑡)⊗ 𝐳(𝑡)) + 𝐁, and (4)

(b) 𝐱(𝑡) can be recovered by a (potentially) nonlinear projection of
𝐳(𝑡), i.e., 𝐱(𝑡) = 𝛷(𝐳(𝑡)),

for 𝑡 ∈ {𝑡1,… , 𝑡 }.

Since we only have access to data and have no information about
the underlying physics-based model, we cannot identify the required
lifted coordinates analytically. Therefore, we aim to learn suitable coor-
dinates using only data. For this, we utilize the profound approximation
capabilities of DNNs to learn the lifting. To that end, we propose a
particular autoencoder design, where the encoder is defined by a DNN
denoted by 𝛹 , which is parameterized by 𝜃, such that it provides lifted
coordinates for a given 𝐱, i.e., 𝐳 = 𝛹 (𝐱). Moreover, the decoder is given
by a nonlinear function that maps the lifted variables back to the space
of measurements by a nonlinear function, i.e., 𝐱 = 𝛷(𝐳). The nonlinear
function 𝛷(⋅) is also constructed using a DNN, and its parameters are
denoted by 𝜙. Suppose we were to train the autoencoder alone. In that
case, we may obtain any arbitrary mapping, and it is not necessary that
the dynamics of the learned lifted coordinates can be described by a
quadratic model. Therefore, it is essential to learn the parameters of the
autoencoder to determine lifted coordinates so that among infinitely
many possibilities, we can identify ones that fulfill both conditions (a)
and (b) in Problem 3.1.

Towards achieving our goals, we assume to have access to the
derivative information of 𝐱. Then, we can compute the derivative of the
lifted coordinates 𝐳 using the chain rule and automatic differentiation,
i.e., 𝐳̇(𝑡) = ∇𝐱𝛹 (𝐱(𝑡))𝐱̇(𝑡), where ∇𝐱 denotes the Jacobian with respect
to 𝐱. We further enforce that a quadratic equation as in (4) can also
provide the derivative information of 𝐳; hence, we add the following
term in the loss function:

𝐳̇𝐱̇ = 1



∑

𝑖=1

‖

‖

‖

∇𝐱𝛹 (𝐱(𝑡𝑖))𝐱̇(𝑡𝑖) −
(

𝐀𝐳(𝑡𝑖) +𝐇
(

𝐳(𝑡𝑖)⊗ 𝐳(𝑡𝑖)
)

+ 𝐁
)

‖

‖

‖ (5)
3

with 𝐳(𝑡𝑖) = 𝛹 (𝐱(𝑡𝑖)).
Moreover, as in [20], we can also reconstruct the derivative informa-
tion of the original variable 𝐱 using the derivative information of the
lifted variable 𝐳. Using the nonlinear mapping between 𝐱 and 𝐳 via the
decoder, we have

𝐱̇ = ∇𝐳𝛷(𝐳)𝐳̇ = ∇𝐳𝛷(𝐳) (𝐀𝐳 +𝐇 (𝐳⊗ 𝐳) + 𝐁) . (6)

his gives rise to the second part of the loss function as follows:

𝐱̇𝐳̇ =
1



∑

𝑖=1
‖𝐱̇(𝑡𝑖) − ∇𝐳𝛷(𝐳(𝑡𝑖))

(

𝐀𝐳(𝑡𝑖) +𝐇
(

𝐳(𝑡𝑖)⊗ 𝐳(𝑡𝑖)
)

+ 𝐁
)

‖. (7)

aturally, the reconstruction of the original state 𝐱 from 𝐳 can be
btained as follows:

= 𝛷(𝛹 (𝐱)), (8)

ielding the third element of the loss function

encdec = 1



∑

𝑖=1
‖𝐱(𝑡𝑖) −𝛷(𝛹 (𝐱(𝑡𝑖)))‖. (9)

ombining all these elements Eqs. (5), (6) and (9), we have the follow-
ng total loss:

= 𝜆1encdec + 𝜆2𝐱̇𝐳̇ + 𝜆3𝐳̇𝐱̇ , (10)

here 𝜆{1,2,3} are the hyper-parameters. Moreover, the norms in Eqs. (5),
6) and (9) are a weighted sum of the Frobenius norm and 𝑙1-norm,
.e., ‖ ⋅ ‖ = 0.5‖ ⋅ ‖𝐹 + 0.5‖ ⋅ ‖𝑙1 . We optimize simultaneously the

parameters of the autoencoder {𝜽,𝝓} and the system matrices {𝐀,𝐇,𝐁},
minimizing the loss  in (10). Furthermore, we highlight that once the
autoencoder is trained and system matrices defining the dynamics are
obtained, we query the nonlinear encoder only to get the corresponding
initial condition for the lifted variable 𝐳. We can obtain the trajectory
of 𝐳 using a desired numerical integration method, so the trajectory of
𝐱 can be determined using the decoder. Hence, the acquired dynamic
modeling is parsimonious by construction compared to DNNs, which
directly model the vector field of 𝐱.

4. Asymptotic stability-guaranteeing quadratic embeddings

In the previous section, we discussed the problem of quadratic em-
beddings for nonlinear systems. This section discusses an approach to
ensuring the asymptotic stability property of the quadratic embeddings.
Precisely, we are interested in guaranteeing the asymptotic stability
of the quadratic system that describes the dynamics of the identified
embeddings. Such property might be essential to have, particularly
when the original systems from which data come are asymptotically
stable.

To achieve our stability goals, we use the results presented in [45].
The work proposes a parameterization of quadratic systems, which
ensure global asymptotic stability, not just local, of quadratic systems.
The results are summarized in the following lemma.

Lemma 4.1 ([45]). Consider a quadratic system as follows:

𝐲̇(𝑡) = 𝐀𝐲 +𝐇(𝐲⊗ 𝐲), (11)

where 𝐀 ∈ R𝑛×𝑛 and 𝐇 ∈ R𝑛×𝑛2 . Assume that 𝐀 can be written as 𝐉 − 𝐑
ith 𝐉 = −𝐉⊤ and 𝐑 = 𝐑⊤ ≻ 0, and 𝐇 =

[

𝐇1,… ,𝐇𝑛
]

with 𝐇𝑖 =
𝐇⊤

𝑖 , 𝑖 ∈ {1,… , 𝑛}. Then, the quadratic system is asymptotically stable,
.e., lim𝑡→∞ 𝐲(𝑡) → 0. Furthermore, if 𝐑 = 𝐑⊤ ⪰ 0, then ‖𝑥(𝑡)‖2 ≤ ‖𝑥0‖2,
where 𝐲(𝑡) is the solution at time 𝑡 for a given initial condition 𝐲0.

We utilize the results from Lemma 4.1 and combine them with
he approach presented in the previous section to identify quadratic
mbeddings. Hence, we modify Problem 3.1 as follows:

roblem 4.2. Given data {𝐱(𝑡1),… , 𝐱(𝑡 )} and derivative information
𝐱̇(𝑡 ),… , 𝐱̇(𝑡 )}, we seek to determine a lifting 𝐱 ↦ 𝐳 such that
1 
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(a) 𝐳 satisfies

𝐳̇(𝑡) = 𝐀𝐳 +𝐇 (𝐳⊗ 𝐳) , (12)

where 𝐀 = 𝐉 − 𝐑 with 𝐉 = −𝐉⊤ and 𝐑 = 𝐑⊤ ≻ 0, and 𝐇 =
[

𝐇1,… ,𝐇𝑛
]

with 𝐇𝑖 = −𝐇⊤
𝑖 , 𝑖 ∈ {1,… , 𝑛}.

(b) 𝐱 can be recovered using 𝐳, i.e., 𝐱 = 𝛷(𝐳).

When quadratic embeddings are determined so that it solves Prob-
lem 4.2, we can guarantee the stability of the embedded dynamics by
construction. The rest of the steps for the construction of losses and the
usage of the autoencoder remain the same as in the previous section.

Remark 1. If we set 𝐑 = 0 in Problem 4.2, then it can be easily shown
that the energy, defined by the 2-norm of the vector, is conserved. This
means that 𝑑

𝑑𝑡
‖𝑧(𝑡)‖2 = 0. This is interesting when learning dynamical

ystems that are energy-preserving, e.g., the Schrödinger equation or
riction-less multi-body dynamics.

. Numerical results

We demonstrate our approach with three examples: a nonlinear
endulum, a dissipative Lotka–Volterra system, and a 1D Burgers’
odel. All the information about data generation, training, autoen-

oder design, and hyper-parameters is given in Appendix. We refer to
ur proposed methodology as quad-embeds. As for all three models,
e expect globally stable behavior, we enforce the asymptotic stability
f the embeddings via parameterization as discussed in Section 4. We
ompare our approach with two existing methodologies. The first one is
roposed in [21], inspired by the Koopman theory, which aims to learn
niversal linear embeddings for nonlinear dynamics. Note that [21]
iscusses a universal linear embedding approach for discrete systems,
hich we slightly adopt for the continuous setting. We denote this
pproach as linear-embeds. Additionally, linear-embeds also
equires an autoencoder structure; thus, we design it as for quad-
mbeds. The second approach, we consider, is the operator inference
pproach [8], which aims to learn polynomial systems given data. We
estrict the degree of the polynomial to two. We refer to this approach
s quad-OpInf.

.1. A nonlinear pendulum

In the first example, we consider a nonlinear damped pendulum,
hich is governed by the following second-order equation:

̈ (𝑡) = − sin(𝐱(𝑡)) − 0.025𝐱̇, (13)

hich, in the first-order companion form, can be written as

𝐱̇1(𝑡)
𝐱̇2(𝑡)

]

=
[

− sin(𝐱2(𝑡)) − 0.025𝐱1(𝑡)
𝐱1(𝑡)

]

, (14)

here 𝐱1(𝑡) = 𝐱̇(𝑡) and 𝐱2(𝑡) = 𝐱(𝑡). We collect the data in the time
nterval 𝑡 ∈ [0, 25] s with 50 different initial conditions. For each initial
ondition, we take 100 equidistant sample points in the given time
nterval. We randomly choose an initial position and velocity of the
endulum in the range of [−3, 3]. We assume to know the gradient of 𝐱1
nd 𝐱2. To employ quad-embeds, we design an autoencoder with the
yper-parameters given in Table A.1 and set the dimension of the lifted
ariables to three. The same autoencoder design is used for linear-
mbeds and linear embeddings of the latent dimension three are

earned. Additionally, quad-OpInf does not involve an autoencoder,
nd it aims to learn the dynamics in the original coordinate systems.
ence, the dynamical model learned using quad-OpInf is of order

wo.
Having learned models using these different methods, we test their

erformances using 100 initial conditions, which have not been part of
he training. Moreover, the time interval for testing is considered to
4

e 𝑡 ∈ [0, 75] s, which is three times longer than the training one, and t
e take 2000 equidistant sample points in the testing interval. Next,
n Fig. 2, we show comparisons for four trajectories, which are chosen
or which quad-embeds performs the worst. Note that performance
s measured based on the following criteria:

(𝐱0) = log10

(

𝚖𝚎𝚍𝚒𝚊𝚗

((

𝐗(𝐱0)
𝚐𝚛𝚘𝚞𝚗𝚍−𝚝𝚛𝚞𝚝𝚑 − 𝐗(𝐱0)

𝚕𝚎𝚊𝚛𝚗𝚎𝚍

))2
)

, (15)

here 𝐗(𝐱0)
𝚐𝚛𝚘𝚞𝚗𝚍−𝚝𝚛𝚞𝚝𝚑 and 𝐗(𝐱0)

𝚕𝚎𝚊𝚛𝚗𝚎𝚍
, respectively, contain solutions us-

ing the ground truth model and the learned models for a given test
initial condition 𝐱0. We notice that linear-embeds and quad-
OpInf poorly perform to compare the dynamics. A potential rea-
son for the failure of linear-embeds might be associated with
the continuous spectrum of the pendulum system. Furthermore, as
quad-OpInf learns a quadratic model in the original measurement
coordinates without any transformation, the quadratic model is not
capable of capturing the dynamics completely. On the other hand, the
proposed methodology quad-embeds learned the dynamics of the
original systems accurately by learning suitable quadratic embeddings
using an autoencoder, thus illustrating the power of learning suitable
quadratic embeddings for nonlinear systems with continuous spectra.

Furthermore, for a detailed performance comparison of all three
methods, we compute the error using (15) for each test initial condition
and show them using the violin-plot in Fig. 3. The figure clearly
indicates a superior performance of the proposed methodology.

5.2. Dissipative Lotka–Volterra example

In our second example, we consider the Lotka–Volterra example.
The example is often used as a benchmark for a Hamiltonian sys-
tem [46]; however, we, here, consider its dissipative form, which is
governed using the following equations:
[

𝐪̇(𝑡)
𝐩̇(𝑡)

]

=
[

−𝑒𝐩 − 0.05 ⋅ 𝐪 + 1
𝑒𝐪 − 0.05 ⋅ 𝐩 − 2

]

, (16)

here 𝐪 and 𝐩 represent position and momentum quantities, respec-
ively. We collect the data in the time interval 𝑡 ∈ [0, 10] s with only
0 different initial conditions. We take 200 equidistant sample points
or each initial condition in the considered time interval. We randomly
hoose an initial position and momentum in the range of [−1.5, 1.5].
urthermore, analogous to the previous example, we assume to have
he gradient information for 𝐪 and 𝐩. To employ quad-embeds, we
esign an autoencoder with the parameters given in Table A.1 and
et the dimension of the lifted coordinate system to three. The same
utoencoder design is used for linear-embeds and a linear operator
s learned with the dimensional of the latent representation being three.
ince quad-OpInf does not involve an autoencoder and it learns the
ynamics using the measured state coordinates, the dynamical model
earned using quad-OpInf is of order two.

Having learned models using these different methods, we test their
erformances using 100 initial conditions, which have not been part of
he training. Moreover, the time interval for testing is considered to
e 𝑡 ∈ [0, 30] s, which is three times longer than the training one, and
e take 4000 equidistant sample points in the testing time interval.
imilar to the previous example, in Fig. 4, we show comparisons for
our trajectories, which are chosen where quad-embeds performs
he worst based on the criterion in (15). We notice that linear-
mbeds and quad-OpInf completely fail to capture the dynamics.
otential reasons for the failures of linear-embeds and quad-
pInf could be the same as for the previous example. Furthermore,
e highlight that quad-OpInf yields unstable trajectories; therefore,

he plots are not shown for quad-OpInf in Fig. 4. Additionally,
e note that 50 trajectories out of 100 testing ones are unstable for
uad-OpInf. On the other hand, the proposed methodology quad-
mbeds learned the dynamics of the original systems accurately by

earning suitable quadratic embeddings using an autoencoder, and all

he trajectories are stable by construction.
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Fig. 2. Nonlinear pendulum example: A comparison of the trajectories obtained using linear-embeds, quad-embeds, and quad-OpInf methods with the ground truth ones
on the testing data is presented.
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Fig. 3. Nonlinear pendulum example: The figure shows a qualitative comparison of the
performance of linear-embeds, quad-embeds, and quad-OpInf on the testing
ata based on the measure (15). Note that the error measure (15) contains the log ;
ence, more negative is the values, better the method perform better.

Furthermore, for a detailed qualitative comparison of all three
ethods, we compute the error using (15) and show them using the

iolin-plot in Fig. 5. The figure clearly indicates a superior performance
f the proposed methodology.

.3. A high-dimensional example: Nonlinear Burgers’ equations

In our last example, we consider a somewhat higher example in-
pired by Burgers’ equations. It is a one-dimensional PDE with the
overning equations as follows:

𝑡 + 𝑢𝑢𝑥 + 𝑢3𝑢𝑥 = 𝑢𝑥𝑥, with 𝑥 ∈ (0, 1) and 𝑡 ∈ (0, 𝑇 ), (17a)

(0, ⋅) = 0, and 𝑢(1, ⋅) = 0, (17b)

(𝑥, 0) = 10 ⋅ sin(𝜋𝑥 ⋅ 𝑓 )𝑥(1 − 𝑥), (17c)

where 𝑢𝑡, 𝑢𝑥 and 𝑢𝑥𝑥 represent the derivative of 𝑢 with respect to time 𝑡,
the derivative of 𝑢 with respective to space 𝑥, and the double derivative
of 𝑢 with respect to 𝑢, respectively; 𝑓 ∈ R is a frequency. We highlight
he additional term 𝑢3𝑢𝑥 (17a), which makes the modified equations
ave quartic polynomial terms. We collect the data by considering
arious initial conditions, and for this, we vary the parameter 𝑓 in
17c). We take 13 different values of 𝑓 equidistantly in the range [2, 3].

Assuming the values of 𝑓 are sorted in increasing order, we consider th
rd, 6th, 9th, and 12th values for the testing and the remaining nine
alues for training. Moreover, we discretize the PDE using a finite-
ifference scheme by considering 256 points in space, and we integrate
he discretized system in the time interval [0, 1.5] s and collect 1001 data

points in the interval.
Unlike the previous two examples, this example is high-dimensional.
5

However, it is well-known that high-dimensional systems often evolve l
in a low-dimensional subspace. Using this hypothesis, one can project a
high-dimensional nonlinear system into a low-dimensional subspace to
obtain a low-dimensional nonlinear system. Additionally, we know that
smooth nonlinear systems can be written as quadratic systems. Com-
bining these two philosophies for high-dimensional nonlinear systems,
we aim to learn a low-dimensional representation so that a quadratic
system can govern its dynamics. To determine a low-dimensional repre-
sentation, we make use of an autoencoder consisting of convolutional
layers. Its detailed design is discussed in Appendix. We fix the latent
representation dimension to four and train the parameters of autoen-
coders and quadratic systems to describe the dynamics of the latent
representation. We denote this approach as quad-embeds-conv.
The performance of the proposed method for two test cases out of
four is illustrated in Fig. 6, where we notice a faithful recovery of
the dynamics. However, we notice small perturbations in the learned
solutions, which, we believe, can be reduced with a more powerful
decoder design, potentially using residual connections, but this would
come with more computational expenses and data requirements.

We compare the performance of quad-embeds-conv with oper-
ator inference [8]. For this, we first project the high-dimensional data
using the four most dominant POD modes and learn a quadratic model.
The solution of the full spatial grid is obtained by re-projecting the
low-dimensional solutions using the same POD basis. We denote this
approach by LinProj-qOpInf. The second method for a comparison
is based on the work [41], which is inspired by the quadratic manifold
work [40]. The method in [41], in principle, aims to learn a quadratic
model using POD coordinates that are obtained by projecting high-
dimensional training data using the dominant POD modes, and an
approximate solution on the full spatial solution is obtained by a
quadratic ansatz. We refer to this approach as QuadProj-qOpInf.
For LinProj-qOpInf and QuadProj-qOpInf, we consider the
four most dominant POD modes. Next, we present a comparison of
these three methods for four test cases using the following measure:

(𝑓 ) =
‖

‖

‖

𝐗(𝑓 )
𝚐𝚛𝚘𝚞𝚗𝚍−𝚝𝚛𝚞𝚝𝚑 − 𝐗(𝑓 )

𝚕𝚎𝚊𝚛𝚗𝚎𝚍

‖

‖

‖2
‖

‖

‖

𝐗(𝑓 )
𝚐𝚛𝚘𝚞𝚗𝚍−𝚝𝚛𝚞𝚝𝚑

‖

‖

‖2

, (18)

here 𝐗(𝑓 )
𝚐𝚛𝚘𝚞𝚗𝚍−𝚝𝚛𝚞𝚝𝚑 and 𝐗(𝑓 )

𝚕𝚎𝚊𝚛𝚗𝚎𝚍
, respectively, are solutions using the

round truth model and the learned models for a given frequency 𝑓 that
efines a test initial condition. The result is shown in Fig. 7. We notice
hat QuadProj-qOpInf performs better as compared to LinProj-
OpInf as expected. But quad-embeds-conv out-performances
oth approaches by a margin.

. Discussions

In this work, we have discussed a unified representation for non-

inear systems, the so-called quadratic embeddings. This idea stems



Physica D: Nonlinear Phenomena 463 (2024) 134158P. Goyal and P. Benner

t

w
a

f
a
p
e
d
f
p
l
W
l
d
d
w
a
p
d
c
a
m

S
d
t
d
c
a

Fig. 4. Lotka–Volterra example: A comparison of the trajectories obtained using linear-embeds, quad-embeds, and quad-OpInf methods with the ground truth ones on
he testing data is presented. Note that quad-OpInf yields unstable trajectories; therefore, they are not shown in the figure.
t
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D
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Fig. 5. Lotka–Volterra example: The figure shows a qualitative comparison of
linear-embeds, quad-embeds, and quad-OpInf on the testing data. Note that

hile plotting the error for quad-OpInf, unstable trajectories are removed, which
re as many as 50 out of 100 testing initial conditions.

rom the fact that smooth nonlinear dynamical systems can be written
s quadratic systems in appropriate lifted coordinates. While it is
ossible to manually design lifted coordinates for specific analytical
xpressions of nonlinear systems, this becomes challenging in a data-
riven context where the goal is to learn dynamical models directly
rom data. To address this challenge, in this work, we have utilized the
owerful approximation capabilities of deep neural networks to learn
ifted coordinates so that a quadratic model can describe its dynamics.

e have proposed the usage of an autoencoder design that aims to
earn lifted coordinates so that a quadratic system can describe its
ynamics. As a result, we obtain parsimonious models since the learned
ifferential equations have a simple quadratic analytical expression,
hich can be exploited in engineering design. We have also discussed
symptotic stability for the dynamics of the lifted coordinates via
arameterization of globally stable quadratic systems. We have also
iscussed an extension to high-dimensional nonlinear systems. We have
ompared our approach with the universal linear embedding method
nd operator inference, demonstrating the efficiency of our proposed
ethod.

This work opens several promising avenues for further research.
ince the autoencoder that determines lifted variables is associated with
eep neural networks, it demands a diverse dataset and intense compu-
ational resources. Although recent advancements in GPUs and efficient
eep learning libraries such as TensorFlow [47] and PyTorch [48]
an allow overcoming computational difficulties, the interpretability
nd generalizability of these networks still need further investigation.
6

i

Often, deep learning models are good interpolating models, but their
extrapolation capabilities are questionable. Therefore, it is essential
to incorporate physical knowledge and any available prior knowledge
about the origin of the data in the learning process. As a result, this is
not only expected to improve the interpretability and generalizability of
the learned model but also may extrapolate better outside the training
regime. It may also reduce the data required for training as scarcity of it
can be compensated by embedding physical laws. Moreover, one of the
critical hyper-parameters in our approach is the dimension of the lifted
coordinate system. Finding a minimal dimension of it is desirable while
keeping the prescribed accuracy. It would be worthwhile to develop a
suitable automatic approach to determine the dimension of the lifted
coordinate system. Additionally, using physical and domain knowl-
edge in deep learning frameworks can enhance interpretability and
provide some physics-informed quadratic embeddings, i.e., quadratic
embeddings for Hamiltonian systems. The proposed framework can be
extended to other classes, such as systems with parameters and control.
Special treatment is required for noisy measurements, for which ideas
proposed in [23,49,50] can be combined with our methodology. In the
future, we will apply our approach to more challenging and important
applications in science and technology to construct models where first-
principle modeling remains challenging, and the learned models can
enhance the engineering design process.
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Fig. 6. Burgers’ equation: A comparison of the solutions using quad-embeds-AE with the ground truth for two test cases.
Fig. 7. Burgers’ equation: A comparison of the solutions using quad-embeds-AE with the ground truth for two test cases.
Fig. A.8. The figure illustrates the design of the autoencoder for the Burgers’ example. The autoencoder contains the encoder and decoder parts. In the figure, conv1D(𝑘, 𝑠, 𝑝)
denotes a 1D convolution layer with kernel size 𝑘, stride size 𝑠, padding size 𝑝, and similarly, convT1D(𝑘, 𝑠, 𝑝) is a 1D transpose convolution layer with transpose kernel size 𝑘,
stride size 𝑠, padding size 𝑝. We show the size of the output block below each layer. Furthermore, the decoder part has a customized layer, namely Quad-aug layer; it augments
input and Kronecker product of inputs, which is then passed to the later layers.
Data availability

I have made our data and code available on Github, whose link has
made available in the manuscript.

Appendix. Implementation details

Here, we provide the necessary details used in our experiments. All
the experiments are carried out a machine with an Intel© CoreTM

i5-12600K CPU and NVIDIA RTXTM A4000(32 GB) GPU. We have
generated training and testing data for random initial conditions us-
ing the function solve_ivp with default parameter settings from
7

scipy library. For nonlinear pendulum and dissipative Lotka–Volterra
examples, we have used an autoencoder design based on multi-layer
fully connected neural networks with skip connections, and for Burgers’
example, the used autoencoder design is shown in Fig. A.8. Table A.1
contains all other necessary hyper-parameters for the illustrative exam-
ples. Based on a few trials, we set (𝜆1, 𝜆2, 𝜆3) for each example as shown
in Table A.1. Note, we set 𝜆2 to zero to avoid additional computational
of derivatives through decoder. However, we believe that determining
a good balance for these different losses using a proper cross-validation
can improve the performance of our approach. For training, we have
also utilized a decaying learning rate, for which we have reduced our
learning rate by 1 after every 𝑀 number of epoch (the value of 𝑀
10
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Table A.1
The table contains all the hyper-parameters to learn the autoencoder parameters and
matrices defining lifted-coordinate dynamics.

Parameters Pendulum
example

Dissipative
Lotka–Volterra
example

Burgers’
example

Number of neurons 8 16 N/A
Lifted coordinate
system dimension

3 3 4

Learning rate 3 ⋅ 10−3 3 ⋅ 10−3 5 ⋅ 10−3

Batch size 32 64 64
Activation function silu silu N/A
Weight decay 10−5 10−5 10−5

Epochs 4000 4000 400
𝑀 1500 1500 150
(𝜆1 , 𝜆2 , 𝜆3) (1, 0, 1) (1,0,1) (10,0,1)

is given in Table A.1). Furthermore, we have utilized a hard-pruning
feature in our training. We initialize parameters of autoencoder using
by default PyTorch (version 1.13) settings, and the matrices {𝐀,𝐇} are
initialized as suggested in [45].
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