
Wind Energ. Sci., 9, 2147–2169, 2024
https://doi.org/10.5194/wes-9-2147-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Estimating the technical wind energy potential of
Kansas that incorporates the effect of regional

wind resource depletion by wind turbines

Jonathan Minz1,4, Axel Kleidon1, and Nsilulu T. Mbungu2,3

1Biospheric Theory and Modelling Group, Max Planck Institute of Biogeochemistry, Jena, Germany
2Research Institute of Sciences & Engineering (RISE), University of Sharjah,

Sharjah, United Arab Emirates
3Department of Electrical Engineering, Tshwane University of Technology, Pretoria, South Africa

4Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany

Correspondence: Jonathan Minz (jminz@bgc-jena.mpg.de)

Received: 13 July 2023 – Discussion started: 10 November 2023
Revised: 31 July 2024 – Accepted: 13 September 2024 – Published: 11 November 2024

Abstract. Energy scenarios require realistic estimates of technical wind energy potentials – estimates for how
much electricity can be generated by wind turbines given a certain level of deployed capacity within a region.
These are typically obtained using observed wind speeds, neglecting the depletion of the wind energy resource
with increasing deployment at the regional scale. Here, we use the kinetic energy budget of the atmosphere
(KEBA) approach to evaluate the importance of this resource depletion effect for the technical potential of
Kansas, USA. To do so, we first apply the KEBA approach to a previously conducted set of numerical simulations
with the Weather Research Forecasting (WRF) model. This set simulated the resource depletion effect for a range
of different levels of wind turbine deployments within Kansas, which we use to test the KEBA approach. We
specifically test the approach for nighttime and daytime conditions to capture the different mixing regimes of
the atmospheric boundary layer. We find that KEBA can adequately capture the effect for both settings. We then
extend our analysis by using ERA-5 forcing to the climatological scale. We find that this resource depletion
effect increases almost linearly with the level of wind turbine deployment. Compared to previously published
estimates for the technical potential for Kansas, the resource depletion effect lowers capacity factors by a third to
a half. Since this resource depletion effect increases with installed capacity within a region, it is policy relevant
even at relatively low deployment levels.

1 Introduction

Estimates of technical wind energy potentials are important
for the design of energy transition pathways towards a fu-
ture sustainable energy system (Prakash et al., 2019; Ruij-
grok et al., 2019; GEA, 2012; IEA, 2021). They are inputs to
integrated assessment models that deploy large-scale wind
and solar systems and evaluate the impact of the integra-
tion of these variable sources into the electrical grid (Eu-
rek et al., 2017). Technical potentials are defined as theo-
retical estimates of electrical generation from hypothetical
regional-scale wind turbine deployments while accounting

for areas that are actually available for wind energy devel-
opment, wind turbine characteristics, and losses arising from
inter-turbine interactions and energy conversion (Hoogwijk
et al., 2004; McKenna et al., 2022; Manwell et al., 2010).
The actual area available for wind energy development per-
tains to that over which wind turbines can be installed after
accounting for technical, ecological, and social constraints
(McKenna et al., 2022). A significant part of the policy rel-
evance stems from the fact that technical potentials are a
control on the economic costs of wind energy development
(Blanco, 2009; Ragheb, 2017).
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These resource potential estimates are especially distinct
from the resource estimation performed for wind park plan-
ning and layout. The large scale at which these are estimated,
typically spanning thousands of square kilometres with hun-
dreds of gigawatts in deployed capacity, means that the de-
tailed approaches used in wind park planning and layout,
such as the Weather Research Forecasting (WRF) (Blahak
and Wetter-Jetzt, 2010; Fitch et al., 2012; Volker et al., 2015;
Boettcher et al., 2015), computational fluid dynamical (Wu
and Porté-Agel, 2015), and engineering wake models (Katic
et al., 1986; Frandsen et al., 2006; Pedersen et al., 2022),
are not employed. The use of such comprehensive numerical
models in energy scenario analysis is impeded by their need
for high-performance-computing infrastructure and subject
matter expertise (Staffell and Pfenninger, 2016). Thus, the
typical approach for estimating technical potentials for ap-
plication in energy scenario analyses and integrated assess-
ment modelling is relatively straightforward in comparison
to the more comprehensive approaches mentioned above. In
this analysis, we use the term “standard approach” to refer
specifically to this approach and not those employed for re-
source assessment for wind park planning and layout, which
is outside the scope of this study.

The standard approach to estimating technical potential is
to force a single wind turbine’s power curve with observed
or modelled time series of hub-height wind speeds. The po-
tential then is a function of regional wind resource or wind
speeds, turbine power curve, and the total number of wind
turbines within the deployment area (Hoogwijk et al., 2004;
Archer and Jacobson, 2005; Lu et al., 2009; Schallenberg-
Rodriguez, 2013; Eurek et al., 2017; Enevoldsen et al., 2019).
This approach differs from those typically employed in high-
resolution evaluations of wind park planning and layout, pri-
marily in its handling of energy generation and conversion
losses. The standard approach fixes these losses typically to
a value of about 10 % (Hoogwijk et al., 2004; Schallenberg-
Rodriguez, 2013; Eurek et al., 2017). This stems from the
implicit assumption that large-scale wind energy generation
minimally impacts the regional wind resource. This leads to
an expectation of a linear relationship between technical po-
tential and capacity deployed. Further, it is implied that the
efficiency of the wind turbine deployment measured in terms
of the capacity factor or the ratio of actual to rated wind tur-
bine generation remains constant relative to the size of the
deployed capacity. Therefore, larger deployed capacities at
the regional scale with better turbines are expected to al-
ways lead to a proportionate increase in the technical poten-
tial (Wiser et al., 2016).

However, meso- and synoptic-scale simulations of tech-
nical potentials from regional-scale deployments using nu-
merical models of the atmosphere like WRF and general cir-
culation models (GCMs) show that the standard approach
significantly overestimates technical potentials and capac-
ity factors when wind energy is intensively used at large
scales (Adams and Keith, 2013; Miller et al., 2015; Miller

and Kleidon, 2016; Volker et al., 2017; Agora Energiewende
et al., 2020; Kleidon and Miller, 2020; Jacobson and Archer,
2012). These studies highlight that technical potentials and
capacity factors do not scale linearly or remain constant with
the deployed capacity. This sub-linear increase in technical
potential and the erosion of the capacity factor result from
the depletion of regional wind resources (Miller et al., 2015;
Miller and Kleidon, 2016; Kleidon and Miller, 2020; Klei-
don, 2021) because wind turbines remove kinetic energy
(KE) from the boundary layer winds to generate electricity.

Wind resource depletion, or the reduction in wind speeds
within and behind wind turbine deployments, has been ob-
served in a variety of measurement data from currently oper-
ating wind farms (Rajewski et al., 2013; Bodini et al., 2017;
Lundquist et al., 2014; Hasager et al., 2015; Platis et al.,
2018; Ahsbahs et al., 2020; Nygaard and Newcombe, 2018;
Nygaard et al., 2020). Also referred to as wakes, wind speed
reductions can extend up to 50 km behind operating wind
farms (Cañadillas et al., 2020; Lundquist et al., 2018). The
reduced wind speeds interact with and reduce the electri-
cal generation from downstream wind farms (Méchali et al.,
2006; Schneemann et al., 2020; Maas and Raasch, 2023;
Akhtar et al., 2021). Numerical simulations of this phe-
nomenon also compare reasonably well with the observa-
tions (Mirocha et al., 2015; Aitken et al., 2014; Siedersleben
et al., 2018; Fischereit et al., 2021). Thus, it can be assumed
that the impact of wind resource depletion on wind energy
generation will persist as the scale of wind turbine deploy-
ment is increased and, thus, must be incorporated into energy
scenario analyses.

For this depletion effect to be incorporated into energy
scenario modelling, it is necessary to scale the impacts up
to the proposed regional deployment scales while balanc-
ing the constraints on computational complexity and ease
of implementation, as highlighted by Staffell and Pfenninger
(2016). This means that the key physics that shape the re-
gional wind resource depletion and its impact on technical
potential should be understood. For this we need to look at
how kinetic energy is generated and transported towards the
surface before it can be extracted by wind turbines or is dis-
sipated by friction or wake dissipation.

To start, the wind energy of the large-scale circulation is
predominantly generated within the free atmosphere by dif-
ferences in potential energy due to differential solar radiative
heating (Peixoto and Oort, 1992; Kleidon, 2021). The free
atmosphere is defined as the part of the atmosphere that is
above the planetary boundary layer and is not impacted by
surface friction (AMS, 2024). KE from the free atmosphere
is transported vertically downwards into the boundary layer
by vertical mixing, the lowest layer of the atmosphere where
most of the KE is dissipated (Stull, 2009). The turbines ex-
tract some of the KE which would otherwise have been dis-
sipated by surface friction. Since the rate at which KE is
transported into the boundary layer is limited, it leads to a
fixed KE budget being available for driving motion within
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the boundary layer (Kleidon and Miller, 2020). This means
that the extraction of KE by a large number of wind turbines
leads to less KE being available for the motion of the winds
and comes at the expense of the dissipation by surface fric-
tion. Put another way, wind turbines generate electricity by
depleting the boundary layer KE resource even though this
resource is renewed at a constrained rate. As a result, larger
rates of KE extraction from a fixed KE input cause slower
winds and reduced capacity factors (Miller et al., 2011).

This wind reduction effect is supported by mesoscale
WRF simulations which show that technical potentials from
onshore deployments larger than 100 km2 are limited to
yields of about 1.1 Wm−2 for very high turbine densities
(Adams and Keith, 2013; Miller and Kleidon, 2016; Ja-
cobson and Archer, 2012; Marvel et al., 2012; Gustavson,
1979; Wang and Prinn, 2010, 2011; Volker et al., 2017). This
is in contrast to the standard approach, in which estimates
range from 2–6 Wm−2(Jacobson and Delucchi, 2011; Jacob-
son and Archer, 2012; Lu et al., 2009; Archer and Jacobson,
2005; Edenhofer et al., 2011; Capps and Zender, 2010). At
the maximum potential, wind speeds are estimated to slow
down by 42 %, while capacity factors reduce by∼ 50 % rela-
tive to the standard estimate (Miller et al., 2015; Volker et al.,
2017). A mean of 1.1 Wm−2 implies electricity generation of
∼ 900–1900 TWhyr−1 if all the available area for wind en-
ergy in a windy area like Kansas (100 000–200 000 km−2),
USA, is covered with wind turbines. These generation po-
tentials are about a third lower than the standard expectation
of 2000–3000 TWh yr−1 (Brown et al., 2016; Lopez et al.,
2012). Thus, the standard approach to technical potential es-
timation in energy scenario analyses needs to incorporate the
effects of wind speed reductions arising from limitations im-
posed by the atmospheric KE budget.

A simple yet physical approach to deriving technical po-
tential estimates that includes the effects of KE removal on
wind speeds is to constrain the wind speeds and turbine
yields with an explicitly defined KE budget of the atmo-
spheric boundary layer. In this approach, known as the ki-
netic energy budget of the atmosphere (KEBA; Kleidon and
Miller, 2020), first the budget available to the deployment
is estimated from the sum of the vertical and horizontal KE
fluxes over the deployment region. The vertical component
represents the KE input into the boundary layer from the free
atmosphere, while the horizontal component represents the
boundary layer wind flow. Both rates can be estimated from
wind speed observations but also depend on boundary layer
height and surface friction. The reduction in wind speeds is
estimated by accounting for the removal of KE from the bud-
get. The slower wind speeds are then used to estimate tur-
bine yields (Kleidon and Miller, 2020). This approach has
previously been shown to compare well against numerical
weather forecasting simulations of wind turbine deployments
in idealized onshore weather conditions (Kleidon and Miller,
2020) and in real weather conditions in offshore areas in the
German Bight of the North Sea (Agora Energiewende et al.,

2020). In this study we will extend the regimes over which
KEBA has been studied by applying it under realistic weather
conditions in a prospective onshore region of Kansas.

We first evaluate the KEBA approach with a set of pre-
vious numerical simulations of hypothetical large-scale wind
turbine deployment scenarios in Kansas, central USA (Miller
et al., 2015). One interesting aspect of these simulations is
the different response of resource depletion during night and
day, presumably due to the different boundary layer mixing
regimes. The simulations showed that wind speeds are typi-
cally 40 % lower during the day than at night (Fig. 1a), but
overall daytime electrical yields were about 50 % higher than
nighttime (Fig. 1c).

The result can be understood when one accounts for the
effect of lower boundary layer heights and reduced mixing
at night, which reduces the size of the kinetic energy bud-
get (Fig. 2). As a result, the KE removal by the wind tur-
bines has a stronger effect on wind speed reductions at night
(Fitch et al., 2013a; Abkar et al., 2015). During the day, be-
cause the KE budget is larger, this depletion effect is pro-
portionally smaller. Solar insolation drives vertical convec-
tion and the vertical growth of the boundary layer, resulting
in higher downward replenishment of KE from the free at-
mosphere and a larger reservoir of KE in the boundary layer.
The absence of solar-driven convection at night leads to strat-
ified or stable conditions that restrict vertical KE replenish-
ment. This leads to a greater reduction in wind speeds at
night compared to the day and therefore lower yields despite
higher incoming undisturbed wind speeds. Thus, the differ-
ences in boundary layer characteristics during day and night
will affect wind resource potentials of regional deployments
of wind turbines. This is an important test to evaluate with
KEBA since the standard approach would estimate the op-
posite – higher nighttime yields due to higher wind speeds
than during daytime – and therefore have a bias in techni-
cal potentials. The ability of KEBA to capture this counter-
intuitive effect at the regional scale will clarify the relevance
of KE removal at regional scales of wind turbine deployment
and applicability of KEBA in regional wind energy resource
assessment.

To identify the policy relevance of this depletion effect, we
then extended our analysis to the climatological scale using
ERA-5 reanalysis forcing (Hersbach et al., 2020). Because
KEBA is computationally not expensive, we can then quan-
tify the effect of wind resource depletion on different levels
of installed capacity over a whole climatological period. By
comparing these effects against the previous studies of the
wind energy potential of Kansas (Lopez et al., 2012; Brown
et al., 2016), we can then establish the policy relevance of
this effect.

In the following section, we provide a brief description of
the KEBA approach, the turbine deployment scenarios, and
the model parameters used to test KEBA for the regional nu-
merical WRF simulations over Kansas before we describe
the setup with ERA-5 reanalysis to extend the insights to
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Figure 1. (a) Distribution of wind speeds averaged over a prospec-
tive deployment area in Kansas, central USA, for daytime (red) and
nighttime (blue) in the absence of wind turbines. (b) The power
curve for a Vestas V112 3 MW wind turbine used in this study.
It does not generate electricity for wind speeds below the “cut-
in” (3 ms−1, solid black line) and above the “cut-out” wind speed
(25 ms−1, dotted black line). Yields vary with the cube of wind
speeds below the “rated” wind speed (11 ms−1, stippled black
line) but remain at capacity above it. (c) Deployment yields dur-
ing daytime (red) and nighttime (blue) for the 5 MWkm−2 sce-
nario from an interactive WRF simulation (solid, WRF) and us-
ing the standard approach (dashed outlines). WRF estimates that
the total deployment yield during the day (WRFday= 63 GW)
is higher than nighttime (WRFnight= 42 GW), while the stan-
dard estimate yields higher potentials and the opposite response
(Standardday= 109 GW, Standardnight= 159 GW). Data are taken
from Miller et al. (2015).

the climatological scale. The results section then diagnoses
the kinetic energy budgets and the wind speed reductions for
nighttime and daytime conditions and evaluates the effect on
the wind turbine yields and capacity factors. We continue
with an evaluation of the role of the boundary layer height
in the estimates and discuss the limitations of the KEBA ap-

Table 1. Turbine characteristics of a Vestas V112 3 MW turbine, as
in Miller et al. (2015).

Description Symbol Value Units

Hub height Hhub 84 m
Rotor diameter D 112 m
Rotor area Arotor 9852 m2

Rated power Pel,max 3.075 MW
Cut-in wind speed vmin 3 ms−1

Rated wind speed vrated 11.5 m−1

Cut-out wind speed vmax 25 ms−1

Power coefficient (max) ηmax 0.42 –

proach. We then present the results of the extension to the
climatology and compare our estimate for the technical wind
energy potential for Kansas to previously published estimates
(Lopez et al., 2012; Brown et al., 2016) before we discuss the
broader-scale implications of our analysis. We close with a
brief summary and conclusions.

2 Methods

To estimate the technical wind resource potential with the
resource depletion effect, we first use KEBA together with
the wind fields of the numerical WRF simulation for Kansas
without any wind turbines (Miller et al., 2015). Different sce-
narios of wind turbine deployments are then used in KEBA
and compared to the respective WRF simulation, separately
for nighttime and daytime conditions. We also compare these
simulations to the standard approach, which is to say the esti-
mate of the technical wind resource potential that uses wind
fields and the turbine power curve but does not include the
resource depletion effect. In the second step, we then apply
KEBA to the wind fields of the ERA-5 reanalysis to quantify
the resource depletion effect at the climatological scale.

We first describe the standard and KEBA approaches, fol-
lowed by the WRF simulations and the scenarios that are
considered. All approaches need information for the power
curve of the wind turbines being deployed. For this, we use
the Vestas V112 3 MW turbine, as in the simulations by
Miller et al. (2015). The characteristics of the turbine are
summarized in Table 1. The last part of the methodology
describes how the climatological resource potentials are de-
rived using KEBA in combination with ERA-5 wind fields.

2.1 The standard approach

The standard approach estimates the technical resource po-
tential from the power curve, multiplied by the number of
wind turbines N being considered:

Pel,std =N ·min
(
Pel,max,

ρ

2
· ηmax ·Arotor · v

3
in

)
, (1)
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Figure 2. Differences between daytime (a) and nighttime (b) boundary layer conditions and their effect on the renewal of kinetic energy
from the free atmosphere (grey arrows) and convective mixing (blue and red arrow in a). The red and blue arrows represent the horizontal
kinetic energy in- and outflow (from left to right) through the boundary layer volume bounding the regional-scale wind turbine deployment
(dotted box) during day and night, respectively. The free atmosphere represents the part of the atmosphere in which large-scale motion is
generated in the absence of friction.

where ρ is the air density (we used ρ= 1.2 kgm−3), vin is
the wind speed, and the different turbine characteristics are
given in Table 1. The deployment scenarios are described in
the WRF subsection below.

2.2 The KEBA approach

The KEBA model (Kleidon and Miller, 2020) represents a
budget of the KE fluxes of the boundary layer over the de-
ployment region. Different levels of deployment alter the ef-
fective velocity veff within the region and result in a reduction
factor fred. This reduction factor is applied to the standard
approach to account for the resource depletion effect.

The reduction factor fred is directly derived from the KE
budget. It is represented by

fred =
H + 2Cd ·L

H + 2Cd ·L+
3
2 ·

N
W
· ηmax ·Arotor

(2)

for wind speeds vin above the cut-in velocity vmin and below
the rated velocity vrated when the turbine output is propor-
tional to the incoming wind speeds (Fig. 2b) and

fred = 1−
3
2
·

1
H + 2Cd ·L

·
H

L
·
N ·Pel,max

Jin,h
(3)

for vin greater than the rated velocity vrated but below the cut-
out velocity vmax. For this case, fred is computed only to sim-
ulate the effect of wind speed reduction for comparison.

Table 2. Atmospheric and environmental specifications needed for
the KEBA estimate.

Description Symbol Value Units Comments

Boundary layer height – day Hday 2000 m Mean, fixed
Boundary layer height – night Hnight 900 m Mean, fixed
Drag coefficient Cd 0.001 – Mean, fixed

Table 3. Scenarios of large-scale deployment of wind turbines in
Kansas, central USA, evaluated here. Based on Miller et al. (2015).

Description Symbol Value Units

Width W 360× 103 m
Length L 312× 103 m
Capacity density – 0.3125–10 MWkm−2

Number of turbines N 11.7× 103–3.7× 105 –
Deployment area Afarm 1.12× 1011 m2

In the equations for fred, H is the height of the boundary
layer (Table 2), Cd is the aerodynamic drag coefficient of the
surface (Table 2),L andW are the length and width of the de-
ployment (Table 3), and Jin,h is the horizontal kinetic energy
flux in the boundary layer (ρ/2·v3

in·WH ). The values for day-
time and nighttime mean boundary layer heights are provided
in Table 2. They were derived through the comparison of the
vertical velocity profiles of the WRF simulations with and
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without the wind turbine deployment, yielding mean values
of about 2000 m (day) and 900 m (night) (see Appendix A).

It should be kept in mind that the length and width of the
deployment used in Eq. (3) can vary with wind direction, and
this affects the equations for fred. This implies that the reduc-
tion factor fred can vary with wind direction. However, near-
hub-height winds in Kansas typically come from the south
(Fig. E1), meaning that most of the KE is transported from
the south. Thus, we only use the dimensions that are relevant
to this direction. The values of these parameters are specific
for our analysis and may need to be adjusted for application
elsewhere.

From this reduction factor, the resource potential is esti-
mated similarly to the standard approach (Eq. 1), except for
including the reduction factor fred:

Pel,keba =N ·min
(
Pel,max,fred ·

ρ

2
· ηmax ·Arotor · v

3
in

)
, (4)

where vin is the unaffected wind speed in the absence of wind
turbines.

Associated with this reduction is the effective velocity,
which is given by

veff = f
1
3

red · vin. (5)

Note that in the case of fred = 1, KEBA represents the
standard approach. This means the standard approach as-
sumes that wind speeds remain unaffected by the large-scale
extraction of kinetic energy (Eq. 5) and therefore that the
electrical yield is proportional to the cube of the unaffected
wind speeds (Eq. 1).

The kinetic energy budgets for the different scenarios are
diagnosed from the time series of the velocity vin and fred
and then averaged, with the different terms estimated as in
Kleidon and Miller (2020). The budget is defined for the
boundary layer air volume enclosing the deployment of wind
turbines. The magnitude of the budget is set by the influx of
kinetic energy, which is determined by the horizontal (Jin,h =

WH ·
ρ
2 v

3
in) and vertical (Jin,v =WL ·ρCdv

3
in) influxes of ki-

netic energy into the volume. This energy is then either dissi-
pated by surface friction, used for electricity generation, dis-
sipated by wake turbulence, or exported downwind.

It should be noted that KEBA budgets the KE fluxes in
the boundary layer over the entire wind turbine deployment
with the aim of estimating the atmospheric response impacts
on energy yield and wind speeds at the scale of a regional
deployment. It does not attempt to model the horizontal or
vertical variation in wind speeds or energy yields within the
deployment. Therefore, the only forcing input needed is the
wind speeds at the turbine’s hub height vin. This suffices be-
cause the turbine yields are a function of the hub-height wind
speeds (Fig. 1b). The budget constraints on the boundary
layer KE fluxes allow for the estimation of the wind speed
reduction over the whole deployment, as expressed by the
effective wind speed (veff). The reduced wind speeds can be

thought of as that at which the deployment effectively oper-
ates when the KE flux budget constraints are accounted for.
This approach is fit for our study despite being a simplified
representation of the boundary layer and the atmosphere–
turbine interactions. This is because we are only interested
in evaluating the impacts of the atmospheric response on en-
ergy yields and wind speeds at the aggregate scale of the de-
ployment. The evaluation of the finer variation within the de-
ployment is not within the scope of our study. Further, it is
also important to keep in mind that KEBA is simple in its
formulation only compared to WRF. It is significantly more
sophisticated in its representation of atmospheric physics rel-
ative to the standard approach.

2.3 WRF simulations

We use a set of sensitivity simulations with the WRF nu-
merical weather simulation model (Miller et al., 2015).
These simulations were performed with the WRF-ARW
v3.3.1 model (Skamarock et al., 2008) to simulate differ-
ent levels of hypothetical deployments of wind turbines over
112× 103 km2 in Kansas (central USA) using atmospheric
conditions from 15 May to 30 September 2001. The time
period is representative of the typical summer season over
Kansas typified by a near-neutral El Niño–Southern Oscil-
lation (ENSO) phase and an average Great Plains low-level
jet and summer soil moisture content (Miller et al., 2015).
The WRF model adequately captures the horizontal and ver-
tical variations in wind speeds over this period (Miller et al.,
2015). Wind turbines are parameterized as elevated momen-
tum sinks and sources of additional turbulent kinetic energy
(TKE) (Fitch et al., 2013b). The large, idealized deploy-
ments simulated a range of installed turbine capacity densi-
ties from 0.3125 to 100 MWkm−2, which were equally dis-
tributed within the expansive wind farm area. The associated
number of wind turbines is given in Tables B2 and B3.

We use these simulations for two reasons. First, we use the
wind speeds from the simulation without turbines as inputs
to the standard and KEBA approaches to estimate resource
potentials, using the same set of scenarios. We then use the
scenarios as the reference, in which the effects of wind tur-
bines on the atmosphere are comprehensively accounted for,
and refer to the wind resource estimate as the WRF estimate.

We restrict the comparison to a maximum installed ca-
pacity density of 10 MWkm−2, yielding a range of the to-
tal installed capacity of 35 GW to 1.1 TW over the region.
Even though the 0.5 and 1.1 TW deployment scenarios can
be considered extreme for Kansas, they are consistent with
assumptions in published technical potential evaluations for
the state (Lopez et al., 2012; Brown et al., 2016). The tur-
bine characteristics and wind park scenarios, as well as the
symbols used in the following, are summarized in Tables 1
and 3. It should be noted that the Miller et al. (2015) simula-
tions prescribe the choice of parameter values in Table 1 and
the turbine type (Fig. 1b) used here.
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2.4 Climatological resource potentials

We estimate wind energy resource potentials at the climato-
logical scale by using the hourly 100 m wind speed product
from the ERA-5 reanalysis data set (Hersbach et al., 2020).
Wind speeds from the state of Kansas over a 20-year period
from the years 2000 to 2020 were selected for the analy-
sis. The 100 m wind speed product has been chosen since
it is close to the wind turbine hub height. The 20-year mean
wind speed is around 6.7 ms−1, which is lower than the 4.5-
month mean wind speeds estimated from the WRF simu-
lation (Fig. E3). The ERA-5 data set also shows that wind
speeds come from the south almost 70 % of the time, mak-
ing it the predominant wind direction (Fig. E1), with the re-
sult that we did not consider wind-direction-dependent val-
ues for W and L. These wind speeds are used to force the
KEBA and standard approaches to estimate wind resource
potentials and the depletion effect at the climatological scale.

We only estimate the technical potential and capacity fac-
tors for the 2.5 and 5 MWkm−2 scenarios, which are the ones
that are consistent with the previous estimates from Brown
et al. (2016) and Lopez et al. (2012). The KEBA setup for
this calculation remains similar to that for the diurnal inter-
comparison with the exception that only a single diurnal av-
erage boundary layer height of 1268 m is used (Miller et al.,
2015). It should be kept in mind that ERA-5-based KEBA
and standard estimates are likely to be lower than the WRF-
based estimate because the ERA-5 wind speeds are lower
(Fig. E3). However, this does not significantly affect our
analysis since we are interested primarily in estimating the
wind resource depletion effect and its policy relevance.

3 Results and discussion

We posited that the KE budget is central to understanding
resource depletion effect of the large-scale deployment of
wind turbines, including its manifestations in wind speed re-
ductions and reduced capacity factors, and that this deple-
tion effect differs between daytime and nighttime conditions.
Therefore, we start by evaluating the KE budget and the ef-
fects on regional wind speeds and then describe the estimated
yields and capacity factors. We perform a sensitivity analy-
sis on boundary layer height to evaluate the effects of the
day–night differences and compare these to the general ef-
fect of reduced wind speeds with greater installed capacities.
We then discuss the limitation of the KEBA method before
we re-evaluate the technical resource potential of Kansas. We
close this section with a discussion of the broader implica-
tions.

3.1 Kinetic energy budgets

The KE budget of the boundary layer volume enclosing the
deployment is central to KEBA estimates, with the magni-
tude of the budget defining the wind speed reductions and

limiting deployment yields. This budget is shown in Fig. 3a.
The horizontal influx accounts for a larger share of the KE
budget than the vertical input: 76 % during daytime and
60 % during nighttime. The combination of lower daytime
wind speeds (vday,mean= 6.8 ms−1), higher daytime bound-
ary heights (Hday= 2000 m), higher nighttime wind speeds
(vnight,mean= 9.5 ms−1), and lower nighttime boundary layer
heights (Hnight= 900 m) leads to similar influxes of kinetic
energy of about 150 GW in the mean. The 150 GW budget
sets the overall magnitude of the bars in Fig. 3a, with the
distribution among the different terms changing due to the
different deployment scenarios.

Within the boundary layer volume, KEBA determines the
partitioning of the KE influx into frictional dissipation (red in
Fig. 3a), wind turbine yields (dark blue), wake losses (light
blue), and the downwind export of KE out of the deployment
volume (light red). The KE extracted by wind turbines pow-
ers electricity generation (Pel,tot), with the wakes being dissi-
pated by the mixing behind the turbines (Dwake). KE extrac-
tion utilizes KE that would have otherwise been dissipated at
the surface by friction or exported downwind. Thus, the in-
crease in capacity density increases yields and wake losses at
the expense of KE in downwind export and frictional dissipa-
tion. Since individual turbine yields depend on wind speeds,
higher nighttime mean wind speeds lead to higher per tur-
bine yield compared to the daytime. Consequently, about
2 % more KE is extracted by the turbines from the budget
at night than during the day (Fig. 3a).

3.2 Wind speeds

The depletion of the KE budget with increased wind tur-
bine deployment is associated with a reduction in wind
speeds. This reduction is shown in Fig. 3b, which shows how
the mean wind speed over the deployment region (veff) re-
duces with the amount of KE extracted by the wind turbines
(in Wm−2 of surface area). The KE extracted by the wind
turbines is represented by the total yield of the deployment.
Although the reduction in mean wind speeds with KE re-
moved is not strictly linear, we utilize linear fits. The linear
fit makes it easier to highlight key first-order effects, i.e. that
reductions in mean wind speeds are higher when more KE is
extracted and that reductions are steeper at night than during
the daytime. Thus, the choice of linear fits emphasizes the
first-order effects and eases the comparison between WRF,
KEBA, and the standard approach.

Figure 3b shows these wind speed reductions for the WRF
estimate (red) and the KEBA estimate (blue), while the stan-
dard approach (grey) assumes no change in wind speeds. The
rates of reduction can be quantified by the slope m of the
linear regressions (dashed lines). The slope is represented
by units of (ms−1)(Wm−2)−1. Nighttime wind speed re-
ductions (mKEBA,night=−6.21) are almost twice as strong
as during the day (mKEBA,day=−3.89). These reduction
rates are similar in the WRF estimates (mwrf,night=−10.53,
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Figure 3. (a) Daytime (left) and nighttime (right) KE budgets with total yields (dark blue), wake loss (light blue), frictional dissipation (red),
and the downwind export (light red). (b) Estimates of wind speeds over the deployment region against the KE extracted by the wind turbines
for the standard (grey), WRF (red), and KEBA (blue) estimates. (c) Wind turbine yields as a function of installed capacity density using a
logarithmic scale for the standard (grey), WRF (red), and KEBA (blue) estimates. (d) Capacity factors against the rate of KE extraction for
the standard (grey), WRF (red), and KEBA (blue) estimates. Dashed lines in (b) and (d) denote linear fits. m denotes the slopes obtained
from linear regression. The units for the slopes in (b) and (d) are (ms−1)(Wm−2)−1 and (Wm−2)−1, respectively.

mwrf,day=−3.15). Note that despite the faster rate of reduc-
tion in nighttime means, the wind speeds are nevertheless
higher in magnitude than during the daytime. Compared to
the WRF simulations, KEBA slightly overestimates daytime
and underestimates nighttime wind speeds. Thus, the differ-
ence in daytime and nighttime wind speed reductions can be
directly linked to the lower boundary layer height used in the
nighttime KE budget in KEBA.

3.3 Deployment yields

Figure 3c shows the variation in the wind turbine yields with
increasing installed capacity density. Since KEBA models
yields as a function of the reduced wind speeds (veff) rather
than the prescribed, unaffected wind speeds (vin), its esti-
mates (blue) are lower than the standard estimates (grey).
KEBA estimates lower additional increments in yields with
the increase in installed capacity during both day and night.
Thus, the diminishing increments in yields with added tur-
bines can be attributed directly to the reduced wind speeds
shown in Fig. 3b. While KEBA estimates of nighttime yields
are higher than daytime, WRF estimates of yield (red) are
lower at night than during the day. KEBA captures the trends
in yield increments but does not estimate the lower-than-
daytime yields at night. It underestimates WRF’s mean day-
time estimates by 8 %–15 % while overestimating nighttime
yields by 20 %–75 %. The standard estimate overestimates
yields by up to 180 % during daytime and up to 600 % at
night compared to the WRF estimates. The bias in KEBA es-

timates of yield compared to WRF can be attributed to higher
nighttime KEBA wind speed estimates.

3.4 Capacity factors

The lower increments in deployment yields with increased
installed capacity indicate that more turbines within the de-
ployment region lower the mean efficiency of individual tur-
bines. This can be shown by directly looking at the capacity
factors, as displayed in Fig. 3d. Like Fig. 3b, capacity factors
are plotted against the KE extracted by the turbines. The rela-
tionship between capacity factors and extracted KE is linear,
and therefore the slope ((Wm−2)−1) shows that the gener-
ation efficiency reduces as more KE is extracted from the
atmosphere.

Both KEBA (blue) and WRF (red) estimates show that
increasing KE extraction leads to lower capacity fac-
tors. The standard estimate (grey), however, assumes no
change because no reduction in wind speeds is con-
sidered. The slopes of the linear regression show that
turbine efficiencies reduce almost twice as fast dur-
ing the night (mKEBA,night=−0.32) than during the day
(mKEBA,day=−0.22), which is similar to the WRF estimates
(mwrf,night=−0.48 and mwrf,day=−0.20). While KEBA,
again, underestimates the strength of the reduction at night,
the close match of KEBA estimates with the WRF estimates
highlights that the removal of KE from the boundary layer is
the main effect that results in reduced turbine efficiencies and
wind turbine yields. KEBA is able to capture a large part of
this trend because of the separate definition of day and night
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Figure 4. Daytime (a) and nighttime (b) total yields estimated by WRF (red©), KEBA with (blue©) and without (blue �) diurnal variations
in boundary layer height, and the standard approach (grey©).

KE budgets as opposed to a single KE budget for the whole
day.

3.5 Role of diurnal variations in boundary layer height

To evaluate how important the variation in boundary layer
height is for estimating yields between day and night, we
performed an additional estimate with KEBA in which
the boundary layer height is fixed to the mean value of
H = 1268 m (as in Miller et al., 2015). This comparison is
shown in Fig. 4. Although the KEBA estimate with a single
mean boundary layer height represents a substantial improve-
ment over the standard estimate, it shows a greater discrep-
ancy than the WRF estimate. Nighttime yields are overesti-
mated by 20 % to 107 %, while daytime yields are underes-
timated by 12 % to 31 %. The addition of diurnal variations
in boundary layer height improves the estimates relative to
the WRF estimate, reducing the daytime bias to 10 % to 17 %
and nighttime bias to 20 % to 60 %. The improvement is more
pronounced for the nighttime conditions.

Defining different daytime and nighttime budgets sepa-
rately is thus an improvement over neglecting this variation.
It captures more of the underlying mechanism because the
daytime solar insolation drives convective motion and higher
mean boundary layer heights. The absence of these motions
at night leads to much lower boundary layer heights. The
difference in the amount of mixing between day and night

differentially affects the wind speeds and deployment yields
during day and night (Fitch et al., 2013a; Abkar et al., 2016).
With all other variables in the KEBA model being fixed, a
fixed boundary layer height in KEBA results in a 58 % lower
daytime and 30 % higher nighttime KE budget compared to
a variable boundary layer height.

Although the bias is not entirely compensated for by in-
cluding the varying boundary layer heights in the KEBA es-
timates, this information clearly reduces the bias in the di-
rection of the WRF estimate. However, the effect of these
diurnal variations at the daily 24 h scale is relatively muted.
This is because the higher daytime and lower nighttime gen-
erations largely compensate for each other, implying that it is
mainly the role of KE removal that needs to be incorporated
in the policy-focused estimation of technical potentials.

3.6 Limitations

This comparison between KEBA and the WRF estimates
highlights some of the weaknesses of the KEBA approach.
Although KEBA captures day and night trends produced by
WRF better than the standard approach, it is unable to repro-
duce the full magnitude of the day–night difference. This is
likely because KEBA does not account for stability condi-
tions within the boundary layer (Kleidon and Miller, 2020).
Since it only budgets the KE fluxes, it implicitly assumes that
KE anywhere within the boundary layer is instantaneously
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available to the turbine. However, the real atmosphere trans-
ports KE via air masses, which means that the movement of
KE to the turbine can be quick or slow depending on the sta-
bility conditions. Then, conceptually, KEBA can be thought
of as being closer to the highly unstable condition than to the
highly stable condition.

This assumption is valid during the day when the convec-
tive boundary layer is well-mixed. At night, however, sta-
ble conditions prevent vertical mixing because the insolation-
driven convective motions are absent. The intensity of mix-
ing within the boundary layer is thus an additional control
on the rate at which the KE deficit behind wind turbines is
replenished within the boundary layer. The less-mixed night-
time boundary layer slows the replenishment rate, leading to
a steeper decline in wind speeds, capacity factors, and wind
turbine yields (Fitch et al., 2013a; Abkar et al., 2016).

This interpretation is supported by observations of veloc-
ity deficits, or wakes, behind operating offshore wind farms
that persist longer when the vertical mixing is lower (55km)
than when it is higher (35km) (Cañadillas et al., 2020; Chris-
tiansen and Hasager, 2005). Longer wakes during less-mixed
conditions imply lower downward replenishment than dur-
ing better-mixed conditions, leading to the slower recovery
of wind speeds.

The simulated daytime and nighttime mean wind speed re-
ductions of 10 % and 30 % (Fitch et al., 2013a) from Kansas
are similar to the estimates of Miller et al. (2015) of 17 %
and 43 %. WRF estimates for wind turbine yields during day
(42 % lower than standard) and night (73 % lower) are con-
sistent with other simulations of idealized deployment yields
over a full diurnal cycle, which found that reductions were
twice as high at nighttime (57 %) than daytime (28 %) (Abkar
et al., 2016). Thus, it is likely that the differences between
WRF and KEBA could be reduced by accounting for stabil-
ity effects, which could be taken up as a part of future work.

Additionally, the impact of more modern wind turbine
technologies, i.e. higher turbines with larger capacities, on
KEBA estimates has not been explicitly evaluated in our
study. However, it is expected that our results remain largely
similar in spite of improvements in turbine technology. An
analysis of the resource potential of the German Bight
(Agora Energiewende et al., 2020) showed that KEBA esti-
mates of capacity factors were within 15 % of those obtained
by WRF simulations even when taller and larger turbines
were assumed (15 MW turbines with 150 m hub height).

Although KE fluxes are dependent on wind direction and
these would have an effect on KEBA estimates, they have
not been explicitly incorporated in our analysis. This was
justified by the conditions in Kansas, which are dominated
by winds from the south (see Fig. E1). In other regions,
this may not be the case, and KE fluxes come from more
than one dominant direction. This case could be represented
in KEBA by using direction-dependent values of W and L,
which would affect the reduction factor. This was, however,
not tested here.

Despite these limitations, KEBA represents a significant
improvement over the standard approach because on average
it captures the impact of atmospheric response on yields dur-
ing daytime and nighttime in a more comprehensive man-
ner (Fig. 4). For the typical 2.5 and 5 MWkm−2 scenarios,
KEBA’s daytime and nighttime yield estimates are within
∼ 20 % and ∼ 50 % of WRF, respectively. In contrast, the
standard approach overestimates WRF by up to ∼ 75 % and
∼ 265 % during day and night, respectively (Appendix Ta-
bles B2 and B3). This means that KEBA is more suitable for
application at the climatological scale than the standard ap-
proach. Our results highlight the role of boundary layer infor-
mation, in terms of height and mixing/stability in determin-
ing KE budgets that shape the extent to which wind speeds,
turbine efficiencies, and deployment yields are affected by
the removal of KE. Thus, KEBA appears to be a suitable tool
to evaluate Kansas’s technical wind energy potential.

3.7 Re-evaluating Kansas’s technical potential

To quantify the relevance of these KE removal effects, we
put the WRF and our KEBA estimates in context with previ-
ously published estimates of the technical potential of Kansas
(Lopez et al., 2012; Brown et al., 2016). This is summarized
in Table 4. Previous studies estimate potentials of 3101 and
1877 TWhyr−1 for capacity densities of 5 and 3 MWkm−2

over 1.9× 105 and 1.6× 105 km2, respectively, which in-
clude a fixed 15 % loss in array efficiency. This results in
capacity factors of 37 % and 45 %. Expressed in terms of
yields, these estimates imply 1.86 and 1.36 Wm−2 of gen-
erated electricity per unit surface area. Multiplied by the de-
ployment areas, these yield technical potentials of 3101 and
1877 TWhyr−1 for Kansas in these previous studies.

We first use the standard approach combined with the
WRF and ERA-5 wind fields to estimate the resource po-
tential to show that these are consistent with the estimates
from the previous studies. We use installed capacity densi-
ties of 5 and 2.5 MWkm−2 as in our WRF simulations, which
are similar to the installed capacity densities used in Lopez
et al. (2012) and Brown et al. (2016). These result in average
yields of 2.39 and 1.19 Wm−2, with a capacity factor of 48 %
(see also Table B4). We reduce these estimates by the same
15 % loss as in the previous studies, which reduces the yields
to 2.03 and 1.02 Wm−2, with a 41 % capacity factor. Multi-
plied by the deployment areas used in Lopez et al. (2012) and
Brown et al. (2016), these yield technical potentials of 3379
and 1410 TWhyr−1, which are close to the published esti-
mates. Applying the standard approach to the ERA-5 wind
fields results in lower average yields of 1.71 and 0.85 Wm−2,
with a capacity factor of 34 %. The corresponding technical
potentials are 2846 and 1176 TWhyr−1, which are 8 % and
37 % lower than the previous estimates. These estimates are
lower because 20-year ERA-5 wind speeds are on average
lower than the WRF wind speeds (see Fig. E3).
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Table 4. Comparison of previously published estimates of the technical wind energy potential of Kansas by Lopez et al. (2012) and Brown
et al. (2016) with the estimates from this study. There are two sets of estimates from this study: one based on WRF wind fields and the other
using winds from ERA-5. For the comparison, we used the scenarios with installed capacity densities of 2.5 and 5 MWkm−2, which are
close to the 3 and 5 MWkm−2 installed capacity densities used in the previous estimates.

WRF based ERA-5 based
(May–Sep 2001) (2000–2020)

Lopez et al. (2012) Standard KEBA WRF Standard KEBA

Deployment area (km2) 190 000 190 000 190 000 190 000 190 000 190 000
Capacity density (MWkm−2) 5 5 5 5 5 5
Capacity factor 37 41 21 19 34 14
Yield (Wm−2) 1.86 2.03 1.05 0.95 1.71 0.70
Technical potential (TWhyr−1) 3101 3379 1748 1581 2846 1165
Difference (%) +9.0 −43.6 −49.0 −8.0 −62.0

Brown et al. (2016) Standard KEBA WRF Standard KEBA

Deployment area (km2) 157 890 157 890 157 890 157 890 157 890 157 890
Capacity density (MWkm−2) 3 2.5 2.5 2.5 2.5 2.5
Capacity factor 45 41 31 27 34 20
Yield (Wm−2) 1.36 1.02 0.75 0.68 0.85 0.49
Technical potential (TWhyr−1) 1877 1410 1037 941 1176 692
Difference (%) −24.9 −44.8 −49.9 −37.3 −63.1

We next demonstrate the relevance of the resource de-
pletion effect. To do so, we use the KEBA and WRF es-
timates from above but apply these to the deployment ar-
eas of the previous studies. The KEBA estimate yields of
1.05 and 0.75 Wm−2 for the two scenarios, with capacity
factors reduced to 21 % and 31 %, respectively. These es-
timates compare well with the WRF estimates of 0.95 and
0.68 Wm−2 and associated capacity factors of 19 % and 27 %
(see also Miller et al., 2015). These result in technical po-
tentials of 1748 and 1037 TWhyr−1 for KEBA and 1581
and 941 TWhyr−1 for WRF. These technical potentials are
similar, demonstrating the ability of KEBA to reproduce the
WRF results, but they are substantially lower than those re-
ported by Lopez et al. (2012) and Brown et al. (2016). How-
ever, these apply only to the restricted time period of May–
September 2001.

When we finally apply KEBA to the ERA-5 wind clima-
tology, we obtain yields of 0.70 and 0.49 Wm−2 for the two
scenarios, with associated capacity factors of 14 % and 20 %.
These values are lower than for the WRF-based estimates be-
cause the climatological wind speeds are lower than those of
the period considered with WRF. These result in technical re-
source potentials of 1165 and 692 TWhyr−1, which are more
than 60 % lower than the previously published estimates by
Lopez et al. (2012) and Brown et al. (2016).

This re-evaluation and comparison to previous estimates
demonstrate how significant the resource depletion effect is
for adequately estimating the wind resource potential of a
region but that this effect can be accounted for in a relatively
simple way as represented by KEBA.

3.8 Implications for technical wind energy potential
estimation

At the broader level, the reduction effects considered here are
consistent with previous simulations by global and regional
model simulations and have implications for the economic
potential of wind energy. In the following, we first put our
results with the resource depletion effect in the context of
other studies before we estimate the consequences for the
levelized costs of electricity.

These simulations generally show that when more wind
turbines are deployed within a region, the technical poten-
tial increases less than what would be expected from a linear
scaling. This less-than-linear response is due to the resource
depletion effect. What it implies is that when the installed ca-
pacity within a region is, for instance, doubled, the expected
yield will be less than twice the previous yield. This is shown
in Fig. 5, in which the variation in technical potential in
Kansas – in terms of the mean generated electricity per unit
area – is plotted against the capacity density deployed. The
diagram summarizes our estimates based on KEBA, WRF,
and ERA-5, as well as previous studies that estimated the
technical potential of Kansas but did not account for the re-
source depletion effect (Lopez et al., 2012; Brown et al.,
2016) and also numerical model studies that accounted for
the effect regionally (Adams and Keith, 2013; Volker et al.,
2017) and globally (Miller et al., 2011; Jacobson and Archer,
2012; Miller and Kleidon, 2016; Marvel et al., 2012; Wang
and Prinn, 2010, 2011; Gustavson, 1979). The dotted black
lines represent in Fig. 5 the capacity factors, as these translate
the installed capacity density into the mean technical poten-
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Figure 5. Technical potentials per unit surface area plotted against the capacity density (x axis). Black symbols represent standard estimates
(no KE removal), while red symbols represent estimates with WRF or climate models (with KE removal). Blue symbols represent the
KEBA estimates from this study. ERA-5-based estimates are represented separately with upward- (5 MWkm−2) and downward-facing
(2.5 MWkm−2) triangles. The blue band represents the range of average peak global potentials (Miller et al., 2011; Jacobson and Archer,
2012; Miller and Kleidon, 2016; Marvel et al., 2012; Wang and Prinn, 2010, 2011; Gustavson, 1979). The dotted red line represents the peak
average potential of Kansas (Adams and Keith, 2013), while the dotted lines show the capacity factors estimated without accounting for
the removal of KE. Existing estimates of the Kansas resource potential are shown as filled black symbols (Brown et al., 2016; Lopez et al.,
2012). The red circle with the blue outline shows an observation-based estimate (Miller and Keith, 2018).

tial. The lines thus represent the effect of assuming fixed ca-
pacity factors, so an increase in installed capacity translates
into a proportionate increase in technical potential. What the
various simulations show is that the resource depletion effect
results in a less-than-linear response, which translates into re-
duced capacity factors with greater deployments. All the nu-
merically simulated estimates display similar variations be-
tween potential and capacity and culminate near an average
peak of about 1.1 Wm−2. This variation is also consistent
with global estimates over land, albeit higher because Kansas
is windier than most places (Miller et al., 2015). In line with
these estimates, Miller and Keith (2018) showed that the ac-
tual yield from an average estimated onshore-US capacity
density of 2.7 MW km−2 is around 0.90 Wm−2. The agree-
ment between estimates from independent numerical mod-
elling studies and relevant observational data analysis points
to the robustness of this effect.

The variation in our KEBA estimates based on WRF and
ERA-5 winds is consistent with these trends. Although the
match between KEBA and the numerical estimates is not

exact, it nevertheless captures the magnitude effect and re-
produces the sub-linear scaling of technical potentials with
installed capacity densities.

The reduced technical potentials and capacity factors sig-
nificantly affect the economic potential of wind energy. This
is commonly considered by evaluating the economic cost
of wind energy using the levelized cost of energy (LCOE)
(Ragheb, 2017; Blanco, 2009). We use the estimates from
above and plot these in terms of a relative increase in LCOE
in Fig. 6.

In the standard approach, based on its assumption of unaf-
fected wind speeds, capacity factors remain constant, while
the technical potential increases linearly. These are shown
by the stippled and dotted grey lines depending on whether
the estimate is based on WRF or ERA-5 (Fig 6a). Despite
the difference in the slopes, both lines show that a doubling
of capacity leads to a doubling of the potential. To estimate
LCOE based on standard estimates, we assume that the cost
of wind energy is only a function of the number of turbines.
Then, LCOE becomes an inverse function of the capacity fac-
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Figure 6. (a) Variation in WRF (red©), KEBA (blue � with solid
line, blue � with dotted line), and standard (grey stippled and dot-
ted lines) estimates of technical potential, (b) capacity factors, and
(c) percent change in the levelized cost of energy (LCOE) relative to
the standard LCOE estimate plotted as a function of capacity densi-
ties (bottom) and number of turbines deployed (top). Standard and
KEBA estimates based on WRF Control and ERA-5 data have been
represented separately.

tor (see Appendix D). Thus, there is no change in the stan-
dard LCOE as the slopes of the line or the capacity factors
remain unchanged.

In the resource depletion effect, however, technical poten-
tials increase sub-linearly (Fig. 6a) and the capacity factors
reduce (Fig. 6b). Each doubling of turbines from the lowest
scenario to the 2.5 MWkm−2 scenario leads to an average
of 70 %–75 % stepwise increase in potential factors coupled
with an average of 11 %–14 % stepwise reduction in capacity
factors. Each doubling in capacity beyond this leads to an av-
erage stepwise increment of 27 %–31 % in potential coupled
with average reductions in capacity factors of 35 %–40 %.
Since we assumed that LCOE is only inversely related to the
capacity factor, capacity factor reductions lead to an LCOE
increase relative to the standard LCOE estimate. Thus, the
resource depletion effect leads to estimates of LCOE that are
on average 130 %–150 % higher than the standard estimates
at an installed capacity density of 5 MWkm−2.

Figure 6 highlights another important insight of this
effect at lower installed capacity densities. The lowest
capacity densities evaluated in this study (0.3125 and
0.625 MWkm−2) are associated with reductions of around
6 %–12 % relative to the standard. These translate into corre-
sponding relative increases of 6 %–23 % in LCOE, suggest-

ing that the impacts of the resource depletion effect should
be accounted for even in the case of sparser deployments.

Although the variation in technical potential, capacity fac-
tors, and LCOE with increasing capacity densities shown in
Fig. 6 is idealized, the trend does have implications for real-
istic scenarios. The relationships in Fig. 6 provide a concep-
tual framework that quantitatively links the increase in gen-
eration from additional turbines with the degeneration of effi-
ciency (i.e. capacity factor) and cost (i.e. LCOE) arising from
physical constraints imposed by the atmosphere. Despite its
idealized nature, the trends shown in Fig. 6 are consistent
with real-world analyses that show that the capacity factor
is the most important physical control on LCOE (Cory and
Schwabe, 2009). Currently energy scenario analyses only an-
ticipate an improvement in LCOE driven largely by improve-
ments in capacity factors due to better turbine technology
(Wiser et al., 2016; Prakash et al., 2019; Blanco, 2009). Fig-
ure 6 then motivates the evaluation of this expectation within
the context of atmospheric limitations on KE availability for
an improved estimate of LCOE.

Further, the trade-off between increased technical poten-
tial, capacity factors, and LCOE provides a strong physical
constraint on installed capacity densities which, at present,
range from 3 to 24 MWkm−2, thought mainly to be con-
strained by land availability (Hoogwijk et al., 2004; Lopez
et al., 2012; Brown et al., 2016; Eurek et al., 2017; Enevold-
sen et al., 2019; Lütkehus et al., 2013). The physical con-
straint indicates that there is a likely region-specific optimum
installed capacity density which balances technical potential,
capacity factors, and LCOE. Thus, even though Fig. 6 rep-
resents idealized relationships, it still provides a physically
consistent conceptual framework that encapsulates the non-
trivial impacts of the wind resource depletion on large-scale
wind energy generation for application in energy scenario
analyses. As we have shown, these impacts can be incorpo-
rated in energy scenario analyses almost completely by ac-
counting for the KE removal effect.

4 Conclusions

We conclude that the impact of the KE removal effect on the
technical wind energy potential of regional-scale wind tur-
bine deployments is significant. Although daytime and night-
time boundary layer heights and stability conditions affect
the technical potential, it is the removal of KE by the wind
turbines that primarily shapes the reduction in wind speeds
and capacity factors. It leads to reduced potentials compared
to the standard approach that have a significant impact on the
economic potential of wind energy at the regional and larger
scales.

These impacts need to be assessed in policy evaluations
of wind energy and the energy transition. KEBA is a viable
alternative to the standard approach because it is simple to
implement (Kleidon and Miller, 2020) and accounts for the
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effect of the key atmospheric control on technical potentials.
This is not to negate the use of more physically compre-
hensive numerical methods like WRF and GCMs in policy
analyses. Yet it enables energy scenario modellers without
a background in meteorology to be able to incorporate the
key physics without significantly increasing their models’
computational complexity. The heavy computational require-
ments associated with numerical weather simulation models
have been reported to inhibit their widespread incorporation
into policy-side evaluations (Staffell and Pfenninger, 2016).

Lastly, despite these detrimental effects at larger deploy-
ment scales, KEBA’s estimates agree with previous research
that has shown that wind energy is nevertheless an abundant
and renewable resource that can be used to meet a significant
part of the future energy demand through efficient, large-
scale deployment of wind turbines (Jacobson and Archer,
2012; Volker et al., 2017).

Appendix A: Determining boundary layer heights for
KEBA

The KEBA model estimates park yield and mean wind speed
reduction through the application of the conservation of en-
ergy (Kleidon and Miller, 2020). The kinetic energy (KE)
generated in the atmospheric boundary layer is balanced by
that consumed by the wind turbines within the wind park, its
wake, the dissipation at the surface, and that which powers
the remnant wind. The KE conservation is applied to a hypo-
thetical boundary layer volume which encompasses the wind
turbine deployment and is mathematically represented as
Jin,v+Jin,h = Pel,keba+Pwake+Dsurface+Jout,h. The left-hand
side of this equation describes the horizontal and vertical flux
of KE into the boundary layer volume, while the right-hand
side describes how this is partitioned within the volume. The
vertical and horizontal KE fluxes into the volume can be ex-
panded to Jin,v =WL · ρCd · v

3
in and Jin,h =WH ·

ρ
2 · v

3
in.

These expressions show that the KE budget available to
the wind turbine deployment is dependent on its geometry
(crosswind width W and downwind length L) and the height
of the atmospheric boundary layer (H ). In our analysis, the
geometry of the deployment is fixed; therefore the only con-
trol on the KE budget is the boundary layer height. Changes
in boundary layer height affect the horizontal input of KE
flux (Jin,h). In line with the general definition of the atmo-
spheric boundary layer as the layer which responds quickly
to changes in surface forcing (Stull, 2009), the boundary
layer from a KE perspective can also be defined as a layer, the
kinetic energy content of which responds to changes in sur-
face forcing, i.e. the presence of large wind turbine deploy-
ments. Then the boundary layer height can be understood as
the maximum height up to which the effects of kinetic en-
ergy removal by the turbines can be observed. Since the ex-
traction of KE reduces mean wind speeds, changes in mean

wind speeds induced by the turbines can be used to estimate
this height.

The mean wind speeds over the region of interest, Kansas
in this case, were extracted by Miller et al. (2015) from their
WRF simulations. Mean wind speeds were estimated per ver-
tical model level over Kansas for the time period of simula-
tion. Such mean wind speed estimates were computed for
all WRF simulations, i.e. those without wind parks (CTRL)
and those with (0.3125–100 MWi km−2). These mean wind
speeds from the different models when plotted against model
height (m) highlight the vertical variation in mean wind
speeds or the vertical wind speed profiles. These are plot-
ted for day and night separately in Fig. A1. In both the plots,
the vertical wind speed profiles for the CTRL simulation rep-
resent the background circulation in the absence of any wind
turbines and hence represent the undisturbed circulation. Ver-
tical wind speed profiles for other simulations deviate from
the CTRL trend because turbines extract KE from the wind
speeds, thus slowing them down. The larger the number of
turbines within the wind park, the greater the deviation from
the CTRL or the undisturbed trend is. The mean day and
night boundary layer heights for initializing the KEBA model
are then those at which the vertical profiles derived from sim-
ulations with wind parks realign themselves with the undis-
turbed trend. Using this approach Miller et al. (2015) esti-
mated the daytime boundary layer height to be 2000 m and
the nighttime boundary layer height to be 900 m.
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Figure A1. Daytime and nighttime vertical wind speed profiles estimated by Miller et al. (2015) which show that mean daytime boundary
layer height is 2000 m, whereas that at night is 900 m.

Appendix B: Tables with data used in figures

B1 Wind speed reductions

Here we tabulate (Table B1) the mean wind speed data sim-
ulated by Miller et al. (2015) without any wind parks or con-
trol (CTRL), as well as with the impact of wind parks with
a range of turbine densities (0.3125–10 MWi km−2) split by
day and night. Along with it we also provide the mean wind
speed reductions estimated by KEBA with different day and
night mean boundary layer heights.

Table B1. This table shows wind speed predictions by WRF and KEBA split by day and night. The column entitled “standard” represents
the CTRL wind speeds, i.e. without the impact of reduced wind speeds, since the standard approach predicts no change to mean wind speeds
despite removal of kinetic energy. Thus day and night winds speeds remain constant and the same as the CTRL wind speeds.

Capacity density Standard day WRF day KEBA day Standard night WRF night KEBA night

MWi km−2 ms−1 ms−1 ms−1 ms−1 ms−1 ms−1

0.3125 6.85 6.96 6.85 9.54 8.45 9.22
0.625 6.85 6.86 6.67 9.54 7.86 8.91
1.25 6.85 6.57 6.40 9.54 7.00 8.35
2.5 6.85 6.27 5.96 9.54 6.29 7.49
5.0 6.85 5.65 5.37 9.54 5.39 6.43
10.0 6.85 4.86 4.67 9.54 4.40 5.36

B2 Park yield and capacity factors

This section presents tables containing information about
park yields and capacity factors estimated by Miller et al.
(2015) (WRF) and by us using the standard approach and the
two different implementations of KEBA, i.e. with a single
boundary layer height (KEBA single) and another with two
different average heights (KEBA variable) for day (2000 m)
and night (900 m) for the 0.3125–10 MW km−2 capacity den-
sity scenarios. Tables B2 and B3 contain the data split

between daytime and nighttime, respectively, whereas Ta-
ble B4 contains the undifferentiated data.
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Table B2. Daytime averages. This table shows all the capacity density scenarios modelled, associated number of turbines, and park yields
(WRF) modelled by Miller et al. (2015). It also shows the park yields estimated in this study using the standard approach, KEBA with a single
boundary layer height (KEBA single), and KEBA with different average daytime and nighttime boundary layer heights (KEBA variable).
The computed capacity factors, represented as fractions, from all the approaches are also included.

Capacity Number WRF Standard KEBA KEBA WRF Standard KEBA fixed KEBA variable
density of turbines (fixed) (variable) capacity capacity capacity capacity

factor factor factor factor

MWi km−2 – We m−2 We m−2 We m−2 We m−2 – – – –

0.3125 11 700 0.06 0.06 0.06 0.06 0.20 0.19 0.19 0.18
0.625 23 400 0.12 0.12 0.10 0.11 0.19 0.19 0.16 0.17
1.25 46 800 0.22 0.24 0.18 0.19 0.17 0.19 0.14 0.15
2.5 93 600 0.38 0.49 0.28 0.32 0.15 0.19 0.11 0.13
5.0 187 200 0.56 0.97 0.39 0.47 0.11 0.19 0.08 0.09
10.0 374 400 0.69 1.94 0.48 0.60 0.07 0.19 0.05 0.06

Table B3. Nighttime averages. This table shows all the capacity density scenarios modelled, associated number of turbines, and park yields
(WRF) modelled by Miller et al. (2015). It also shows the park yields estimated in this study using the standard approach, KEBA with a single
boundary layer height (KEBA single), and KEBA with different average daytime and nighttime boundary layer heights (KEBA variable).
The computed capacity factors, represented as fractions, from all the approaches are also included.

Capacity Number WRF Standard KEBA KEBA WRF Standard KEBA fixed KEBA variable
density of turbines (fixed) (variable) capacity capacity capacity capacity

factor factor factor factor

MWi km−2 – We m−2 We m−2 We m−2 We m−2 – – – –

0.3125 11 700 0.07 0.09 0.08 0.08 0.22 0.28 0.26 0.26
0.625 23 400 0.12 0.18 0.16 0.16 0.20 0.28 0.26 0.25
1.25 46 800 0.19 0.35 0.29 0.27 0.16 0.28 0.22 0.22
2.5 93 600 0.30 0.71 0.48 0.43 0.12 0.28 0.20 0.17
5.0 187 200 0.39 1.42 0.68 0.58 0.08 0.28 0.14 0.12
10.0 374 400 0.41 2.84 0.85 0.68 0.04 0.28 0.05 0.07

Table B4. Daily averages. This table shows all the capacity density scenarios modelled, associated number of turbines, and park yields
(WRF) modelled by Miller et al. (2015). It also shows the park yields estimated in this study using the standard approach, KEBA with
a single boundary layer height (KEBA single), and KEBA with different average daytime and nighttime boundary layer heights (KEBA
variable). The computed capacity factors from all the approaches are also included.

Capacity Number WRF Standard KEBA KEBA WRF Standard KEBA fixed KEBA variable
density of turbines (fixed) (variable) capacity capacity capacity capacity

factor factor factor factor

MWi km−2 – We m−2 We m−2 We m−2 We m−2 – – – –

0.3125 11 700 0.13 0.15 0.14 0.14 0.42 0.48 0.45 0.45
0.625 23 400 0.24 0.30 0.26 0.26 0.39 0.48 0.42 0.42
1.25 46 800 0.41 0.60 0.46 0.47 0.33 0.48 0.37 0.37
2.5 93 600 0.68 1.19 0.78 0.75 0.27 0.48 0.30 0.31
5.0 187 200 0.95 2.39 1.05 1.05 0.19 0.48 0.21 0.21
10.0 374 400 1.10 4.78 1.30 1.28 0.11 0.48 0.13 0.13
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Appendix C: Comparison with published
numerical-weather-model-based estimates of
technical wind energy potential

In Fig. 5, we have compared KEBA estimates of tech-
nical potential from our analysis with those performed
independently by others over comparable regional and
global scales using different numerical modelling ap-
proaches. For comparison in Kansas, central USA, we
used the studies performed by Adams and Keith (2013),
Miller et al. (2015), and Volker et al. (2017). From
Volker et al. (2017), we only use their estimates for
their largest deployment scenario (105 km2) in the central
USA. This was the most pertinent case for our analysis.
All three of these studies use a version of WRF to model
the wind turbine yields and parametrize the wind turbines
as momentum sinks. This means that they account for the
fact that turbines extract momentum and kinetic energy from
the wind, thereby lowering wind speeds. While Miller et al.
(2015) and Adams and Keith (2013) use a variation of the
Fitch scheme (Fitch et al., 2013b), Volker et al. (2017) use
the extended wake parameterization or the explicit wake pa-
rameterization (EWP) scheme (Volker et al., 2015). The main
difference between the Fitch scheme, its variation, and the
EWP is that, while the latter does not include an explicit term
to account for the turbulent kinetic energy (TKE) generated
by the turbine, the former two do. The different schemes lead
to differences in the amount of mixing generated within the
boundary layer due to the turbine action. The Fitch scheme
estimates more and the EWP relatively less, even though
their estimates of wind speeds largely agree with each other
(Volker et al., 2015).

It is important to appreciate these differences because
Archer et al. (2020) highlighted two bugs in the implementa-
tion of the Fitch scheme in WRF versions prior to v4.2 that
affect the Miller et al. (2015) study (Fischereit et al., 2021). It
was shown that the additional term in the Fitch scheme adds
excessive TKE and a coding bug prevents the TKE from be-
ing advected properly. Although preliminary analyses have
shown that the two errors actually compensate for each other,
giving rise to TKE estimates that agree with observations
(Archer et al., 2020; Larsén and Fischereit, 2021), it would
be useful to briefly evaluate any potential implications for
our results and conclusions.

First, according to a review by Fischereit et al. (2021) the
conclusions of none of the three studies used in this study
(Adams and Keith, 2013; Miller et al., 2015; Volker et al.,
2015) are affected by the identified bug. Secondly, were these
studies affected by the bug or the impact significant, one
would have expected a more prominent deviation between
the Fitch-based studies and the EWP-based study. This is be-
cause the EWP scheme does not use the explicit TKE addi-
tion term which the bug was related to. Instead, it is observed
that the different studies exhibit a similar trend of technical

potential with installed capacity that culminates in a peak av-
erage of 1.1 Wm−2.

Further, the WRF trends in Kansas, central USA, are
consistent with previous studies that estimate global poten-
tials. Relevant estimates of global land from Jacobson and
Archer (2012) and Miller and Kleidon (2016) are shown in
Fig. 6. These estimates and trends have been derived us-
ing global circulation models (GCMs): Jacobson and Archer
(2012) used the GATOR-GCMOM model (Jacobson, 2001),
while Miller et al. (2015) used the Planet Simulator model
(Fraedrich et al., 2005). These are also unaffected by the er-
rors in the Fitch scheme. These trends show the same varia-
tion in potentials as the WRF trends, i.e. sub-linear increase
in potential beyond 1.5 MWkm−2 and culmination in a peak
global average range of 0.2–0.6 Wm−2 (Miller et al., 2011;
Miller and Kleidon, 2016; Jacobson and Archer, 2012; Wang
and Prinn, 2010, 2011; Marvel et al., 2012). The agreement
between all the independent trends and regional and global
scale highlights that the impact of the errors in the Fitch
scheme are unlikely to affect the insights and conclusions
generated from this study.

Appendix D: Technical potential, capacity factors,
and levelized cost of energy (LCOE)

Figure 6b shows that as the number of turbines deployed over
the hypothetical wind farm area increases, the removal of ki-
netic energy (KE) reduces the capacity factor. This means
that with the increasing deployed capacity, each turbine pro-
duces less energy than what it would have, had it been op-
erating in isolation. The reduction in per-turbine efficiency
increases with increasing turbines. When the KE removal
is neglected, the capacity factor remains unchanged (dotted
grey line). While the addition of turbines generally increases
the technical potential, the step-wise increments in genera-
tion reduce as the turbine numbers increase (Fig. 6a). The
lower increments are driven by the reductions in capacity fac-
tors (Fig. 6b). The effect of this variation in capacity factors
can be used to investigate their economic impacts using a
standard economic cost metric known as the levelized cost
of energy or LCOE (Ragheb, 2017). LCOE is represented by
the following formula (Ragheb, 2017):

LCOEwind =

∑n
t=1(It +O&Mt −PTCt
−Dt + Tt +Rt ) · 1

(1+i)t

CF ·
∑t=n−1
t=0 Pt

. (D1)

In this equation, It and O&Mt refer to the capital and oper-
ations cost, while PTCt , Dt , Tt , and Rt represent the credits,
levies, taxes, and royalties, respectively. The term 1

(1+i)t is
the present value factor which is used to account for the time
value of money with a discount factor i over the lifespan of a
wind farm. t represents a year within the operational period
of a wind farm. CF is the capacity factor, which in this cal-
culation would be different for different scenarios for WRF
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Table D1. Tabulation of capacity factors estimated by KEBA, WRF, and the standard approach along with the estimated change in LCOE
(%) due to KE removal relative to the standard approach.

Capacity Number WRF Standard KEBA variable WRF KEBA variable
density of turbines capacity capacity capacity LCOE LCOE

factor factor factor change change

MWi km−2 – – – – % %

0.3125 11 700 0.42 0.48 0.45 14 6
0.625 23 400 0.39 0.48 0.42 23 14
1.25 46 800 0.33 0.48 0.37 45 30
2.5 93 600 0.27 0.48 0.31 77 54
5.0 187 200 0.19 0.48 0.21 150 130
10.0 374 400 0.11 0.48 0.13 430 270

and KEBA but the same for the standard approach. Since we
are interested in simply illustrating only the economic im-
pact of reductions in capacity factors due to KE removal,
we can simplify Eq. (D1) such that LCOE is only a func-
tion of capacity factor. For this, we ignore tax-related terms
and assume that all costs and installed capacity terms (Pt )
are sunk and installed once at the beginning of the opera-
tional life. The time factor also remains constant for all sce-
narios. It should be noted that this calculation is meant only
to illustrate that capacity factor reduction arising from KE re-
moval results in non-trivial increases in LCOE, which high-
lights their inclusion into the policy design. In reality, tur-
bine installation will occur over many years and so will the
cost investments. A real LCOE calculation would need spe-
cific and quality-controlled inputs about the timing and val-
ues of costs, levies, and discount rates. With the simplifica-
tion, Eq. (D1) would take the following form:

LCOEscenario =
1

CFscenario
× constant. (D2)

In Eq. (D2), LCOE for each capacity density scenario is
inversely related to the capacity factor. As the cost and in-
stalled capacity terms are the same for the standard and the
WRF and KEBA approaches, the percent change relative to
the standard approach for each scenario can be calculated.
These values for each of the installed capacity density sce-
narios are plotted for both WRF and KEBA estimates. For
example, for the 2.5 MWkm−2 case the standard approach
assumes a 0.48 capacity factor, while KEBA and WRF es-
timate 0.31 and 0.27. Then, to estimate the percent change
relative to the standard approach, the following approach is
used:

%change in LCOE2.5 =

LCOE2.5,KEBA/WRF
−LCOE2.5,standard

LCOE2.5,standard
. (D3)

These values are tabulated in Table D1.
The change in LCOE is only calculated for the installed

capacity range from 0.3125 to 10 MWkm−2 because this is
the range that is typically assumed in wind energy policy sce-
narios. They show that as the capacity factor reduces, the
economic cost of wind energy goes up because each of the
turbines performs less efficiently.

Wind Energ. Sci., 9, 2147–2169, 2024 https://doi.org/10.5194/wes-9-2147-2024



J. Minz et al.: Estimating the technical wind energy potential of Kansas 2165

Appendix E: KEBA and standard estimates based on
ERA-5 100 m wind speeds from 2000–2020

Figure E1. Wind directions for 100 m wind speeds over Kansas from ERA-5 over the 2000–2020 period.

Figure E2. Wind speed (a) and capacity factor (b) distributions for standard and KEBA approaches for the 2.5 (red) and 5 MWkm−2 (blue)
deployment scenarios calculated using ERA-5 100 m wind speeds over the 2000–2020 period.
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Figure E3. Comparison of near-hub-height wind speed distri-
butions from Miller et al. (2015) (4.5 months, red) and ERA-5
(20 years, grey).
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