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Giant atoms provide a promising platform for engineering decoherence-free interactions which
is a major task in modern quantum technologies. Here we study systematically how to implement
complex decoherence-free interactions among giant atoms resorting to periodic coupling modulations
and suitable arrangements of coupling points. We demonstrate that the phase of the modulation,
which is tunable in experiments, can be encoded into the decoherence-free interactions, and thus
enables the Aharonov-Bohm effect of photons when the giant atoms constitute an effective closed
loop. In particular, we consider the influence of non-Markovian retardation effect arising from large
separations of the coupling points and study its dependence on the modulation parameters.

I. INTRODUCTION

Giant atoms [1] nowadays become a powerful quan-
tum optical paradigm, which breaks up a longstand-
ing wisdom that atoms are usually modeled as sin-
gle points based on the electric-dipole approximation.
Specifically, giant atoms can be understood as quan-
tum emitters that are coupled to a (propagating) bosonic
field at multiple separate points. As the separation dis-
tances between different coupling points are compara-
ble to the wavelength of bosonic field, giant atoms fea-
ture a peculiar self-interference effect leading to a se-
ries of unprecedented quantum optical phenomena, in-
cluding frequency-dependent Lamb shift and relaxation
rate [2, 3], unconventional bound states [4–11], ad-
vanced single-photon scatterings [12–19], non-Markovian
decay dynamics [20–23], and chiral light-matter inter-
actions [24–26], to name a few. Even more strikingly,
by engineering the geometrical arrangements of the cou-
pling points, a set of giant atoms can be made fully dis-
sipationless but featuring field-mediated coherent inter-
actions [27–29]. This phenomenon realizes the so-called
decoherence-free interaction (DFI) that has potential im-
portant applications in quantum technologies, e.g., engi-
neering large-scale quantum networks. Although DFIs
can also be realized in discrete photonic lattices by tun-
ing the atomic frequencies within the photonic band
gaps [30–32], this kind of interactions, however, is typ-
ically of short range and only operates within certain
bandwidths since they are mediated by overlapped atom-
field bound states.

It is known that electrons can acquire path-dependent
phases when traveling in a magnetic field [33], while pho-
tons/phonons are immune to physical magnetic fields due
to their charge neutrality. Given this fact, many efforts
have been made to create synthetic magnetic fields for
bosonic systems [34–44]. While most of these seminal
works have concentrated on systems where the targets

(e.g., atoms and resonators) are spatially close and non-
Markovian retardation effects are typically ignored, very
little is known about the effect of synthetic magnetic
fields in large-scale quantum networks featuring field-
mediated long-range interactions. Moreover, it is natural
to ask if the DFIs between giant atoms, which are the re-
sult of a virtual-photon process, can be endowed with
synthetic magnetism.
In this paper, we demonstrate how to realize complex

DFIs between detuned giant atoms. By modulating the
atom-field couplings (or the atomic transition frequen-
cies) properly, the phase of the modulation can be en-
coded into the DFI. Such a complex DFI is tunable in

situ and leads to the photonic Aharonov-Bohm effect
when the effective Hamiltonian of the giant atoms has
a closed-loop form. We find that the non-Markovian re-
tardation effect, which is intrinsic to giant-atom systems,
only introduces finite dissipation to the atoms without
affecting their dynamics qualitatively. This detrimental
effect can be mitigated with a smaller modulation fre-
quency, yet an extremely slow modulation can smear the
effect of synthetic magnetic field due to the contribution
of anti-rotating-wave terms.

II. MODEL AND EQUATIONS

We start by considering two two-level giant atoms (la-
beled as atoms A and B, respectively), each of which is
coupled to the one-dimensional waveguide at two cou-
pling points. As shown in Fig. 1(a), the atom-waveguide
coupling points are arranged in a braided manner which
allows for a DFI between the two atoms [27, 28]: under
certain conditions, both atoms do not dissipate into the
waveguide yet there is a field-mediated coherent coupling
between them. For simplicity, we assume that the cou-
pling points are equally spaced by distance d (DFIs are al-
lowed even if the coupling points are not equally spaced).

http://arxiv.org/abs/2211.00280v1
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FIG. 1. Schematics of model architectures. (a) Two-level giant atoms A and B are coupled to each other via a time-dependent
decoherence-free interaction. (b) A third atom C is coupled directly to A and B to form a closed-loop atomic trimer. (c) and
(d) Protected all-to-all couplings for atoms A, B, and C resorting to (c) two different waveguides and (d) a single waveguide.
Atoms B and C are assumed to be resonant with each other and detuned from atom A. The coupling points are equally spaced
in all panels.

In contrast to the previous standard model where the
atom-waveguide coupling strengths are constant [27, 28],
here we assume that the coupling strength g(t) of atom
A is time-dependent and g0 of atom B is constant (for
each atom the coupling strength is assumed to be real
and identical at the two coupling points). Moreover, we
assume that there is a small detuning ∆ between the
transition frequencies of the two atoms. This detuning is
crucial for realizing the synthetic magnetic field as will be
shown below. In this case, the Hamiltonian of the model
can be written as (~ = 1)

H = Ha +Hw +Hint, (1)

Ha = ω0σ
+
Aσ

−
A + (ω0 +∆)σ+

Bσ
−
B , (2)

Hw =

∫

dkωka
†
kak, (3)

Hint =

∫

dk
[

g(t)
(

1 + e2ikd
)

σ+
Aak

+g0
(

eikd + e3ikd
)

σ+
Bak +H.c.

]

, (4)

where ω0 is the transition frequency of atom A; σ+
A and

σ+
B (σ−

A and σ−
B) are the raising (lowering) operators of

atoms A and B, respectively; ωk is the frequency of the
waveguide field, which can be either linearly dependent
on the amplitude of the wave vector k or linearizable
around the frequency ω0. Having in mind that the total
excitation number is conserved [due to the rotating-wave
approximation used in Eq. (4)], the state of the model in
the single-excitation subspace can be written as

|ψ(t)〉 =

∫

dkck(t)a
†
ke

−iωkt|G〉+
[

uA(t)σ
+
A

+uB(t)σ
+
B

]

e−iω0t|G〉,

(5)

where ck is the probability amplitude of creating a pho-
ton with wave vector k in the waveguide; uA and uB

are the excitation amplitudes of atoms A and B, re-
spectively; |G〉 denotes that the atoms are in the ground
states and there is no photon in the waveguide. Solving
the Schrödinger equation with Eqs. (1)-(5), one has

u̇A = −i

∫

dkg(t)
(

1 + e2ikd
)

cke
−i(ωk−ω0)t, (6)

u̇B = −i∆uB − i

∫

dkg0
(

eikd + e3ikd
)

×cke
−i(ωk−ω0)t, (7)

ċk = −i
[

g(t)
(

1 + e−2ikd
)

uA

+g0
(

e−ikd + e−3ikd
)

uB
]

ei(ωk−ω0)t. (8)

By substituting the formal solution of the field amplitude
(assuming that the waveguide is initially in the vacuum
state)

ck(t) = −i

∫ t

0

dt′
[

g(t′)
(

1 + e−2ikd
)

uA(t
′)

+g0
(

e−ikd + e−3ikd
)

uB(t
′)
]

ei(ωk−ω0)t
′

(9)

into Eqs. (6) and (7), one can obtain the time-delayed
dynamical equations (see Appendix A for more details)

u̇A = −
2πg(t)

vg
[2g(t)uA + 2g(t− 2τ)DA,2

+3g0DB,1 + g0DB,3] , (10)

u̇B = −i∆uB −
2πg0
vg

[2g0uB + 2g0DB,2

3g(t− τ)DA,1 + g(t− 3τ)DA,3] , (11)

whereDj,l = exp(ilφ)uj(t−lτ)Θ(t−lτ) (j = A, B, ... and
l = 1, 2, 3) with φ = k0d and τ = d/vg being the phase
accumulation and the propagation time (time delay) of
a photon traveling between adjacent coupling points, re-
spectively; Θ(x) is the Heaviside step function.
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III. DFI IN THE MARKOVIAN REGIME

Equations (10) and (11) describe the non-Markovian
dynamics of the two giant atoms, revealing that the retar-
dation effect depends on not only the coupling strength
g(t) at the present but also its values g(t − lτ) at early
moments. The multiple retardations make the dynamics
of the system a bit complicated. However, if τ is negli-
gible compared to all the other characteristic time scales
(Markovian regime), Eqs. (10) and (11) can be simplified
to

u̇A = −
4πg(t)2

vg

(

1 + e2iφ
)

uA

−
2πg(t)g0

vg

(

3eiφ + e3iφ
)

uB, (12)

u̇B = −i∆uB −
4πg20
vg

(

1 + e2iφ
)

uB

−
2πg(t)g0

vg

(

3eiφ + e3iφ
)

uA. (13)

Clearly, both atoms are dissipationless and their effective
interaction is purely coherent when φ = (m + 1/2)π (m
is an arbitrary integer). Now we consider cosine-type
time-dependent couplings for atom A, i.e.,

g(t) = ∆g cos (Ωt+ θ) (14)

with ∆g, Ω, and θ being the amplitude, frequency,
and initial phase of the modulation, respectively. If
Ω = ∆ ≫ 2π∆gg0/vg and using the transformation
uj → ujexp(−i∆t), Eqs. (12) and Eq. (13) become

u̇A = −iGme
iθuB, (15)

u̇B = −iGme
−iθuA, (16)

where φ = (m + 1/2)π has been assumed and Gm =
(−1)m2π∆gg0/vg. One can see from Eqs. (15) and (16)
that the modulation phase θ is encoded into the DFI
between atoms A and B, mimicking a synthetic magnetic
flux for photons transferring in between. Although the
coupling phase θ can be gauged away for such a two-atom
model (thus it has no particular interest in this case), it
can significantly affect the dynamics of the system when a
third atom is introduced to form a closed-loop trimer [22,
42, 45, 46], as will be shown below.
Although the above analysis is only applicable in the

single-excitation subspace, the decoherence-free nature of
our model can also be illustrated resorting to the theory
of effective Hamiltonian [29, 47, 48]. As shown in Ap-
pendix B, in the Markovian regime, the effective Hamil-
tonian of the giant-atom dimer can be given by

Heff,dim = Gme
iθσ†

BσA +H.c., (17)

which shows a complex DFI between atoms A and B.
Moreover, we have checked that the average interaction
between the giant atoms and the waveguide field vanishes
(thus the atoms are dissipationless) in this case.

FIG. 2. Dynamics of atomic excitation probabilities PA(t)
and PB(t) with different values of (a) modulation frequency
Ω and (b) modulation amplitude ∆g. We assume ∆g/Γ0 = 1
in panel (a) and Ω/Γ0 = 10π in panel (b). Moreover, we set
∆ = Ω for all lines, except for the case “without modulation”
in panel (a): Ω = 0 and ∆/Γ0 = 10π in this case. Other
parameters are Γ0 = 2πg20/vg , φ = π/2, θ = 0, τΓ0 = 0.001,
and |ψ(t = 0)〉 = σ+

A |G〉.

Before proceeding, we briefly discuss the influence of
the non-Markovian retardation effect on the result above.
It is clear from Eqs. (10) and (11) that the retardation
effect arising from the non-negligible propagation time τ
may smear the DFI (such that the atoms are not perfectly
dissipationless) and makes the dynamics much more com-
plicated. To mitigate this detrimental effect, one can ei-
ther consider a small enough τ , or assume Ωτ = 2mπ
such that the atoms can still exhibit long-lived popula-
tions [49].

IV. DYNAMICS WITH EFFECTIVE
DECOHERENCE-FREE INTERACTIONS

In this section we would like to verify the above results
by numerically solving the time-delayed dynamical equa-
tions (10) and (11) with appropriate parameters. For
clarification, we use Γ0 = 2πg20/vg (which is the radia-
tive decay rate of atom B at each coupling point) as
the unit of energies, and define PA(t) = |uA(t)|

2 and
PB(t) = |uB(t)|

2 as the excitation probabilities of atoms
A and B, respectively. Since we focus on the DFI of the
giant atoms, we will always assume φ = π/2 (i.e., m = 0)
and τΓ0 ≪ 1.
Figure 2(a) shows the time evolutions of PA(t) and

PB(t) with the initial state |ψ(t = 0)〉 = σ+
A |G〉 (atom A

is initially excited) and different values of modulation fre-
quency Ω. As discussed above, Ω = ∆ ≫ |Gm| is required
to justify the rotating-wave approximation [i.e., dropping
high-frequency terms as in Eqs. (15) and (16)]. Indeed,
we find that the two atoms exhibit a nearly decoherence-
free excitation exchange (Rabi-like oscillation) when Ω is
large enough (see, e.g., the orange line with circles and
the green line with stars), while the dynamics deviate
markedly from this typical form when Ω is small (see,
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FIG. 3. Dynamics of atomic excitation probabilities PA(t), PB(t), and PC(t) in the atomic trimer [Fig. 1(b)] with different
values of modulation phase θ. The lower plots illustrate the excitation transfer in the trimer, corresponding to panels (a)-
(c), respectively. Other parameters are Γ0 = 2πg20/vg , φ = π/2, ∆/Γ0 = Ω/Γ0 = 10π, ∆g/Γ0 = 1, τΓ0 = 0.001, and
|ψ(t = 0)〉 = σ+

A |G〉.

e.g., the blue solid and red dashed lines). The Rabi-like
line shapes exhibit additional tiny oscillations (thus we
refer to them as “Rabi-like”) due to the cosine-type cou-
pling modulations. Note that the interatomic interaction
almost disappears and atom A exhibits a long-lived pop-
ulation in the absence of modulations (in this case we
assume Ω = 0 and ∆/Γ0 = 10π insdead). This is intu-
itive since the two atoms have very different transition
frequencies. From this point of view, the coupling modu-
lation allows for protected interactions between detuned

atoms, which is physically important on its own.
We also plot in Fig. 2(b) the time evolutions of the

atomic excitation probabilities with different values of
modulation amplitude. It shows that the Rabi-like oscil-
lation becomes faster for larger ∆g since the effective cou-
pling strength Gm between the two atoms is proportional
to ∆g. This thus provides an in-situ tunable scheme
to manipulate the interactions between remote quantum
emitters.

V. PHOTONIC AHARONOV-BOHM EFFECT
IN GIANT-ATOM TRIMERS

As discussed in Sec. III, the effective coupling phase θ
between atoms A and B has no actual physical meaning
since it can always be gauged away (indeed, such a cou-
pling phase is sensitive to the choice of the initial time).
In view of this, we consider an additional two-level atom
(labeled as atom C with the corresponding excitation
amplitude uC) coupled directly to A and B forming a
closed-loop trimer, as shown in Fig. 1(b). To be specific,
we assume: (i) atom C is resonant with atom B (thus
it is detuned from atom A by ∆); (ii) atom C is cou-
pled to atom A with a time-dependent coupling strength
λ(t) = 2G0 cos (Ωt) and to atom B with a constant cou-

pling strength G0 (G0 := Gm=0). Consider the assump-
tions above, the dynamical equations of the trimer can
be immediately obtained as

u̇A = −
4πg2(t)

vg
uA −

4πg(t)g(t− 2τ)

vg
DA,2

−
2πg(t)g0

vg
(3DB,1 +DB,3)− iλ(t)uC , (18)

u̇B = −i∆uB −
4πg20
vg

(uB +DB,2)− iG0uC

−
2πg0
vg

[3g(t− τ)DA,1 + g(t− 3τ)DA,3] , (19)

u̇C = −i∆uC − i [λ(t)uA +G0uB] . (20)

In the following of this section, we will demonstrate how
the coupling phase θ affects the single-excitation dynam-
ics of the trimer.
Figure 3 shows the dynamics governed by Eqs. (18)-

(20) [we define PC(t) = |uC(t)|
2 as the excitation prob-

ability of atom C], with the initial state |ψ(t = 0)〉 =
σ+
A |G〉 and different values of θ. It shows that the phase
θ plays a key role in this case. The three atoms constitute
an effective Aharonov-Bohm cage [50] (i.e., a closed-loop
plaquette threaded by a magnetic field), such that it ex-
hibits asymmetric excitation transfer if θ is not an inte-
ger multiple of π. In particular, as shown in Figs. 3(a)
and 3(c), directional excitation circulation [42] can be ob-
served if mod(θ, π) = π/2, with the circulation direction
determined by the sign of θ (or say, by whether the sub-
script integer m of Gm is odd or even). In principle, the
excitation transfer should be symmetric if mod(θ, π) = 0.
However, as shown in Fig. 3(b), there is a minor differ-
ence between the time evolutions of PB(t) and PC(t),
which we conclude arises from the finite retardation ef-
fect between atoms A and B. We have checked that such
a difference tends to vanish as τ decreases gradually.
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FIG. 4. (a, b) Dynamics of atomic excitation probabilities PA(t), PB(t), and PC(t) in the atomic trimer [Fig. 1(c)] with (a)
∆g/Γ0 = 2 and (b) ∆g/Γ0 = 1. (c) Dynamics of total excitation probability Ptot(t) in the atomic trimer [Fig. 1(c)] with
different values of ∆g. Other parameters are Γ0 = 2πg20/vg , φ = π/2, ∆/Γ0 = Ω/Γ0 = 10π, θ = π/2, τΓ0 = 0.001, and
|ψ(t = 0)〉 = σ+

A |G〉.

Note that the direct interactions between atom C and
the others impose some limitations on the architecture
of the model. For example, atoms A and B have to be
spatially close in order to interact directly with atom C.
In view of this, we would like to extend the above trimer
to a purely giant-atom version, where all the three atoms
interact with each other via waveguide-mediated DFIs.
As shown in Fig. 1(c), atoms A and C exhibit a DFI
through the upper waveguide, while the DFIs between
them and atom B are mediated by the lower waveguide.
In particular, atoms B and C are coupled to the waveg-
uides with identical and constant strength g0, while atom
A is coupled to the lower and upper waveguides with dif-
ferent time-dependent coupling strengths g(t) and g′(t),
respectively (for each waveguide the two couplings of A
are identical). For simplicity, we still assume that the
coupling points are equally spaced by distance d [in the
lower waveguide, atoms A and C share a common cou-
pling point as shown in Fig. 1(c)].

The time-delayed dynamical equations of this model
are given in Appendix C [see Eqs. (C1)-(C3)], which,
under certain conditions, show a protected all-to-all in-
teraction (i.e., all the atoms interact with each other
via DFIs). One may argue that the protected all-to-
all interaction can also be realized by using only one
waveguide as shown in Fig. 1(d) [27]. However, we do
not concentrate on this model since the global coupling
phase (i.e., the total synthetic magnetic flux thread-
ing the closed-loop trimer) is always zero in this case
(see Appendix C for more details). Hereafter, we as-
sume g(t) = ∆g cos (Ωt+ θ) and g′(t) = ∆g cos (Ωt)
for the model in Fig. 1(c) to demonstrate the photonic
Aharonov-Bohm effect (in this case θ plays the role of
global coupling phase).

We plot in Figs. 4(a) and 4(b) the time evolutions
of the atomic excitation probabilities in such a giant-
atom trimer with θ = π/2. Similar to that in Fig. 3(a),
the single excitation initialized in atom A “hops” direc-
tionally in sequence of A → B → C → A, yet the
damping of the total excitation probability Ptot(t) =
PA(t)+PB(t)+PC(t) is enhanced due to the stronger re-
tardation effect in this model. On one hand, as shown in

FIG. 5. Dynamics of atomic excitation probabilities PA(t),
PB(t), and PC(t) in the atomic trimer [Fig. 1(c)] with (a)
Ω/Γ0 = 10π, (b) Ω/Γ0 = 5π, (c) Ω/Γ0 = 3π, and (d) Ω/Γ0 =
π. All panels in this figure share the same legend. Other
parameters are Γ0 = 2πg20/vg , ∆ = Ω, φ = π/2, α/Γ0 = 2,
θ = π/2, τΓ0 = 0.01, and |ψ(t = 0)〉 = σ+

A |G〉.

Fig. 4(c), Ptot(t) shows a slower damping for smaller ∆g

since the effective decay rate of atom A [described by the
first two terms on the right side of Eq. (C1)] decreases
gradually as ∆g goes to zero. On the other hand, by
comparing Figs. 4(a) and 4(b) one can find that the ef-
fective coupling strength between atom A and the others
(which affects the transfer efficiency and the period of the
circulation) can be controlled by tuning the modulation
amplitude ∆g.

Finally, we would like to demonstrate the influence of
a stronger retardation effect on the present results and
discuss how to mitigate this effect in some sense by tun-
ing the modulation parameters. For relatively large τ ,
as shown in Fig. 5(a), the total excitation probability
becomes strongly damped and falls to zero rapidly, al-
though the directional excitation circulation can still be
observed. Such a rapid damping, however, can be weak-
ened by using smaller modulation frequency as shown in
Figs. 5(b) and 5(c) (∆ = Ω is always satisfied). This
phenomenon can be understood again from the effec-



6

tive decay rate of atom A: as shown in Eq. (C1), atom
A can be finally dissipationless if g(t) = g(t − 2τ) and
g′(t) = g′(t − 2τ) [i.e., mod(Ωτ, π) = 0], while its decay
cannot be completely suppressed if 0 < mod(Ωτ, π) ≪ π.
However, decreasing the value of Ω also smears the
Aharonov-Bohm effect since the anti-rotating-wave terms
(i.e., the high-frequency oscillating terms in the effective
Hamiltonian and dynamical equations) come into play
eventually. As shown in Fig. 5(d), the directional excita-
tion circulation almost disappears for small enough Ω. In
other words, there is a tradeoff between the retardation-
induced dissipation and the effect of synthetic magnetic
field in this case.

VI. CONCLUSIONS

In summary, we have demonstrated how to create a
synthetic magnetic field for the effective decoherence-free
Hamiltonians of giant atoms resorting to periodic cou-
pling modulations and suitable arrangements of atom-
waveguide coupling points. With our scheme one can not
only realize DFIs between detuned giant atoms, but also
observe the photonic Aharonov-Bohm effect in closed-
loop chains of giant atoms. Moreover, we have consid-
ered the non-Markovian retardation effect and studied its
influence on the atomic dynamics. The retardation effect
does not denature the Aharonov-Bohm effect and the re-
sulting dissipation can be controlled via the modulation
parameters within a certain range.

In principle, the synthetic magnetic field can also be
created by modulating the transition frequency of the gi-
ant atom. For example, recalling the giant-atom dimer in
Fig. 1(a), one can assume constant and uniform couplings
for both two atoms and a time-dependent detuning for
atom B. Then a DFI between the two atoms can be real-

ized under certain conditions, as shown in Appendix D.
However, the coupling-modulation scheme shows two ma-
jor advantages over the frequency-modulation one [45]:
(i) the requirements for the rotating-wave approximation
to be valid in the coupling-modulation scheme are less se-
vere; (ii) for the frequency-modulation scheme, there are
many sidebands that cannot be neglected in many cases
(especially when multiple frequency modulations are con-
sidered or a relatively faster modulation is employed),
which may smear the DFI. In view of this, we focus on
the coupling-modulation scheme in this paper.
The results in this paper can be applied for many

applications and further investigations. For example,
our scheme highlights a way towards quantum simula-
tions of many-body systems that are subject to various
gauge fields and towards engineering more high-fidelity
quantum gates [27, 28]. It is also possible to gener-
ate fractional quantum Hall states of light by simply in-
creasing the size of our models (e.g., implementing two-
dimensional square or quasi-one-dimensional ladder lat-
tices of giant atoms with tailored couplings) [42]. Al-
though in this paper we have concentrated on models
made up of superconducting qubits and microwave trans-
mission lines, our proposal is general and can be immedi-
ately extended to other possible setups, such as quantum
emitters coupled to real and synthetic discrete lattices.
Moreover, the synthetic gauge field offers the opportu-
nity of implementing richer topological phases based on
the effective spin Hamiltonians of giant atoms [5].
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Appendix A: Time-delayed dynamical equations of the giant-atom dimer

By substituting Eq. (9) into Eqs. (6) and (7), we have

u̇A(t) = −

∫ t

0

dt′
∫ +∞

−∞

dke−i(ωk−ω0)(t−t′) {2g(t)g(t′)[1 + cos (2kd)]uA(t
′)

+g(t)g0
(

eikd + 2e−ikd + e−3ikd
)

uB(t
′)
}

, (A1)

u̇B(t) = −i∆uB(t)−

∫ t

0

dt′
∫ +∞

−∞

dke−i(ωk−ω0)(t−t′)
{

2g20 [1 + cos (2kd)]uB(t
′)

+g(t′)g0
(

2eikd + e−ikd + e3ikd
)

uA(t
′)
}

. (A2)

If we change the integration variable as
∫ +∞

−∞
dkf(k) →

∫ +∞

0
dωk[f(k) + f(−k)]/vg and write the dispersion relation

of the waveguide as ωk = ω0 + νk = ω0 + (k − k0)vg [51, 52], with k0 the wave vector corresponding to frequency ω0
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and vg the group velocity of photons in the waveguide, Eqs. (A1) and (A2) become

u̇A(t) = −
1

vg

∫ t

0

dt′
∫ +∞

−∞

dνke
−iνk(t−t′) {4g(t)g(t′)[1 + cos (2kd)]uA(t

′)

+g(t)g0
(

3eikd + 3e−ikd + e3ikd + e−3ikd
)

uB(t
′)
}

,

= −
2π

vg

∫ t

0

dt′
{

2g(t)g(t′)
[

2δ(t− t′) + e2iφδ(t− t′ − 2τ)
]

uA(t
′)

+g(t)g0
[

3eiφδ(t− t′ − τ) + e3iφδ(t− t′ − 3τ)
]

uB(t
′)
}

, (A3)

u̇B(t) = −i∆uB(t)−
1

vg

∫ t

0

dt′
∫ +∞

−∞

dνke
−iνk(t−t′)

{

4g20 [1 + cos (2kd)]uB(t
′)

+g(t′)g0
(

3eikd + 3e−ikd + e3ikd + e−3ikd
)

uA(t
′)
}

= −i∆uB(t)−
2π

vg

∫ t

0

dt′
{

2g20
[

2δ(t− t′) + e2iφδ(t− t′ − 2τ)
]

uB(t
′)

+g(t′)g0
[

3eiφδ(t− t′ − τ) + e3iφδ(t− t′ − 3τ)
]

uA(t
′)
}

, (A4)

where φ = k0d and τ = d/vg. In the last steps of Eqs. (A3) and (A4), we have omitted the time-advanced terms

containing δ(t − t′ + lτ) (l = 1, 2, 3) since they do not contribute to the integral
∫ t

0 (· · · )dt
′. Finally, one can obtain

the time-delayed dynamical equations (10) and (11) by using the sifting property
∫

dtf(t)δ(t − t′) = f(t′) of delta
functions.

Appendix B: Effective Hamiltonian

In this appendix we would like to demonstrate the decoherence-free mechanism of the giant-atom dimer in Fig. 1(a)
by deriving its effective Hamiltonian. We first consider a more general situation where a set of two-level giant atoms
are coupled to a common waveguide with arbitrary arrangements of coupling points. Similar to the models studied
in this paper, one of the atoms (with transition frequency ω0; labeled as atom A) is detuned from the others by ∆
and coupled to the waveguide with time-dependent coupling strength g(t), while the other giant atoms have the same
transition frequency (ω0 +∆) and are coupled to the waveguide with constant coupling strength g0. In this case, the
Hamiltonian in the interaction picture can be written as

V (t) =

∫ +∞

−∞

dk



g(t)
(

e−ikxA1 + e−ikxA2

)

σAa
†
ke

i(∆k+∆)t + g0
∑

j,l

e−ikxjlσja
†
ke

i∆kt +H.c.





=

∫ +∞

−∞

dk







g(t)
[

e−iϕA1ei∆k(t−τA1) + e−iϕA2ei∆k(t−τA2)
]

σAa
†
ke

−i∆t + g0
∑

j,l

e−iϕjlσja
†
ke

i∆k(t−τjl) +H.c.







,

(B1)

where ∆k = ωk − ω0 −∆. xjl is the position of the lth coupling point of atom j, with which we define τjl = xjl/vg
and ϕjl = k0xjl. In the second step of Eq. (B1) we have used the linearized dispersion relation ωk = ω0 + (k − k0)vg.
If we consider a discrete time axis tn = nT with the time interval T short enough compared with the characteristic
time of interaction, the average interaction can be defined as [29, 48]

V̄ =
1

T

∫ tn

tn−1

dsV (s), (B2)

and the effective Hamiltonian of the giant atoms can be given by

Heff =
−i

2T

∫ tn

tn−1

ds

∫ s

tn−1

ds′[V (s), V (s′)]. (B3)

To realize decoherence-free Hamiltonians, it is necessary to fulfill the condition V̄ = 0. Now if we consider the
giant-atom dimer in Fig. 1(a) with cosine-type time-dependent couplings g(t) = ∆g cos (∆t+ θ) for atom A, Eq. (B1)



8

becomes

V (t) =

∫ +∞

−∞

dk
{∆g

2

[

ei∆kt + e−2iφei∆k(t−2τ)
]

(

eiθ + e−2i∆te−iθ
)

σAa
†
k

+ g0

[

e−iφei∆k(t−τ) + e−3iφei∆k(t−3τ)
]

σBa
†
k +H.c.

}

,

(B4)

where we have assumed {xA1, xB1, xA2, xB2} = {0, d, 2d, 3d} such that φ = k0d and τ = d/vg as defined in the main
text. Substituting Eq. (B4) into Eq. (B3) we can obtain the effective Hamiltonian of the giant-atom dimer, i.e.,

Heff,dim =
−i

2T

2π∆gg0
vg

∫ tn

tn−1

ds

∫ s

tn−1

ds′
{[

2eiφ[δ(s′ − s+ τ)− δ(s− s′ + τ)]

+ e3iφ[δ(s′ − s+ 3τ)− δ(s− s′ + 3τ)] + e−iφ[δ(s′ − s− τ)− δ(s− s′ − τ)]
]

eiθσ†
BσA +H.c.

}

=
−iπ∆gg0

vg

[

(2eiφ + e3iφ − e−iφ)eiθσ†
BσA +H.c.

]

,

(B5)

where we have assumed that all the time delays lτ are negligible compared to T (Markovian regime) and have dropped
the high-frequency oscillating terms containing exp(−2i∆t). When φ = (m+1/2)π, the effective Hamiltonian becomes

Heff,dim = Gme
iθσ†

BσA +H.c. (B6)

with Gm = (−1)m2π∆gg0/vg, which shows a complex DFI between atoms A and B. Moreover, one can see from
Eqs. (B2) and (B4) that the average interaction between the giant atoms and the waveguide field vanishes (i.e., V̄ = 0)
in this case.

Appendix C: Dynamical equations of the model in Figs. 1(c) and 1(d)

For the giant-atom trimer in Fig. 1(c), the time-delayed dynamical equations of the atomic excitation amplitudes
can be immediately given by

u̇A = −
4π[g2(t) + g′2(t)]

vg
uA −

4π[g(t)g(t− 2τ) + g′(t)g′(t− 2τ)]

vg
DA,2 −

2πg(t)g0
vg

(3DB,1 +DB,3)

−
2πg(t)g0

vg
(uC + 2DC,2 +DC,4)−

2πg′(t)g0
vg

(3DC,1 +DC,3) , (C1)

u̇B = −i∆uB −
4πg20
vg

(uB +DB,2)−
6πg(t− τ)g0

vg
DA,1 −

2πg(t− 3τ)g0
vg

DA,3

−
2πg20
vg

(3DC,1 +DC,3) , (C2)

u̇C = −i∆uC −
8πg20
vg

(uC +DC,2)−
2πg(t)g0

vg
uA −

4πg(t− 2τ)g0
vg

DA,2 −
2πg(t− 4τ)g0

vg
DA,4

−
6πg′(t− τ)g0

vg
DA,1 −

2πg′(t− 3τ)g0
vg

DA,3 −
2πg20
vg

(3DB,1 +DB,3) . (C3)

which can be simplified to

u̇A = −i
4πg(t)g0

vg
uB − i

4πg′(t)g0
vg

uC , (C4)

u̇B = −i∆uB − i
4πg(t)g0

vg
uA − i

4πg20
vg

uC , (C5)

u̇C = −i∆uC − i
4πg′(t)g0

vg
uA − i

4πg20
vg

uB, (C6)

if φ = π/2 and τ → 0. By assuming cosine-type couplings g(t) = ∆g cos (Ωt+ θ) and g′(t) = ∆g cos (Ωt) for atom A
with Ω ≡ ∆, one finally has

u̇A = −iG0e
iθuB − iG0uC , (C7)

u̇B = −iG0e
−iθuA − 2iΓ0uC , (C8)

u̇C = −iG0uA − 2iΓ0uB, (C9)
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which shows a protected all-to-all interaction with synthetic magnetic flux θ.
As mentioned in the main text, the protected all-to-all interaction among atoms A, B, and C can also be imple-

mented by using only one waveguide, provided that the coupling points of the three atoms are arranged according to
the configuration in Fig. 1(d). In this case, we assume that the coupling points are equally spaced by d′ such that the
phase accumulation (propagation time) of the field between adjacent coupling points becomes φ′ = k0d

′ (τ ′ = d′/vg).
Again, atoms B and C are coupled to the waveguide with identical and constant strength g0, while atom A interacts
with the waveguide with time-dependent strength g(t) at each coupling point. After some algebra, the dynamical
equations of the model can be obtained as

u̇A = −
2πg(t)

vg

[

2g(t)uA + 2g(t− 3τ ′)D′
A,3 + g0

(

2D′
B,1 +D′

B,2 +D′
B,4 +D′

C,1 + 2D′
C,2 +D′

C,5

)]

, (C10)

u̇B = −i∆uB −
2πg0
vg

[

2g0uB + 2g0D
′
B,3 + 2g(t− τ ′)D′

A,1 + g(t− 2τ ′)D′
A,2

+g(t− 4τ ′)D′
A,4 + g0

(

2D′
C,1 +D′

C,2 +D′
C,4

)]

, (C11)

u̇C = −i∆uC −
2πg0
vg

[

2g0uC + 2g0D
′
C,3 + g(t− τ ′)D′

A,1 + 2g(t− 2τ ′)D′
A,2

+g(t− 5τ ′)D′
A,5 + g0

(

2D′
B,1 +D′

B,2 +D′
B,4

)]

, (C12)

where D′
j,l = exp(ilφ′)uj(t− lτ ′)Θ(t− lτ ′). When φ′ = (2m+ 1/3)π and τ → 0, the above three equations become

u̇A = −i
4πg(t)g0

vg
sin

(π

3

)

uB − i
4πg(t)g0

vg
sin

(π

3

)

uC , (C13)

u̇B = −i∆uB − i
4πg(t)g0

vg
sin

(π

3

)

uA − i
4πg20
vg

sin
(π

3

)

uC , (C14)

u̇C = −i∆uC − i
4πg(t)g0

vg
sin

(π

3

)

uA − i
4πg20
vg

sin
(π

3

)

uB, (C15)

which are identical with Eqs. (C4)-(C6) except for the modified effective coupling strengths. By assuming g(t) =
∆g cos(Ωt+ θ) and performing the transformation uj → ujexp(−i∆t), Eqs. (C13)-(C15) become

u̇A ≃ −iG′eiθuB − iG′eiθuC , (C16)

u̇B ≃ −iG′e−iθuA − 2iΓ′uC , (C17)

u̇C ≃ −iG′e−iθuA − 2iΓ′uB, (C18)

where G′ = G0 sin (π/3) = 2πg0∆g sin (π/3)/vg and Γ′ = Γ0 sin (π/3) = 2πg20 sin (π/3)/vg. Clearly, the effective
coupling phase can always be gauged away by the transformation uA → uAexp(iθ). Therefore the Aharonov-Bohm
effect cannot be observed in this case.

Appendix D: Frequency-modulation scheme

In this appendix, we consider that atoms A and B (re-
calling the giant-atom dimer) are coupled to the waveg-
uide in the braided manner, yet with constant and uni-
form couplings (coupling strength g0) instead. While
the transition frequency ω0 of atom A is assumed to be
constant, we consider a frequency modulation for atom
B such that there is a small time-dependent detuning
∆0 + ∆(t) between the two atoms. In this case, the
Hamiltonian of the model can be written as

H ′ = H ′
a +Hw +H ′

int, (D1)

H ′
a = ω0σ

+
Aσ

−
A + [ω0 +∆0 +∆(t)]σ+

Bσ
−
B , (D2)

H ′
int =

∫

dkg0
[(

1 + e2ikd
)

σ+
Aak

+
(

eikd + e3ikd
)

σ+
Bak +H.c.

]

, (D3)

where Hw is identical with that in Eq. (3). With the
single-excitation state of the system given in Eq. (5) and
a similar calculation procedure as shown in the main text,
one can obtain the dynamical equations of the atomic
excitation amplitudes as

u̇A = −Γ0 [2uA + 2DA,2 + 3DB,1 +DB,3] , (D4)

u̇B = −i[∆0 +∆(t)]uB − Γ0 [2uB

+2DB,2 + 3DA,1 +DA,3] , (D5)

where Γ0 = 2πg20/vg and Dj,l = exp(ilφ)uj(t− lτ)Θ(t −
lτ) as defined in the main text. Once again, in the Marko-
vian regime with negligible time delays and if φ = π/2,
the above two equations can be simplified as

u̇A = −2iΓ0uB, (D6)

u̇B = −i[∆0 +∆(t)]uB − 2iΓ0uA. (D7)

Now we consider a cosine-type modulation ∆(t) =
∆′

g cos (Ω
′t+ θ′) (∆′

g, Ω
′, and θ′ are the amplitude, fre-
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quency, and initial phase of the modulation, respectively)
for the detuning and and perform a transformation

uB(t) → uB(t)e
−i∆0te−iχ sin (Ω′t+θ′) (D8)

with χ = ∆′
g/Ω

′, Eqs. (D6) and (D7) become

u̇A = −2iΓ0uBe
−i∆0te−iχ sin (Ω′t+θ′), (D9)

u̇B = −2iΓ0uAe
i∆0teiχ sin (Ω′t+θ′). (D10)

Assuming Ω′ = ∆0 ≫ 2Γ0 and using the Jacobi-Anger
expansion

e−iz sin x =

+∞
∑

−∞

Jq(z)e
−iqx, (D11)

where Jq(z) is the Bessel function of the first kind, one
finally has

u̇A = −2iΓ0J−1(χ)uBe
iθ′

, (D12)

u̇B = −2iΓ0J−1(χ)uAe
−iθ′

. (D13)

Clearly, a complex DFI between atoms A and B can be
created as well in this case.
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