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Abstract 

The ultimate goal of our research is to improve an existing 

speech-based computational model of human speech 
recognition on the task of simulating the role of fine-grained 
phonetic information in human speech processing. As part of 
this work we are investigating articulatory feature classifiers 
that are able to create reliable and accurate transcriptions of 
the articulatory behaviour encoded in the acoustic speech 
signal. Articulatory feature (AF) modelling of speech has 
received a considerable amount of attention in automatic 

speech recognition research. Different approaches have been 
used to build AF classifiers, most notably multi-layer 
perceptrons. Recently, deep neural networks have been 
applied to the task of AF classification. This paper aims to 
improve AF classification by investigating two different 
approaches: 1) investigating the usefulness of a deep 
Convolutional neural network (CNN) for AF classification; 2) 
integrating the Mel filtering operation into the CNN 
architecture. The results showed a remarkable improvement in 

classification accuracy of the CNNs over state-of-the-art AF 
classification results for Dutch, most notably in the minority 
classes. Integrating the Mel filtering operation into the CNN 
architecture did not further improve classification 
performance.  

Index Terms: Articulatory Features, Convolutional Deep 
Neural Networks, Mel Filtering 

1. Introduction 

The ultimate goal of our research is to improve an existing 
speech-based computational model of human speech 
recognition, Fine-Tracker, [1], on the task of simulating the 
role of fine-grained phonetic information in human speech 
processing. As part of this work we are investigating 

articulatory feature classifiers that are able to create reliable 
and accurate transcriptions of the articulatory behaviour 

encoded in the acoustic speech signal. Articulatory features 
(AFs), which are the acoustic correlates of articulatory events, 
have received a considerable amount of attention in automatic 
speech recognition (ASR) research [2-13] and are often 
considered as a solution to the problem of modelling the 
YDULDWLRQ�LQ�VSHHFK�XVLQJ�WKH�VWDQGDUG�µEHDGV-on-a-VWULQJ¶��i.e., 

using phones) paradigm [14]. Research has shown that the use 
of articulatory features (AFs), can help deal with the 
variability in the speech signal and improve the noise 

robustness of automatic speech recognition systems [2][5][6]. 
AFs have been used to improve computational models of 
human word recognition [1], build language independent 
phone recognisers [7] and, more recently, for multi-lingual 
ASR in low-resource settings [8]. Using multiple streams of 

information, that is, both acoustic features and articulatory 
features, has shown to improve speech recognition results for 

both HMM based and DNN based speech recognition systems 
[9][10].  

Different approaches have been investigated for 

incorporating AFs into ASR systems, including support vector 
machines [4], hidden Markov models [2], and artificial neural, 
most notably multi-layer perceptrons, which have been 
successful at extracting AFs for many languages including 
Dutch, Czech, and German [1-7][11].  

Recently, deep neural networks (DNNs) have been 
investigated for the task of AF classification, e.g., [8-13]. For 
instance, Badino and colleagues used DNN autoencoders to 

extract articulatory information, which combined with 
acoustic features showed a reduction in phone error rate in a 
DNN-HMM phone recogniser [12]. In [13], Siniscalchi et al. 
show that DNNs with just five layers led to remarkable 
improvements in AF classification over single hidden layer 
MLPs. Relatedly, deep convolutional neural networks (CNNs) 
have been successfully applied to the problem of phoneme 
recognition [15][16] and speech inversion [9]. In light of the 

success of deep CNNs, the first aim of this study is to 

investigate the application of deep CNNs for AF classification.  
Secondly, in speech recognition, feature design and 

classifier design are often considered separate problems. For 
CNNs, the Mel Filterbank is a popular input feature (e.g., 
[16][17]). However, DNNs have been shown to be able to 
learn how to extract sensible features from data [18]. We 
propose a CNN architecture where the Mel filtering operation 

is included in the network as a convolutional layer, following 
Sainath et al. who showed an improvement in word 

recognition performance [19]. Training the acoustic feature 
extraction along with the rest of the network has the advantage 
that the features can be tuned to the classification task. This 
makes it possible to adjust the Mel Filterbanks to be optimal 
for each AF classifier individually. Furthermore this allows us 
to take a step backwards with regards to prepossessing and 

towards the raw speech signal leading to more plausible input 
for computational modelling tasks.  

To summarise, this paper aims to improve AF 
classification by investigating two different approaches: 1. 
investigating the usefulness of a CNN for AF classification; 2. 
integration of the Mel filtering operation into the CNN 
architecture. In order to investigate the effect of these two 
approaches, the new models are compared with two sets of 
baseline models. The first set of baseline models are the 

original MLPs used in the Fine-Tracker computational model 
reported in [1]. Since DNNs are extremely data hungry, the 

amount of training material needed to train the CNNs is 
substantially larger than that used to train the MLPs in [1]. To 
be able to distinguish a possible effect of the DNN 
architecture from the possible effect of an increase in training 
material, a new set of MLPs with the same specifications as 
those in [1] was trained on the same amount of training 

material as the CNNs. 
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Table 1: Specification of the AFs, their types, and the number 

of hidden and output nodes in the MLPs and DNNs. The 

majority class for each AF is indicated in boldface. 

AFs AF types #hidden 

nodes 

#output 

nodes 

Manner plosive, fricative, nasal, 

glide, liquid, vowel, 
retroflex, silence 

300 8 

Place nil, bilabial, labiodental, 
alveolar, velar, glottal, 
palatal, silence 

200 8 

Voice +voice, -voice 100 2 
Backness front, central, back, nil 200 4 
Height high, mid, low, nil 250 4 

Rounding +round, -round, nil 200 3 
Dur-diphthong long, short, diphthong, 

silence 

200 4 

2. Method 

2.1. Materials 

The speech material used in this study came from the Corpus 

Spoken Dutch (CGN, Corpus Gesproken Nederlands [20]). 

The material consisted of 64 hours of read speech by 324 
unique speakers. The training data was split into a training 
(80% of the full data set), validation (10%) and test set (10%) 
with no overlap in speakers. AF labels were derived by first 
forced aligning the speech data with the phonemic 
transcriptions using a GMM-HMM system implemented in 
Kaldi [21]. Next, for each frame, the phonemic CGN label was 
replaced with the canonical AF types using a look-up table. 

The MLPs reported in [1] were trained on 3410 randomly 
selected utterances from the manually transcribed and 
segmented CGN read speech part (duration: 2h 50m). (Note 
that these sentences were also part of the data used to train and 
test the new baseline MLPs, however the manually checked 
phone segmentations were replaced by the forced alignments, 
in line with the rest of the speech material).  

2.2. Articulatory features 

We used the set of seven articulatory features from [1] as 
shown in Table 1. The names of the AFs are self-explanatory, 
except maybe for dur-diphthong which indicates whether a 
vowel is long, short, or is a diphthong (Dutch has three), and 

backness and height which indicate tongue position during the 
production of vowels. The majority class for each AF is 
indicated in boldface. Nil LQGLFDWHV�µQRW-VSHFLILHG¶��H�J���place 
of articulation is not specified for vowels. 

2.3. Acoustic features 

Three types of acoustic features were investigated. The two 
baseline MLPs were trained using 12 MFCCs and the log 
energy feature, augmented with the first and second 
derivatives resulting in 39 dimensional feature vectors. 
MFCCs were computed using 25 ms analysis windows with a 
5 ms shift. 

The CNN architecture was trained using Mel Filterbank 
features consisting of 64 filters, which were computed using 

25 ms analysis windows with a 5 ms shift. The Mel Fbanks 
were computed according to the ETSI Distributed Speech 
Recognition Standard, with the only difference of using 64 
filters instead of 23 [22].   

For the extended CNN architecture, the Mel filtering 

operation is included in the network as a convolutional layer. 
The application of a Mel filter to the spectrogram  is basically 
a one dimensional convolution over the entire frequency axis. 
The frequency spectral features are created by running the 
pipeline for the Mel Fbanks up to the fast Fourier transform 

(FFT) and stopping before the Mel filtering operation. The 
frequency spectral features were computed using 25 ms 
windows with 5 ms shift.   

2.4. DNN architectures 

The new baseline MLPs were implemented as described in 
[1]. The number of hidden nodes and output nodes for each 
AF are listed in Table 1. Each MLP had one hidden layer with 

a hyperbolic tangent non-linearity and a softmax output layer. 

The input to the MLPs consisted of the 39 dimensional MFCC 
features. Each training sample consisted of 11 consecutive 
frames with the middle frame being the frame to classify. The 
networks were trained using Nesterov momentum with a 
learning rate of 0.01 and momentum of 0.9, a learning rate 
decay of 0.5 per epoch and a batch size of 512. Training was 
stopped when the accuracy on the validation set started to 
drop. The baseline MLP of [1] is referred to as MLP-[1], while 

the baseline MLPs trained with the same amount of training 
material as the CNNs are referred to as Baseline MLPs. 

The CNN architecture was implemented as described in 
[17]. The input features consisted of 11 consecutive frames of 
the Mel filtered signal for a total input size of 64 by 11. The 
architecture consisted of five blocks of two convolutional 
layers followed by a max pooling layer. The last block 
consisted of four fully connected layers with 2048 hidden 

nodes followed by a soft-max output layer. Figure 1 shows a 
visual representation of the architecture of the CNNs. The size 
of the convolutional filters was three by three throughout the 
network. The number of filters increased with depth, the first 
two convolutional layers had 64 filters, the next four layers 
had 128 filters and the last four layers had 256 filters. In the 
extended CNN architecture (referred to as CNN-Mf), the Mel 
filtering operation is implemented as a convolutional layer and 

inserted right after the input layer, see Figure 1. This layer 

consisted of 64 one dimensional filters with the weights preset 
to the filter coefficients of the Mel Fbanks. The input 
consisted of the 257 frequency spectral features for 11 
consecutive frames.  

 

Softmax output layer 

4 x FC layer 2048 

Max pooling 2x3 

2x Convolational layer 3x2, 256 

Max pooling 2x2 

2x Convoluational layer 3x3, 256 

Max pooling 2x2 

2x Convolutational layer 3x3, 128 

Max pooling 1x2 

2x Convolutional layer 3x3, 128 

Max pooling 1x2 

2x Convolutional layer 3x3, 64 

Mel Fbank layer 

Input layer 

 
Figure 1: CNN architecture. The Mel Fbank layer right after 

the input is absent in the case of the basic CNN and present 

in CNN-Mf. 
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and testing. We therefore also investigated the classification 

performance of the AF types separately. The bias towards the 
majority class was largest for the place feature (i.e., nil) and 
the manner feature (see also the chance levels in Table 2; i.e., 
vowel). Figures 2 and 3 show the confusion matrices for place 

and manner of articulation, respectively, with the top panel 

showing the new Baseline MLP results and the bottom panel 
showing the results of the best performing CNN architecture. 
Darker shades indicate higher classification rates; while the 

diagonal indicates correct classification for each AF type.  
The MLP baselines showed the worst bias to the majority 

class, which shows up as a vertical column in the Figures.  For 
place, four of the eight AF types were more often 
misclassified than correctly classified: for glottal and palatal, 

the confusion with the majority class nil was higher than their 
accuracy. While there are still some confusions with the 
majority class for the CNN architectures, the confusion 
matrices show that all classes are more often correctly 

classified than misclassified, with especially the glottal and 
palatal classes showing clear increases in accuracy. Similar 
results were found with both CNN architectures; a decreased 
bias towards the majority class and an increase in 
classification accuracy compared to the MLP baseline for 

every single AF type. 

4. Discussion 

The aim of this study was two-fold: improve articulatory 
feature classification by using deep CNNs, and investigate the 

integration of the Mel filtering operation into the CNN 
architecture, in order to obtain improved AF representations 
for the computational model Fine-Tracker [1]. To this end, 

three types of neural networks were trained. First, a new MLP 
baseline was trained according to the architecture of the 
original MLPs in the Fine-Tracker model [1] in order to 
account for the necessary increase in amount of training 
material to train the deep CNNs. Although using more training 

data typically increases the performance and generalisability 
of DNNs, somewhat unexpectantly, the results showed that 
simply using more training data did not substantially increase 

the AF classification performance of the new MLP baseline 
compared to the MLPs reported in [1]. A possible explanation 
is that the number of hidden nodes for each AF was optimised 
for the dataset used in [1] through tuning experiments. The 
optimal number of hidden nodes may be different for the 

dataset used in the current study. Importantly, these results 
show that an increase in performance of the CNNs over the 
MLPs is due to a change in the architecture of the models.   

Secondly, a deep CNN was implemented following the 

architecture of [17]. Thirdly, an extension to this network was 
implemented in which part of the pre-processing was 
integrated as a convolutional layer. Both CNN architectures 
were a clear improvement over the baseline MLPs. The basic 
CNN gave the best classification results for all AFs with 

relative improvements of up to 18.61% over the baseline. 
While the basic CNN outperformed the extended CNN-Mf, 
the differences were only minor. These differences could be 
due to differences in the initialisation of the network weights. 

Follow-up research will have to answer this question. We 
noticed that the basic CNN architecture was almost at the top 
performance after even the first epoch, further training led to 
only small improvements.  The performance of the CNN-Mf 

architecture was relatively low after the first epoch but 
increased steadily with further training. Increasing the depth of 
the network might simply require a longer training time. Our 

results are competitive with other neural network approaches. 

For instance in [26], frame accuracies of 85.0% and 72.5% are 
reported for manner and place of articulation respectively 
using recurrent neural networks (RNNs). 

Six of our seven AFs had clear majority classes. An 
investigation of the AF classification confusion matrices 

showed that the classifiers were biased towards their majority 
class. This bias was so large for the MLPs that some classes 
were more often misclassified as the majority class than they 

were correctly classified. Interestingly, the best performing 
CNNs showed larger improvements in classification accuracy 
for the minority classes (i.e., the AF types with lower 
frequency of occurrence in the data) than for the majority 
classes. The  bias towards the majority class was substantially 

decreased for the CNNs where all classes were more often 
classified correctly than misclassified, and where confusion 
with the majority class decreased for all AF types. This is an 
important improvement in the quality of the AF classifiers. 

For instance, the majority class for backness, height, rounding 
and dur-diphthong is nil, a label assigned to all consonants and 
silence. While distinguishing between vowels on the one hand 
and consonants and silence on the other is necessary in order 
to be able to distinguish between the different characteristics 

of vowels, the interesting information such as vowel height is 
actually captured by the minority labels. If these classifiers are 
biased towards the majority class they are all fairly accurate at 

detecting consonants but they provide less accurate 
information about the characteristics of the vowels. In this 
sense the CNNs are even more of an improvement than the 
overall accuracy would suggest. 

Recent work using Bi-directional LSTMs has shown the 
potential to reach even higher accuracies than those reported 

here, see e.g., [26]. The bi-directionality of these networks, 
however, excludes AFs derived in this way as plausible 

features for computational modelling as in the backwards 
direction these networks are allowed to use information from 
the future, which is not in line with how human listeners 
process speech. However, we think that CNNs topped with 
unidirectional LSTMs are a promising direction for future 
research, combining the CNNs ability to capture information 

in the frequency spectrum and the LSTMs ability to capture 
temporal dependencies.     

5. Conclusion 

We presented the, to the best of our knowledge, first 
application of CNNs to the task of AF classification. The 
results showed a remarkable increase in AF classification 
accuracy compared to the state-of-the-art for Dutch. The 

improvements are most notably found in an increase in 
accuracy for the minority classes and a reduction of the 
classification bias to the majority classes. Integrating the Mel 
filtering operation into the CNN architecture did not further 
improve classification performance. The next step is to 

integrate the improved AF classifications in the computational 
model of human spoken-word recognition in order to 
investigate the effect of improved AF classification on the 
FRPSXWDWLRQDO�PRGHO¶V�VLPXODWLRQ�SRZHU� 
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