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Abstract. A clause C is syntactically relevant in some clause set N ,
if it occurs in every refutation of N . A clause C is syntactically semi-
relevant, if it occurs in some refutation of N . While syntactic relevance
coincides with satisfiability (if C is syntactically relevant then N \ {C}
is satisfiable), the semantic counterpart for syntactic semi-relevance was
not known so far. Using the new notion of a conflict literal we show that
for independent clause sets N a clause C is syntactically semi-relevant
in the clause set N if and only if it adds to the number of conflict literals
in N . A clause set is independent, if no clause out of the clause set is the
consequence of different clauses from the clause set.

Furthermore, we relate the notion of relevance to that of a minimally
unsatisfiable subset (MUS) of some independent clause set N . In proposi-
tional logic, a clause C is relevant if it occurs in all MUSes of some clause
set N and semi-relevant if it occurs in some MUS. For first-order logic
the characterization needs to be refined with respect to ground instances
of N and C.

1 Introduction

In our previous work [11], we introduced a notion of syntactic relevance based
on refutations while at the same time generalized the completeness result for
resolution by the set-of-support strategy (SOS) [28,33] as its test. Our notion of
syntactic relevance is useful for explaining why a set of clauses is unsatisfiable.
In this paper, we introduce a semantic counterpart of syntactic relevance that
sheds further light on the relationship between a clause out of a clause set and
the potential refutations of this clause set. In the following Sect. 1.1, we first
recall syntactic relevance along with an example and then proceeds to explain it
in terms of our new semantic relevance in the later Sect. 1.2.

1.1 Syntactic Relevance

Given an unsatisfiable set of clauses N , C ∈ N is syntactically relevant if it occurs
in all refutations, it is syntactically semi-relevant if it occurs in some refutation,
otherwise it is called syntactically irrelevant. The clause-based notion of relevance
is useful in relating the contribution of a clause to refutation (goal conjecture).
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This has in particular been shown in the context of product scenarios built out
of construction kits as they are used in the car industry [8,32].

For an illustration of our privous notions and results we now consider the
following unsatisfiable first-order clause set N where Fig. 1 presents a refutation
of N .

N = {(1)A(f(a)) ∨ D(x3),
(2)¬D(x7),
(3)¬B(c,a) ∨ B(b,f(x6)),
(4)B(x1,x2) ∨ C(x1),
(5)¬C(x5),
(6)¬A(x4) ∨ ¬B(b,x4)}

(11) ⊥

(10) C(c)

(8) ¬B(b,f(a))

(6) ¬A(x4) ∨ ¬B(b,x4)(7) A(f(a))

(1) A(f(a)) ∨ D(x3)(2) ¬D(x7)

(9) B(b,f(x6)) ∨ C(c)

(4) B(x1,x2) ∨ C(x1)(3) ¬B(c,a) ∨ B(b,f(x6))

(5) ¬C(x5)

{x4 �→ f(a)}

{x3 �→ x7}

{x6 �→ a}

{x1 �→ c, x2 �→ a}

{x5 �→ c}

Fig. 1. A refutation of N in tree representation

In essence, inferences in an SOS refutation always involve at least one
clause in the SOS and put the resulting clause back in it. So, this refu-
tation is not an SOS refutation from the syntactically semi-relevant clause
(3)¬B(c,a) ∨ B(b,f(x6)), because only the shaded part represents an SOS
refutation starting with this clause. More specifically, there are two infer-
ences ended in (8)¬B(b,f(a)) which violates the condition for an SOS refu-
taiton. Nevertheless, it can be transformed into an SOS refutation where the
clause (3)¬B(c,a) ∨ B(b,f(x6)) is in the SOS [11], Fig. 2. Please note that
N \ {(3)¬B(c, a) ∨ B(b, f(x6))} is still unsatisfiable and classical SOS complete-
ness [33] is not sufficient to guarantee the existence of a refutation with SOS
{(3)¬B(c,a) ∨ B(b,f(x6))} [11].

In addition, N \ {(3)¬B(c, a) ∨ B(b, f(x6))} is also a minimally unsatisfi-
able subset (MUS), where Fig. 3 presents a respective refutation. A MUS is an
unsatisfiable clause set such that removing a clause from this set would ren-
der it satisfiable. Consequently, a MUS-based defined notion of semi-relevance
on the level of the original first-order clauses is not sufficient here. The clause
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(11) ⊥

(10) C(c)

(8’) D(x3) ∨ C(c)

(1) A(f(a)) ∨ D(x3)(7’) ¬A(f(x6) ∨ C(c))

(6) ¬A(x4) ∨ ¬B(b,x4)(9) B(b,f(x6)) ∨ C(c)

(4) B(x1,x2) ∨ C(x1)(3) ¬B(c,a) ∨ B(b,f(x6))

(2) ¬D(x7)

(5) ¬C(x5)
{x3 �→ x7}

{x6 �→ a}

{x4 �→ f(x6)}

{x1 �→ c, x2 �→ a}

{x5 �→ c}

Fig. 2. Semi-relevant clause (3)¬B(c, a) ∨ B(b, f(x6)) in SOS

(3)¬B(c, a) ∨ B(b, f(x6)) should not be disregarded, because it leads to a dif-
ferent grounding of the clauses. For example, in the refutation of Fig. 2 clause
(5)¬C(x5) is necessarily instantiated with {x5 �→ c} where in the refutation of
Fig. 3 it is necessarily instantiated with {x5 �→ b}. Therefore, the two refutations
are different and clause (3)¬B(c, a) ∨ B(b, f(x6)) should be considered semi-
relevant. Nevertheless, in propositional logic it is sufficient to consider MUSes
to explain unsatisfiability on the original clause level, Lemma 18.

(11) ⊥

(14) C(b)

(13) ¬B(b,f(a))

(12) D(x3) ∨ ¬B(b,f(a))

(6) ¬A(x4) ∨ ¬B(b,x4)(1) A(f(a)) ∨ D(x3)

(2) ¬D(x7)

(4) B(x1,x2) ∨ C(x1)

(5) ¬C(x5)

{x3 �→ x7}

{x4 �→ f(a)}

{x1 �→ b, x2 �→ f(a)}

{x5 �→ b}

Fig. 3. A refutation of N without (3)¬B(c, a) ∨ B(b, f(x6))

1.2 Semantic Relevance

We now illustrate how our new notion of relevance works on the previous exam-
ple. First, different from the other works, we propose a way of characterizing
semantic relevance by using our novel concept of a conflict literal. A ground
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literal L is a conflict literal in a clause set N if there are some satisfiable sets of
instances N1 and N2 from N s.t. N1 |= L and N2 |= comp(L). On the one hand,
explaining an unsatisfiable clause set as the absence of a model (as it is usually
defined) is not that helpful since an absence means there is nothing to discuss in
the first place. On the other hand, the contribution of a clause to unsatisfiability
of a clause set can only partially be explained using the concept of a MUS which
we have discussed before. A conflict literal provides a middle ground to explain
the contribution of a clause to unsatisfiability between the absence of a model
and MUSes. It also better reflects our intuition that there is a contradiction (in
the form of two implied simple facts that cannot be both true at the same time)
in an unsatisfiable set of clauses.

From Fig. 1, we can already see that C(c) and its complement ¬C(c) are
conflict literals because

N \ {¬C(x)} |= C(c)
¬C(x) |= ¬C(c)

Also, in addition to that {¬C(x)} is trivially satisfiable, N \ {¬C(x)} is also
satisfiable. Based on the refutation in Fig. 3, ¬C(x) is syntactically relevant due
to N \ {(3)¬B(c, a) ∨ B(b, f(x6))} being a MUS. We will also show that for a
ground MUS any ground literal occurring in it is a conflict literal, Lemma 20.
For our ongoing example it is still possible to identify the conflict literals by
means of ground MUSes by looking into the refutations from Fig. 1 and Fig. 3.
This leads to the following conflict literals for N , see Definition 10:

conflict(N) = {(¬)A(f(a)),
(¬)B(b, f(a)), (¬)B(c, a),
(¬)C(b), (¬)C(c)} ∪

{(¬)D(t) | t is a ground term}
These conflict literals can be identified by pushing the substitutions in the refu-
tations from Fig. 1 and Fig. 3 towards the input clauses. They correspond to two
first-order MUSes M1 and M2. All the ground literals are conflict literals and
all other ground conflict literals can be obtained by grounding the remaining
variables.

M1 = {(5)¬C(c), (2)¬D(x7),
(1)A(f(a)) ∨ D(x3),
(3)¬B(c, a) ∨ B(b, f(a)),
(4)B(c, a) ∨ C(c),
(6)¬A(f((a))) ∨ ¬B(b, f(a))}

M2 = {(5)¬C(b),
(4)B(b, f(a)), (2)¬D(x7),
(1)A(f(a)) ∨ D(x3),
(6)¬A(f(a)) ∨ ¬B(b, f(a))}
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One can see that, despite (3)¬B(c, a) ∨ B(b, f(x6)) is outside of the only MUS
on the first-order level, an instance of it does occur in some ground MUS, take
M1 and an arbitrary grounding of x3 and x7 to the identical term t, and the con-
flict literal (¬)B(c, a) depends on clause (3). Nevertheless, determining conflict
literals is not so obvious in the general case since we do not necessarily know
beforehand which ground terms should substitute the variables in the clauses.
Moreover, there can be an infinite number of such ground MUSes of possibly
unbounded size.

Based on conflict literals, here we introduce a notion of relevance that is
semantic in nature, Definition 16. This will also serve as an alternative char-
acterization to our previous refutation-based syntactic relevance. As redundant
clauses, e.g., tautologies, can also be syntactically semi-relevant, we require inde-
pendent clause sets for the definition of semantic relevance. A clause set is inde-
pendent, if it does not contain clauses with instances implied by satisfiable sets of
instances of different clauses out of the set. Given an unsatisfiable independent
set of clauses N , a clause C is relevant in N if N without C has no conflict
literals, it is semi-relevant if C is necessary to some conflict literals, and it is
irrelevant otherwise.

Similar to our previous work, relevant clauses are the obvious ones because
removing them would make our set satisfiable. On the other hand, irrelevant
clauses can be freely identified once we know the semi-relevant ones. For our
running example, in fact (3)¬B(c, a) ∨ B(b, f(x6)) is semi-relevant because it is
necessary for the conflict literals (¬)C(c) and (¬)B(c, a). More specifically, the
set of conflicts for N \ {¬B(c, a) ∨ B(b, f(x6))} does not include (¬)C(c) and
(¬)B(c, a):

conflict(N \ {¬B(c, a) ∨ B(b, f(x6))}) = {(¬)A(f(a)), (¬)B(b, f(a)), (¬)C(b)}�
{(¬)D(t)|t is a ground term}

These are conflict literals identifiable from M2: Assume that the variables
x3 and x7 in M2 are both grounded by an identical term t. Take some ground
literal, for example, A(f(a)) ∈ conflict(N \ {¬B(c, a) ∨ B(b, f(x6))), and define

N∅ = {C ∈ M2|A(f(a)) �∈ C and ¬A(f(a)) �∈ C}
= {(5)¬C(b), (4)B(b, f(a)), (2)¬D(t)}

NA(f(a)) = {C ∈ M2|A(f(a)) ∈ C}
= {(1)A(f(a)) ∨ D(t)}

N¬A(f(a)) = {C ∈ M2|¬A(f(a)) ∈ C}
= {(6)¬A(f(a)) ∨ ¬B(b, f(a))}

N∅ ∪NA(f(a)) and N∅ ∪N¬A(f(a)) are satisfiable because of the Herbrand model
{B(b, f(a)), A(f(a))} and {B(b, f(a))} respectively. In addition,

N∅ ∪ NA(f(a)) |= A(f(a))
N∅ ∪ N¬A(f(a)) |= ¬A(f(a))
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because A(f(a)) can be acquired using resolution between (1) and (2) for N∅ ∪
NA(f(a)) and ¬A(f(a)) can be acquired using resolution between (4) and (6) for
N∅ ∪ N¬A(f(a)). In a similar manner, we can show that the other ground literals
are also conflict literals.

Related Work: Other works which aim to explain unsatisfiability mostly rely on
the notion of MUSes, mainly in propositional logic [14–16,21,26]. The complexity
of determining whether a clause set is a MUS is Dp-complete for a propositional
clause set with at most three literals per clause and at most three occurrences
of each propositional variable [25]. In [14], syntactically semi-relevant clauses
for propositional logic are called a plain clause set. Using the terminology in
[16], a clause C ∈ N is necessary if it occurs in all MUSes, it is potentially
necessary if it occurs in some MUS, otherwise, it is never necessary. In addition,
a clause is defined to be usable if it occurs in some refutation. This is thus
similar to our syntactic notion of semi-relevance [11]: Given a clause C ∈ N ,
C is usable if-and-only-if C is syntactically semi-relevant. It is also argued that
a usable clause that is not potentially necessary is semantically superfluous. A
different but related notion has also been applied for propositional abduction [7].
The notion of a MUS has also been used for explaining unsatisfiability in first-
order logic [20]. There, it has been defined in a more general setting: If a set
of clauses N is divided into N = N ′ � N ′′ with a non-relaxable clause set N ′

and relaxable clause set N ′′ (which must be satisfiable), a MUS is a subset
M of N ′′ s.t. N ′ � M is unsatisfiable but removing a clause from M would
render it satisfiable. There are also some works in satisfiability modulo theory
(SMT) [5,6,9,35]. A deletion-based approach well-known in propositional logic
has also been used for MUS extraction in SMT [9]. In [5,6], a MUS is extracted by
combining an SMT solver with an arbitrary external propositional core extractor.
Another approach is to construct some graph representing the subformulas of
the problem instance, recursively remove clauses in a depth-first-search manner
and additionally use some heuristics to further improve the runtime[35]. For
the function-free and equality-free first-order fragment, there is a ”decompose-
merge” approach to compute all MUSes [19,34]. In description logic, a notion
that is related to MUS is called minimal axiom set (MinA) usually identified by
the problem of axiom pinpointing [1,4,13,30]. Its computation is usually divided
into two categories: black-box and white-box. A black-box approach picks some
inputs, executes it using some sound and complete reasoner, and then interprets
the output [13]. On the other hand, white-box approach takes some reasoner
and performs an internal modification for it. In this case, Tableau is mostly
used [1,30]. In addition, the concept of a lean kernel has also been used to
approximate the union of such MinA’s [27]. The way relevance is defined is similar
in spirit but usually used for an entailment problem instead of unsatisfiability.
The notion of syntactic semi-relevance has also been applied to description logics
via a translation scheme to first-order logic [10].

The paper is organized as follows. Section 2 fixes the notations, definitions
and existing results in particular from [11]. Section 3 is reserved for our new



214 F. Haifani and C. Weidenbach

notion of semantic relevance. Finally, we conclude our work in Sect. 4 with a
discussion of our results.

2 Preliminaries

We assume a standard first-order language without equality over a signature
Σ = (Ω,Π) where Ω is a non-empty set of functions symbols, Π a non-empty
set of predicate symbols both coming with their respective fixed arities denoted
by the function arity. The set of terms over an infinite set of variables X is
denoted by T (Σ,X ). Atoms, literals, clauses, and clause sets are defined as
usual, e.g., see [24]. We identify a clause with its multiset of literals. Variables
in clauses are universally quantified. Then N denotes a clause set; C,D denote
clauses; L,K denote literals; A,B denote atoms; P,Q,R, T denote predicates;
t, s terms; f, g, h functions; a, b, c, d constants; and x, y, z variables, all possibly
indexed. The complement of a literal is denoted by the function comp. Atoms,
literals, clauses, and clause sets are ground if they do not contain any variable.

An interpretation I with a nonempty domain (or universe) U assigns (i) a
total function fI : Un �→ U for each f ∈ Ω with arity(f) = n and (ii) a relation
P ⊆ Um to every predicate symbol P I ∈ Π with arity(P ) = m. A valuation β
is a function X �→ U where the assignment of some variable x can be modified
to e ∈ U by β[x �→ e]. It is extended to terms as I(β) : T (Σ,X ) �→ U . Seman-
tic entailment |= considers variables in clauses to be universally quantified. The
extension to atoms, literals, disjunctions, clauses and sets of clauses is as fol-
lows: I(β)(P (t1, . . . , tn)) = 1 if (I(β)(t1), . . . , I(β)(tn)) ∈ P I and 0 otherwise;
I(β)(¬φ) = 1 − I(β)(φ); for a disjunction L1 ∨ . . . ∨ Lk, I(β)(L1 ∨ . . . ∨ Lk) =
max(I(β)(L1), . . . , I(β)(Lk)); for a clause C, I(β)(C) = 1 if for all valuations
β = {x1 �→ e1, . . . , xn �→ en} where the xi are the free variables in C there is
a literal L ∈ C such that I(β)(L) = 1; for a set of clauses N = {C1, . . . , Ck},
I(β)({C1, . . . , Ck}) = min(I(β)(C1), . . . , I(β)(Ck)). A set of clauses N is satis-
fiable if there is an I of N such that I(β)(N) = 1, β arbitrary, (in this case I is
called a model of N : I |= N) otherwise N is called unsatisfiable.

Substitutions σ, τ are total mappings from variables to terms, where
dom(σ) := {x | xσ �= x} is finite and codom(σ) := {t | xσ = t, x ∈ dom(σ)}.
A renaming σ is a bijective substitution. The application of substitutions is
extended to literals, clauses, and sets/sequences of such objects in the usual
way. If C ′ = Cσ for some substitution σ, then C ′ is an instance of C. A unifier
σ for a set of terms t1, . . . , tk satisfies tiσ = tjσ for all 1 ≤ i, j ≤ k and it is called
a most general unifier if for any unifier σ′ of t1, . . . , tk there is a substitution τ
s.t. σ′ = στ . The function mgu denotes the most general unifier of two terms,
atoms, literals if it exists. We assume that any mgu of two terms or literals does
not introduce any fresh variables and is idempotent.

The resolution calculus consists of two inference rules: Resolution and Fac-
toring [28,29]. The rules operate on a state (N,S) where the initial state for
a classical resolution refutation from a clause set N is (∅, N) and for an SOS
(Set Of Support) refutation with clause set N and initial SOS clause set S the
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initial state is (N,S). We describe the rules in the form of abstract rewrite rules
operating on states (N,S). As usual we assume for the resolution rule that the
involved clauses are variable disjoint. This can always be achieved by applying
renamings into fresh variables.

Resolution (N,S � {C ∨ K}) ⇒RES (N,S ∪ {C ∨ K, (D ∨ C)σ})
provided (D ∨ L) ∈ (N ∪ S) and σ = mgu(L, comp(K))

Factoring (N,S � {C ∨ L ∨ K}) ⇒RES (N,S ∪ {C ∨ L ∨ K} ∪ {(C ∨ L)σ})
provided σ = mgu(L,K)

The clause (D∨C)σ is the result of a Resolution inference between its parents
and called a resolvent. The clause (C ∨L)σ is the result of a Factoring inference
of its parent and called a factor. A sequence of rule applications (N,S) ⇒∗

RES

(N,S′) is called a resolution derivation. It is called an SOS resolution derivation
if N �= ∅. In case ⊥ ∈ S′ it is a called a (SOS) resolution refutation. If for two
clauses C,D there exists a substitution σ such that Cσ ⊆ D, then we say that
C subsumes D. In this case C |= D.

Theorem 1 (Soundness and Refutational Completeness of (SOS) Res-
olution [11,28,33]). Resolution is sound and refutationally complete [28]. If for
some clause set N and initial SOS S, N is satisfiable and N ∪S is unsatisfiable,
then there is a (SOS) resolution derivation of ⊥ from (N,S) [33]. If for some
clause set N and clause C ∈ N there exists a resolution refutation from N using
C, then there is an SOS derivation of ⊥ from (N \ {C}, {C}) [11].

Please note that the recent SOS completeness result of [11] generalizes the
classical SOS completeness result by [33].

Theorem 2 (Deductive Completeness of Resolution [17,22]). Given a
set of clauses N and a clause D, if N |= D, then there is a resolution derivation
of some clause C from (∅, N) such that C subsumes D.

For deductions we require every clause to be used exactly once, so deductions
always have a tree form.

Definition 3 (Deduction [11]). A deduction πN = [C1, . . . , Cn] of a clause
Cn from some clause set N is a finite sequence of clauses such that for each Ci

the following holds:

1.1 Ci is a renamed, variable-fresh version of a clause in N , or
1.2 there is a clause Cj ∈ πN , j < i s.t. Ci is the result of a Factoring inference

from Cj, or
1.3 there are clauses Cj , Ck ∈ πN , j < k < i s.t. Ci is the result of a Resolution

inference from Cj and Ck,

and for each Ci ∈ πN , i < n:
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2.1 there exists exactly one factor Cj of Ci with j > i, or
2.2 there exists exactly one Cj and Ck such that Ck is a resolvent of Ci and Cj

and i, j < k.

We omit the subscript N in πN if the context is clear.

A deduction π′ of some clause C ∈ π, where π, π′ are deductions from N is a
subdeduction of π if π′ ⊆ π, where the subset relation is overloaded for sequences.
A deduction πN = [C1, . . . , Cn−1,⊥] is called a refutation. While the conditions
3.1.1, 3.1.2, and 3.1.3 are sufficient to represent a resolution derivation, the
conditions 3.2.1 and 3.2.2 force deductions to be minimal with respect to Cn.

Note that variable renamings are only applied to clauses from N such that all
clauses from N that are introduced in the deduction are variable disjoint. Also
recall that our notion of a deduction implies a tree structure. Both assumptions
together admit the existence of overall grounding substitutions for a deduction.

Definition 4 (Overall Substitution of a Deduction [11]). Given a deduc-
tion π of a clause Cn the overall substitution τπ,i of Ci ∈ π is recursively defined
by

1 if Ci is a factor of Cj with j < i and mgu σ, then τπ,i = τπ,j ◦ σ,
2 if Ci is a resolvent of Cj and Ck with j < k < i and mgu σ, then τπ,i =

(τπ,j ◦ τπ,k) ◦ σ,
3 if Ci is an initial clause, then τπ,i = ∅,
and the overall substitution of the deduction is τπ = τπ,n. We omit the subscript
π if the context is clear.

Overall substitutions are well-defined because clauses introduced from N into
the deduction are variable disjoint and each clause is used exactly once in the
deduction. A grounding of an overall substitution τ of some deduction π is a
substitution τδ such that codom(τδ) only contains ground terms and dom(δ) is
exactly the variables from codom(τ).

Definition 5 (SOS Deduction [11]). A deduction πN∪S = [C1, . . . , Cn] is
called an SOS deduction with SOS S, if the derivation (N,S0) ⇒∗

RES (N,Sm) is
an SOS derivation where C ′

1, . . . , C
′
m is the subsequence from [C1, . . . , Cn] with

input clauses removed, S0 = S, and Si+1 = Si ∪ C ′
i+1.

Oftentimes, it is of particular interest to identify the set of clauses that is
minimally unsatisfiable, i.e., removing a clause would make it satisfiable. The
earliest mention of such a notion is in [26] where it is introduced via a decision
problem. Minimally unsatisfiable sets (MUS) have also gained a lot of attention
in practice.

Definition 6 (Minimal Unsatisfiable Subset (MUS) [20]). Given an
unsatisfiable set of clauses N , the subset N ′ ⊆ N is a minimally unsatisfiable
subset (MUS) of N if any strict subset of N ′ is satisfiable.
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In our previous work, we defined a notion of relevance based on how clauses
may contribute to unsatisfiability by means of refutations.

Definition 7 (Syntactic Relevance [11]). Given an unsatisfiable set of
clauses N , a clause C ∈ N is syntactically relevant if for all refutations π
of N it holds that C ∈ π. A clause C ∈ N is syntactically semi-relevant if there
exists a refutation π of N in which C ∈ π. A clause C ∈ N is syntactically
irrelevant if there is no refutation π of N in which C ∈ π.

Syntactic relevance can be identified by using the resolution calculus. A clause
C ∈ N is syntactically semi-relevant if and only if there exists an SOS refutation
from SOS {C} and N \ {C}.

Theorem 8 (Syntactic Relevance [11]). Given an unsatisfiable set of clauses
N , the clause C ∈ N is

1. syntactically relevant if and only if N \ {C} is satisfiable,
2. syntactically semi-relevant if and only if (N \ {C}, {C}) ⇒∗

RES (N \ {C}, S ∪
{⊥}).

An open problem from [11] is the question of a semantic counterpart to
syntactic semi-relevance. Without any further properties of the clause set N , the
notion of semi-relevance can lead to unintuitive results. For example, a tautology
could be semi-relevant. Given a refutation showing semi-relevance of some clause
C, where, in the refutation, some unary predicate P occurs, the refutation can be
immediately extended using the tautology P (x) ∨ ¬P (x). We may additionally
stumble upon a problem in the case where our set of clauses contains a subsumed
clause. For example, if both clauses Q(a) and Q(x) exist in a clause set, they
may be both semi-relevant, although from an intuition point of view one may
only want to consider Q(x) to be semi-relevant, or even relevant. On the other
hand, in some cases, redundant clauses are welcome as semi-relevant clauses.

Example 9 (Redundant Clauses). Given a set of clauses

N = {Q(x), Q(a), ¬Q(a) ∨ P (b), ¬P (b), P (x) ∨ ¬P (x)},

all clauses are syntactically semi-relevant while ¬Q(a) ∨ P (b) and ¬P (b) are
syntactically relevant. However, if we disregard the redundant clauses Q(a) and
P (x)∨¬P (x), then the clause Q(x) becomes a relevant clause. Therefore, for our
semantic notion of relevance we will only consider clause sets without clauses
implied by other, different clauses from the clause set.

3 Semantic Relevance

Except for the trivially false clause ⊥, the simplest form of a contradiction is
two unit clauses K and L such that K and comp(L) are unifiable. They will
be called conflict literals, below. Then the idea for our semantic definition of
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semi-relevance is to consider clauses that contribute to the number of conflict
literals of a clause set. Furthermore, we will show that in any MUS every literal
is a conflict literal.

While conflict literals could straightforwardly be defined in propositional
logic having the above idea in mind, in first-order logic we have always to relate
properties of literals, clauses to their respective ground instances. This is simply
due to the fact that unsatisfiability of a first-order clause set is given by unsat-
isfiability of a finite set of ground instances from this set. Eventually, we will
show that for independent clause sets a clause is semi-relevant, if it contributes
to the number of conflict literals.

Definition 10 (Conflict Literal). Given a set of clauses N over some sig-
nature Σ, a ground literal L is a conflict literal in a clause set N if there are
two satisfiable clause sets N1, N2 such that

1. the clauses in N1, N2 are instances of clauses from N and
2. N1 |= L and N2 |= comp(L).

conflict(N) denotes the set of conflict literals in N .

Our notion of a conflict literal generalizes the respective notion in [12] defined
for propositional logic.

Example 11 (Conflict Literal). Given an unsatisfiable set of clauses over the
signature Σ = ({a, b, c, d, f}, {P}):

N = {¬P (f(a, x)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(y, b))}

Consider the following satisfiable sets of instances from N

N1 = {¬P (f(a, d)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(a, b))}
N2 = {¬P (f(a, b)) ∨ ¬P (f(c, y)), P (f(x, d)) ∨ P (f(c, b))}

P (f(a, b)) is a conflict literal because N1 |= P (f(a, b)) and N2 |= ¬P (f(a, b)).

We can show that N1 |= P (f(a, b)) because the resolution calculus is sound.
Resolving both literals of ¬P (f(a, d)) ∨ ¬P (f(c, y)) with the first literal of the
clause P (f(x, d)) ∨ P (f(a, b)) results in the clause P (f(a, b)) ∨ P (f(a, b)) which
can be factorized to P (f(a, b)). Moreover, N1 is satisfiable: An interpretation I
with I(P (f(a, b))) = 1 and I(P (t)) = 0 for all terms t �= f(a, b) satisfies N1 and
P (f(a, b)). N2 |= ¬P (f(a, b)) can also be shown in the same manner.

Example 12 (Conflict Literal). Given

N = {¬R(z), R(c) ∨ P (a, y),
Q(a),¬Q(x) ∨ P (x, b),
¬P (a, b)}
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its conflict literals are

conflict(N) = {P (a, b),¬P (a, b),
R(c),¬R(c),
Q(a),¬Q(a)}

In addition to a refutation, the existence of a conflict literal is another way
to characterize unsatisfiability of a clause set. Obviously, conflict literals always
come in pairs.

Lemma 13 (Minimal Unsatisfiable Ground Clause Sets and Conflict
Literals). If N is a minimally unsatisfiable set of ground clauses (MUS) then
any literal occurring in N is a conflict literal.

Proof Take any ground atom A such that A occurs in N . N can be split into
three disjoint clause sets:

N∅ = {C ∈ N |A �∈ C and ¬A �∈ C}
NA = {C ∈ N |A ∈ C}

N¬A = {C ∈ N |¬A ∈ C}
Since N is minimal, NA and N¬A are nonempty, because otherwise A is a pure
literal and its corresponding clauses can be removed from N preserving unsatis-
fiability. Obviously N∅ ∪ NA must be satisfiable, for otherwise the initial choice
of N was not minimal. However, N∅ ∪ N ′

A, where N ′
A results from all NA by

deleting all A literals from the clauses of NA, must be unsatisfiable, for oth-
erwise we can construct a satisfying interpretation for N . Thus, every model
of N∅ ∪ NA must also be a model of A: N∅ ∪ NA |= A. Using the same argu-
ment, N∅ ∪ N¬A is satisfiable and N∅ ∪ N¬A |= ¬A. Therefore, A is a conflict
literal. ��
Lemma 14 (Conflict Literals and Unsatisfiability). Given a set of clauses
N , conflict(N) �= ∅ if and only if N is unsatisfiable.

Proof “⇒” Let L ∈ conflict(N). By definition, there are two satisfiable subsets
of instances N1, N2 from N such that N1 |= L and N2 |= comp(L). Towards
contradiction, suppose N is satisfiable. Then, there exists an interpretation I
with I |= N and therefore it holds that I |= N1 and I |= N2. Furthermore, by
definition of a conflict literal, I |= L and I |= comp(L), a contradiction.
“⇐” Given an unsatisfiable clause set N , we show that there is a conflict literal
in N . Since N is unsatisfiable, by compactness of first-order logic there is a
minimal set of ground instances N ′ from N that is also unsatisfiable. The rest
follows from Lemma 13. ��

Intuitively, a clause that is implied by other clauses is redundant and can be
removed from the set of clauses. However, then applying a calculus generating
new clauses, this intuitive notion of redundancy may destroy completeness [2,23].
Still, the detection and elimination of redundant clauses, compatible or incom-
patible with completeness, is an important concept to the efficiency of automatic
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reasoning, e.g., in propositional logic [3,18]. It is also apparently important when
we try to define a semantic notion of relevance. For example, a syntactically rele-
vant clause would step down to be syntactically semi-relevant if it is duplicated.
So, in order to have a semantically robust notion of relevance in first-order logic,
we need to use a strong notion of (in)dependency.

Definition 15 (Dependency). A clause C is dependent in N if there exists
a satisfiable set of instances N ′ from N \ {C} such that N ′ |= Cσ for some σ. If
C is not dependent in N it is independent in N . A clause set N is independent
if it does not contain any dependent clauses.

A subsumed clause is obviously a dependent clause. However, there could
also be non-subsumed clauses that are dependent. For example, in the set of
clauses

N = {P (a, y), P (x, b),¬P (a, b)}
P (x, b) is dependent because P (a, b) is an instance of P (x, b) and it is entailed
by P (a, y). Now, we are ready to define the semantic notion of relevance based
on conflict literals and dependency.

In some way, our notion of independence of clause sets is a strong assumption
because there might be non-redundant clauses that are considered dependent.
While this holds by design in some scenarios (e.g. the mentioned car scenario)
in others it is violated by design. In addition, one question that may arise is how
to acquire an independent clause set out of a dependent one. For example, in a
scenario where some theory is developed out of some independent axioms. Then
of course proven lemmas, theorems are dependent with respect to the axioms. In
this case one could trace out of the proofs the dependency relations between the
intermediate lemmas, theorems and the axioms and this way calculate indepen-
dent clause sets with respect to some proven conjecture. This would then lead
again to independent (sub) clause sets with respect to the proven conjecture
where our results are applicable.

Definition 16 (Semantic Relevance). Given an unsatisfiable set of inde-
pendent clauses N , a clause C ∈ N is

1. relevant, if conflict(N \ {C}) = ∅
2. semi-relevant, if conflict(N \ {C}) � conflict(N)
3. irrelevant, if conflict(N \ {C}) = conflict(N)

Example 17 (Dependent Clauses in Propositional Logic).

N = {P,¬P,

¬P ∨ Q,¬R ∨ P,

¬Q ∨ R}
The existence of dependent clauses ¬P ∨ Q and ¬R ∨ P causes an independent
clause ¬Q ∨ R to be a semi-relevant clause. However, ¬Q ∨ R is not inside the
only MUS {P,¬P}.
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Very often, concepts from propositional logic can be generalized to first-order
logic. However, in the context of relevance this is not the case. Our notion of
(semi-)relevance can also be characterized by MUSes in propositional logic, but
not in first-order logic without considering instances of clauses.

Lemma 18 (Propositional Clause Sets and Relevance). Given an inde-
pendent unsatisfiable set of propositional clauses N , the relevant clauses coincide
with the intersection of all MUSes and the semi-relevant clauses coincide with
the union of all MUSes.

Proof For the case of relevance: Given C ∈ N , C is relevant if and only if
conflict(N \ {C}) = ∅ if and only if N \ {C} is satisfiable by Lemma 14 if and
only if C is contained in all MUSes N ′ of N .

For the case of semi-relevance: Given C ∈ N , we show C is semi-relevant if and
only if C is in some MUS N ′ ⊆ N .

“⇒”: Towards contradiction, suppose there is a semi-relevant clause C that is
not in any MUS. By definition of semi-relevant clauses, there are satisfiable
sets N1 and N2 and a propositional variable P such that N1 |= P , N2 |= ¬P
but the MUS M out of N1 ∪ N2 does not contain C. By Theorem 2 there
exist deductions π1 and π2 of P and ¬P from N1 and N2, respectively. Since a
deduction is connected, some clauses in M and (N1 ∪ N2) \ M must have some
complementary propositional literals Q and ¬Q, respectively to be eventually
resolved upon in either π1 or π2. At least one of these deductions must contain
this resolution step between a clause from M and one from (N1 ∪ N2) \ M . Now
by Lemma 13 the literals Q and ¬Q are conflict literals in M . Thus, there are
satisfiable subsets from M which entail Q and ¬Q, respectively. Therefore, the
clause containing Q or ¬Q in (N1 ∪ N2) \ M is dependent contradicting the
assumption that N does not contain dependent clauses.

“⇐”: If C is in some MUS N ′ ⊆ N , then, N ′ \ {C} is satisfiable. So invoking
Lemma 13 any literal L ∈ C is a conflict literal in N ′. In addition, L is not a
conflict literal in N \ {C} for otherwise C is dependent: Suppose L is a conflict
literal in N \ {C} then, by definition, there is satisfiable subset from N \ {C}
which entails L. However, since L |= C, it means C is dependent. ��

The next example demonstrates that the notion of a MUS cannot be carried
over straightforwardly to the level of clauses with variables to characterize semi-
relevant clauses in first-order logic.

Example 19 (First-Order Relevant Clauses). Given a set of clauses

N = {P (a, y),¬P (a, d) ∨ Q(b, d),
¬P (x, c),¬Q(b, d) ∨ P (d, c), Q(z, e)}

over Σ = ({a, b, c, d, e}, {P,Q}). The conflict literals are

{(¬)P (a, c), (¬)Q(b, d), (¬)P (d, c), (¬)P (a, d)}.
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The clause P (a, y) is relevant. The literals entailed by some satisfiable instances
N ′ from N such that P (a, y) �∈ N ′ are {¬Q(b, d)} � {¬P (t, c),¬Q(t, e) |
t ∈ {a, b, c, d, e}} and no two of them are complementary. Thus, conflict(N \
{P (a, y)}) = ∅. The clause ¬P (a, d) ∨ Q(b, d) is semi-relevant: Q(b, d) �∈
conflict(N \ {¬P (a, d) ∨ Q(b, d)}). The clause Q(z, e) is irrelevant.

With respect to a MUS, the clause ¬P (a, d) ∨ Q(b, d) from Example 19 is
irrelevant. The only MUS from N is {P (a, y),¬P (x, c)} with grounding substi-
tution {x �→ a, y �→ c}. However, in first-order logic we should not ignore the
clauses ¬P (a, d) ∨ Q(b, d), ¬Q(b, d) ∨ P (d, c), because together with the clauses
P (a, y),¬P (x, c) they result in a different grounding {x �→ d, y �→ d}. So, we
argue that MUS-based (semi-)relevance on the original clause set is not suffi-
cient to characterize the way clauses are used to derive a contradiction for full
first-order logic. However, it does so if ground instances are considered.

Lemma 20 (Relevance and MUSes on First-Order Clauses). Given an
unsatisfiable set of independent first-order clauses N . Then a clause C is relevant
in N , if all MUSes of unsatisfiable sets of ground instances from N contain a
ground instance of C. The clause C is semi-relevant in N , if there exists a
MUS of an unsatisfiable set of ground instances from N that contains a ground
instance of C.

Proof (Relevance) Since all ground instances from N contain a ground instance
of C, then, if N \ {C} contains a ground MUS from N it means that some
ground instance of C is entailed by N \ {C}. This violates our assumption that
N contains no dependent clauses. Thus, N\{C} contains no ground MUSes. This
further means that N \ {C} is satisfiable by the compactness theorem of first-
order logic. By Lemma 14 it therefore has no conflict literals and C is relevant.
(Semi-Relevance) Take some ground MUS M containing some ground instance
C ′ of C. Due to Lemma 13, any literal P ∈ C ′ is a conflict literal in M and
consequently also in N . In addition, P is not a conflict literal in N \ {C} for
otherwise C is dependent: Suppose P is a conflict literal in N \ {C}. Then,
by definition, there is some satisfiable instances from N \ {C} which entails P .
However, since P |= C ′, it means C is dependent. In conclusion, P ∈ conflict(N)\
conflict(N \ {C}) and thus C is semi-relevant. ��
In Example 19, we could identify two ground MUSes:

{P (a, c),¬P (a, c)}
and

{P (a, d),¬P (a, d) ∨ Q(b, d),¬P (d, c),¬Q(b, d) ∨ P (d, c)}
Our notion of relevance is thus alternatively explainable using Lemma 20: P (a, y)
is relevant because every MUS contains an instance of it (P (a, c) and P (a, d)).
The clause ¬P (a, d)∨Q(b, d) is semi-relevant as it is immediately contained in the
second MUS. The clause Q(z, e) is irrelevant since no MUS contains any instance
of Q(z, e). On the other hand, we may still encounter the case where a dependent
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clause is actually categorized as syntactically semi-relevant. Therefore, by using
the dependency notion while at the same time not restricting a refutation to only
use MUS as the input set, we can show that (semi-)relevance actually coincides
with the syntactic (semi-)relevance. So, the semi-decidability result also follows.

Theorem 21 (Semantic versus Syntactic Relevance). Given an inde-
pendent, unsatisfiable set of clauses N in first-order logic, then (semi)-relevant
clauses coincide with syntactically (semi)-relevant clauses.

Proof We show the following: if N contains no dependent clause, C is (semi-)
relevant if and only if C is syntactically (semi-)relevant. The case for relevant
clauses is a consequence of Lemma 14. Now, we show it for semi-relevant clauses.
“⇒” Let L be a ground literal with L ∈ conflict(N) \ conflict(N \ {C}). We
can construct a refutation using C. There are two satisfiable subsets of instances
N1, N2 from N such that N1 |= L and N2 |= comp(L) where N1 ∪N2 contains at
least one instance of C, for otherwise L �∈ conflict(N)\ conflict(N \{C}). By the
deductive completeness, Theorem 2, and the fact that L and comp(L) are ground
literals, there are two variable disjoint deductions π1 and π2 of some literals
K1 and K2 such that K1σ = L and K2σ = comp(L) for some grounding σ.
Obviously, the two variable disjoint deductions can be combined to a refutation
π1.π2.⊥ containing C. Thus, C is syntactically semi-relevant in N .

“⇐” Given an SOS refutation π using C, i.e., an SOS refutation π from
N \ {C} with SOS {C} and overall grounding substitution σ, we show that C is
semantically semi-relevant. Let N ′ be the variable renamed versions of clauses
from N \ {C} used in the refutation and S′ be the renamed copies of C used
in the refutation. First, we show that N ′σ is satisfiable. Towards contradiction,
suppose N ′σ is unsatisfiable and let Mσ ⊆ N ′σ be its MUS. Since π is connected,
some clauses in Mσ and S′σ ∪ (N ′σ \ Mσ) contains literals L and comp(L)
respectively. By Lemma 13, L and comp(L) are also conflict literals in Mσ. So,
by Definition 15, the clause containing comp(L) in S′σ∪(N ′σ\Mσ) is dependent
violating our initial assumption.

Now, since N ′σ is satisfiable, there is a ground MUS from (N ′ ∪ S′)σ con-
taining some C ′σ ∈ Sσ. Due to Lemma 13, any L ∈ C ′σ is a conflict literal
in N ′ (and consequently also in N). In addition, L is not a conflict literal in
N \ {C} for otherwise C is dependent: Suppose L is a conflict literal in N \ {C}.
Then, by definition, there is some satisfiable instances from N \ {C} which
entails L. However, since L |= C ′σ, it means C is dependent. In conclusion,
L ∈ conflict(N) \ conflict(N \ {C}) and thus C is semi-relevant. ��

When we have a ground MUS, identifification of conflict literals is obvious
because all of the literals in it are. However, testing if a literal L is a conflict
literal is not trivial, in general. One can try enumerating all MUSes and check if
L is contained in some. This definitely works for propositional logic despite being
computationally expensive. In first-order logic, this is problematic because there
could potentially be an infinite number of MUSes and determining a MUS is not
even semi-decidable, in general. The following lemma provides a semi-decidable
test using the SOS strategy.
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Lemma 22 Given a ground literal L and an unsatisfiable set of clauses N with
no dependent clauses, L is a conflict literal if and only if there is an SOS refu-
tation from (N, {L ∨ comp(L)}).

Proof “⇒” By the deductive completeness, Theorem 2, and the fact that L
and comp(L) are ground literals, there are two variable disjoint deductions π1

and π2 of some literals K1 and K2 such that K1σ = L and K2σ = comp(L)
for some grounding σ. Obviously, the two variable disjoint deductions can be
combined to a refutation π1.π2.⊥. We can then construct a refutation π1.π2.(L∨
¬L).(comp(L)).⊥ where K2 is resolved with L ∨ comp(L) to get comp(L) which
will be resolved with K1 from π1 to get ⊥. By Theorem 7, it means there is an
SOS refutation from (N, {L ∨ ¬L})

“⇐” Given an SOS refutation π using {L∨comp(L)}, i.e., an SOS refutation
π from N \{{L∨ comp(L)}} with SOS {{L∨ comp(L)}}, Let N ′ be the variable
renamed versions of clauses from N and overall grounding substitution σ. N ′σ
is a MUS for otherwise there is a dependent clause: Suppose N ′σ \ M is an
MUS where M is non-empty. Since π is connected, some clause D′ in M must
be resolved with some D ∈ N ′σ upon some literal K. Thus, by Lemma 13, K
and comp(K) are also conflict literals in N ′σ \ M . So, by Definition 15, the
clause subsuming D′ in N is dependent violating our initial assumption. Finally,
because L occurs in N ′σ and N ′σ is an MUS, by Lemma 13, L is a conflict
literal. ��

4 Conclusion

The main results of this paper are: (i) a semantic notion of relevance based on the
existence of conflict literals, Definition 10, and Definition 16, (ii) its relationship
to syntactic relevance, namely, both notions coincide for independent clause
sets, Theorem 21, and (iii) the relationship of semantic relevance to minimal
unsatisfiable sets, MUSes, both for propositional logic, Lemma 18, and first-
order logic, Lemma 20.

The semantic relevance notion sheds some further light on the way clauses
may contribute to a refutation beyond what can be offered by the notion of
MUSes. While the syntactic notion of semi-relevance also considers redundant
clauses such as tautologies to be semi-relevant, the semantic notion rules out
redundant clauses. Here, the notions only coincide for independent clause sets.
Still, the syntactic notion is “easier” to test and there are applications where
clause sets do not contain implied clauses by construction. Hence, the syntactic-
relevance coincides with semantic relevance. For example, first-order toolbox
formalizations have this property because every tool is formalized by its own
distinct predicate. Still a goal, refutation, can be reached by the use of different
tools. The classic example is the toolbox for car/truck/tractor building [8,31].
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