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Neural circuits can produce similar activity patterns from vastly different combinations
of channel and synaptic conductances. These conductances are tuned for specific
activity patterns but might also reflect additional constraints, such as metabolic cost or
robustness to perturbations. How do such constraints influence the range of permissible
conductances? Here we investigate how metabolic cost affects the parameters of neural
circuits with similar activity in a model of the pyloric network of the crab Cancer
borealis. We present a machine learning method that can identify a range of network
models that generate activity patterns matching experimental data and find that neural
circuits can consume largely different amounts of energy despite similar circuit activity.
Furthermore, a reduced but still significant range of circuit parameters gives rise to
energy-efficient circuits. We then examine the space of parameters of energy-efficient
circuits and identify potential tuning strategies for low metabolic cost. Finally, we
investigate the interaction between metabolic cost and temperature robustness. We show
that metabolic cost can vary across temperatures but that robustness to temperature
changes does not necessarily incur an increased metabolic cost. Our analyses show that
despite metabolic efficiency and temperature robustness constraining circuit parameters,
neural systems can generate functional, efficient, and robust network activity with
widely disparate sets of conductances.

energy efficiency | neuronal variability | neural dynamics | simulation-based inference |
Bayesian inference

Neural activity arises from the interplay of mechanisms at multiple levels, including single-
neuron and network mechanisms. Several experimental and theoretical studies have found
that neural systems can produce similar activity from vastly different membrane and
synaptic conductances (1–6), a property sometimes referred to as parameter degeneracy
(7, 8). Such parameter degeneracy has been argued to be a prerequisite for natural selection
(7) and translates into potential mechanisms of compensation for perturbations of the
systems’ parameters (3, 5, 9–14). However, in addition to a specific target activity, neural
systems are likely subject to additional constraints such as the requirement to be energy
efficient (15–17). In order to understand experimentally observed variability and probe
potential compensation mechanisms in functioning neural systems, it is thus crucial
to characterize the extent of the systems’ parameter degeneracy under such additional
constraints.

Neuronal activity accounts for the majority of the energy consumed by the brain
(18–20). Energy is stored in the ionic gradients across the cell membrane and consumed
mostly by action potentials and synaptic mechanisms. Maintaining the ionic gradients
requires the action of ion pumps, which consume ATP (15, 21). Previous work has inves-
tigated the metabolic efficiency in small neural systems, often at the single-neuron level and
with few ion channels (often sodium, potassium, and leak) (15, 22, 23). In these studies,
it has been demonstrated that energy consumption of single neurons can be reduced by
tuning maximal conductances or time constants of gating variables, while maintaining
electrophysiological characteristics, e.g., spike width. However, questions regarding energy
efficiency of neural systems remain: First, it is unclear whether previous findings in single
neurons (24–26) extrapolate to neural circuits with a large diversity of membrane and
synaptic currents (12, 21, 27). Second, the question of how strongly metabolic constraints
impact parameter degeneracy remains unaddressed: are energy efficient solutions confined
in parameter space, or can disparate network parameters generate energy efficient activity?
Last, metabolic cost is only one of many constraints under which neural circuits operate,
and it is often unknown whether energy efficiency trades off with other constraints [for a
study of how energy efficiency trades off with temperature robustness in a single neuron
model of the grasshopper, see Roemschied et al. (28)].

Here we investigate how energy efficiency constrains the parameter degeneracy in
the pyloric network in the stomatogastric ganglion of the crab Cancer borealis (29, 30),
a canonical example of a neural system with parameter degeneracy (5). The pyloric
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Fig. 1. Similar activity with different energy consumption. (A) Computational model of the pyloric network consisting of three model neurons (AB/PD, LP,
and PY) and seven synapses. (B) Two model configurations with similar circuit activity (traces from top to bottom, AB/PD, LP, and PY) despite different circuit
parameters (parameter values not plotted). (Scale bars, 50 mV.) (C) Close-up of two spikes in the PY neural activity shown in B. (D) Total energy consumption
divided by the duration of the simulation (10 s) for the traces shown in B. The left circuit has threefold lower metabolic cost than the right circuit. (E) Consumed
energy at each time point. (Scale bar, 100 μJ/s.) (F) Energy consumed by each of the ion currents during the two spikes shown in C (stacked vertically).

network produces a triphasic motor pattern and consists of a
pacemaker kernel (anterior burster neuron [AB] and two pyloric
dilator neurons [PD]), as well as two types of follower neurons
(a single lateral pyloric [LP] and several pyloric [PY] neurons),
interconnected by inhibitory synapses. A model of this circuit with
three model neurons (AB/PD, LP, and PY), each with eight mem-
brane currents, and seven inhibitory synapses (Fig. 1A; details in
SI Appendix, SI Text) has been shown to be capable of producing
similar network activity with widely different parameters (5).

We start by characterizing the parameter degeneracy of this
model: We apply a recently introduced machine learning tool for
simulation-based inference, sequential neural posterior estimation
(SNPE) (14), to estimate the full set of membrane and synaptic
conductances for which the model reproduces experimentally
measured electrophysiological activity. We reduce the number of
model simulations required to run SNPE by introducing an addi-
tional classifier which detects and rejects parameter combinations
that produce nonbursting model outputs (31). After characteriz-
ing the parameter degeneracy in the model, we show that disparate
circuit configurations can have different energy consumption de-
spite similar activity. However, a significant parameter degeneracy
is present in the model even when enforcing circuits to have both
similar activity and low energy consumption. Furthermore, en-
ergy consumption is linearly predictable from circuit parameters,
allowing us to identify tuning mechanisms for low metabolic cost.
We then show that individual neurons in the pyloric network
can be tuned separately to minimize their energy consumption
and thereby achieve low energy consumption at the circuit level.
Finally, since the crab C. borealis is subject to daily and sea-
sonal fluctuations in temperature, we study the trade-off between
metabolic cost and robustness to changes in temperature (32–35).
We find that metabolic cost can vary across temperatures but that
the pyloric network can produce functional, energy-efficient, and
temperature-robust activity with disparate parameters.

Results

Disparate Energy Consumption despite Similar Network
Activity. We studied the metabolic cost in a model of the pyloric
network (Fig. 1A). In this model, disparate sets of maximal
membrane and synaptic conductances can give rise to similar

network activity (5). As an example, we simulated two such
circuit configurations (Fig. 1B) and computed their metabolic
cost using a previously described measure of energy consumption
(36). In this measure, the energy for each ion channel is the
time integral of the product of the membrane current and
the respective difference between the membrane voltage and
the reversal potential (details in SI Appendix, SI Text). The
energy consumed by the entire neural circuit is the sum of
the energies across channels of all neurons. We note that this
power-based energy measure likely underestimates the true energy
consumption but is strongly correlated with the current-based
energy measure based on sodium and calcium currents (15, 25)
(SI Appendix, Figs. S1 and S2). Since the power-based measure
naturally allows us to quantify the energy consumed by a larger
diversity of currents, we performed our main analyses with this
measure, although our main results are maintained when using
the current-based measure (SI Appendix, Fig. S3).

Although the two simulated circuit configurations produce
similar network activity, even at the single-spike level (Fig. 1C ),
the total energy consumption (Fig. 1D) as well as the moment
by moment energy consumption differ substantially (Fig. 1E).
A closer inspection of the energy consumed by each current in
the PY neuron during the action potentials (37) shows that the
difference in energy between these two network configurations
is also evident in the energy consumed by the sodium current
Na, the delayed-rectifier potassium current Kd, and the transient
calcium current CaT (Fig. 1F ).

Disparity in Energy Consumption in Models Matching Experi-
mental Data. The example above illustrates that the model of the
pyloric network can, in principle, produce the same activity with
different metabolic costs. However, it is unclear how broad the
range of metabolic costs associated with the same network output
is. In order to address this, we need to identify the full space of
maximal membrane and synaptic conductances (31 parameters in
total) that match experimental measurements of network activity
and to characterize the energy consumption of each of these
configurations.

We used a recently introduced machine learning tool for
simulation-based inference, SNPE (14), to estimate the set of
circuit parameters (the posterior distribution) consistent with data
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and prior assumptions about the parameters. In SNPE, parameters
which specify network configurations are initially sampled from
the prior distribution (in our case, a uniform distribution within
plausible parameter ranges) and used to simulate network activity.
Subsequently, a neural network–based density estimator is trained
on these simulated network activities to learn which parameter
sets produce network activity that is compatible with empirical
observations.

In order to generate the training data for the neural network,
SNPE requires millions of model simulations to accurately infer
the set of data-compatible parameters. To improve the simulation
efficiency and make the neural network predict parameter sets
that more closely match experimental data, we introduced a
modification of the algorithm (Fig. 2A). Specifically, a technical
challenge for SNPE is that parameter sets sampled from the prior
distribution might produce simulation results that are not valid,
i.e., produce clearly nonsensible data: for example, if there are no
bursts, phase gaps between bursts are not defined (Fig. 2A, fourth
panel, red). For SNPE, these invalid simulations are discarded
immediately. In order to reduce the fraction of simulations that are

discarded, we introduce a classifier to predict whether a parameter
set will lead to a valid or an invalid simulation output (31)
(Fig. 2A, second panel). Once the classifier is trained on an initial
set of simulations, parameters are immediately discarded without
running the simulation, if the classifier confidently predicts that
the simulation will be invalid (details in SI Appendix, SI Text).
We name the distribution of parameters that are accepted by the
classifier the “restricted prior” (Fig. 2A, third panel). Once suffi-
ciently many valid simulations are performed, SNPE proceeds by
training a deep neural density estimator to estimate the posterior
distribution over parameters of the model (14) (Fig. 2A, fifth
and sixth panels; proof of convergence to the correct posterior
distribution in SI Appendix, SI Text).

We used this procedure to infer the posterior distribution over
maximal membrane and synaptic conductances of the model
of the pyloric network given salient and physiologically rele-
vant features of experimentally measured data. These features
are the cycle period, burst durations, duty cycles, phase gaps,
and phase delays of the triphasic rhythm (Fig. 2B; details in
SI Appendix, SI Text) (38). As in previous studies (4, 5), we did

prior density estimatorsimulated dataclassifier posteriorrestricted priorA

B Experimental recording

PD

LP

PY

1

2 3

4

C Activity of prior sample

0 8
AB-CaS

...

0 15
AB-KCa

...

2 12
LP-CaS

...

0 600
PY-Na

...
...

D Restricted prior

0 8
AB-CaS

...

0 15
AB-KCa

...

2 12
LP-CaS

...

0 600
PY-Na

...
...

E Posterior F Activity of restr. prior sample

G Activity of posterior sample

0 30
Energy (μJ/s)

C
ou

nt

AB/PD

0 30
Energy (μJ/s)

LP

0 30
Energy (μJ/s)

PY

0 30
Energy (μJ/s)

SumH

0 1
E/spike (μJ)

C
ou

nt

AB/PD

0 1
E/spike (μJ)

LP

0 1
E/spike (μJ)

PYI

Fig. 2. Bayesian inference reveals wide range of energy consumption. (A) Inferring the posterior distribution by combining a rejection classifier and a deep
neural density estimator. First, a classifier (trained on an initial set of simulations) predicts which circuit parameters sampled from the prior produce valid
simulation outputs. We then proceed by sampling from the part of the parameter space that is accepted by the classifier, i.e., the restricted prior. All valid data
(green) are used to train a deep neural density estimator, and all invalid data are discarded (red) (14). Once this estimator is trained, it can be evaluated on
experimental data to return the posterior distribution over model parameters. (B) Experimental data recorded from the pyloric network (38). Arrows indicate a
subset of the physiologically relevant features, namely, the cycle period (arrow 1), phase delays (arrow 2), phase gaps (arrow 3), and burst durations (arrow 4)
(see SI Appendix, SI Text for details). (Scale bar, 500 ms.) (C) Simulation output from a parameter set sampled from the prior distribution. The traces are AB/PD
(Top), LP (Middle), and PY (Bottom). (Scale bars, 500 ms and 50 mV.) (D) Subset of the marginals and pairwise marginals of the 31-dimensional restricted prior,
i.e., the subspace of parameters for which the model produces bursting activity. All maximal conductances are given in mS/cm2. (E) Subset of the marginals
and pairwise marginals of the posterior distribution, i.e., the subspace of parameters for which the model matches experimental data shown in B (full posterior
distribution in SI Appendix, Fig. S13). (F) Sample from the restricted prior producing bursting activity but not matching experimental data. (G) Sample from the
posterior distribution closely matching features of the experimental data. (H) Histograms over energy consumed by each neuron (blue, orange, and green) as
well as by the entire circuit (black), divided by the duration of the simulation. Trace with lowest energy consumes nine times less energy than trace with highest
energy. (I) Same as in H but for energy per spike.
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not constrain the model of the pyloric network by the number
of spikes or the spike shapes. Below, we describe the results
obtained for a specific experimental preparation. We qualita-
tively reproduced all results with two additional experimental
preparations (SI Appendix, Figs. S4–S9) (38). We note that SNPE
captures parameter uncertainty stemming from epistemic un-
certainty as well as from nonidentifiability of parameters (i.e.,
parameter degeneracy). Given that the experimentally measured
voltage traces contain little variability between different cycles
of the triphasic rhythm (SI Appendix, Fig. S10), we introduced
a modest amount of current noise in the pyloric network model
(SI Appendix, Fig. S11; details in SI Appendix, SI Text). Thus, the
epistemic uncertainty of the inference is small, and posterior
uncertainty is likely dominated by parameter degeneracy. Further
evidence of this is the fact that different noise sources do not
significantly affect posterior variability (SI Appendix, Fig. S12).

When simulating the pyloric network model with parameter
sets sampled from the prior distribution, 99% of simulations
do not produce spikes or bursts, and hence, characteristic sum-
mary features of the circuits are not defined (Fig. 2C ). The
restricted prior (Fig. 2D) is narrower than the prior distribution
but considerably broader than the posterior (Fig. 2E ; full posterior
distribution in SI Appendix, Fig. S13; comparison between prior,
restricted prior, and posterior in SI Appendix, Fig. S14). Parame-
ters sampled from the restricted prior often produce activity with
well-defined summary features (Fig. 2F ) but do not generally
match experimental data, whereas samples from the posterior
closely match experimental data (Fig. 2G). By using the classifier
to reject invalid simulations, we required half as many simula-
tions compared to classical SNPE (14) and achieved a higher
accuracy (SI Appendix, Fig. S15). For the subsequent analyses, we
only considered posterior samples whose activity was within a

prescribed distance to the experimental data and discarded all
other samples (details in SI Appendix, SI Text). We simulated
1 million parameter configurations sampled from the posterior,
out of which ∼3.5% fulfilled the distance criterion, leading to a
database of 35,939 parameter sets whose activity closely matched
experimental data. Sampling from the prior distribution rather
than the posterior would have required ∼600 billion simulations
to obtain 35,939 parameter sets that fulfill our criterion (60,000
times more than with our method).

We computed the energy consumption of each of the 35,939
circuit activities (Fig. 2H ). The circuit configuration with lowest
total energy consumes nine times less energy than the circuit con-
figuration with highest total energy. To ensure that the difference
in energy does not only stem from different numbers of spikes
within a burst, we also computed the average energy consumed
during a spike (energy per spike) in each of the neurons (Fig. 2I ).
As with total energy, energy per spike strongly varies across
parameter configurations. We note that the differences between
the individual neurons might in part be attributed to the different
prior ranges of maximal conductances across neurons [ranges
based on results from Prinz et al. (5); SI Appendix, SI Text]. These
results show that despite similar circuit function, different param-
eter sets can have vastly different energy consumption. Below, we
investigate the mechanisms giving rise to this phenomenon.

Metabolic Constraints on Individual Circuit Parameter Ranges.
How strongly does enforcing low energy consumption constrain
the permissible ranges of circuit parameters? We inspected the
circuit parameters of the 2% most and least efficient config-
urations within our database of 35,939 model configurations
(Fig. 3 A, Left). For some circuit parameters, the range of values
producing efficient activity is clearly different from the range of
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values producing energetically costly activity (e.g., the maximal
conductance of the transient calcium current in the PY neuron;
Fig. 3 A, Middle). For other parameters, the range does not
change (e.g., the maximal conductance of the delayed-rectifier
potassium current in the AB/PD neuron; Fig. 3 A, Right).
To quantify how strongly low energy consumption constrains
parameters, we compared the parameter SD across all 35,939
model configurations to that of the most efficient 2% (Fig. 3 B
and C ; SI Appendix, Fig. S16 show how the parameter means
shift as energy constraints are enforced). Most parameters in the
circuit barely get constrained by energy consumption (values close
to 1 in Fig. 3 B and C ). The parameters that get constrained the
most by enforcing low energy consumption are the Na and CaT
conductances of the AB/PD neuron; the CaS conductance of the
LP neuron; and the Na, CaT, CaS, and leak conductances of the
PY neuron. However, for all of these parameters, a large fraction
of variability remains. In addition, we found that enforcing energy
constraints affects correlations between parameters only weakly
(SI Appendix, Fig. S17).

In order to ensure that the remaining variability of circuit
parameters does not stem from the remaining variability of en-
ergy consumptions within the lowest 2% quantile, we inspected
the five most efficient configurations in our database of 35,939
model configurations. Even these five circuit configurations have
strongly disparate circuit parameters (Fig. 3D). Despite having
similar activity (Fig. 3E) and very low (and similar) metabolic
cost (Fig. 3F ), their circuit parameters are disparate (Fig. 3G).
These results demonstrate that metabolic efficiency constrains the
range of some circuit parameters, but it is possible to achieve low
metabolic cost and similar network activity with widely disparate
circuit parameters.

Sodium and Calcium Conductances Influence Energy Con-
sumption Most Strongly. We wanted to understand how
each circuit parameter affects energy consumption within
our database of 35,939 model configurations. Given that the
voltage wave forms of the model configurations within our
database are constrained to be similar, energy consumption is
expected to be approximately linearly related to the maximal
conductances (SI Appendix, SI Text). We, therefore, performed
a linear regression E = wTθ + b from circuit parameters
(taken from our database of 35,939 model configurations) onto
the energy consumption of these circuits (Fig. 4A; details in
SI Appendix, SI Text). This linear regression achieved a high
accuracy, demonstrating that energy consumption can indeed be
linearly predicted from circuit parameters (Fig. 4B; a nonlinear re-
gression with a neural network leads to similar results and is shown
in SI Appendix, Fig. S19; details in SI Appendix, SI Text). The
regression weights w indicate how strongly energy consumption
is correlated with each parameter value (Fig. 4C ). The maximal
sodium conductances gNa, transient calcium conductances gCaT,
and slow calcium conductances gCaS are most strongly correlated
with energy consumption: increases of these conductances are
associated with an increase in energy consumption, and thus,
small conductance values correspond to metabolically more
efficient solutions. The membrane conductances of the PY
neuron influence energy consumption more strongly than the
LP and AB/PD neurons. This is expected since the PY model
neuron consumes more energy than the other neurons (Fig. 2H ).
The synaptic conductances are weakly correlated with energy
consumption, which can be explained by the low values of the
maximal synaptic conductances: the synaptic strengths range up
to 1,000 nS, whereas the membrane conductances can range
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up to 0.4 mS (i.e., 4× 105 nS), such that synapses consume
only 0.08% of the total energy in the circuit. These results
demonstrate that energy consumption can be linearly predicted
from circuit parameters and that energy consumption is most
strongly correlated with the maximal conductances of sodium as
well as slow and transient calcium.

How do different currents affect total energy consumption? Do
they directly consume energy, or do they trigger processes that
then require energy? We addressed these questions by comparing
the fraction of energy consumed by each current [as defined by our
measure of energy (36); Fig. 1F ] to the linear regression weight w
associated with its maximal conductance (Fig. 4D). We found that
some currents consume a lot of energy, although their maximal
conductances barely correlate with energy consumption, e.g., the
Kd current in the PY neuron (Fig. 4D, bottom right arrow),
while other currents consume little energy, but nonetheless their
maximal conductances are correlated with energy consumption,
e.g., the CaS current of the PY neuron (Fig. 4D, top left arrow).

We investigated the neuronal mechanisms that give rise to
these behaviors. First, to understand how currents can consume
large amounts of energy despite their maximal conductance only
weakly correlating with energy, we investigated the effects of the
delayed-rectifier potassium conductance gKd on circuit activity.
We simulated two circuit configurations, identical apart from the
magnitude of gKd in the PY model neuron. In the configuration
with higher gKd, the gating variable n did not reach values as
high as those for the other configuration, thus leading to a similar
effective conductance n4 · gKd (Fig. 4E). This demonstrates that
changes in the maximal conductance gKd only weakly influence
the current and thereby the energy consumption. Thus, despite the
potassium current consuming a lot of energy due to a large flow of
ions (compared to other channels), its maximal conductance gKd
only weakly correlates with energy consumption.

Second, to understand how maximal conductances can corre-
late with energy consumption despite their channels consuming
little energy, we disentangled the correlation of circuit param-
eters with energy consumption into two parts: the energy per
spike and the number of spikes. We fitted two additional linear
regression models: one regression from circuit parameters onto
number of spikes in the PY neuron and one regression from circuit
parameters onto energy per spike in the PY neuron. We again
found good predictive performance of these models, showing
that the energy per spike and the number of spikes can also be
linearly predicted from circuit parameters (regression performance
in SI Appendix, Fig. S20). The energy per spike is strongly corre-
lated with the sodium conductance (Fig. 4 F, Top), whereas the
number of spikes is most strongly correlated with the maximal
conductance of transient and slow calcium (Fig. 4 F, Bottom).
This demonstrates that increases in the maximal conductance of
calcium lead to a higher number of spikes, which involve increased
energy consumption through other currents. We verified this
hypothesis by simulating two configurations that were identical
apart from the magnitude of gCaS in the PY model neuron and
found that the configuration with higher gCaS indeed produced
more spikes per burst (SI Appendix, Fig. S21). This shows that
despite the slow calcium channel consuming little energy itself,
increasing gCaS can lead to higher energy consumption by in-
creasing the number of spikes, which involve energy consumption
through other currents (mostly sodium and potassium). Overall,
our analyses demonstrate that currents which consume a lot of
energy are not necessarily the ones that influence energy the most.

Minimal Tuning Mechanisms for Low Energy Consumption.
We identified circuit parameters that correlate with energy

consumption, but this does not yet address the question of
which changes of these parameters will lead to the reduction of
energy consumption: First, a correlation between parameter values
and energy consumption does not imply a causal connection
between these. Second, parameters that correlate strongly with
energy consumption might have to be finely tuned to match
the pyloric rhythm, thus not constituting a feasible substrate
for reducing energy consumption. Therefore, we went beyond
the previous analysis to investigate potential tuning mechanisms
involving single and pairs of parameters that would reduce energy
consumption while maintaining the pyloric rhythm.

We investigated how strongly energy consumption could be
reduced by mechanisms that involve a single parameter. For
instance, we kept all parameters but the maximal sodium conduc-
tance of the AB/PD neuron (gNa) constant and varied gNa on a
grid. We then estimated the energy consumption of each config-
uration with the previously identified linear model (Fig. 4). The
energy consumption of the circuit increases with gNa (Fig. 5A),
but for too low (or too high) gNa, the network activity does not
match experimental data (we rejected parameters for which the
posterior density is too low; SI Appendix, SI Text). Thus, despite
gNa strongly correlating with energy consumption (Fig. 4C ),
energy consumption can be reduced only modestly when tuning
gNa and keeping all other parameters constant.

We then investigated whether pairwise mechanisms could lead
to larger savings in energy consumption. For instance, we kept
all parameters but gNa and the delayed-rectifier potassium con-
ductance of the AB/PD neuron (gKd) constant and varied the
remaining two parameters on a grid. We estimated the energy
consumption of any configuration on this grid and found that
the most efficient parameter configuration is 23% more efficient
than the most wasteful configuration (Fig. 5B). This reduction in
energy consumption could be achieved through a simple pairwise
mechanism: a reduction of sodium combined with an increase of
potassium allows the network to maintain its activity (Fig. 5 C
and D), while reducing the metabolic cost (Fig. 5B).

We repeated this analysis for every conductance and every pair
of conductances (Fig. 5 E and F ). Note that we only consid-
ered pairs of parameters within each neuron because pairwise
compensation mechanisms across neurons have been shown to
be weak in this model (14). Some of the single-conductance
mechanisms can reduce the energy consumption by up to 36%.
Pairwise mechanisms, such as reducing the sodium and transient
calcium conductances of the PY neuron, can reduce the energy
consumption of the entire circuit by up to 55%. When con-
sidering only the energy consumed in a specific neuron, pair-
wise mechanisms can reduce energy consumption by up to 80%
(SI Appendix, Fig. S22). Finally, pairwise mechanisms between
synapses and conductances of the respective postsynaptic neurons
can reduce energy consumption of the entire circuit by up to 43%.

These analyses provide hypotheses for causal mechanisms for
how neurons can be tuned into low-energy regimes, while the
neural activity keeps satisfying functional constraints. We demon-
strated that even simple mechanisms involving one or two conduc-
tances can have a substantial impact on the energy consumption
of the circuit—thus, low-energy configurations can be found with
local parameter changes, not requiring fine coordination among
multiple parameters.

Neurons Can Be Tuned Individually to Achieve Minimal Circuit
Energy. Next, we asked how single neurons interact to produce
functional and efficient circuit activity. Can the energy of the
entire circuit be minimized by optimizing the energy of each neu-
ron individually? Does the circuit retain functional activity when
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that differ only in their maximal sodium conductance in the AB/PD neuron. Energy increases with gNa. We excluded circuits with too low and too high values
of gNa, for which the model does not reproduce experimental data. (B) Same as A but for models that differ in their maximal conductances of sodium (Na)
and delayed-rectifier potassium (Kd) in the AB/PD neuron. (C) (Top) Voltage trace of the AB/PD neuron for the most efficient configuration within the plane
shown in B. (Bottom) Energy consumption during that activity. (D) Same as C but for the least efficient configuration. (E) Fraction of energy that can be saved
by modifying a single membrane parameter (diagonal of each matrix) or pairs of membrane parameters (upper and lower diagonal). Color bar is the same
as in F. Arrows indicate the direction in which (pairs of) parameters should change in order to reduce energy: left/right refers to the parameter on the x axis,
and top/bottom refers to the parameter on the y axis. (F) Fraction of energy that can be saved by modifying a synaptic conductance (vector on the left) or the
synaptic conductance and one membrane conductance of the respective postsynaptic neuron (matrix on the right).

neurons are individually optimized for low energy efficiency?
Within our database of 35,939 model configurations, there is
a weak correlation between the energies consumed by pairs of
neurons, which suggests that the energy consumption between
neurons might be independent from one another (Fig. 6A; AB/PD
versus LP, correlation coefficient r =−0.006, P value p = 0.23;
LP versus PY, r = 0.02, p = 3× 10−6; AB/PD versus PY, r =
−0.03, p = 8× 10−9). We thus investigated whether we could
optimize the parameters of each neuron individually for low
energy consumption and still retain functional circuit activity.
We searched our database of 35,939 model configurations for the
single-neuron models with minimal energy consumption individ-
ually. We selected the five most efficient single-neuron parameter
combinations for each of the neurons and assembled them into
125 (53) network configurations. We then identified synaptic con-
ductances that match each of these configurations with Markov
chain Monte Carlo (Fig. 6B; details in SI Appendix, SI Text).
Notably, given the already estimated full posterior distribution,
this step does not require additional simulations.

For each of the 125 combinations of membrane conductances,
we found a set of synaptic conductances for which the net-
work activity closely resembles experimentally measured activity
(Fig. 6C ). The resulting configurations have disparate parameters
(Fig. 6D) but highly similar network activity. Furthermore, we
found that the resulting configurations have similar and very low
energy consumption. The energy consumption of these circuits is
significantly smaller than that of any of the configurations in our
database of 35,939 model configurations (Fig. 6E). This demon-
strates that optimizing a specific neuron for energy efficiency
does not preclude the connected neurons from being energy
efficient. Thus, our results suggest that the pyloric network can
be optimized for energy efficiency by tuning neurons individually
for low energy consumption.

We estimated how likely these energy-efficient circuits are
under the estimated posterior. We found that all these models
have similar posterior log-probability as the 35,939 model con-
figurations in our database (Fig. 6F ); i.e., they are part of the
inferred posterior and are as likely to underlie the experimen-
tally measured activity as the database models. How, then, are
these newly found configurations so much more energy-efficient
than configurations sampled from the posterior? Given that the
posterior is a high-dimensional distribution (31 dimensions),
drawing random samples from such a distribution will unlikely
result in configurations for which all three neurons are optimally
efficient, and we cannot exclude the possibility that there might
be unsampled regions in parameter space with even more energy-
efficient circuit configurations.

Robustness to Temperature Does Not Require an Increased
Metabolic Cost. The crab C. borealis experiences daily and yearly
fluctuations in temperature which in turn influence the chemical
and physical properties of neurons (32–34). Nonetheless, neural
circuits such as the pyloric network can maintain their functional-
ity in the presence of these temperature variations. As temperature
increases, the cycle frequency of the circuit increases exponentially,
but the phases between bursts remain relatively constant (35, 39).
We investigated whether the pyloric network trades off robustness
to changes in temperature with energy efficiency, i.e., whether
temperature-robust solutions are more energetically costly.

The temperature dependence of a biophysical parameter R is
captured by the Q10 value and is defined as follows:

RT = RrefQ
(T−Tref )/10
10 ,

where Rref is the parameter value at the reference temperature
Tref = 11 ◦C. We extended the model of the pyloric network
to include Q10 values for all maximal membrane and synaptic

PNAS 2022 Vol. 119 No. 44 e2207632119 https://doi.org/10.1073/pnas.2207632119 7 of 12

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
A

X
-P

L
A

N
C

K
-I

N
ST

IT
U

T
 -

 F
U

E
R

 o
n 

Ja
nu

ar
y 

24
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
5.

37
.6

1.
2.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://doi.org/10.1073/pnas.2207632119


0 9AB/PD
0

6
LP

A

0 6LP
0

20

PY

0 9AB/PD
0

20

PY

Sample 
with MCMC Energy (μJ/s)

0 03

Energy (μJ/s)
0 03

Energy (μJ/s)
0 03

B C

0

150

g
)

(m
S/

cm
2

D

AB
-A

AB
-H

LP
-K

d
PY

-K
C

a
PY

-le
ak

0

150

g
)

(m
S/

cm
2

10
−1

10
2

g (n
S)

AB
−

LP
PD

−
PY

10
−1

10
2

g (n
S)

0 10 20 30
Energy AB/PD

(μJ/s)

C
ou

nt
 (u

nn
or

m
.)

E

0 10 20 30
Energy LP

(μJ/s)

0 10 20 30
Energy PY

(μJ/s)

0 10 20 30
Energy total

(μJ/s)

−150 −100 −50
Posterior log-probability

C
ou

nt
 (u

nn
or

m
.) Prior Database MCMC

F

Fig. 6. Neurons can be tuned individually to achieve minimal circuit energy consumption. (A) Black dots indicate energy consumed by each neuron separately.
Shown are 100 randomly selected parameter configurations from our database of 35,939 configurations. Linear regression (black line) shows a weak correlation
between the energy consumed by pairs of neurons. (B) We select the five most efficient parameter configurations for each neuron separately and search with
Markov chain Monte Carlo for synaptic conductances such that the target circuit activity is achieved. (C) The activity produced by two parameter configurations
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conductances (details in SI Appendix, SI Text) (40, 41). We then
used SNPE to identify all maximal membrane and synaptic con-
ductances, as well as the associated Q10 values (41 parameters
in total) that match experimental recordings at 11 and 27 ◦C
(Fig. 7A) (38). We set the previously identified posterior dis-
tribution (Fig. 2E) over circuit parameters given experimental
data at 11 ◦C as the new prior distribution and then applied
SNPE to match the model with experimental data at 27 ◦C
(Fig. 7B; full posterior in SI Appendix, Fig. S23, and details in
SI Appendix, SI Text). We sampled circuit parameters and Q10

values from the resulting distribution and selected samples whose
activity closely matched experimental data at 11 and 27 ◦C (Fig.
7C ). Overall, we generated a database of 967 sets of circuit param-
eters and Q10 values. When simulating at temperatures between
11 and 27 ◦C, these circuits show the characteristic exponential
increase in cycle frequency as well as the constant phase relation-
ship between bursts observed experimentally (Fig. 7D) (35).

We asked whether the energy consumed by the circuit at
11 ◦C is proportional to the energy consumed at 27 ◦C. We
found that despite the number of spikes in our model being
higher at higher temperatures, the total energy consumption is
lower at 27 ◦C (Fig. 7E ; note that for one of the three prepa-
rations, the energy consumptions at 11 and 27 ◦C are similar;
SI Appendix, Fig. S9). This occurs because at higher temperatures,
the increase in the number of spikes is accompanied by a decrease
in channel time constants and respective decrease in energy per
spike (SI Appendix, Fig. S24). In addition, there is a clear corre-
lation between energy consumptions at 11 and 27 ◦C (Pearson
correlation coefficient, 0.66), although circuit configurations with
similar efficiency at 11 ◦C can show a range of energy consump-
tions at 27 ◦C (Fig. 7E).

We then investigated how the additional constraint of temper-
ature robustness impacts the parameter degeneracy of the pyloric
network. We computed the SD of the maximal conductances

across the models that match experimental data at 11 and 27 ◦C
and whose energy consumption is in the 2% quantile at both
temperatures (Fig. 7F ). The resulting SD is smaller than that of all
models in our database of 35,939 models, but a large parameter
variability remains. Thus, we found a substantial parameter degen-
eracy in circuits constrained by “pyloric-ness,” energy efficiency,
and temperature robustness.

Does temperature robustness have an influence on metabolic
cost? We computed the energy consumed at 11 ◦C for three
different scenarios: first, for all models in our database of 35,939
model configurations matching experimental data recorded at
11 ◦C (same as Fig. 2H ); second, for all models in our database
of 35,939 model configurations that are also functional at 27 ◦C
(i.e., produce triphasic activity); and third, for all models in
our database of 967 model configurations matching experimental
data recorded at 11 and 27 ◦C. In all three of these scenarios,
the distribution of metabolic cost was similar (Fig. 7G; note
that the slightly different average energy consumption between
the first and the third scenarios occurred only in two of the
three preparations; SI Appendix, Figs. S6 and S9). In particular,
all three scenarios contained configurations that produce energy-
efficient circuit function. This demonstrates that enforcing tem-
perature robustness does not require the pyloric network to be
less energy efficient.

Overall, our analyses indicate that the model of the pyloric net-
work retains substantial parameter degeneracy despite constraints
on energy efficiency and temperature robustness. In addition, we
showed that temperature robustness does not entail additional
metabolic cost.

Discussion

Neural systems undergo environmental and neuromodulatory
perturbations to their mechanisms. The parameter degeneracy

8 of 12 https://doi.org/10.1073/pnas.2207632119 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 M
A

X
-P

L
A

N
C

K
-I

N
ST

IT
U

T
 -

 F
U

E
R

 o
n 

Ja
nu

ar
y 

24
, 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
5.

37
.6

1.
2.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2207632119/-/DCSupplemental
https://doi.org/10.1073/pnas.2207632119


A Experimental recording at 11°C

Experimental recording at 27°C

0 500
AB-Na

...

2 12
LP-CaS

...

30 60
PY-A

...

1 2
Q CaS10

...
...

Posterior 11°CB

0 500
AB-Na

...

2 12
LP-CaS

...

30 60
PY-A

...

1 2
Q CaS10

...
...

Posterior 11°C & 27°C C Posterior sample at 11°C

Posterior sample at 27°C

11 15 19 23 27
Temperature (°C)

1

2

3

C
yc

le
 fr

eq
.

(H
z)

D

11 15 19 23 27
Temperature (°C)

0

1

Ph
as

e 
LP

(%
 o

f c
yc

le
)

11 15 19 23 27
Temperature (°C)

0

1

Ph
as

e 
PY

(%
 o

f c
yc

le
)

0 10 20
E at 11 °C (μJ/s)

0

10

20

E 
at

 2
7 

°C
 (μ

J/
s)

E

N
a

C
aT

C
aS A

KC
a Kd H

le
ak

0

1

Fr
ac

tio
n 

of
 s

td
. d

ev
.F AB/PD LP PY

AB
-L

P
PD

-L
P

AB
-P

Y
PD

-P
Y

LP
-P

D
LP

-P
Y

PY
-L

P

Synapses

0 10 20 30
Energy at 11°C (μJ/s)

C
ou

nt
 (n

or
m

.)

Fitted at 11°C
Fitted at 11°C & robust at 27°C
Fitted at 11°C & fitted at 27°C

G

Fig. 7. Temperature robustness does not preclude energy efficiency. (A) (Top) Experimental data at 11 ◦C. (Bottom) Experimental data at 27 ◦C (38). (B) (Left)
Posterior distribution given experimental data at 11 ◦C. (Right) Posterior distribution given experimental data at 11 and 27 ◦C. (C) Simulations for a parameter
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of neural systems, i.e., the ability to generate similar activity
from disparate parameters, confers a certain degree of robustness
to such perturbations (7–10, 42, 43). However, not all
system configurations might be equally desirable, with some
configurations being more energy efficient than others (15). Here
we analyzed the energy consumption of parameter configurations
with similar activity in the pyloric network of the stomatogastric
ganglion. We found that even when the network activity is
narrowly tuned to experimental data, the energy consumption
can strongly vary between parameter configurations. Despite
this diversity of metabolic costs, energy-efficient activity could
be produced from a wide range of circuit parameters. When
characterizing the range of data-consistent parameters, we
found a linear relationship between circuit parameters and
energy consumption, which allowed us to identify tuning
mechanisms for low energy consumption. Last, we showed
that temperature robustness does not preclude energy efficiency
and that parameter degeneracy remains despite metabolic and
temperature constraints. These findings were facilitated by a
methodological advance that increased the efficiency of previously
published tools for simulation-based inference (14, 31, 44, 45).
Parameter Degeneracy under Multiple Constraints. In addition
to a specific activity, neural circuits are likely constrained by
other requirements, e.g., low energy consumption or robustness to
perturbations such as fluctuations in temperature or pH (35, 40,
41, 46–50). Here we investigated how energy efficiency impacts

the parameter degeneracy of neural systems. While a plausible
hypothesis would have been that energy efficiency reduces or
eliminates degeneracy altogether, here we found that parameter
degeneracy is preserved, even within circuits with very low en-
ergy consumption. We identified multiple parameter directions
that influence energy consumption only weakly, thus allowing
systems to produce energy-efficient network activity with widely
disparate circuit parameters. However, we also showed that there
are directions in parameter space which drastically impact energy
consumption and that changes along these directions lead to con-
figurations which can differ almost by an order of magnitude in
their energy consumption. Our results, thus, suggest that changes
of most parameters only weakly affect energy consumption, yet
some parameters are crucial and should be tuned to achieve low
energy consumption.

In our work, parameter degeneracy consisted in the range of
pyloric network models that match specific features of experimen-
tal activity. We used the same features as in previous work (5),
which are physiological constraints of the pyloric network, e.g.,
cycle duration, burst durations, and gaps and phases of bursts.
However, we cannot discard the possibility that the inclusion of
additional data features (e.g., spike height or spike width) would
have impacted parameter degeneracy and consequently also the
range of energies.

Previous work demonstrated that multiple parameter sets in
a model of the AB/PD neuron are temperature robust (40).
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Here we investigated the interplay between energy consump-
tion and temperature robustness at the circuit level and showed
that functional, energy-efficient, and temperature-robust activity
can be generated from disparate circuit parameters. In addition,
consistent with previous work in a single-neuron model of the
grasshopper (28), we found that temperature robustness does
not require an increased metabolic cost. Whether these results
will generalize with the inclusion of the robustness to additional
external perturbations, e.g., pH fluctuations (49, 51), or internal
perturbations, e.g., neuromodulation (39), remains a subject for
future work.

O’Leary and Marder (48) have demonstrated in a model of
the PD neuron that some physiological features (such as duty
cycle) can be maintained under temperature perturbations when
conductances are scaled by a common factor. We tested the
possibility that such invariance under conductance scaling could
explain the parameter degeneracy and ranges of energies observed
in our circuit model: scaling the conductances by a common factor
would scale the currents and thereby the energy consumption.
However, for the parameter ranges we used [similar ranges as in
Prinz et al. (5)], scaling the conductances changed physiological
features (such as the cycle duration) of the pyloric rhythm and
led to the model not fitting the experimental data accurately
(SI Appendix, Fig. S25).

More generally, whether there is potential for a system to ex-
hibit parameter degeneracy depends on the number of constraints
on the system relative to the number of free parameters: in an
overparameterized system, if there is any parameter setting which
satisfies the constraints, it is expected that there will be multiple
such settings. Our model has 31 conductances and 10 Q10 values,
and we use 18 voltage features at 11 ◦C, one energy consumption
constraint, and 18 voltage features at 27◦. While there is a similar
number of constraints relative to the parameter dimensionality,
some of those constraints are likely redundant, in which case we
have fewer constraints than parameters. Thus, the fact that there
are multiple feasible parameter settings is not surprising per se.
However, rather than these multiple solutions corresponding to
similar parameter values, we found these to be quite disparate in
the parameter space.

Relation to Previous Work on Metabolic Cost of Neural
Systems. There has been extensive work on quantifying the
metabolic cost of biophysical processes in single neurons (15,
22–26) and how single neurons subject to functional constraints
can be tuned to minimize energy consumption (15, 16, 23,
25). Consistent with this work, we found that total energy
consumption of the pyloric network is strongly influenced by
the sodium current (25) but also by the transient and slow
calcium currents. The maximal sodium conductance is the
most prominent driver of the energy per spike: increases in the
conductance lead to an increase of metabolic cost per spike (15,
25). In contrast, calcium currents influence energy consumption
through the number of spikes within a burst, despite not
consuming much energy themselves. Our results suggest that the
maximal conductances of sodium and calcium might be regulated
for metabolic efficiency. We thus predict that these conductances
are less variable in nature than expected by computational models
only matching network activity. Nevertheless, we should note
that our findings are based on two simplifying assumptions: first,
we studied simple single-compartment neurons rather than more
realistic multicompartment neuron models (52), and second, the
energy measure is derived directly from the Hodgkin–Huxley
model (36), rather than taking into account all the complexity of
the ionic exchange leading to ATP consumption (15, 21, 23, 25).

While our study characterizes which parameter configurations
are energy efficient, we did not study the mechanisms of how
biological circuits would modulate their conductances in order to
arrive at these configurations. Long-term changes in intracellular
calcium have been found to regulate many ion channels (53–
55); thus, it is possible that intracellular calcium is used to tune
conductances for energy efficiency. In our study, we found that
intracellular calcium level is linearly related to energy consump-
tion across circuit configurations that match experimental data
(SI Appendix, Fig. S26). It is, therefore, conceivable that the in-
tracellular calcium concentration is used as a rough estimate of the
energy consumption and as a feedback signal to tune membrane
and synaptic conductances into energy-efficient regimes, subject
to additional constraints such as functional activity and robustness
to various perturbations (55).

Previous studies have demonstrated that synaptic mechanisms
can consume a substantial amount of energy (21, 56, 57). In
contrast, in the considered model of the pyloric network, synaptic
currents consume only a minor fraction of energy [∼0.08% of
the total energy is consumed by synapses, whereas Attwell and
Laughlin (21) report 40% of energy being consumed by synaptic
mechanisms]. A potential reason for this difference is the low
number of connections in our model of the pyloric network:
each model neuron projects to up to three other model neurons,
whereas the synaptic energy consumption reported in Attwell and
Laughlin (21) is based on the assumption of 8,000 synaptic bou-
tons per neuron. Cabirol-Pol et al. (58) report only few synaptic
sites between the PD and LP neuron in the lobster Homarus
gammarus. Thus, models of more complex neural circuits driven
by excitatory, recurrent connectivity, such as the ones found in
the cortex, might spend a larger fraction of energy on synaptic
mechanisms.

We used a measure of energy consumption that is based on
an equivalent electrical circuit. This measure ignores a range of
internal processes taking place within biological neurons, e.g.,
the efficiency of ion pumps or the vesicle release at synapses
(21), and, therefore, underestimates the true energy consumption
of the biological circuit. We reproduced our main results for a
current-based energy measure taking into account the efficiency
of pumps (SI Appendix, Fig. S3). While the absolute values of the
energy consumption changed (see different ranges of energy in
SI Appendix, Fig. S3 A and D as compared to Figs. 2H and 7G),
the results are highly similar due to the proportionality between
the two measures (ρ= 0.999; SI Appendix, Figs. S1 and S2). In
addition, a more detailed model of synaptic energy consumption
(including, e.g., vesicle release) would likely change the cost of
synaptic activity, although synaptic cost constitutes only a very
small fraction (0.08%) of total energy consumption in our circuit
model. It is, thus, unlikely that the use of synapses with more
biophysical details would entirely change the conclusions of our
study. Additional factors such as glutamate recycling, presynaptic
Ca2+ entry, and maintaining resting potentials would also modify
our estimate of the energy consumption, but these factors are
reported to consume a rather small fraction (<20%) of energy
expenditure in the brain (21).

Energy Efficiency in the Pyloric Network. Experimental studies
have shown that the parameters of the pyloric network vary across
wide ranges (1, 2, 59). This raises the question of whether these
disparate solutions are all tuned for energy efficiency. In our
study, we demonstrated that energy-efficient circuit function can
be compatible with many parameter configurations. Therefore,
despite the variability of the parameters, each configuration in the
crab C. borealis might be tuned for low energy consumption.
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However, the pyloric network is a small subset of the nervous
system of the crab and, therefore, likely consumes a small fraction
of its total energy budget. Thus, even if the nervous system of
the crab is tuned for energy efficiency, it could still achieve this
without strict energy requirements for the pyloric network.

Increasing the Efficiency of Simulation-Based Inference. We
used a previously introduced tool, SNPE (14, 45), to identify all
models consistent with experimentally measured activity as well as
prior knowledge about realistic parameter ranges. We improved
the efficiency of SNPE by introducing a classifier that rejects
invalid simulations (31). By using this classifier, we were able to
improve the accuracy of SNPE while requiring only half as many
simulations (14). Because of this larger simulation budget, the
resulting posterior distributions became more accurate. Further-
more, the trained neural density estimator is amortized; i.e., one
can obtain the posterior distribution for multiple experimental
preparations without running further simulations or training a
new neural network.

The classifier-enhanced SNPE can be applied to other modeling
studies in neuroscience. In particular, the classifier to predict
invalid simulations is valuable whenever there are parameter val-
ues for which the computational model of interest produces ill-
defined features: e.g., the spike shape cannot be defined in cases
where a neuron model does not produce spikes. Our method has
the potential to significantly speed up inference in these scenarios.

Implications for the Operation of Neural Circuits. Our findings
suggest that neural circuits can be energy efficient with largely
disparate biophysical parameters, even with highly specific func-
tional requirements under naturally occurring perturbations. This
raises the question of whether such energy efficiency is present in
real biological systems and how these systems could be tuned for
metabolic efficiency.

Materials and Methods

Code to reproduce the figures is available at https://github.com/mackelab/stg
energy. Code for running SNPE and training a classifier to reject invalid
simulations is available in our toolbox: https://github.com/mackelab/sbi (60).
A tutorial for how to use these features can be found on our website:
https://www.mackelab.org/sbi. The simulator of the pyloric network in Cython
(61) is available at https://github.com/mackelab/pyloric.

We analyzed extracellular recordings of the stomatogastric motor neurons
that are involved in the triphasic pyloric rhythm in the crab C. borealis (38,
39). The circuit model of the crustacean stomatogastric ganglion was adapted
from Prinz et al. (5). To compute the energy consumption of a specific network
activity, we followed the approach of Moujahid et al. (36). In order to find circuit
models that are consistent with the neural data, we used an extension of SNPE
(14). Further details about the data, modeling, and inference are available in
SI Appendix, SI Text.

Data, Materials, and Software Availability. Computer code has been de-
posited in GitHub (https://github.com/mackelab/stg energy) (62). Previously
published data were used for this work (38).
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