
A Sorted Datalog Hammer for Supervisor
Verification Conditions Modulo Simple Linear Arithmetic

Martin Bromberger1 (�) , Irina Dragoste2, Rasha Faqeh2, Christof Fetzer2, Larry González2,
Markus Krötzsch2, Maximilian Marx2, Harish KMurali1,3, and Christoph Weidenbach1

1 Max Planck Institute for Informatics, Saarland Informatics Campus, Saarbrücken, Germany
{mbromber, weidenb}@mpi-inf.mpg.de

2 TU Dresden, Dresden, Germany
3 IIITDMKancheepuram, Chennai, India

Abstract. In a previous paper, we have shown that clause sets belonging to the Horn
Bernays-Schönfinkel fragment over simple linear real arithmetic (HBS(SLR)) can be
translated into HBS clause sets over a finite set of first-order constants. The translation
preservesvalidity and satisfiability and it is still applicable ifweextendour inputwithpos-
itive universally or existentially quantified verification conditions (conjectures). We call
this translationaDataloghammer.Thecombinationof its implementation inSPASS-SPL
with theDatalog reasonerVLog establishes an effectiveway of deciding verification con-
ditions in theHorn fragment.We verify supervisor code for two examples: a lane change
assistant in a car and an electronic control unit of a supercharged combustion engine.
In this paper, we improve our Datalog hammer in several ways: we generalize it tomixed
real-integer arithmetic and finite first-order sorts; we extend the class of acceptable
inequalities beyond variable bounds and positively grounded inequalities; and we
significantly reduce the size of the hammer output by a soft typing discipline. We call
the result the sorted Datalog hammer. It not only allows us to handle more complex
supervisor code and to model already considered supervisor code more concisely, but it
also improves our performance on real world benchmark examples. Finally, we replace
the before file-based interface between SPASS-SPL and VLog by a close coupling
resulting in a single executable binary.

1 Introduction

Modern dynamic dependable systems (e.g., autonomous driving) continuously update software
components to fix bugs and to introduce new features. However, the safety requirement of such
systemsdemands software tobe safetycertifiedbefore it canbeused,which is typicallya lengthy
process that hinders the dynamic update of software. We adapt the continuous certification
approach [17] for variants of safety critical software components using a supervisor that
guarantees important aspects through challenging, see Fig. 1. Specifically, multiple processing
units run in parallel – certified and updated not-certified variants that produce output as
suggestions and explications. The supervisor compares the behavior of variants and analyses
their explications. The supervisor itself consists of a rather small set of rules that can be
automatically verified and run by a reasoner such as SPASS-SPL. In this paper we concentrate
on the further development of our verification approach through the sorted Datalog hammer.

c© The Author(s) 2022
D. Fisman and G. Rosu (Eds.): TACAS 2022, LNCS 13243, pp. 480–501, 2022.
https://doi.org/10.1007/978-3-030-99524-9_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-99524-9_27&domain=pdf
https://doi.org/10.1007/978-3-030-99524-9_27

Suggest
Actions
& provide
Explications

O
b

se
rv

at
io

n
s

 E
xe

cu
te

 A
ct

io
n

R
aw

 D
at

a

Environment

Sensors Processing
units

P1

...

Supervisor

Reasoner

Actuators

A1

Am

......
Request
Action

Pn

Fa
ct

s
+

R
u

le
s

N
ew

 F
ac

ts

Fig. 1. The supervisor architecture.

While supervisor safety conditions formalized as existentially quantified properties can
often already be automatically verified, conjectures about invariants requiring universally
quantified properties are a further challenge. Analogous to the Sledgehammer project [8] of
Isabelle [31] that translates higher-order logic conjectures to first-order logic (modulo theories)
conjectures, our sorted Datalog hammer translates first-order Horn logic modulo arithmetic
conjectures into pure Datalog programs, which is equivalent to the Horn Bernays-Schönfinkel
clause fragment, called HBS.

More concretely, the underlying logic for both formalizing supervisor behavior and for-
mulating conjectures is the hierarchic combination of the Horn Bernays-Schönfinkel fragment
with linear arithmetic, HBS(LA), also called Superlog for Supervisor Effective Reasoning
Logics [17]. Satisfiability of BS(LA) clause sets is undecidable [15,23], in general, however,
the restriction to simple linear arithmetic BS(SLA) yields a decidable fragment [19,22].

Inspired by the test point method for quantifier elimination in arithmetic [27] we show
that instantiation with a finite number of values is sufficient to decide whether a universal
or existential conjecture is a consequence of a BS(SLA) clause set.

In this paper, we improve our Datalog hammer [11] for HBS(SLA) in three directions.
First, we modify our Datalog hammer so it also accepts other sorts for variables besides
reals: the integers and arbitrarily many finite first-order sorts F8. Each non-arithmetic sort
has a predefined finite domain corresponding to a set of constants F8 for F8 in our signature.
Second, we modify our Datalog hammer so it also accepts more general inequalities than
simple linear arithmetic allows (but only under certain conditions). In [11], we have already
started in this direction by extending the input logic from pure HBS(SLA) to pure positively
grounded HBS(SLA). Here we establish a soft typing discipline by efficiently approximating
potential values occurring at predicate argument positions of all derivable facts. Third, we
modify the test-point scheme that is the basis of our Datalog hammer so it can exploit the
fact that not all all inequalities are connected to all predicate argument positions.

Our modifications have three major advantages: first of all, they allow us to express super-
visor code for our previous use cases more elegantly and without any additional preprocessing.
Second of all, they allow us to formalize supervisor code that would have been out of scope

A Sorted Datalog Hammer for Supervisor Verification Conditions 481

of the logic before. Finally, they reduce the number of required test points, which leads to
smaller transformed formulas that can be solved in much less time.

For our experiments of the test point approach we consider again two case studies. First,
verification conditions for a supervisor taking care of multiple software variants of a lane
change assistant. Second, verification conditions for a supervisor of a supercharged combustion
engine, also called an ECU for Electronical Control Unit. The supervisors in both cases are
formulated byBS(SLA) Horn clauses. Via our test point technique they are translated together
with the verification conditions to Datalog [1] (HBS). The translation is implemented in our
Superlog reasoner SPASS-SPL. The resulting Datalog clause set is eventually explored by the
Datalog engine VLog [13]. This hammer constitutes a decision procedure for both universal
and existential conjectures. The results of our experiments show that we can verify non-trivial
existential and universal conjectures in the range of seconds while state-of-the-art solvers
cannot solve all problems in reasonable time, see Section 4.
Related Work: Reasoning about BS(LA) clause sets is supported by SMT (Satisfiability
Modulo Theories) [30,29]. In general, SMTcomprises the combination of a number of theories
beyondLA such as arrays, lists, strings, or bit vectors.WhileSMT is adecisionprocedure for the
BS(LA) ground case, universally quantified variables can be considered by instantiation [36].
Reasoning by instantiation does result in a refutationally complete procedure forBS(SLA), but
not in a decision procedure. The Horn fragment HBS(LA) out of BS(LA) is receiving addi-
tional attention [20,7], because it is well-suited for software analysis and verification. Research
in this direction also goes beyond the theory of LA and considers minimal model semantics
in addition, but is restricted to existential conjectures. Other research focuses on universal
conjectures, but over non-arithmetic theories, e.g., invariant checking for array-based sys-
tems [14] or considers abstract decidability criteria incomparablewith theHBS(LA) class [34].
Hierarchic superposition [3] and Simple Clause Learning over Theories (SCL(T)) [12] are both
refutationally complete for BS(LA). While SCL(T) can be immediately turned into a decision
procedure for even larger fragments than BS(SLA) [12], hierarchic superposition needs to be
refined to become a decision procedure already because of the Bernays-Schönfinkel part [21].
Our Datalog hammer translates HBS(SLA) clause sets with both existential and universal
conjectures intoHBS clause sets which are also subject to first-order theorem proving. Instance
generating approaches such as iProver [25] are a decision procedure for this fragment, whereas
superposition-based [3] first-order provers such asE [38], SPASS [40],Vampire [37], have addi-
tional mechanisms implemented to decideHBS. In our experiments, Section 4, wewill discuss
thedifferences betweenall these approachesonanumberof benchmark examples inmoredetail.

The paper is organized as follows: after a section on preliminaries, Section 2, we present
the theory of our sorted Datalog hammer in Section 3, followed by experiments on real world
supervisor verification conditions, Section 4. The paper ends with a discussion of the obtained
results and directions for future work, Section 5. The artifact (including binaries of our tools
and all benchmark problems) is available at [9]. An extended version is available at [10]
including proofs and pseudo-code algorithms for the presented results.

2 Preliminaries

We briefly recall the basic logical formalisms and notations we build upon [11]. Starting point
is a standard many-sorted first-order language for BS with constants (denoted 0,1,2), without

M. Bromberger et al.482

non-constant function symbols, variables (denoted F,G,H,I), and predicates (denoted %,&,')
of some fixed arity. Terms (denoted C,B) are variables or constants. We write Ḡ for a vector of
variables, 0̄ for a vector of constants, and so on. An atom (denoted �,�) is an expression %(C̄)
for a predicate % of arity = and a term list C̄ of length =. A positive literal is an atom � and
a negative literal is a negated atom ¬�. We define comp(�)=¬�, comp(¬�)= �, |�|= �
and |¬�|=�. Literals are usually denoted !, ,�.

A clause is a disjunction of literals, where all variables are assumed to be universally
quantified. �,� denote clauses, and # denotes a clause set. We write atoms(-) for the set
of atoms in a clause or clause set -. A clause is Horn if it contains at most one positive literal,
and a unit clause if it has exactly one literal. A clause �1∨...∨�=∨¬�1∨...∨¬�< can be
written as an implication �1∧...∧�<→�1∨...∨�=, still omitting universal quantifiers. If
. is a term, formula, or a set thereof, vars(.) denotes the set of all variables in . , and . is
ground if vars(.)=∅. A fact is a ground unit clause with a positive literal.

Datalog and the Horn Bernays-Schönfinkel Fragment: The Horn case of the Bernays-
Schönfinkel fragment (HBS) comprises all sets of clauses with at most one positive literal. The
more general Bernays-Schönfinkel fragment (BS) in first-order logic allows arbitrary formulas
over atoms, i.e., arbitrary Boolean connectives and leading existential quantifiers. BS formulas
can be polynomially transformed into clause setswith common syntactic transformationswhile
preserving satisfiability and all entailments that donot refer to auxiliary constants andpredicates
introduced in the transformation [32].BS theories inour senseare alsoknownasdisjunctiveDat-
alog programs [16], specificallywhenwritten as implications. AHBS clause set is also called a
Datalog program. Datalog is sometimes viewed as a second-order language. We are only inter-
ested in query answering, which can equivalently be viewed as first-order entailment or second-
order model checking [1]. Again, it is common to write clauses as implications in this case.

Two types of conjectures, i.e., formulas we want to prove as consequences of a clause set,
are of particular interest: universal conjectures ∀Ḡ.q and existential conjectures ∃Ḡ.q, where q
is a BS formula that only uses variables in Ḡ. We call such a conjecture positive if the formula
only uses conjunctions and disjunctions to connect atoms. Positive conjectures are the focus of
ourDatalog hammer and they have the useful property that they can be transformed to one atom
over a fresh predicate symbol by adding some suitable Horn clause definitions to our clause
set # [32,11]. This is also the reason why we assume for the rest of the paper that all relevant
universal conjectures have the form ∀Ḡ.%(Ḡ) and existential conjectures the form ∃Ḡ.%(Ḡ).

A substitution f is a function from variables to terms with a finite domain dom(f)={G |
Gf≠G} and codomain codom(f)={Gf |G∈dom(f)}.We denote substitutions byf,X,d. The
application of substitutions is often written postfix, as in Gf, and is homomorphically extended
to terms, atoms, literals, clauses, and quantifier-free formulas. A substitution f is ground if
codom(f) is ground. Let . denote some term, literal, clause, or clause set. f is a grounding
for. if.f is ground, and.f is a ground instance of. in this case. We denote by gnd(.) the
set of all ground instances of. , and by gnd� (.) the set of all ground instances over a given set
of constants �. The most general unifier mgu(/1,/2) of two terms/atoms/literals /1 and /2 is
defined as usual, and we assume that it does not introduce fresh variables and is idempotent.

We assume a standard many-sorted first-order logic model theory, and writeA |=q if an
interpretation A satisfies a first-order formula q. A formula k is a logical consequence of
q, written q |=k, ifA |=k for allA such thatA |=q. Sets of clauses are semantically treated
as conjunctions of clauses with all variables quantified universally.

A Sorted Datalog Hammer for Supervisor Verification Conditions 483

BS with Linear Arithmetic: The extension of BS with linear arithmetic both over real and
integer variables, BS(LA), is the basis for the formalisms studied in this paper. We extend
the standard many-sorted first-order logic with finitely many first-order sorts F8 and with
two arithmetic sortsR for the real numbers and Z for the integer numbers. The sort Z is
a subsort ofR. Given a clause set #, the interpretationsA of our sorts are fixed:RA=R,
ZA=Z, and FA

8
=F8, i.e., a first-order sort interpretation F8 consists of the set of constants

in # belonging to that sort, or a single constant out of the signature if no such constant occurs.
Note that this is not a deviation from standard semantics in our context as for the arithmetic
part the canonical domain is considered and for the first-order sorts BS has the finite model
property over the occurring constants which is sufficent for refutation-based reasoning. This
way first-order constants are distinct values.

Constant symbols, arithmetic function symbols, variables, and predicates are uniquely
declared together with sort expressions. The unique sort of a constant symbol, variable,
predicate, or term is denoted by the function sort(.) and we assume all terms, atoms, and
formulas to bewell-sorted. The sort of predicate%’s argument position 8 is denoted by sort(%,8).
For arithmetic function symbolsweconsider theminimal sortwith respect to the subsort relation
betweenR and Z. Eventually, we don’t consider arithmetic functions here, so the subsort
relationship boils down to substitute an integer sort variable or number for a real sort variable.

We assume pure input clause sets, which means the only constants of sortR or Z are
numbers. This means the only constants that we do allow are integer numbers 2∈Z and the
constants defining our finite first-order sorts F8. Satisfiability of pure BS(LA) clause sets is
semi-decidable, e.g., using hierarchic superposition [3] or SCL(T) [12]. Impure BS(LA) is
no longer compact and satisfiability becomes undecidable, but it can be made decidable when
restricting to ground clause sets [18].

All arithmetic predicates and functions are interpreted in the usual way. An interpretation
of BS(LA) coincides withALA on arithmetic predicates and functions, and freely interprets
free predicates. For pure clause sets this is well-defined [3]. Logical satisfaction and entailment
is defined as usual, and uses similar notation as for BS.

Example 1. The following BS(LA) clause from our ECU case study compares the values of
engine speed (Rpm) and pressure (KPa) with entries in an ignition table (IgnTable) to derive
the basis of the current ignition value (IgnDeg1):

G1<0∨ G1≥13∨ G2<880∨ G2≥1100∨¬KPa(G3,G1) ∨
¬Rpm(G4,G2) ∨¬IgnTable(0,13,880,1100,I) ∨ IgnDeg1(G3,G4,G1,G2,I)

(1)

Termsof the two arithmetic sorts are constructed froma setX of variables, the set of integer
constants 2∈Z, and binary function symbols + and − (written infix). Atoms in BS(LA) are
either first-orderatoms (e.g., IgnTable(0,13,880,1100,I))or (linear)arithmeticatoms (e.g.,G2<
880). Arithmetic atoms may use the predicates ≤,<,≠,=,>,≥, which are written infix and have
the expected fixed interpretation. Predicates used in first-order atoms are called free.First-order
literals and related notation is defined as before. Arithmetic literals coincide with arithmetic
atoms, since the arithmetic predicates are closed under negation, e.g.,¬(G2≥1100)≡G2<1100.

BS(LA) clauses and conjectures are defined as forBS but using BS(LA) atoms.We often
write Horn clauses in the form Λ ‖Δ→� where Δ is a multiset of free first-order atoms, �
is either a first-order atom or⊥, andΛ is a multiset of LA atoms. The semantics of a clause in

M. Bromberger et al.484

the formΛ ‖Δ→� is
∨
∈Λ¬∨

∨
�∈Δ¬�∨�, e.g., the clause G>1∨H≠5∨¬&(G)∨'(G,H)

is also written G≤1,H=5||&(G)→'(G,H).
A clause or clause set is abstracted if its first-order literals contain only variables or

first-order constants. Every clause � is equivalent to an abstracted clause that is obtained
by replacing each non-variable arithmetic term C that occurs in a first-order atom by a fresh
variable G while adding an arithmetic atom G≠C to�.We asssume abstracted clauses for theory
development, but we prefer non-abstracted clauses in examples for readability,e.g., a fact
%(3,5) is considered in the development of the theory as the clause G=3,G=5 ‖→%(G,H), this
is important when collecting the necessary test points. Moreover, we assume that all variables
in the theory part of a clause also appear in the first order part, i.e., vars(Λ) ⊆vars(Δ→�)
for every clause Λ ‖ Δ→�. If this is not the case for G in Λ ‖ Δ→�, then we can easily
fix this by first introducing a fresh unary predicate& over the sort(G), then adding the literal
&(G) to Δ, and finally adding a clause ‖→&(G) to our clause set. Alternatively, G could be
eliminated by LA variable elimintation in our context, however this results in a worst case
exponential blow up in size. This restriction is necessary because we base all our computations
for the test-point scheme on predicate argument positions and would not get any test points
for variables that are not connected to any predicate argument positions.
Simpler Forms of Linear Arithmetic: The main logic studied in this paper is obtained by
restricting HBS(LA) to a simpler form of linear arithmetic. We first introduce a simpler logic
HBS(SLA) as awell-known fragment ofHBS(LA) forwhich satisfiability is decidable [19,22],
and later present the generalization HBS(LA)PA of this formalism that we will use.

Definition 2. TheHornBernays-Schönfinkel fragmentover simple lineararithmetic,HBS(SLA),
is a subset of HBS(LA) where all arithmetic atoms are of the form G⊳2 or 3⊳2, such that
2∈Z, 3 is a (possibly free) constant, G∈X , and ⊳∈{≤,<,≠,=,>,≥}.

Please note that HBS(SLA) clause sets may be unpure due to free first-order constants
of an arithmetic sort. Studying unpure fragments is beyond the scope of this paper but they
show up in applications as well.

Example 3. The ECU use case leads to HBS(LA) clauses such as

G1<H1∨ G1≥ H2∨ G2<H3∨ G2≥ H4∨¬KPa(G3,G1) ∨
¬Rpm(G4,G2) ∨¬IgnTable(H1,H2,H3,H4,I) ∨ IgnDeg1(G3,G4,G1,G2,I).

(2)

This clause is not inHBS(SLA), e.g., since G1>G5 is not allowed inBS(SLA). However, clause
(1) of Example 1 is a BS(SLA) clause that is an instance of (2), obtained by the substitution
{H1 ↦→ 0,H2 ↦→ 13,H3 ↦→ 880,H4 ↦→ 1100}. This grounding will eventually be obtained by
resolution on the IgnTable predicate, because it occurs only positively in ground unit facts.

Example 3 shows that HBS(SLA) clauses can sometimes be obtained by instantiation. In
fact, for the satisfiability of anHBS(LA) clause set # only those instances of clauses (Λ ‖Δ→
�)f are relevant, for which we can actually derive all ground facts �∈Δf by resolution from
#. If � cannot be derived from # and # is satisfiable, then there always exists a satisfying
interpretationA that interprets � as false (and thus (Λ ‖Δ→�)f as true). Moreover, if those
relevant instances can be simplified to HBS(SLA) clauses, then it is possible to extend almost
all HBS(SLA) techniques (including our Datalog hammer) to those HBS(LA) clause sets.

A Sorted Datalog Hammer for Supervisor Verification Conditions 485

In our case resolution means hierarchic unit resolution: given a clause Λ1 ‖ !,Δ→� and
a unit clause Λ2 ‖→ with f=mgu(!,), their hierarchic resolvent is (Λ1,Λ2 ‖Δ→�)f.
A fact %(0̄) is derivable from a pure set of HBS(LA) clauses # if there exists a clause
Λ ‖→%(C̄) that (i) is the result of a sequence of unit resolution steps from the clauses in # and
(ii) has a groundingf such that %(C̄)f=%(0̄) andΛf evaluates to true. If # is satisfiable, then
this means that any fact %(0̄) derivable from # is true in all satisfiable interpretations of #,
i.e., # |=%(0̄). We denote the set of derivable facts for a predicate % from # by dfacts(%,#).
A refutation is the sequence of resolution steps that produces a clauseΛ ‖→⊥withALA |=ΛX
for some grounding X. Hierarchic unit resolution is sound and refutationally complete for
pure HBS(LA), since every set # of pure HBS(LA) clauses # is sufficiently complete [3],
and hence hierarchic superposition is sound and refutationally complete for # [3,6].

So naturally if all derivable facts of a predicate % already appear in #, then only those
instances of clauses can be relevant whose occurrences of % match those facts (i.e., can be
resolved with them). We call predicates with this property positively grounded:

Definition 4 (Positively Grounded Predicate [11]). Let # be a set of HBS(LA) clauses. A
free first-order predicate % is a positively grounded predicate in # if all positive occurrences
of % in # are in ground unit clauses (also called facts).

Definition 5 (Positively Grounded HBS(SLA): HBS(SLA)P [11]). An HBS(!�) clause
set # is out of the fragment positively grounded HBS(SLA) (HBS(SLA)P) if we can
transform # into an HBS(SLA) clause set # ′ by first resolving away all negative occurrences
of positively grounded predicates % in #, simplifying the thus instantiated LA atoms, and
finally eliminating all clauses where those predicates occur negatively.

As mentioned before, if all relevant instances of an HBS(LA) clause set can be simplified
toHBS(SLA) clauses, then it is possible to extend almost allHBS(SLA) techniques (including
our Datalog hammer) to those clause sets. HBS(SLA)P clause sets have this property and this
is the reason, why we managed to extend our Datalog hammer to pure HBS(SLA)P clause
sets in [11]. For instance, the set #={%(1),%(2),&(0), (G≤ H+I ‖%(H),&(I)→'(G,H))} is
an HBS(LA) clause set, but not an HBS(SLA) clause set due to the inequality G≤ H+I. Note,
however, that the predicates% and& are positively grounded, the only positive occurrences of%
and& are the facts %(1), %(2), and&(0). If we resolve with the facts for % and& and simplify,
then we get the clause set # ′= {%(1), %(2), &(0), (G ≤ 1 ‖→'(G,1)), (G ≤ 2 ‖→'(G,2))},
which does now belong to HBS(SLA). This means # is a positively grounded HBS(SLA)
clause set and our Datalog hammer can still handle it.

Positively grounded predicates are only one way to filter out irrelevant clause instances. As
part of our improvements, we define in Section 3 a new logic called approximately grounded
HBS(SLA) (HBS(SLA)PA) that is an extension of HBS(SLA)P and serves as the new input
logic of our sorted Datalog hammer.

Test-Point Schemes and Functions The Datalog hammer in [11] is based on the following
idea: For any pure HBS(SLA) clause set # that is unsatisfiable, we only need to look
at the instances gnd� (#) of # over finitely many test points � to construct a refutation.
Symmetrically, if # is satisfiable, then we can extrapolate a satisfying interpretation for #
from a satisfying interpretation for gnd� (#). If we can compute such a set of test points � for

M. Bromberger et al.486

a clause set #, then we can transform the clause set into an equisatisfiable Datalog program.
There exist similar properties for universal/existential conjectures. A test-point scheme is an
algorithm that can compute such a set of test points � for any HBS(SLA) clause set # and
any conjecture # |=QḠ.%(Ḡ) withQ∈{∃,∀}.

The test-point scheme used by our original Datalog hammer computes the same set of
test points for all variables and predicate argument positions. This has several disadvantages:
(i) it cannot handle variables with different sorts and (ii) it often selects too many test points
(per argument position) because it cannot recognize which inequalities and which argument
positions are connected. The goal of this paper is to resolve these issues. However, this also
means that we have to assign different test-point sets to different predicate argument positions.
We do this with so-called test-point functions.

A test-point function (tp-function) V is a function that assigns to some argument positions
8 of some predicates % a set of test points V(%,8). An argument position (%,8) is assigned a
set of test points if V(%,8) ⊆ sort(%,8)A and otherwise V(%,8)=⊥. A test-point function V is
total if all argument positions (%,8) are assigned, i.e., V(%,8)≠⊥.

A variable G of a clause Λ ‖ Δ→ � occurs in an argument position (%,8) if (%,8) ∈
depend(G,Λ ‖Δ→�), where depend(G,.)={(%,8) |%(C̄) ∈atoms(.) and C8=G}. Similarly, a
variable G of an atom&(C̄) occurs in an argument position (&,8) if (&,8) ∈depend(G,&(C̄)). A
substitution f for a clause. or atom. is a well-typed instance over a tp-function V if it guar-
antees for each variable G that Gf is an element of sort(G)A and part of every test-point set (i.e.,
Gf∈ V(%,8)) of every argument position (%,8) it occurs in (i.e., (%,8) ∈depend(G,.)) and that
is assigned a test-point set by V (i.e., V(%,8)≠⊥). To abbreviate this, we define a setwti(G,.,V)
that contains all values with which a variable can fulfill the above condition, i.e., wti(G,.,V)=
sort(G)A∩ (⋂(%,8) ∈depend(G,.) and V(%,8)≠⊥V(%,8)). Following this definition, we denote by
wtisV (.) the set of all well-typed instances for a clause/atom. over the tp-function V, or for-
mally:wtisV (.)={f |∀G∈vars(.).(Gf) ∈wti(G,.,V)}.With the function gndV, we denote the
set of all well-typed ground instances of a clause/atom. over the tp-function V, i.e., gndV (.)=
{.f |f∈wtisV (.)}, or a set of clauses #, i.e., gndV (#)={.f |. ∈# and f∈wtisV (.)}.

The most general tp-function, denoted by V∗, assigns each argument position to the
interpretation of its sort, i.e., V∗(%,8)=sort(%,8)A. So depending on the sort of (%,8), either
to R, Z, or one of the F8. A set of clauses # is satisfiable if and only if gndV∗ (#), the set
of all ground instances of # over the base sorts, is satisfiable. Since V∗ is the most general
tp-function, we also write gnd(.) for gndV∗ (.) and wtis(.) for wtisV∗ (.).

If we restrict ourselves to test points, then we also only get interpretations over test points
and not for the full base sorts. In order to extrapolate an interpretation from test points to
their full sorts, we define extrapolation functions (ep-functions) [. An extrapolation function
(ep-function) [(%,0̄) maps an argument vector of test points for predicate % (with 08 ∈ V(%,8))
to the subset of sort(%,1)A×...×sort(%,=)A that is supposed to be interpreted the same as
0̄, i.e., %(0̄) is interpreted as true if and only if %(1̄) with 1̄ ∈[(%,0̄) is interpreted as true.
By default, any argument vector of test points 0̄ for % must also be an element of [(%,0̄), i.e.,
0̄∈[(%,0̄). An extrapolation function does not have to be complete for all argument positions,
i.e., there may exist argument positions from which we cannot extrapolate to all argument
vectors. Formally this means that the actual set of values that can be extrapolated from (%,8)
(i.e.,

⋃
01∈V(%,1) ...

⋃
0=∈V(%,=)[(%,0̄)) may be a strict subset of sort(%,1)A×...×sort(%,=)A.

For all other values 0̄, %(0̄) is supposed to be interpreted as false.

A Sorted Datalog Hammer for Supervisor Verification Conditions 487

Covering Clause Sets and Conjectures Our goal is to create total tp-functions that restrict
our solution space from the infinite reals and integers to finite sets of test points while
still preserving (un)satisfiability. Based on these tp-functions, we are then able to define a
Datalog hammer that transforms a clause set belonging to (an extension of) HBS(LA) into
an equisatisfiable HBS clause set; even modulo universal and existential conjectures.

To be more precise, we are interested in finite tp-functions (together with matching
ep-functions) that cover a clause set # or a conjecture # |=QḠ.%(Ḡ) withQ∈{∃,∀}. A total
tp-function V is finite if each argument position is assigned to a finite set of test points, i.e.,
|V(%,8)| ∈N. A tp-function V covers a set of clauses # if gndV (#) is equisatisfiable to #. A
tp-function V covers a universal conjecture ∀Ḡ.&(Ḡ) over # if gndV (#)∪#& is satisfiable if
and only if # |=∀Ḡ.&(Ḡ) is false. Here #& is the set {‖gndV (&(Ḡ))→⊥} if [is complete for
& or the empty set otherwise. A tp-function V covers an existential conjecture # |=∃Ḡ.&(Ḡ)
if gndV (#)∪gndV (‖&(Ḡ)→⊥) is satisfiable if and only if # |=∃Ḡ.&(Ḡ) is false.

Themost general tp-function V∗ obviously covers allHBS(LA) clause sets and conjectures
because satisfiability of # is defined over gndV∗ (#). However, V∗ is not finite. The test-point
scheme in [11], which assigns one finite set of test points � to all variables, also covers clause
sets and universal/existential conjectures; at least if we restrict our input to variables over
the reals. As mentioned before, the goal of this paper is improve this test-point scheme by
assigning different test-point sets to different predicate argument positions.

3 The Sorted Datalog Hammer

In this section, we present a transformation that we call the sorted Datalog hammer. It
transforms any pure HBS(SLA) clause set modulo a conjecture into an HBS clause set. To
guide our explanations, we apply each step of the transformation to a simplified example of
the electronic control unit use case:

Example 6. An electronic control unit (ECU) of a combustion engine determines actuator
operations. For instance, it computes the ignition timings based on a set of input sensors. To
this end, it looks up some base factors from static tables and combines them to the actual
actuator values through a series of rules.

In our simplified model of an ECU, we only compute one actuator value, the ig-
nition timing, and we only have an engine speed sensor (measuring in Rpm) as our
input sensor. Our verification goal, expressed as a universal conjecture, is to confirm,
that the ECU computes an ignition timing for all potential input sensor values. Deter-
mining completeness of a set of rules, i.e., determining that the rules produce a re-
sult for all potential input values, is also our most common application for universal
conjectures. The ECU model is encoded as the following pure HBS(LA) clause set
#:
�1 :SpeedTable(0,2000,1350), �2 :SpeedTable(2000,4000,1600),
�3 :SpeedTable(4000,6000,1850), �4 :SpeedTable(6000,8000,2100),
�1 :0≤G?,G?<8000 ‖→Speed(G?),
�2 :G1≤G?,G?<G2 ‖Speed(G?),SpeedTable(G1,G2,H)→IgnDeg(G?,H),
�3 :IgnDeg(G?,I)→ResArgs(G?), �4 :ResArgs(G?)→Conj(G?),
�5 :G? ≥8000 ‖→Conj(G?), �6 :G?<0 ‖→Conj(G?),

M. Bromberger et al.488

In this example all variables are real variables. The clauses �1−�4 are table entries from
which we determine the base factor of our ignition time based on the speed. Semantically,
�1 :SpeedTable(0,2000,1350) states that the base ignition time is 13.5◦ before dead center if
the engine speed lies between 0Rpm and 2000Rpm. The clause�1 produces all possible input
sensor values labeled by the predicateSpeed. The clause�2 determines the ignition timing from
the current speed and the table entries. The end result is stored in the predicate IgnDeg(G?,I),
where I is the resulting ignition timing and G? is the speed that led to this result. The clauses
�3−�6 are necessary for encoding the verification goal as a universal conjecture over a
single atom. In clause �3, the return value is removed from the result predicate IgnDeg(G?,I)
because for the conjecture we only need to know that there is a result and not what the result is.
Clause �4 guarantees that the conjecture predicate Conj(G?) is true if the rules can produce a
IgnDeg(G?,I) for the sensor value. Clauses �5&�6 guarantee that the conjecture predicate is
true ifoneof thesensorvalues isoutofbounds.This flatteningprocesscanbedoneautomatically
using the techniques outlined in [11]. Hence, the ECU computes an ignition timing for all
potential input sensor values if the universal conjecture ∀G?.Conj(G?) is entailed by #.

Approximately Grounded Example 6 contains inequalities that go beyond simple variable
bounds, e.g., G1≤G? in �2. However, it is possible to reduce the example to an HBS(SLA)
clause set. As our first step of the sorted Datalog hammer, we explain a way to heuristically
determine which HBS(LA) clause sets can be reduced to HBS(SLA) clause sets. Moreover,
we show later that we do not have to explicitly perform this reduction but that we can extend
our other algorithms to handle this heuristic extension of HBS(SLA) directly.

We start by formulating an extension of positively grounded HBS(SLA) called approx-
imately grounded HBS(SLA). It is based on over-approximating the set of derivable values
dvals(%,8,#)={08 |%(0̄) ∈dfacts(%,#)} for each argument position 8 of each predicate % in #
with only finitely many derivable values, i.e., |dvals(%,8,#)| ∈N. These argument positions are
also called finite. Naturally, all argument positions over first-order sorts F are finite argument
positions. With regard to clause relevance, only those clause instances are relevant, where a
finite argument position is instantiated by one of the derivable values.We call a set of clauses #
an approximately grounded HBS(SLA) clause set if all relevant instances based on this crite-
rion canbe simplified toHBS(SLA) clauses. For instance, the set#={(G≤1 ‖→%(G,1)), (G>
2 ‖→%(G,3)), (G≥0 ‖→&(G,0)), (D≤ H+I ‖%(G,H),&(G,I)→'(G,H,I,D))} is an HBS(LA)
clause set, but not a (positively grounded) HBS(SLA) clause set due to the inequality I≤ H+D
and the lack of positively grounded predicates. However, the argument positions (%,2), (&,2),
(',2) and (',3) only have finitelymany derivable values dvals(%,2,#)=dvals(',2,#)={1,3}
and dvals(&,2,#) =dvals(',3,#) = {0}. If we instantiate all occurrences of % and & over
those values, then we get the set # ′ = {(G ≤ 1 ‖→ %(G,1)), (G > 2 ‖→ %(G,3)), (G ≥ 0 ‖→
&(G,0)), (D≤1 ‖ %(G,1),&(G,0)→'(G,1,0,D)), (D≤3 ‖ %(G,3),&(G,0)→'(G,3,0,D))} that
is an HBS(SLA) clause set. This means # is an approximately grounded HBS(SLA) clause
set and our extended Datalog hammer can handle it.

Determining the finiteness of a predicate argument position (and all its derivable values)
is not trivial. In general, it is as hard as determining the satisfiability of a clause set [10], so in
the case of HBS(LA) undecidable [15,23]. This is the reason, why we only over-approximate
the derivable values with the following algorithm.

A Sorted Datalog Hammer for Supervisor Verification Conditions 489

DeriveValues(#)
for all predicates % and argument positions 8 for %

avals(%,8,#) :=∅;
change :=>;
while (change)

change :=⊥;
for all Horn clauses Λ ‖Δ→%(C1,...,C=) ∈#

for all argument positions 1≤ 8≤= where avals(%,8,#)≠R
if [(C8=2) or C8 is assigned a constant 2 in Λ and 2∉avals(%,8,#)] then

avals(%,8,#) :=avals(%,8,#)∪{2},change :=>;
else if [C8 appears in argument positions (&1,:1),...,(&<,:<) in Δ

and avals(%,8,#)+⋂ 9avals(& 9 ,: 9 ,#)] then
if [R≠

⋂
9avals(& 9 ,: 9 ,#)] then

avals(%,8,#) :=avals(%,8,#)∪⋂ 9avals(& 9 ,: 9 ,#),change :=>;
else

avals(%,8,#) :=R,change :=>;

At the start, DeriveValues(#) sets avals(%,8,#)=∅ for all predicate argument positions.
Then it repeats iterating over the clauses in # and uses the current sets avals in order to derive
new values, until it reaches a fixpoint. Whenever, DeriveValues(#) computes that a clause
can derive infinitely many values for an argument position, it simply sets avals(%,8,#)=R
for both real and integer argument positions. This is the case, when we have a clause
Λ ‖Δ→%(C1,...,C=), and an argument position 8 for %, such that: (i) C8 is not a constant (and
therefore a variable), (ii) C8 is not assigned a constant 2 in Λ (i.e., there is no equation C8=2 in
Λ), (iii) C8 is only connected to argument positions (&1,:1),...,(&<,:<) in Δ that already have
avals(& 9 ,: 9 ,#)=R. The latter also includes the case that C8 is not connected to any argument
positions in Δ. For instance, DeriveValues(#) would recognize that clause �1 in example 6
can be used to derive infinitely many values for the argument position (Speed,1) because
the variable G? is not assigned an equation in �1’s theory constraint Λ := (0≤G?,G?<8000)
and G? is not connected to any argument position on the left side of the implication. Hence,
DeriveValues(#) would set avals(Speed,1,#)=R.

For each run through thewhile loop, at least onepredicate argumentposition is set toRor the
set is extended by at least one constant. The set of constants in # as well as the number of predi-
cate argument positions in# are finite, henceDeriveValues(#) terminates. It is correct because
in each step it over-approximates the result of a hierarchic unit resulting resolution step, see Sec-
tion 2. The above algorithm is highly inefficient. In our own implementation, we only apply it if
all clauses are non-recursive and by first ordering the clauses based on their dependencies. This
guarantees that every clause is visited at most once and is sufficient for both of our use cases.

Based on avals, we can now build a tp-function V0 that maps all finite argument positions
(%,8) that our over-approximation detected to the over-approximation of their derivable values,
i.e., V0(%,8) := avals(%,8,#) if |avals(%,8,#)| ∈N and V0(%,8) :=⊥ otherwise. With V0 we
derive the finitely grounded over-approximation agnd(.) of a set of clauses . , a clause .
or an atom . . This set is equivalent to gndV0 (.), except that we assume that all LA atoms
are simplified until they contain at most one integer number and that LA atoms that can be
evaluated are reduced to true and false and the respective clause simplified. Based of agnd(#)
we define a new extension of HBS(SLA) called approximately grounded HBS(SLA):

M. Bromberger et al.490

Definition 7 (Approximately Grounded HBS(SLA): HBS(SLA)A). A clause set # is out
of the fragment approximately grounded HBS(SLA) or short HBS(SLA)A if agnd(#) is out
of the HBS(SLA) fragment. It is called HBS(SLA)PA if it is also pure.

Example 8. Executing DeriveValues(#) on example 6 leads to the following results:
avals(SpeedTable,1,#)={0,2000,4000,6000},
avals(SpeedTable,2,#)={2000,4000,6000,8000},
avals(SpeedTable,3,#)={1350,1600,1850,2100},
avals(IgnDeg,2,#)={1350,1600,1850,2100},
and all other argument positions (%,8) are infinite so avals(%,8,#)=R for them.

We can now easily check whether agnd(#) would turn our clause set into an HBS(SLA)
fragment by checking whether the following holds for all inequalities: all variables in the
inequality except for one must be connected to a finite argument position on the left side of the
clause it appears in. This guarantees that all but one variable will be instantiated in agnd(#)
and the inequality can therefore be simplified to a variable bound.

Connecting Argument Positions and Selecting Test Points As our second step, we are
reducing the number of test points per predicate argument position by incorporating that
not all argument positions are connected to all inequalities. This also means that we select
different sets of test points for different argument positions. For finite argument positions,
we can simply pick avals(%,8,#) as its set of test points. However, before we can compute the
test-point sets for all other argument positions, we first have to determine to which inequalities
and other argument positions they are connected.

Let # be an HBS(SLA)PA clause set and (%,8) an argument position for a predicate
in #. Then we denote by conArgs(%,8,#) the set of connected argument positions and by
conIneqs(%,8,#) the set of connected inequalities. Formally, conArgs(%,8,#) is defined as
the minimal set that fulfills the following conditions: (i) two argument positions (%,8) and
(&, 9) are connected if they share a variable in a clause in #, i.e., (&, 9) ∈conArgs(%,8,#) if
(Λ ‖Δ→�) ∈#, %(C̄),&(B̄) ∈atoms(Δ∪{�}), and C8=B 9 =G; and (ii) the connection relation
is transitive, i.e., if (&, 9) ∈conArgs(%,8,#), then conArgs(%,8,#)=conArgs(&, 9,#). Simi-
larly, conIneqs(%,8,#) is defined as the minimal set that fulfills the following conditions: (i) an
argument position (%,8) is connected to an instance_′ of an inequality_ if they share a variable
in a clause in #, i.e., _′∈conIneqs(%,8,#) if (Λ ‖Δ→�) ∈#, %(C̄) ∈atoms(Δ∪{�}), C8=G,
(Λ′ ‖Δ′→�′) ∈agnd(Λ ‖Δ→�),_′∈Λ′, and_′=G⊳2 (where ⊳={<,>,≤,≥,=,≠} and 2∈Z);
(ii) an argument position (%,8) is connected to a value 2∈Z if%(C̄)with C8=2 appears in a clause
in #, i.e., (G= 2) ∈ conIneqs(%,8,#) if (Λ ‖Δ→�) ∈#, %(C̄) ∈ atoms(Δ∪{�}), and C8 = 2;
(iii) anargumentposition (%,8) is connected toavalue 2∈Z if (%,8) is finite and 2∈avals(%,8,#),
i.e., (G=2) ∈conIneqs(%,8,#) if (%,8) is finite and 2∈avals(%,8,#); and (iv) the connection rela-
tion is transitive, i.e.,_∈conArgs(&, 9,#) if_∈conIneqs(%,8,#) and (&, 9) ∈conArgs(%,8,#).

Example 9. To highlight the connections in example 6 more clearly, we use the same variable
symbol for connected argument positions. Therefore (SpeedTable,1) and (SpeedTable,2) are
only connected to themselves and conArgs(SpeedTable,3,#)={(SpeedTable,3),(IgnDeg,2)},
and conArgs(Speed,1,#)= {(Speed,1),(IgnDeg,1),(ResArgs,1),(Conj,1)}, Computing the
connected argument positions is a little bit more complicated: first, if a connected argument
position is finite, then we have to add all values in avals as equations to the connected

A Sorted Datalog Hammer for Supervisor Verification Conditions 491

inequalities. E.g., conIneqs(SpeedTable,1,#) = {G1 = 0,G1 = 2000,G1 = 4000,G1 = 6000} be-
cause avals(SpeedTable,1,#)={0,2000,4000,6000}. Second, we have to add all inequalities
connected in agnd(#). Again this is possible without explicitly computing agnd(#). E.g., for
the inequality G1≤G? in clause �2, we determine that G1 is connected to the finite argument
position (SpeedTable,1) in�2 and G? is not connected to any finite argument positions. Hence,
we have to connect the following variable bounds to all argument positions connected to G?,
i.e., {G1 ≤ G? | G1 ∈ avals(SpeedTable,1,#)} = {G? ≥ 0,G? ≥ 2000,G? ≥ 4000,G? ≥ 6000} to
the argument positions conArgs(Speed,1,#). If we apply the above two steps to all clauses,
then we get as connected inequalities: conIneqs(SpeedTable,2,#)={G2=2000,G2=4000,G3=
6000,G4=8000}, conIneqs(SpeedTable,3,#)= {H=1350,H=1600,H=1850,H=2100}, and
conIneqs(Speed,1,#) = {G? < 0,G? < 2000,G? < 4000,G? < 6000,G? < 8000,G? ≥ 0,G? ≥
2000,G? ≥4000,G? ≥6000,G? ≥8000}.

Now based on these sets we can construct a set of test points as follows: For each
argument position (%,8), we partition the reals R into intervals such that any variable bound in
_∈conIneqs(%,8,#) is satisfied by all points in one such interval � or none. Since we are in the
Horn case, this is enough to ensure that we derive facts uniformly over those intervals and the
integers/non-integers. To be more precise, we derive facts uniformly over those intervals and
the integers because %(0̄) is derivable from # and 08 ∈ �∩Z implies that %(1̄) is also derivable
from #, where 1 9 =0 9 for 8≠ 9 and 18 ∈ �∩Z. Similarly, we derive facts uniformly over those
intervals and the non-integers because %(0̄) is derivable from# and 08 ∈ �\Z implies that %(1̄)
is also derivable from #, where 1 9 =0 9 for 8≠ 9 and 18 ∈ �. As a result, it is enough to pick (if
possible) one integer and one non-integer test point per interval to cover the whole clause set.

Formallywecompute the interval partition iPart(%,8,#) and the set of test points tps(%,8,#)
as follows: First we transform all variable bounds _∈conIneqs(%,8,#) into interval borders. A
variable bound G⊳2 with ⊳∈{≤,<,>,≥} in conIneqs(%,8,#) is turned into two interval borders.
One of them is the interval border implied by the bound itself and the other its negation, e.g.,
G ≥ 5 results in the interval border [5 and the interval border of the negation 5). Likewise,
we turn every variable bound G⊳2 with ⊳∈ {=,≠} into all four possible interval borders for
2, i.e. 2), [2, 2], and (2. The set of interval borders iEP(%,8,#) is then defined as follows:

iEP(%,8,#)= {2],(2 |G⊳2∈conIneqs(%,8,#) where ⊳∈{≤,=,≠,>}}∪
{2),[2 |G⊳2∈conIneqs(%,8,#) where ⊳∈{≥,=,≠,<}} ∪ {(−∞,∞)}

The interval partition iPart(%,8,#) can be constructed by sorting iEP(%,8,#) in an
ascending order such that we first order by the border value—i.e. X<n if X∈ {2),[2,2],(2},
n ∈ {3), [3,3], (3}, and 2 < 3—and then by the border type—i.e. 2) < [2 < 2] < (2. The
result is a sequence [...,X;,XD,...], where we always have one lower border X;, followed by
one upper border XD. We can guarantee that an upper border XD follows a lower border X;
because iEP(%,8,#) always contains 2) together with [2 and 2] together with (2 for 2∈Z, so
always two consecutive upper and lower borders. Together with (−∞ and∞) this guarantees
that the sorted iEP(%,8,#) has the desired structure. If we combine every two subsequent
borders X;, XD in our sorted sequence [...,X;,XD,...], then we receive our partition of intervals
iPart(%,8,#). For instance, if G<5 and G=0 are the only variable bounds in conIneqs(%,8,#),
then iEP(%,8,#) = {5), [5,0), [0,0],(0,(−∞,∞)} and if we sort and combine them we get
iPart(%,8,#)={(−∞,0),[0,0],(0,5),[5,∞)}.

M. Bromberger et al.492

After constructing iPart(%,8,#), we can finally construct the set of test points tps(%,8,#)
for argument position (%,8). If |avals(%,8,#)| ∈N, i.e., we determined that (%,8) is finite,
then tps(%,8,#) = avals(%,8,#). If the argument position (%,8) is over a first-order sort F8,
i.e., sort(%,8)=F8, then we should always be able to determine that (%,8) is finite because
F8 is finite. If the argument position (%,8) is over an arithmetic sort, i.e., sort(%,8) =R or
sort(%,8)=Z, and our approximation could not determine that (%,8) is finite, then the test-point
set tps(%,8,#) for (%,8) consists of at most two points per interval � ∈ iPart(%,8,#): one integer
value 0� ∈ �∩Z if � contains integers (i.e. if �∩Z≠∅) and one non-integer value 1� ∈ �\Z
if � contains non-integers (i.e. if � is not just one integer point). Additionally, we enforce that
tps(%,8,#)= tps(&, 9,#) if conArgs(%,8,#)=conArgs(&, 9,#) and both (%,8) and (&, 9) are
infinite argument positions. (In our implementation of this test-point scheme, we optimize
the test point selection even further by picking only one test point per interval—if possible
an integer value and otherwise a non-integer—if all conArgs(%,8,#) and all variables G
connecting them in # have the same sort. However, we do not prove this optimization explicitly
here because the proofs are almost identical to the case for two test points per interval.)

Based on these sets, we can now also define a tp-function V and an ep-function [. For the
tp-function, we simply assign any argument position to tps(%,8,#), i.e., V(%,8)= tps(%,8,#)∩
sort(%,8)A. (The intersection with sort(%,8)A is needed to guarantee that the test-point set of
an integer argument position is well-typed.) This also means that V is total and finite. For the
ep-function[,weextrapolate any test-point vector 0̄ (with 0̄= Ḡf andf∈wtisV (%(Ḡ))) over the
(non-)integer subset of the intervals the test points belong to, i.e.,[(%,0̄)= � ′1×...×�

′
=,where � ′8 =

{08} if we determined that (%,8) is finite and otherwise �8 is the interval �8 ∈ iPart(%,8,#) with
08 ∈ �8 and � ′8 = �8∩Z if 08 is an integer value and � ′8 = �8\Z if 08 is a non-integer value. Note that
thismeans that[might not be complete for everypredicate%, e.g.,when% has a finite argument
position (%,8)withan infinitedomain.However, both V and[together still cover theclause set#,
cover any universal conjecture # |=∀Ḡ.&(Ḡ), and cover any existential conjecture # |=∃Ḡ.&(Ḡ).
Theorem 10. The tp-function V covers #. The tp-function V covers an existential conjecture
|=∃Ḡ.&(Ḡ). The tp-function V covers a universal conjecture # |=∀Ḡ.&(Ḡ).
Example 11. Continuation of example 6: The majority of argument positions in our example
are finite. Hence, determining their test point set is equivalent to the over-approximation
of derivable values avals we computed for them: V(SpeedTable,1) = {0,2000,4000,6000},
V(SpeedTable,2) = {2000,4000,6000,8000}, V(SpeedTable,3) = {1350,1600,1850,2100},
and V(IgnDeg,2)={1350,1600,1850,2100}. The other argument positions are all connected
to (Speed,1) and conIneqs(Speed,1,#) = {G? < 0,G? < 2000,G? < 4000,G? < 6000,G? <
8000,G? ≥ 0,G? ≥ 2000,G? ≥ 4000,G? ≥ 6000,G? ≥ 8000}, from which we can compute

iPart(%,8,#)={(−∞,0),[0,2000),[2000,4000),[4000,6000),[6000,8000),[8000,∞)}
and select the test point sets V(Speed,1) = V(IgnDeg,1) = V(ResArgs,1) = V(Conj,1) =
{−1,0,2000,4000,6000,8000}. (Note that all variables in our problem are over the reals, so
we only have to select one test point per interval! Moreover, in our previous version of the test
point scheme, there would have been more intervals in the partition because we would have
processed all inequalities, e.g., also those in conIneqs(SpeedTable,3,#).) The ep-function
[that determines which interval is represented by which test point is [(%,1,−1)= (−∞,0),
[(%,1,0)= [0,2000), [(%,1,2000)= [2000,4000), [(%,1,4000)= [4000,6000), [(%,1,6000)=
[6000,8000),[(%,1,8000)= [8000,∞) for the predicates Speed, IgnDeg, ResArgs, and Conj.
[behaves like the identity function for all other argument positions because they are finite.

A Sorted Datalog Hammer for Supervisor Verification Conditions 493

FromaTest-PointFunction toaDatalogHammer Wecanuse the coveringdefinitions, e.g.,
gndV (#) is equisatisfiable to#, to instantiate our clause set (and conjectures)with numbers.As
a result, we can simply evaluate all theory atoms and thus reduce ourHBS(SLA)PA clause set-
s/conjectures to groundHBS clause sets, whichmeanswe could reduce our input into formulas
without any arithmetic theory that can be solved by anyDatalog reasoner. There is, however, one
problem. The set gndV (#) grows exponentially with regard to the maximum number of vari-
ables =� in any clause in #, i.e.$(|gndV (#)|)=$(|# | · |�|=�), where �=max(%,8) (V(%,8))
is the largest test-point set for any argument position. Since =� is large for realistic examples,
e.g., in our examples the size of =� ranges from 9 to 11 variables, the finite abstraction is often
too large to be solvable in reasonable time. Due to this blow-up, we have chosen an alternative
approach for our Datalog hammer. This hammer exploits the ideas behind the covering
definitions and will allow us to make the same ground deductions, but instead of grounding ev-
erything,we only need to (i) ground the negated conjecture over our tp-function and (ii) provide
a set of ground facts that define which theory atoms are satisfied by our test points. As a result,
the hammered formula is much more concise and we need no actual theory reasoning to solve
the formula. In fact, we can solve the hammered formula by greedily applying unit resolution
until this produces the empty clause—which would mean the conjecture is implied—or until
it produces no more new facts—which would mean we have found a counter example. In
practice, greedily applying resolution is not the best strategy and we recommend to use more
advanced HBS techniques for instance those used by a state-of-the-art Datalog reasoner.

The Datalog hammer takes as input (i) an HBS(SLA)PA clause set # and (ii) optionally a
universal conjecture ∀H̄.%(H̄). The case for existential conjectures is handled by encoding the
conjecture # |=∃Ḡ.&(Ḡ) as the clause set #∪{&(Ḡ)→⊥}, which is unsatisfiable if and only if
the conjecture holds. Given this input, theDatalog hammer first computes the tp-function V and
the ep-function [as described above. Next, it computes four clause sets that will make up the
Datalog formula. The first set tren# (#) is computed by abstracting away any arithmetic from
the clauses (Λ ‖Δ→�) ∈#. This is done by replacing each theory atom � in Λ with a literal
%�(Ḡ),wherevars(�)=vars(Ḡ) and%� is a fresh predicate. The abstraction of the theory atoms
is necessary because Datalog does not support non-constant function symbols (e.g., +,−) that
would otherwise appear in approximately grounded theory atoms. Moreover, it is necessary to
add extra sort literals¬& (%,8,() (G) for someof the variables G∈vars(�), where�=%(C̄), C8=G,
sort(G)=(, and& (%,8,() is a fresh predicate. This is necessary in order to define the test point
set for G if G does not appear inΛ or inΔ. It is also necessary in order to filter out any test points
that are not integer values if G is an integer variable (i.e. sort(G)=Z) but connected only to real
sorted argument positions inΔ (i.e. sort(&, 9)=R for all (&, 9) ∈depend(G,Δ)). It is possible to
reduce the number of fresh predicates needed, e.g., by reusing the same predicate for two theory
atomswhosevariables rangeover the samesets of test points.The resulting abstracted clausehas
then the formΔ) ,Δ(,Δ→�, whereΔ) contains the abstracted theory literals (e.g.%�(Ḡ) ∈Δ))
and Δ(the “sort” literals (e.g.& (%,8,() (G) ∈Δ(). The second set is denoted by #� and it is
empty if we have no universal conjecture or if [does not cover our conjecture. Otherwise,
#� contains the ground and negated version q of our universal conjecture ∀H̄.%(H̄) . q has
the form Δq→⊥, where Δq=gndV (%(H̄)) contains all literals %(H̄) for all groundings over V.
We cannot skip this grounding but the worst-case size of Δq is$(gndV (%(H̄)))=$(|�|=q),
where =q= |H̄|, which is in our applications typically much smaller than the maximum number
of variables =� contained in some clause in #. The third set is denoted by tfacts(#,V) and

M. Bromberger et al.494

contains a fact tren# (�) for every ground theory atom � contained in the theory part Λ of a
clause (Λ ‖Δ→�) ∈gndV (#) such that � simplifies to true. This is enough to ensure that our
abstracted theory predicates evaluate every test point in every satisfiable interpretationA to true
that also would have evaluated to true in the actual theory atom. Alternatively, it is also possible
to use a set of axioms and a smaller set of facts and let theDatalog reasoner compute all relevant
theory facts for itself. The set tfacts(#,V) can be computed without computing gndV (#) if we
simply iterate over all theory atoms � in all constraints Λ of all clauses. =Λ ‖Δ→� (with
. ∈#) and compute allwell typed groundings g∈wtisV (.) such that �g simplifies to true. This
can be done in time$(`(=E) ·=! · |�|=E) and the resulting set tfacts(#,V) has worst-case size
$(=�· |�|=E), where =! is the number of literals in #, =E is the maximum number of variables
|vars(�)| in any theory atom � in #, =� is the number of different theory atoms in #, and `(G)
is the time needed to simplify a theory atom over G variables to a variable bound. The last set is
denoted by sfacts(#,V) and contains a fact& (%,8,() (0) for every fresh sort predicate& (%,8,()
added during abstraction and every 0 ∈ V(%,8)∩(A. This is enough to ensure that & (%,8,()
evaluates to true for every test point assigned to the argument position (%,8) filtered by the
sort (. Please note that already satifiability testing for BS clause sets is NEXPTIME-complete
in general, and DEXPTIME-complete for the Horn case [26,33]. So when abstracting to a
polynomially decidable clause set (ground HBS) an exponential factor is unavoidable.

Lemma 12. # is equisatisfiable to itshammeredversion tren# (#)∪tfacts(#,V)∪sfacts(#,V).
The conjecture # |= ∃H̄.&(H̄) is false iff #� = tren′

#
(# ′) ∪ tfacts(# ′, V) ∪ sfacts(# ′, V)

is satisfiable with # ′ = # ∪ {&(H̄) → ⊥}. The conjecture # |= ∀H̄.&(H̄) is false iff
#�= tren# (#)∪tfacts(#,V)∪sfacts(#,V)∪#� is satisfiable.

Note that tren# (#) ∪ tfacts(#,V) ∪sfacts(#,V) ∪#� is only a HBS clause set over a
finite set of constants and not yet a Datalog input file. It is well known that such a formula
can be transformed easily into a Datalog problem by adding a nullary predicate Goal and
adding it as a positive literal to any clause without a positive literal. Querying for the Goal
atom returns true if the HBS clause set was unsatisfiable and false otherwise.

Example 13. The hammered formula for example 6 looks as follows. The set of renamed
clauses tren# (#) consists of all the previous clauses in #, except that inequalities have been
abstracted to new first-order predicates:
�′1 :SpeedTable(0,2000,1350), �′2 :SpeedTable(2000,4000,1600),
�′3 :SpeedTable(4000,6000,1850), �′4 :SpeedTable(6000,8000,2100),
�′1 :%0≤G? (G?),%G?<8000(G?)→Speed(G?),
�′2 :%G1≤G? (G1,G?),%G?<G2 (G?,G2),Speed(G?),SpeedTable(G1,G2,H)→IgnDeg(G?,H),
�′3 :IgnDeg(G?,I)→ResArgs(G?), �′4 :ResArgs(G?)→Conj(G?),
�′5 :%G?≥8000(G?)→Conj(G?), �′6 :%G?<0(G?)→Conj(G?),
The set tfacts(#, V) defines for which test points those new predicates evaluate to true:
{%0≤G? (0), %0≤G? (2000), %0≤G? (4000), %0≤G? (6000), %0≤G? (8000), %G?<8000(−1),
%G?<8000(0), %G?<8000(2000), %G?<8000(4000), %G?<8000(6000), %G1≤G? (0,0),
%G1≤G? (0,2000), %G1≤G? (0,4000), %G1≤G? (0,6000), %G1≤G? (0,8000), %G1≤G? (2000,2000),
%G1≤G? (2000,4000), %G1≤G? (2000,6000), %G1≤G? (2000,8000), %G1≤G? (4000,4000),
%G1≤G? (4000,6000), %G1≤G? (4000,8000), %G1≤G? (6000,6000), %G1≤G? (6000,8000),
%G?<G2 (−1,2000), %G?<G2 (0,2000), %G?<G2 (−1,4000), %G?<G2 (0,4000),
%G?<G2 (2000,4000), %G?<G2 (−1,6000), %G?<G2 (0,6000), %G?<G2 (2000,6000),

A Sorted Datalog Hammer for Supervisor Verification Conditions 495

Problem Q Status |# | vars |�< | |Δq | SSPL |�B | |Δ>
q
| SSPL06 vampire spacer z3 cvc4

lc_e1 ∃ true 139 9 9 0 < 0.1s 45 0 < 0.1s < 0.1s < 0.1s 0,1 < 0.1s
lc_e2 ∃ false 144 9 9 0 < 0.1s 41 0 < 0.1s < 0.1s < 0.1s - -
lc_e3 ∃ false 138 9 9 0 < 0.1s 37 0 < 0.1s < 0.1s < 0.1s - -
lc_e4 ∃ true 137 9 9 0 < 0.1s 49 0 < 0.1s < 0.1s < 0.1s < 0.1s < 0.1s
lc_e5 ∃ false 152 13 9 0 33.5s - - N/A < 0.1s - - -
lc_e6 ∃ true 141 13 9 0 42.8s - - N/A 0.1s 3.3s 11.5s 0.4s
lc_e7 ∃ false 141 13 9 0 41.4s - - N/A < 0.1s 7.6s - -
lc_e8 ∃ false 141 13 9 0 32.5s - - N/A < 0.1s 2.1s - -
lc_u1 ∀ false 139 9 9 27 < 0.1s 45 27 < 0.1s < 0.1s N/A - -
lc_u2 ∀ false 144 9 9 27 < 0.1s 41 27 < 0.1s < 0.1s N/A - -
lc_u3 ∀ true 138 9 9 27 < 0.1s 37 27 < 0.1s < 0.1s N/A < 0.1s < 0.1s
lc_u4 ∀ false 137 9 9 27 < 0.1s 49 27 < 0.1s < 0.1s N/A - -
lc_u5 ∀ false 154 13 9 3888 32.4s - - N/A 0.1s N/A - -
lc_u6 ∀ true 154 13 9 3888 32.5s - - N/A 2.3s N/A - -
lc_u7 ∀ true 141 13 9 972 32.3s - - N/A 0.2s N/A - -
lc_u8 ∀ false 141 13 9 1259712 48.8s - - N/A 2351.4s N/A - -
ecu_e1 ∃ false 757 10 96 0 < 0.1s 624 0 1.3s 0.2s 0.1s - -
ecu_e2 ∃ true 757 10 96 0 < 0.1s 624 0 1.3s 0.2s 0.1s 1.4s 0.4s
ecu_e3 ∃ false 775 11 196 0 50.1s 660 0 41.5s 3.1s 0.1s - -
ecu_u1 ∀ true 756 11 96 37 0.1s 620 306 1.1s 32.8s N/A 197.5s 0.4s
ecu_u2 ∀ false 756 11 96 38 0.1s 620 307 1.1s 32.8s N/A - -
ecu_u3 ∀ true 745 9 88 760 < 0.1s 576 11360 0.7s 1.2s N/A 239.5s 0.1s
ecu_u4 ∀ true 745 9 486 760 < 0.1s 2144 237096 15.9s 1.2s N/A 196.0s 0.1s
ecu_u5 ∀ true 767 10 96 3900 0.1s 628 415296 31.9s - N/A - -
ecu_u6 ∀ false 755 10 95 3120 < 0.1s 616 363584 14.4s 597.8 N/A - -
ecu_u7 ∀ false 774 11 196 8400 48.9s 656 2004708 - - N/A - -
ecu_u8 ∀ true 774 11 196 8400 48.7s 656 2004708 - - N/A - -

Fig. 2. Benchmark results and statistics

%G?<G2 (4000,6000), %G?<G2 (−1,8000), %G?<G2 (0,8000), %G?<G2 (2000,8000),
%G?<G2 (4000,8000), %G?<G2 (6000,8000), %G?≥800(8000), %G?<0(−1)}
sfacts(#,V)=∅ because there are no fresh sort predicates. The hammered negated conjecture
is #� :=Conj(−1), Conj(0), Conj(2000), Conj(4000), Conj(6000), Conj(8000) →⊥ and
lets us derive false if and only if we can derive Conj(0) for all test points 0∈ V(Conj,1).

4 Implementation and Experiments

We have implemented the sorted Datalog hammer as an extension to the SPASS-SPL
system [11] (option -d) (SSPL in the table). By default the resulting formula is then solved
with the Datalog reasoner VLog. The previously file-based combination with the Datalog
reasonerVLoghas been replaced by an integration ofVLog intoSPASS-SPLvia theVLogAPI.
We focus here only on the sorted extension and refer to [11] for an introduction into coupling
of the two reasoners. Note that the sorted Datalog hammer itself is not fine tuned towards
the capabilities of a specific Datalog reasoner nor VLog towards the sorted Datalog hammer.

In order to test the progress in efficiency of our sorted hammer, we ran the benchmarks
of the lane change assistant and engine ECU from [11] plus more sophisticated, extended for-
malizations. While for the ECU benchmarks in [11] we modeled ignition timing computation
adjusted by inlet temperaturemeasurements, the new benchmarks take also gear box protection
mechanisms into account. The lane change examples in [11] only simulated the supervisor for
lane change assistants over some real-world instances. The new lane change benchmarks check
properties for all potential inputs. The universal ones check that any suggested action by a lane

M. Bromberger et al.496

change assistant is either proven as correct or disproven by our supervisor. The existential ones
check safety properties, e.g., that the supervisor never returns both a proof and a disproof for the
same input. We actually used SPASS-SPL to debug a prototype supervisor for lane change as-
sistants during its development. The new lane change examples are based on versions generated
during this debugging processwhereSPASS-SPL found the followingbugs: (i) it did not always
return a result, (ii) it declaredactions asboth safe andunsafe at the same time, and (iii) it declared
actions as safe although they would lead to collisions. The supervisor is now fully verified.

The names of the problems are formatted so the lane change examples start with lc and
the ECU examples start with ecu. Our benchmarks are prototypical for the complexity of
HBS(SLA) reasoning in that they cover all abstract relationships between conjectures and
HBS(SLA) clause sets. With respect to our two case studies we have many more examples
showing respective characteristics.Wewould have liked to run benchmarks from other sources,
but could not find any problems in the SMT-LIB [5,35] or CHC-COMP [2] benchmarks
within the range of what our hammer can currently accept. Either the arithmetic part goes
beyond SLA or there are further theories involved such as equality on first-order symbols.

For comparison, we also tested several state-of-the-art theorem provers for related logics
(with the best settings we found): SPASS-SPL-v0.6 (SSPL06 in the table) that uses the original
version of our Datalog Hammer [11] with settings -d for existential and -d -n for universal
conjectures; the satisfiabilitymodulo theories (SMT) solver cvc4-1.8 [4]with settings--multi-
trigger-cache --full-saturate-quant; the SMT solver z3-4.8.12 [28] with its default
settings; the constrained horn clause (CHC) solver spacer [24] with its default settings; and the
first-order theorem prover vampire-4.5.1 [37] with settings --memory_limit 8000 -p off,
i.e., with memory extended to 8GB and without proof output. For the SMT/CHC solvers, we
directly transformed the benchmarks into their respective formats. Vampire gets the same input
asVLog transformed into theTPTP format [39].Our experimentswith vampire investigate how
superposition reasoners perform on the hammered benchmarks compared toDatalog reasoners.

For the experiments, we used the TACAS 22 artifact evaluation VM (Ubuntu 20.04 with
8 GB RAM and a single processor core) on a system with an Intel Core i7-9700K CPU with
eight 3.60GHz cores. Each tool got a time limit of 40 minutes for each problem.

The table in Fig. 2 lists for each benchmark problem: the name of the problem (Problem);
the type of conjecture (Q), i.e., whether the conjecture is existential ∃ or universal ∀; the status
of the conjecture (Status); number of clauses (|# |); maximum number of variables in a clause
(vars); the size of the largest test-point set introduced by the sorted/original Hammer (�B/�>);
the size of the hammered universal conjecture (|Δq |/|Δ>q | for sorted/original); the remaining
columns list the time needed by the tools to solve the benchmark problems. An entry "N/A"
means that the benchmark example cannot be expressed in the tools input format, e.g., it is not
possible to encode auniversal conjecture (or, to bemoreprecise, its negation) in theCHCformat
and SPASS-SPL-v0.6 is not sound when the problem contains integer variables. An entry "-"
means that the tool ran out of time, ran out ofmemory, exitedwith an error or returned unknown.

The experiments show that SPASS-SPL (with the sorted Hammer) is orders of magnitudes
faster than SPASS-SPL-v0.6 (with the original Hammer) on problems with universal con-
jectures. On problems with existential conjectures, we cannot observe any major performance
gain compared to the original Hammer. Sometimes SPASS-SPL-v0.6 is even slightly faster
(e.g. ecu_e3). Potential explanations are: First, the number of test points has a much larger
impact on universal conjectures because the size of the hammered universal conjecture

A Sorted Datalog Hammer for Supervisor Verification Conditions 497

increases exponentially with the number of test points. Second, our sorted Hammer needs to
generate more abstracted theory facts than the original Hammer because the latter can reuse
abstraction predicates for theory atoms that are identical upto variable renaming. The sorted
Hammer can reuse the same predicate only if variables also range over the same sets of test
points, which we have not yet implemented.

Compared to the other tools, SPASS-SPL is the only one that solves all problems in
reasonable time. It is also the only solver that can decide in reasonable timewhether a universal
conjecture is not a consequence. This is not surprising because to our knowledge SPASS-SPL
is the only theorem prover that implements a decision procedure for HBS(SLA). On the
problems with existential conjectures, our tool-chain solves all of the problems in under
a minute and with comparable times to the best tool for the problem. The only exception
are problems that contain a lot of superfluous clauses, i.e., clauses that are not needed to
confirm/refute the conjecture. The reason might be that VLog derives all facts for the input
problem in a breadth-first way, which is not very efficient if there are a lot of superfluous
clauses. Vampire coupled with our sorted Hammer returns the best results for those problems.
Vampire performed best on the hammered problems among all first-order theorem provers we
tested, including iProver [25], E [38], and SPASS [40].We tested all provers in default theorem
proving mode with adjusted memory limits. The experiments with the first-order provers
showed that our hammer also works reasonably well for them, but they do not scale well if the
size and the complexity of the universal conjectures increases. For problems with existential
conjectures, the CHC solver spacer is often the best, but as a trade-off it is unable to handle
universal conjectures. The instantiation techniques employed by cvc4 are good for proving
some universal conjectures, but both SMT solvers seem to be unable to disprove conjectures.

5 Conclusion

We have presented an extension of our previous Datalog hammer [11] supporting a more
expressive input logic resulting in more elegant and more detailed supervisor formalizations,
and through a soft typing discipline supporting more efficient reasoning. Our experiments
show, compared to [11], that our performance on existential conjectures is at the same level
as SMT and CHC solvers. The complexity of queries we can handle in reasonable time has
significantly increased, see Section 4, Figure 2. Still SPASS-SPL is the only solver that can
prove and disprove universal queries. The file interface between SPASS-SPL and VLog has
been replaced by a close coupling resulting in a more comfortable application.

Our contribution here solves the third point for future work mentioned in [11] although
there is still room to also improve our soft typing discipline. In the future, we want SPASS-SPL
to produce explications that prove that its translations are correct. Another direction is to exploit
specialized Datalog expressions and techniques, e.g., aggregation and stratified negation, to
increase the efficiency of our tool-chain and to lift some restrictions from our input formulas.
Finally, our hammer can be seen as part of an overall reasoning methodology for the class
of BS(LA) formulas which we presented in [12]. We will implement and further develop this
methodology and integrate our Datalog hammer.
Acknowledgments: This work was funded by DFG grant 389792660 as part of TRR 248
(CPEC), by BMBF in project ScaDS.AI, and by the Center for Advancing Electronics Dresden
(cfaed). We thank our anonymous reviewers for their constructive comments.

M. Bromberger et al.498

http://perspicuous-computing.science
http://perspicuous-computing.science
https://www.scads.de
https://cfaed.tu-dresden.de/

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Angelis, E.D., K, H.G.V.: Constrained horn clauses (chc) competition (2022),

https://chc-comp.github.io/
3. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order

theories. Applicable Algebra in Engineering, Communication and Computing, AAECC 5(3/4),
193–212 (1994)

4. Barrett, C., Conway, C., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli,
C.: CVC4. In: CAV, LNCS, vol. 6806 (2011)

5. Barrett, C.W., de Moura, L.M., Ranise, S., Stump, A., Tinelli, C.: The SMT-LIB initiative and
the rise of SMT - (HVC 2010 award talk). In: Barner, S., Harris, I.G., Kroening, D., Raz, O. (eds.)
Hardware and Software: Verification and Testing - 6th International Haifa Verification Conference,
HVC 2010, Haifa, Israel, October 4-7, 2010. Revised Selected Papers. Lecture Notes in Computer
Science, vol. 6504, p. 3. Springer (2010)

6. Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In: Lutz, C., Sattler, U., Tinelli,
C., Turhan, A., Wolter, F. (eds.) Description Logic, Theory Combination, and All That - Essays
Dedicated to Franz Baader on the Occasion of His 60th Birthday. Lecture Notes in Computer
Science, vol. 11560, pp. 15–56. Springer (2019)

7. Bjørner, N., Gurfinkel, A., McMillan, K.L., Rybalchenko, A.: Horn clause solvers for program
verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.)
Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the Occasion of His
75th Birthday. Lecture Notes in Computer Science, vol. 9300, pp. 24–51. Springer (2015)

8. Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hähnle, R. (eds.) Automated
Reasoning, 5th International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010.
Proceedings. Lecture Notes in Computer Science, vol. 6173, pp. 107–121. Springer (2010)

9. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., González, L., Krötzsch, M., Marx, M., Murali,
H.K., Weidenbach, C.: Artifact for a sorted Datalog hammer for supervisor verification conditions
modulo simple linear arithmetic (Jan 2022). https://doi.org/10.5281/zenodo.5888272

10. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., González, L., Krötzsch, M., Marx, M., Murali,
H.K., Weidenbach, C.: A sorted Datalog hammer for supervisor verification conditions modulo
simple linear arithmetic. CoRR abs/2201.09769 (2022), https://arxiv.org/abs/2201.09769

11. Bromberger, M., Dragoste, I., Faqeh, R., Fetzer, C., Krötzsch, M., Weidenbach, C.: A Datalog
hammer for supervisor verification conditions modulo simple linear arithmetic. In: Reger, G.,
Konev, B. (eds.) Frontiers of Combining Systems - 13th International Symposium, FroCoS 2021,
Birmingham, United Kongdom, September 8-10, 2021. Proceedings. Lecture Notes in Computer
Science, vol. 12941, pp. 3–24. Springer (2021)

12. Bromberger, M., Fiori, A., Weidenbach, C.: Deciding the bernays-schoenfinkel fragment over
bounded difference constraints by simple clause learning over theories. In: Henglein, F., Shoham,
S., Vizel, Y. (eds.) Verification, Model Checking, and Abstract Interpretation - 22nd International
Conference, VMCAI 2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings. Lecture
Notes in Computer Science, vol. 12597, pp. 511–533. Springer (2021)

13. Carral, D., Dragoste, I., González, L., Jacobs, C., Krötzsch, M., Urbani, J.: VLog: A rule engine
for knowledge graphs. In: Ghidini et al., C. (ed.) Proc. 18th Int. Semantic Web Conf. (ISWC’19,
Part II). LNCS, vol. 11779, pp. 19–35. Springer (2019)

14. Cimatti, A., Griggio, A., Redondi, G.: Universal invariant checking of parametric systems with
quantifier-free SMT reasoning. In: Proc. CADE-28 (2021), to appear

15. Downey, P.J.: Undecidability of presburger arithmetic with a single monadic predicate letter. Tech.
rep., Center for Research in Computer Technology, Harvard University (1972)

A Sorted Datalog Hammer for Supervisor Verification Conditions 499

https://chc-comp.github.io/
https://doi.org/10.5281/zenodo.5888272
https://arxiv.org/abs/2201.09769

16. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive datalog. ACM Trans. Database Syst. 22(3), 364–418
(1997)

17. Faqeh, R., Fetzer, C., Hermanns, H., Hoffmann, J., Klauck, M., Köhl, M.A., Steinmetz, M.,
Weidenbach, C.: Towards dynamic dependable systems through evidence-based continuous
certification. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications of Formal Methods,
Verification and Validation: Engineering Principles - 9th International Symposium on Leveraging
Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 12477, pp. 416–439. Springer (2020)

18. Fiori, A., Weidenbach, C.: SCL with theory constraints. CoRR abs/2003.04627 (2020),
https://arxiv.org/abs/2003.04627

19. Ge, Y., de Moura, L.M.: Complete instantiation for quantified formulas in satisfiabiliby modulo
theories. In: Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 - July 2, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5643, pp.
306–320. Springer (2009)

20. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers
from proof rules. In: Vitek, J., Lin, H., Tip, F. (eds.) ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012. pp. 405–416.
ACM (2012)

21. Hillenbrand, T., Weidenbach, C.: Superposition for bounded domains. In: Bonacina, M.P., Stickel,
M. (eds.) McCune Festschrift. LNCS, vol. 7788, pp. 68–100. Springer (2013)

22. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the bernays-schönfinkel-ramsey
fragment with simple linear integer arithmetic. In: deMoura, L. (ed.) Automated Deduction - CADE
26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden, August 6-11,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10395, pp. 77–94. Springer (2017)

23. Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of presburger arithmetic with
unary uninterpreted predicates is undecidable. CoRR abs/1703.01212 (2017)

24. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive programs.
In: CAV. Lecture Notes in Computer Science, vol. 8559, pp. 17–34. Springer (2014)

25. Korovin, K.: iprover - an instantiation-based theorem prover for first-order logic (system description).
In: Armando, A., Baumgartner, P., Dowek, G. (eds.) Automated Reasoning, 4th International Joint
Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceedings. Lecture Notes
in Computer Science, vol. 5195, pp. 292–298. Springer (2008)

26. Lewis, H.R.: Complexity results for classes of quantificational formulas. Journal of Compututer
and System Sciences 21(3), 317–353 (1980)

27. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. The Computer Journal 36(5),
450–462 (1993)

28. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for the
Construction and Analysis of Systems, LNCS, vol. 4963 (2008)

29. de Moura, L.M., Bjørner, N.: Satisfiability modulo theories: introduction and applications.
Communications of the ACM 54(9), 69–77 (2011)

30. Nieuwenhuis,R.,Oliveras,A.,Tinelli,C.:Solving sat and satmodulo theories:Fromanabstract davis–
putnam–logemann–loveland procedure to dpll(t). Journal of theACM 53, 937–977 (November 2006)

31. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic,
LNCS, vol. 2283. Springer (2002)

32. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Handbook of
Automated Reasoning, pp. 335–367. Elsevier and MIT Press (2001)

33. Plaisted, D.A.: Complete problems in the first-order predicate calculus. Journal of Computer and
System Sciences 29, 8–35 (1984)

34. Ranise, S.: On the verification of security-aware e-services. Journal of Symbolic Compututation
47(9), 1066–1088 (2012)

M. Bromberger et al.500

https://arxiv.org/abs/2003.04627

35. Ranise, S., Tinelli, C., Barrett, C., Fontaine, P., Stump, A.: Smt-lib the satisfiability modulo theories
library (2022), https://smtlib.cs.uiowa.edu/

36. Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In: Beyer, D.,
Huisman, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems - 24th
International Conference, TACAS 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings,
Part II. Lecture Notes in Computer Science, vol. 10806, pp. 112–131. Springer (2018)

37. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI Communications
15(2-3), 91–110 (2002)

38. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E 2.3. In: Fontaine, P. (ed.) Proc.
of the 27th CADE, Natal, Brasil. pp. 495–507. No. 11716 in LNAI, Springer (2019)

39. Sutcliffe, G.: The TPTP problem library and associated infrastructure - from CNF to th0, TPTP
v6.4.0. J. Autom. Reason. 59(4), 483–502 (2017)

40. Weidenbach, C., Dimova, D., Fietzke, A., Suda, M., Wischnewski, P.: Spass version 3.5. In:
Schmidt, R.A. (ed.) 22nd International Conference on Automated Deduction (CADE-22). Lecture
Notes in Artificial Intelligence, vol. 5663, pp. 140–145. Springer, Montreal, Canada (August 2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Com-
mons license, unless indicated otherwise in a credit line to the material. If material is not included in the
chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

A Sorted Datalog Hammer for Supervisor Verification Conditions 501

https://smtlib.cs.uiowa.edu/
http://creativecommons.org/licenses/by/4.0/

	A Sorted Datalog Hammer for Supervisor Verification Conditions Modulo Simple Linear Arithmetic
	1 Introduction
	2 Preliminaries
	3 The Sorted Datalog Hammer
	4 Implementation and Experiments
	5 Conclusion
	References

