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Abstract. Land cover changes have been proposed to play a
significant role, alongside emission reductions, in achieving
the temperature goals agreed upon under the Paris Agree-
ment. Such changes carry both global implications, pertain-
ing to the biogeochemical effects of land cover change and
thus the global carbon budget, and regional or local implica-
tions, pertaining to the biogeophysical effects arising within
the immediate area of land cover change. Biogeophysical ef-
fects of land cover change are of high relevance to national
policy and decision makers, and accounting for them is es-
sential for effective deployment of land cover practices that
optimise between global and regional impacts. To this end,
Earth system model (ESM) outputs that isolate the biogeo-
physical responses of climate to land cover changes are key
in informing impact assessments and supporting scenario
development exercises. However, generating multiple such
ESM outputs in a manner that allows comprehensive explo-
ration of all plausible land cover scenarios is computation-
ally untenable. This study proposes a framework to explore
in an agile manner the local biogeophysical responses of cli-
mate under customised tree cover change scenarios by means
of a computationally inexpensive emulator, the Tree cover

change clIMate Biophysical responses EmulatoR (TIMBER)
v0.1. The emulator is novel in that it solely represents the
biogeophysical responses of climate to tree cover changes,
and it can be used as either a standalone device or as a sup-
plement to existing climate model emulators that represent
the climate responses from greenhouse gas (GHG) or global
mean temperature (GMT) forcings. We start off by mod-
elling local minimum, mean, and maximum surface temper-
ature responses to tree cover changes by means of a month-
and Earth system model (ESM)-specific generalised additive
model (GAM) trained over the whole globe; 2 m air temper-
ature responses are then diagnosed from the modelled mini-
mum and maximum surface temperature responses using ob-
servationally derived relationships. Such a two-step proce-
dure accounts for the different physical representations of
surface temperature responses to tree cover changes under
different ESMs whilst respecting a definition of 2 m air tem-
perature that is more consistent across ESMs and with obser-
vational datasets. In exploring new tree cover change scenar-
ios, we employ a parametric bootstrap sampling method to
generate multiple possible temperature responses, such that
the parametric uncertainty within the GAM is also quanti-
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fied. The output of the final emulator is demonstrated for the
Shared Socioeconomic Pathway (SSP) 1-2.6 and 3-7.0 sce-
narios. Relevant temperature responses are identified as those
displaying a clear signal in relation to their surrounding para-
metric uncertainty, calculated as the signal-to-noise ratio be-
tween the sample set mean and sample set variability. The
emulator framework developed in this study thus provides a
first step towards bridging the information gap surrounding
biogeophysical implications of land cover changes, allowing
for smarter land use decision making.

1 Introduction

Following the Paris Agreement in 2015, 42 % of nationally
determined contributions (NDCs) submitted by countries in-
cluded afforestation- or reforestation-based actions and tar-
gets (Seddon et al., 2020). The recent COP26 in Glasgow
furthermore saw a pledge to halt and reverse deforestation
by 2030 (COP, 2021). Considering this, society is set to ex-
perience notable land cover changes in hopes of achieving
global warming levels well below + 2 ◦C and to pursue ef-
forts in limiting them to +1.5 ◦C above pre-industrial levels.
In anticipation of this, the Earth system model (ESM) com-
munity has put great effort into understanding and quanti-
fying the biogeochemical and biogeophysical effects of land
cover changes (De Noblet-Ducoudré et al., 2012; Lawrence
et al., 2016; Davin et al., 2020; Boysen et al., 2020).

Biogeochemical effects of land cover changes largely af-
fect the global carbon budget, while biogeophysical effects
are essential in understanding regional climate impacts as
well as extremes (De Noblet-Ducoudré et al., 2012; Pit-
man et al., 2012; Lejeune et al., 2018). Recent studies by
Windisch et al. (2021) and Lawrence et al. (2022) highlighted
the need to consider the biogeophysical effects of land cover
changes in order to effectively identify and prioritise areas
for reforestation or afforestation and conservation. Such un-
derscores the regional importance of the biogeophysical ef-
fects of land cover changes under future climate scenarios
(Seneviratne et al., 2018; Hirsch et al., 2018) and evidences
the need to consider them within impact assessments (Popp
et al., 2017) and scenario development exercises (Van Vuuren
et al., 2012; Calvin and Bond-Lamberty, 2018). Exploring
the biogeophysical effects of land cover changes under all
possible future land cover scenarios solely through ESMs,
however, quickly becomes untenable due to computational
costs, and it is worth pursuing computationally inexpensive
alternatives such as climate model emulators.

Climate model emulators are computationally inexpensive
tools, trained on available climate model runs to then ren-
der probability distributions of key climate variables for runs
that have not been generated yet. By statistically representing
select climate variables, emulators are able to reduce the di-
mensionality of climate model outputs, allowing for agile ex-

ploration of the uncertainty phase space surrounding climate
projections. Climate model emulators designed to reproduce
regional or grid-point-level, annual to monthly temperature
projections usually operate as ESM specific and start by de-
terministically representing the regional or grid-point-level
mean response of temperatures to a certain forcing, after
which the residual variability – treated as the uncertainty due
to natural climate variability – is sampled or stochastically
generated (Alexeeff et al., 2018; McKinnon and Deser, 2018;
Link et al., 2019; Castruccio et al., 2019; Beusch et al., 2020;
Nath et al., 2022b). Outputs of such emulators act as approx-
imations of multi-model initial-condition ensembles, provid-
ing distributions of temperature responses to the forcing of
choice for impact assessments. To date, however, such cli-
mate model emulators mainly represent the greenhouse gas
(GHG) or global mean temperature (GMT) forcing within
their mean response, neglecting the biogeophysical effects of
land cover changes.

In this study, we set up a conceptual framework for em-
ulating the biogeophysical responses of climate variables to
land cover changes, hereafter simply referred to as responses.
As a first step, we focus on emulating the surface and 2 m air
temperature responses to land cover changes between forest
and cropland, simply denoted as tree cover changes. The re-
sulting emulator constitutes a prototype version of the Tree
cover change clIMate Biophysical responses EmulatoR, i.e.
TIMBER v0.1. Since representation of natural climate vari-
ability is well-explored in other emulators, TIMBER v0.1
purely focusses on representing the mean response of tem-
peratures to tree cover change. In doing so, we recognise that
the ESM data available for training (described under Sect. 2)
are under-representative of the full range of possible tree
cover changes across the globe. Consequently, we pursue a
more probabilistic representation, such that parametric un-
certainties given the training data population are accounted
for. TIMBER v0.1 can thus be used as a standalone device
or as a supplement to other emulators. The structure of this
paper is as follows: Sect. 3 introduces the emulator frame-
work and its calibration and evaluation procedure, Sect. 4
presents the calibration and evaluation results and illustrates
some emulator outputs, Sect. 4.4 demonstrates the applica-
tion of the emulator to different Shared Socioeconomic Path-
way (SSP) scenarios, and Sect. 5 wraps up with the conclu-
sion and outlook.

2 Data

2.1 ESM experiments

Idealised Earth system model (ESM) experiments that iso-
late the effects of tree cover change on the climate were run
as part of the LAnd MAnagement for CLImate Mitigation
and Adaptation (LAMACLIMA) project; a detailed descrip-
tion of these simulations can be found in (De Hertog et al.,
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2022). The experimental setup was designed to capture the
maximal potential climate response due to afforestation, re-
forestation, or deforestation as compared to present-day land
cover conditions. Accordingly, extreme afforestation (AFF)
and deforestation (DEF) scenarios were run alongside a ref-
erence scenario (REF). The REF scenario spans 150 years,
with land cover conditions and other forcings (GHG emis-
sions, etc.) kept constant at 2015 levels. The AFF (DEF) sce-
nario then consists of a full expansion of forest (crop) cover
relative to that of 2015 levels, with all other forcings again
kept constant at 2015 levels, and again spans 160 years, with
a 10-year spin-up period, which is excluded. The AFF (DEF)
was implemented by removing the non-required vegetation
types (i.e. crops, grassland, and shrubs for AFF and forest,
grasslands, and shrubs for DEF) and upscaling the remaining
vegetation to fill up the grid cells. Bare land was conserved
throughout this process in order to respect the biophysical
limits of where vegetation can grow. The difference between
the AFF (DEF) run and the REF run outputs averaged over
the 150 years provides the climate response to idealised re-
forestation or afforestation (deforestation).

Temperature responses derived from the ESM simulations
are distinguished into local and non-local responses follow-
ing the checkerboard approach developed by Winckler et al.
(2017c). Local responses represent the expected climate re-
sponses to land cover change within the immediate area of
change and can be applied in any global tree cover change
scenario, whereas non-local responses represent remote ef-
fects of land cover change and depend on the global ex-
tent and patterns of land cover change. Given that local re-
sponses are independent of the global extent and patterns of
land cover change, we focus only on them for the rest of
this study, and the term response exclusively refers to the lo-
cal response hereon. Participating ESMs running simulations
within the LAMACLIMA project are the Community Earth
System Model version 2.1.3 (CESM2), the Max Planck In-
stitute Earth System Model version 1.2 (MPI-ESM), and the
European Community Earth System Model version 3-Veg
(EC-EARTH).

2.2 Observational dataset

To demonstrate the applicability of the emulating approach
outlined in this study on observational data, we use the Du-
veiller et al. (2018c) dataset, hereafter referred to as D18.
This dataset was derived using a space-for-time substitution
approach applied to surface temperatures from satellite data
in order to map potential local responses of daytime, mean,
and nighttime surface temperatures to land cover transitions.
It considers transitions from forest to several other land cover
types (e.g. shrubland or grassland). To ensure comparabil-
ity with the ESM runs, we choose to only focus on forest
transitions to cropland, which are hereafter by analogy also
referred to as DEF. It should be noted that we do not em-
ulate the temperature response to afforestation in this case

since the D18 dataset assumes a symmetrical temperature re-
sponse for transitions from cropland to forests. Additionally,
the dataset contains some information gaps in space and is
thus spatially sparse as compared to the spatially complete
ESM output fields.

2.3 Tree cover change scenarios in selected SSPs

The emulator framework developed in this study enables us
to predict the expected local temperature changes that would
be given by the dataset it is trained on (being derived from
models or observations) in response to any scenario of spa-
tially explicit tree cover changes. We apply it to scenarios of
tree cover changes according to the Shared Socioeconomic
Pathways SSP1-2.6 and SSP3-7.0 (Riahi et al., 2017).

SSP1-2.6 follows the narrative of a global trend towards
sustainable development from SSP1 (Riahi et al., 2017) and
entails changes in global emissions and further climate forc-
ings that eventually lead to a radiative forcing of 2.6 W m−2

in 2100. Strong land use regulations mean that tropical defor-
estation is reduced, while economic development enables in-
creases in crop yields, and the focus on sustainability entails
less food waste and a reduction in the consumption of ani-
mal products (Popp et al., 2017). Overall, this leads to an in-
crease in forest cover in many parts of the world. In contrast,
SSP3-7.0 follows the SSP3 narrative and leads to a radia-
tive forcing of 7.0 W m−2 in 2100. SSP3 features a world in
which there is a resurgence of nationalism and regional con-
flicts that translate into a stronger focus on domestic and re-
gional issues and low international cooperation, particularly
on environmental issues. Land use is thus not well regulated,
low economic development and reduced technology transfer
mean that crop yields stagnate or decline, while diets with
high shares of animal products and high rates of food waste
prevail. As a result, deforestation continues, especially in the
tropics.

In this study, we use the trajectories of tree cover changes
according to SSP 1-2.6 and SSP 3-7.0 as modelled by
the integrated assessment models IMAGE and MESSAGE-
GLOBIOM, respectively (van Vuuren et al., 2017; Fujimori
et al., 2017). Tree fraction maps are obtained as the CMIP6
variable “treeFrac” from the CMIP6 new-generation library
hosted by ETH Zurich (Brunner et al., 2020).

3 Methods

3.1 Overview of the emulation approach

The emulation framework presented in this study aims at pre-
dicting local temperature responses to tree cover changes and
is split into three parts. The first part seeks to statistically rep-
resent the expected responses of minimum (1T Smin

m,s ), mean
(1T Smean

m,s ), and maximum (1T Smax
m,s ) surface temperature

for a given month m and location s, generically referred to
as 1T Sm,s , to tree cover change (Sect. 3.2). This is carried
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out using a generalised additive model (GAM) that is cali-
brated via a blocked-cross-validation procedure in order to
account for the specificity of the training data. The predictive
ability of the GAM is also evaluated using a blocked-cross-
validation procedure.

The second part then seeks to diagnose 2 m air tempera-
ture responses (1T 2 m

m,s ) from the statistically represented sur-
face temperature responses using observationally derived re-
lationships (Sect. 3.3). T 2 m

m,s is an important variable for im-
pact assessments; however, it is diagnosed differently across
ESMs (leading to inter-ESM discrepancies in their modelled
response to tree cover change) and is also defined differently
between ESMs and observations. The split approach sug-
gested in this study therefore allows us to maintain a response
of surface temperature to tree cover change that is specific to
the ESM or observational data trained on, from which1T 2 m

m,s

is then diagnosed using observationally derived relationships
independent of training data. In such, we account for the dif-
ferent physical representations of temperature responses to
tree cover change for each ESM whilst also ensuring a con-
sistent definition of 1T 2 m

m,s across ESMs and with observa-
tional datasets, ergo the possibility to compare them.

The third part aims to quantify the uncertainty in the final
1T 2 m

m,s predictions that arise from the parametric uncertain-
ties within the GAM (Sect. 3.4). The GAM’s parametric un-
certainty is assessed using a parametric bootstrap procedure
(Hastie and Tibshirani, 1986; Wood, 2017) so as to evalu-
ate the imperfections within its fitted parameters conditional
on the given training sample population. Given the limited
amount of training data available, this is an important step to-
wards quantifying the confidence in the temperature response
predictions from TIMBER.

3.2 Representing the expected surface temperature
responses to tree cover change

In the following subsections, we introduce the statisti-
cal model used for representing 1T Sm,s to tree cover
changes (Sect. 3.2.1), followed by our approach in calibrat-
ing (Sect. 3.2.2) and evaluating it (Sect. 3.2.3). In choosing
and calibrating the model, we are especially mindful of the
training datasets being solely representative of grid points
which undergo both directions of extreme tree cover changes
relative to the REF scenario, as performed within the ESM
training simulations, or just one direction (i.e. deforestation)
in the case of the D18 data. Consequently, we require a model
that can train over the whole globe (as otherwise there are at
most two samples per grid point to train on) and need to ac-
count for the resulting spatially structured training data dur-
ing model calibration. To this end, a random train–test split
cannot be applied during model calibration due to the struc-
tural interdependencies in the ESM and observational data
(for example, arising through spatial correlations). We there-
fore calibrate the model following a blocked-cross-validation
procedure (Roberts et al., 2017). Moreover, we recognise that

evaluation can only be done on the training datasets as no
other ESM simulations isolating the local effects from af-
forestation or deforestation with the checkerboard approach
of Winckler et al. (2017a) exist, and thus we settle for synthe-
sising the best representation of the model’s out-of-sample
performance during model evaluation by again employing
blocked cross-validation.

3.2.1 Model description

We model the expected 1T Sm,s conditional on tree cover
change and geographical attributes using a month-specific
generalised additive model (GAM) trained over the whole
globe. The GAM, hereon referred to as 0min/mean/max

m – de-
pending on whether it is applied to daily minimum, maxi-
mum, or mean surface temperature – or more generically as
0m, is provided by the Python pyGAM package. 0m can eas-
ily ingest multidimensional data and has the advantage that
it does not prescribe any functional form, allowing flexibil-
ity in representing linear to more complex response types.
The input predictor matrix (X) given to 0m is composed of
tree cover changes relative to the 2015 (12015 treeFrac) and
the geographical attributes of longitude (long), latitude (lat)
and orography (orog). Maps of 1treeFrac2015 implemented
under the AFF and DEF scenarios and the orog (defined as
metres above sea level) are available for reference in Figs. A1
and A2, respectively, in Appendix A. The conditional distri-
bution of 1T Sm,s is assumed to be normal,

0m = E[1T Sm,s |X] = tem(12015treeFracm,s, lons, lats,

by= orogs) where [1T Sm,s |X] ∼N , (1)

where tem represents a tensor spline term built across the
three-dimensional 12015 treeFrac, long, lat space with co-
efficient terms stratified according to orog using the by oper-
ator so as to create a varying coefficient model (Hastie and
Tibshirani, 1993). For further details on tensor splines and
the by operator, see Wood (2017). 0m can be calibrated for
its lambda parameter (λ), which controls the complexity of
the shape of tem (where a smaller λ value allows for a more
complex shape) and its number of basis functions, also noted
as nbfs (where more basis functions mean more degrees of
freedom).

3.2.2 Blocked cross-validation for model calibration

A first blocked cross-validation (Roberts et al., 2017) is con-
ducted to find the model configuration (i.e. the set of model
parameters λ and nbfs) that performs best over geographical
and climate regions (steps 1–4 of Fig. 1). Block samples are
constructed by identifying regions sharing climate and geo-
graphical characteristics.K-means clustering is used to clus-
ter grid points according to background climate (based on
climatological values of temperature and relative humidity)
in the REF simulation of each ESM and in historical climato-
logical data from WorldClim v2 (https://www.worldclim.org/
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data/worldclim21.html, last access: 6 June 2022) when fur-
ther calibrating on the D18 observational data. To select the
optimal number of clusters, we calculate the improvement in
the performance of the K-means-clustering algorithm (mea-
sured as the average distance of all points from the centre of
their respective cluster groups, with a smaller distance indi-
cating better performance) with increasing number of clus-
ters, then select the number of clusters after which no fur-
ther improvement in performance is observed. Grid points
are subsequently split according to continuous geographical
regions: Africa, North America, South America, Australia,
Eurasia, Tibetan Plateau, and the Southeast Asian Islands.
The composite cluster blocks obtained through this proce-
dure are illustrated in the upper-right corner of Fig. 1 (for
example, ESM, CESM2) and in Fig. A1 in the Appendix.

Cross-validation is then performed using the composite
blocks identified in both the climate and geographical space.
Successively and for each block, 0m is fitted to data for the
whole land area except over that block. At each iteration, λ
values between 0.001 and 1, as well as a number of basis
functions between 5 and 9, are tried out, representing a possi-
ble model configuration. For each block, the performance of
each model configuration is evaluated by calculating the RM-
SEs, its predictions, and the actual ESM or observational data
over that block. By doing so, we hope to nudge the λ parame-
ter and the number of basis functions to values that most flex-
ibly apply across all possible geographical and climate condi-
tions whilst ensuring independence between training and test
sets by accounting for spatial correlations. Eventually, cross-
validation is carried out across all train–test splits such that
each block is used for testing once, and the set of model pa-
rameters yielding the best performance for 0m as measured
by the RMSE across all test sets is selected. The parame-
ters of these model configurations and their performance are
shown in Sect. 4.1.1.

3.2.3 Blocked cross-validations for model evaluation

Having selected the optimal λ value and nbfs configuration
for 0m, a final training on the whole set of training data is
conducted to obtain the fully calibrated 0m. Blocked cross-
validation is further employed to evaluate the calibrated 0m’s
performance into no-analogue conditions where the model
has the least information (Roberts et al., 2017), thus pro-
viding a representative idea of the model’s ability to predict
new tree cover change scenarios unseen during calibration.
It is mainly required that the model is able to predict well
across different background climates, as well as for differ-
ent amounts of tree cover change; therefore, its performance
is evaluated separately in no-analogue conditions representa-
tive of each of these aspects.

First, since 0m was originally calibrated by creating blocks
that considered both climate and geographical space, the per-
formance into no-analogue background climates is assessed
by re-using those same blocks. Successively and for each

block, the best-performing configuration of 0m identified
during calibration is trained on data for the whole land area
except that block. The RMSEs between the values predicted
by 0m and the actual values in the ESM or observational data
over that block are then calculated. The results of this proce-
dure are described in Sect. 4.1.2.

Then, another set of blocks is constructed by splitting the
same seven continuous geographical regions as in the previ-
ous section but by dividing the grid cells constituting those
according to the amount of tree cover change 12015 treeFrac
encountered between the REF and AFF or REF and DEF
simulations using bins of12015 treeFrac magnitudes, namely
[0.01–0.15), [0.15–0.3), [0.3–0.5), [0.5–0.8), and [0.8–1.0],
for both positive and negative signs of tree cover change. A
similar procedure to that applied for the no-analogue back-
ground climate conditions is then conducted but using these
newly constructed blocks: successively and for each block,
0m is trained on data for the whole land area except over that
block using the sets of parameters identified in Sect. 3.2.2.
For each block, the RMSEs between the values predicted by
0m and the actual ESM or observational data are then cal-
culated. They constitute an estimate of the predictive ability
of 0m for tree cover change amounts unseen during training
and are presented in Sect. 4.1.3.

3.3 Diagnosing the 2 m air temperature response from
changes in surface temperatures

Hooker et al. (2018) were able to derive month-specific rela-
tionships between observational night and day surface tem-
peratures (T Snight/day

m,s ) and observational T 2 m
m,s (provided by

the Global Historical Climatology Network monthly Menne
et al., 2018). They did so by performing both geographical
and climate space weighted regression (GWR and CSWR)
between observational T Snight/day

m,s and observational T 2 m
m,s

values so as to obtain grid-point-level coefficients specific to
geographical and/or background climate conditions. By tak-
ing a stacked generalisation of the GWR and CSWR outputs,
Hooker et al. (2018) were able to reconstruct global T 2 m

m,s

maps over the period 2003 to 2016 in a geographically and
climatically consistent manner.

In this study, we use a model adapted from Hooker et al.
(2018) to diagnose T 2 m

m,s from surface temperatures. Ideally,
the Hooker et al. (2018) model would be refitted to derive
ESM-specific coefficients between ESM surface tempera-
tures and observed T 2 m

m,s data. Given that this study primarily
focusses on setting up a conceptual framework, however, we
choose to directly apply the original coefficients derived by
Hooker et al. (2018) as an initial proof of concept. Before
applying the Hooker et al. (2018) model, we first make some
modifications to it so as to enable a smooth translation be-
tween observed and ESM spaces. In the following subsec-
tions, we introduce the modifications made to the Hooker
et al. (2018) model and furthermore outline some tests per-
formed to check that the modified version of it applied to
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Figure 1. Framework of blocked cross-validation used for the calibration and the evaluation of 0m based on its ability to predict the surface
temperature response to tree cover changes over climate and continuous geographical regions not considered during model calibration.

ESMs still yields results comparable to those expected from
observations.

3.3.1 Modifications of the Hooker et al. (2018) model

T 2 m
m,s values are diagnosed using a modified version of the

Hooker et al. (2018) model, which uses T Smin/max
m,s values in-

stead of T Snight/day
m,s and only considers the GWR coefficient

terms,

T 2 m
m,s = β

GWR
0,m,s +β

GWR
1,m,s · T S

min
m,s +β

GWR
2,m,s · T S

max
m,s ; (2)

assuming that the effects of land cover type are minimal on
βGWR

0,m,s , we then get

1T 2 m
m,s = β

GWR
1,m,s ·1T S

min
m,s +β

GWR
2,m,s ·1T S

max
m,s , (3)

where βGWR
0,m,s , β

GWR
1,m,s , and βGWR

0,m,s are coefficient terms ob-
tained from GWR. We choose not to use the CSWR coef-
ficient terms as background climates between observations
and ESMs are not consistent and there is the additional uncer-
tainty surrounding the evolution of CSWR coefficient terms
under changing background climates. Additionally, we use
T S

min/max
m,s values instead as they are the only available DEF

and AFF scenario ESM outputs which are most similar to
T S

night/day
m,s .

3.3.2 Tests on the modified Hooker et al. (2018) model
applied to the ESM space

Since we look at relative changes in T 2 m
m,s , the modifications

made to the Hooker et al. (2018) model are expected to have
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minimal impact as long as the biases in T 2 m
m,s values calcu-

lated using ESM T S
min/max
m,s values have the same spread

as those arising from natural variability within observational
T S

night/day
m,s values and are thus acceptable. To determine this,

we compare the spread of biases obtained when calculating
T 2 m
m,s values from observational T Snight/day

m,s values to those

obtained from T S
min/max
m,s ESM outputs for the REF scenario.

T S
min/max
m,s outputs from the REF scenario are used as we

consider them to be representative of the natural variability
surrounding T Smin/max

m,s values. We approximate the spread
of biases by taking into account the natural variability sur-
rounding the surface temperature values and compare them
through the following steps:

1. Construct a multivariate Gaussian process across all ob-
servational T Snight/day

m,s values to generate spatially cor-
related pairs of T Snight/day

m,s which also take into account
cross-correlations between T Snight

m,s and T Sday
m,s . Gener-

ated T Snight/day
m,s pairs will act as pseudo-samples that

represent the underlying uncertainty due to natural vari-
ability within observational data.

2. For each time step of T 2 m
m,s predictions available from

the original (Hooker et al., 2018) model (going from
2003 to 2016), perform the following:

(a) Generate 100 synthetic pairs of T Snight/day
m,s values

using the Gaussian process constructed in step 1.

(b) Calculate the biases between the T 2 m
m,s prediction

available from the original (Hooker et al., 2018)
model and those obtained by applying Eq. (2) to
the synthetically generated pairs of T Snight/day

m,s .

3. Take the interquartile range (IQR) of the biases calcu-
lated in step (2b) as a measure of their spread.

4. Repeat steps 1–3 for T Smin/max
m,s .

5. Check the difference between the IQR calculated in step
3 using ESM T S

min/max
m,s values and that calculated using

observational T Snight/day
m,s values. A positive difference

indicates more spread within the biases for T Smin/max
m,s -

derived T 2 m
m,s values, in which case the biases are not

acceptable considering those arising from natural vari-
ability within the observational data.

A separate multivariate Gaussian process is constructed
for the observational T Snight/day

m,s and ESM T S
min/max
m,s values

in step 1. In order to construct the Gaussian process, we first
test the observational T Snight/day

m,s and ESM T S
min/max
m,s values

for normality using a Shapiro–Wilk test (see Figs. D1–D4 in
Appendix D). Observational T Snight/day

m,s values are normally
distributed over all grid points, while ESM T S

min/max
m,s values

show some grid points (at most 17 % of grid points) where

the null hypothesis of being normally distributed is rejected.
Given that this is less than half of the grid points, we proceed
with applying the multivariate Gaussian process.

3.4 Emulating 2 m air temperature responses to tree
cover changes within the SSP scenarios

By predicting the expected surface temperature responses
using the calibrated 0m (described in Sect. 3.2.1) and sub-
sequently diagnosing the corresponding 2 m air temperature
response using Eq. (3), we can emulate the expected 2 m air
temperature response to tree cover changes over the whole
land area for any land cover change scenario. In this study,
we do so for two Shared Socioeconomic Pathways, SSP2 1-
2.6 and SSP3-7.0, for which the underlying narratives and
resulting changes in tree cover over the 21st century are pre-
sented in Sect. 2.3. We only present the results for changes
in tree cover between 2015 and the end of the century (mean
changes between 2015 and 2100).

In arriving at the final 2 m air temperature response emu-
lations, we are mindful of the limited training data available
for constructing 0m. To account for this, we assess the under-
lying signal-to-noise ratio in the emulations by considering
noise as the parametric uncertainties within 0m conditional
on the training sample population. The noise in emulations
arising from the parametric uncertainties within 0m is evalu-
ated using a parametric bootstrap procedure (Hastie and Tib-
shirani, 1986; Wood, 2017). In the following sections, we
outline the parametric bootstrap procedure used, followed by
how its results allow for evaluation of the signal-to-noise ra-
tio in the final 2 m air temperature response emulations.

3.4.1 Estimating parametric uncertainty in the
predicted temperature responses

We quantify the impact of parametric uncertainties within
0m on the 1T Sm,s predictions following a parametric boot-
strap method as outlined in Fig. 2 (Wood, 2017; Efron and
Tibshirani, 1993). Parametric bootstrapping constitutes first
approximating the joint distribution of the coefficients (β)
and λ parameter used within 0m, conditional on the training
data available, i.e. f (β,λ|X) (step 1, Fig. 2), from which β
values are then sampled to estimate surface temperature re-
sponses (step 2, Fig. 2). To avoid high computational costs,
the joint distribution is approximated by first bootstrap sam-
pling the distribution of λ conditional on the training mate-
rial, i.e., fλ(λ) (steps 1a–1b, Fig. 2), from which the distri-
bution of β, conditional on both λ and the training material,
is constructed over the whole fλ(λ) space (step 1c, Fig. 2),
such that f (β,λ|X)≈ f (β|λ,X) · fλ(λ). Surface tempera-
ture response values are then sampled by drawing β distribu-
tions from random parts of the fλ(λ) space (step 2a, Fig. 2)
and sampling coefficient values from them (step 2b, Fig. 2),
which are then used to estimate 1T Sm,s values (step 2c,
Fig. 2).
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Figure 2. Sampling routine of the generalised additive model. First, an approximation of the coefficients’ (β) and λ parameter’s joint
distribution given the available training data is constructed (step 1), from which coefficient terms are sampled to calculate 1T Smean

m,s values
with step 2. Steps 1a-1b construct the sampling distribution of the λ parameter (fλ(λ)) given the known variability in the training data, and
step 1c then constructs the distribution of β conditional on the training data and λ parameter at each point of the fλ(λ) space. As such, the
1T Smean

m,s values calculated in step 2 account for the uncertainty in the shape of 1T Smean
m,s responses, as modulated by β and λ values.

3.4.2 Evaluating signal-to-noise ratio in the predicted
temperature responses

In representing temperature responses under new tree cover
change scenarios, we consider the signal-to-noise ratio in
the final 1T 2 m

m,s emulations. Noise constitutes the underlying
parametric uncertainty within 0m arising from the training
sample population. We start by sampling 1T Smin/max

m,s val-
ues from 0

min/max
m globally for each relevant pixel using the

parametric bootstrap procedure outlined in Sect. 3.4.1 and
then diagnose 1T 2 m

m,s for each sample. The β and λ param-
eter uncertainty spaces are constructed using 10 bootstraps,
from which 200 samples are then drawn. We take the mean
across all samples as the expected 1T 2 m

m,s value and the stan-
dard deviation across all samples as the underlying paramet-
ric uncertainty within the GAM. The signal-to-noise ratio is

then obtained as the ratio between the mean and standard
deviation values. We consider emulations with a signal-to-
noise ratio lower than 0.5 to be insignificant as the underly-
ing parametric uncertainty is double the actual magnitude of
the expected response. Given the computational expenses of
running ESMs, such gives 0m the benefit of mainly requir-
ing extreme tree cover change scenarios as training material,
from which it can further explore all possible outcomes of
in-between scenarios itself. It should be noted, however, that
this does not remove the benefit of having more training ma-
terial on top of the extreme scenarios but simply minimises
the training data requirements of 0m.
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4 Results

4.1 Blocked-cross-validation results

In this section, we show the calibration and evaluation results
of 0mean

m , obtained by performing different sets of blocked
cross-validation as described in Sect. 3.2.2 and 3.2.3. The
calibration and evaluation results for example months of Jan-
uary and July, which are representative of the hottest and
coldest months for the Northern Hemisphere and vice versa
for the Southern Hemisphere, are shown. First, we show re-
sults from the blocked cross-validation used to calibrate 0m
for its optimal λ parameter and number of basis functions
(Sect. 4.1.1). Second, we show the results of the blocked
cross-validations employed to evaluate the calibrated 0m’s
performance into no-analogue conditions. No-analogue con-
ditions of background climate (Sect. 4.1.2) and those of tree
cover change amounts (Sect. 4.1.3) are considered specif-
ically with a separate blocked cross-validation performed
for each. The following subsections show the blocked-cross-
validation results for 0mean

m only as this gives a representative
idea of the validity of this study’s framework. Blocked-cross-
validation results for 0min/max

m are provided in Appendix C.

4.1.1 Results of model calibration

Figure 3 provides the best-performing λ parameter val-
ues and number-of-basis-functions (nbfs) configuration for
0mean
m . Maps of RMSEs calculated between the mean sur-

face temperature response 1T Smean
m,s samples drawn by the

fully calibrated 0mean
m (200 samples are drawn as described

in Sect. 3.4.1), the tree cover changes 1treeFrac2015 imple-
mented in the ESM experiments used for training, and the
values actually simulated by the ESMs are further provided.
The percentage of grid points with RMSE values below 0.5 is
indicated above each map. These results are shown for both
the DEF and AFF scenarios (only DEF for observations).

The 0mean
m trained on observational data has a λ parameter

value of 0.001 for both January and July, which is signifi-
cantly lower than that of 1 otherwise chosen for all ESMs.
This could be because the observationally trained 0mean

m only
receives training data for the DEF scenario, which imple-
ments large magnitudes of tree cover change localised to spe-
cific regions (see Fig. A1 in the Appendix). Thus, lower λ
parameter values are favoured to allow for complex repre-
sentation with higher spatial variability. The observationally
trained 0mean

m moreover shows poor performance, with only
34 % of grid points having RMSE values of less than 0.5.
This possibly arises from less training being data available
for the observationally calibrated 0mean

m (i.e. less grid points
as well as only one tree cover change scenario), such that
0mean
m cannot gain as much information to predict with.
All ESMs show higher RMSEs, with a lower proportion of

grid points having RMSE values< 0.5, for the DEF scenario
than the AFF scenario. This could be related to the difficulty

in representing the complex response types with high spa-
tial variabilities within the DEF scenario. Such highlights a
design consequence of 0mean

m , where tem is fitted smoothly
over long, lat, and 12015 treeFrac, thus falling short in rep-
resenting high spatial variabilities as brought about by large
magnitudes of localised tree cover change. While CESM2
and EC-EARTH show a varying number of grid points with
RMSE values below 0.5 between January and July for the
AFF and DEF scenarios, MPI-ESM shows similar perfor-
mance across both months for the AFF and DEF scenarios.
Additionally, MPI-ESM’s 0mean

m favours the simplest repre-
sentation across all ESMs with the lowest number of basis
functions chosen for both January and July. Such indicates a
smoother response type outputted by MPI-ESM, with defor-
estation in the tropics not necessarily leading to significant
temperature jumps within space.

Overall, 0mean
m mostly displays RMSEs less than or equal

to 0.5 for all ESMs. Higher RMSEs (> 0.5) are usually lo-
calised to regions of extreme magnitudes of deforestation for
CESM2 and EC-EARTH. In the case of MPI-ESM, higher
RMSEs are localised to different regions depending on the
month. For example, in both the AFF and DEF scenarios,
MPI-ESM shows higher RMSEs over South America and
Australia in January and over southern North America and
the Mediterranean region for July. In such, 0mean

m proves it-
self to be a reasonably flexible framework to represent ex-
pected temperature responses to more realistic magnitudes
of tree cover change. As noted in the observationally cali-
brated 0mean

m , a substantial hindrance to 0mean
m ’s performance

is the availability of training data, where it is recommended
to have both directions (i.e. positive and negative) of tree
cover changes available for training.

4.1.2 Evaluation of 0mean
m under no-analogue

background climates

Figure 4 shows RMSEs obtained for 0mean
m ’s sampled pre-

dictions (200 samples are drawn as in Sect. 3.4.1) in relation
to no-analogue background climates aggregated to latitudi-
nal bands for the example months of January and July. Lati-
tudinal bands were chosen to be representative of the differ-
ent 1T Sm,s response types to tree cover changes (as seen in
De Hertog et al. (2022)), namely northern hemispheric, tem-
perate (40 to 65◦ N); subtropical, temperate (10 to 40◦ N);
tropical (−15 to 10◦ N); and southern hemispheric (−45 to
−15◦ N). Southern-hemispheric results are not differentiated
into subtropical and temperate as the sample size of predic-
tions would become too small otherwise. RMSEs are differ-
entiated into those obtained under the AFF scenario and un-
der the DEF scenario, except for observations where RMSEs
are only available for the DEF scenario.

For observations and ESMs, the spread in RMSEs displays
a month dependency across all latitudinal bands, evidencing
the seasonality in 1T Smean

m,s responses to tree cover change
and also the need for prior background climate information
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Figure 3. Performance of the fully calibrated 0mean
m trained on each full set of observational and ESM data for example months of January (a)

and July (b) shown as RMSE maps (rows) for afforestation, AFF (first row), and deforestation, DEF (second row), scenarios. Column headers
indicate the training dataset used and the respective λ parameter and number of basis functions (nbfs) chosen during blocked cross-validation.
Percentages above each map indicate the proportion of land area with RMSE values of less than 0.5.

being more important for certain months than others. Despite
the spread in RMSEs being large, median values are mostly
below 0.5 for ESMs and below 1.5 for observations, which
is in line with those seen in Fig. 3, indicating overall good
prediction skill for 0mean

m in relation to unseen background
climate conditions. Observation RMSEs for DEF at −45 to
−15◦ N, however, show significantly higher median values
than those in Fig. 3, although this is more likely to be due
to data sparsity within the training data for this region, lead-
ing to little information being learned by the observationally
calibrated 0mean

m for this region.
Across ESMs, DEF in the tropics (−15 to 10◦ N) shows

the largest spreads in RMSEs, with slightly higher median

values than those of Fig. 3. Given that 0mean
m may underper-

form within these areas due to the localised, large magni-
tudes of deforestation (as seen for CESM2 and EC-EARTH
in Fig. 3), exploration of its performance into no-analogue
tree cover changes is first required before concluding lower
prediction skill for unseen background climate conditions
within these areas.

4.1.3 Evaluation of 0mean
m under no-analogue tree cover

change amounts

Figure 5 shows the median RMSEs (with error bars indicat-
ing 50 % confidence intervals) obtained for 0mean

m ’s sampled
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predictions in relation to no-analogue tree cover changes ag-
gregated to latitudinal bands for the example months of Jan-
uary and July. For observations and ESMs, magnitudes and
patterns of RMSEs are similar between January and July
across all latitudinal bands, contrary to what has been found
for the predictive ability in no-analogue background climate
conditions Sect. 4.1.2. This is expected as the way that lo-
cal temperature response to tree cover changes depends on
the season varies across background climates (and mainly
across the latitudes; see, for example, Li et al., 2015) and is
thus intuitively more important for representing seasonality
in 1T Smean

m,s values.
Median RMSEs for 12015treeFrac≤−0.5 in the tropics

are higher than those seen for DEF in Fig. 4, indicating that
the prediction skill for 0mean

m in the tropics is more depen-
dent on the availability of training information for similar
tree cover changes than for similar background climate. MPI-
ESM is an exception to this, displaying much larger RMSEs
for DEF in Fig. 4. Such could result from MPI-ESM out-
putting a weaker response to tree cover change in the tropics,
as previously suggested in Sect. 4.1.1, making the availabil-
ity of prior background climate information the main factor
influencing 0mean

m ’s prediction skill.
Observations, CESM2, and EC-EARTH show an increase

in RMSEs across all latitudinal bands as 12015 treeFrac val-
ues move towards the more extreme ends (−1 for observa-
tions and ±1 for CESM2 and EC-EARTH), sometimes even
reaching RMSEs higher than those seen in Fig. 3. This in-
dicates lower prediction skill for 0mean

m in relation to un-
seen, extreme tree cover change conditions for observations,
CESM2, and EC-EARTH. Nevertheless, the resolved skill
seen in Fig. 3 verifies the need to have a training dataset
representative of the extreme ends of tree cover change, as
T Smean

m,s responses may systematically become more non-
linear with increasing magnitudes of tree cover change.

4.2 Illustration of 0mean
m outputs

In this section, we showcase the results of 0mean
m when pre-

dicting 1T Smean
m,s for any amount of tree cover change com-

pared to 2015 levels and across the world. A select tree cover
change value is applied to all grid points, and 0mean

m is then
used to predict the temperature responses for that tree cover
change. Figure 6 illustrates the mean 1T Smean

m,s predictions
as well as their 95 % interval calculated across all grid points
within a given latitudinal band. We choose the same latitudi-
nal bands used in Figs. 4 and 5 T Smean

m,s .
As a preliminary check, the predictions can be roughly

compared to the ESM outputs for the idealised AFF and DEF
simulations as analysed by De Hertog et al. (2022). Only a
rough comparison is possible, however, as we generate pre-
dictions for tree cover change maps of constant values across
grid points, whereas the tree cover change maps applied
within the AFF and DEF scenarios vary in values across grid
points since they represent the full expansion of forest and/or

cropland relative to the 2015 period. To this extent,1T Smean
m,s

predictions shown in Fig. 6 correspond well in terms of di-
rection and magnitude to the results shown in Duveiller et al.
(2018c) (for observations) or in De Hertog et al. (2022) (for
ESMs; compare with their Figs. 2, 3, 5, and 6). For example,
over the northern-hemispheric temperate region (40 to 65◦ N)
in January, 0mean

m indicates a cooling (warming) following
deforestation (afforestation) when trained on all ESMs and
observations, while the temperature response in July is less
clear but still rather indicates a warming from deforestation
over these regions. Moreover, 0mean

m is notably able to cap-
ture the inter-ESM spread in 1T Smean

m,s values. For example,
in the latitudinal band of 40 to 65◦ N, EC-EARTH-based pre-
dictions show a cooling trend after +25% tree cover change
in contrast to the warming trend seen in other ESMs. Such
a difference was also noted in De Hertog et al. (2022) and
was attributed to the lower amounts of boreal afforestation
implemented.

Over all latitudinal bands and months shown, the largest
95 % intervals occur towards the extreme ends of tree cover
change for both observations and ESM-based predictions.
This is especially the case for deforestation, where the 95 %
intervals are generally larger than those of afforestation.
Higher 95 % intervals at extreme ends of tree cover change
result from fewer grid points which undergo more extreme
tree cover changes, ergo less training material. This high-
lights once more the higher uncertainty in the predictions by
0mean
m for extreme amounts of tree cover change (in both di-

rections).
Mean observation-based predictions remain close to 0

across all latitudinal bands for both January and July owing
to the high data sparsity which makes it difficult to extract
significant T Smean

m,s responses during training. Nonetheless,
observation-based 95 % intervals are in general agreement
with those of ESMs across all latitudinal bands and months
shown.

4.3 Surface to 2 m air temperature diagnosis

In this section, we apply the modified (Hooker et al., 2018)
model (Eq. 3) to the outputs of 0min

m and 0max
m so as to de-

rive the expected T 2 m
m,s responses to tree cover change. Re-

sults are only shown for CESM2 as tree cover changes im-
plemented in the experiments run by this ESM cover the
whole range of possible 12015treeFrac (unlike observations
and EC-EARTH) and provide local T Smin/max

m,s values (not
available from MPI-ESM otherwise). We first ascertain that
applying Eq. (3) in the ESM space does not introduce addi-
tional biases to T 2 m

m,s predictions on top of those arising from
the natural variability in observed values, after which we pro-
ceed with predicting T 2 m

m,s responses based off 0min/max
m out-

puts.
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Figure 4. Evaluation of 0mean
m ’s predictive ability under non-analogue background climate conditions. Test set RMSEs obtained during

blocked cross-validation with blocks clustered according to background climate and continuous geographical region (as shown in Fig. B1 in
the Appendix) are considered. RMSEs are shown for the months of January (unhatched) and July (hatched) and are aggregated to latitudinal
band (columns) and direction of tree cover change, with yellow indicating a negative change (DEF) and blue indicating a positive change
(AFF). The box plots indicate the median RMSEs, as well as the associated interquartile ranges. Note that the scale used for observations
(upper row) is different.

4.3.1 Tests on the modified Hooker et al. (2018) model
applied to the ESM space

Figure 7 compares the spread of biases in T 2 m
m,s calculated

using ESM values to that obtained when using observational
values. Positive values indicate more spread within the biases
of ESM-derived T 2 m

m,s values, suggesting that biases outside
the range of those arising from natural variability may occur
when calculating 1T 2 m

m,s .
Across most months, fewer than 40 % of grid points have

positive values, and these mostly occur in the Northern
Hemisphere for the months between and including January
and June. Such may result from the change in the length
of day during these months such that T Smin/max

m,s values do
not necessarily correspond to the T Snight/day

m,s values. To be
specific, the times of overpass for measuring T Snight

m,s and

T S
night
m,s are fixed at 01:30 and 13:30 LT (local time at the

Equator), respectively; however, given the longer nights in
northern-hemispheric winters, T Smin

m,s is likely to occur later
and T Smax

m,s earlier than these times.

4.3.2 2 m air temperature diagnoses

Since fewer than half of the grid points have positive val-
ues and since such values are isolated to certain months
and geographical areas, we proceed with diagnosing 1T 2 m

m,s

from1T S
min/max
m,s values outputted by 0min/max. The calibra-

tion and evaluation results for 0min/max are available in Ap-
pendix C and show similar results as those seen in Sect. 4.1,
namely minimal additional RMSEs when predicting in rela-
tion to no-analogue conditions sampled out of the training
dataset as compared to when predicting after having seen
the full training dataset (i.e. comparing RMSE values from
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Figure 5. Evaluation of 0mean
m ’s ability to predict across 12015 treeFrac. Test set RMSEs were obtained during blocked cross-validation

using blocks identified by gathering grid cells that underwent similar 12015 treeFrac (grouped according to sign of change and absolute
value, as binned into [0.01,0.15), [0.15–0.3), [0.3–0.5), [0.5–0.8), and [0.8–1.0]) within continuous geographical regions. RMSEs are shown
for January (blue) and July (red), are aggregated to latitudinal bands (results for each band are shown in a different column), and are plotted
against the centre of each 12015 treeFrac bin. The dots indicate the median RMSEs, while the error bars indicate the associated interquartile
range. Note that the scale used for observations (upper row) is different.

Figs. C3 and C4 in the Appendix to those of Fig. C2 in
the Appendix). It should be noted that 1T Smax

m,s predictions
show high RMSEs, especially for the DEF scenario where
fewer than half of the grid points have RMSEs lower than
0.5. In relation to the absolute 1T Smax

m,s values (see Fig. C1
in the Appendix), however, these RMSEs are of similar rela-
tive magnitude to those of1T Smin

m,s and1T Smean
m,s . Moreover,

RMSEs of 0max
m are of similar magnitude when predicting in

relation to no-analogue conditions as when predicting after
having seen the whole training dataset.

Figure 8 shows the1T 2 m
m,s values obtained at different tree

cover change values alongside the 0min
m and 0max

m predictions
for the example months of January and July. Patterns of 0min

m

and 0max
m predictions correspond well to one another and

generally correspond well to 1T Smin/max
m,s values as derived

in another study using the same ESM (Meier et al., 2018).
An exception here is northern-hemispheric July1T Smin/max

m,s

values, for which a cooling was observed in Meier et al.
(2018) in contrast to the warming seen in the training ma-

terial used within this study (see Appendix C, Fig. C1). Such
a discrepancy could arise from too-large albedo responses
shown by CESM2 and highlights the caveats of diagnos-
ing1T 2 m

m,s from1T S
min/max
m,s , where physical inconsistencies

in the surface temperature responses as represented within
ESMs can be transferred to T 2 m

m,s during diagnosis. Neverthe-
less, the task of 0m is to mimic ESM outputs irrespective of
their realism, and to this end, the statistically derived rela-
tionships for 1T Smin/max

m,s in relation to tree cover changes
match those of the ESM outputs trained on.

4.4 Exploration of tree cover change effects within SSP
scenarios

In this section, we showcase the results of applying TIM-
BER v0.1 calibrated on simulations conducted with CESM2
to the scenarios of future tree cover changes in SSP1-2.6 and
SSP3-7.0. We employ the sampling method as described in
Sect. 3.4 such that parametric uncertainties within the GAM
are also represented. This provides a first step towards sta-
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Figure 6. 0mean
m ’s depiction of1T Smean

m,s , shown for observations and ESMs (colours) for the months of January (first row) and July (second
row) across the whole range of 12015 treeFrac and aggregated to latitudinal bands (columns). λ parameters and number of basis functions
(nbfs) chosen through blocked cross-validation are given in the first column of their respective month and are colour coded according to their
respective training data (observations or ESMs). Solid lines represent the mean 1T Smean

m,s predictions, and the surrounding band represents
the 95 % interval calculated over 1T Smean

m,s predictions for all grid points within the respective latitudinal band.

tistically emulating T 2 m
m,s responses to tree cover change in a

manner that not only provides the expected response but also
gives an idea of the signal-to-noise ratio within predictions.

Figure 9 shows maps of end-of-century tree cover changes
(shown in the first column) under SSP 1-2.6 and SSP 3-7.0
and their associated mean T 2 m

m,s responses (second column),

obtained by sampling1T Smin/max
m,s values from 0

min/max
m , ap-

plying Eq. (3) to get 1T 2 m
m,s and taking its sample average.

The signal-to-noise ratio is furthermore given by taking the
ratio between the absolute mean 1T 2 m

m,s value and its stan-
dard deviation calculated across sample results for 1T 2 m

m,s

(third column). We consider areas with a signal-to-noise ratio
lower than 0.5 to have an insignificant temperature response
as their surrounding parametric uncertainty is double that of
the magnitude of response.

SSP 1-2.6 shows substantial cooling from afforestation in
southern Africa and Brazil for both January and July. A sub-
stantial July warming due to deforestation can also be seen

in the Tibetan Plateau due to deforestation. SSP 3-7.0 shows
a significant January and July warming due to deforestation
in Central Africa, the Tibetan Plateau, and South America.
Western North America shows a significant cooling from de-
forestation, especially in July, while parts of East Asia show
significant cooling from afforestation for both January and
July.

In general, areas with a tree cover change lower than 0.1
in magnitude tend to have a signal-to-noise ratio lower than
0.5 and thus an insignificant temperature response. Such sys-
tematically lower signal-to-noise ratios indicate that 0m is
not only aware of the lack of information it has for smaller
changes in tree cover but can also infer that temperature re-
sponses to such tree cover changes are likely to be trivial.
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Figure 7. Differences between the spread of biases for ESM vs. observationally derived T 2 m
m,s values, obtained as described in Sect. 3.3.

The inter-quartile range (IQR) is considered as a measure of spread, and results are shown for CESM2 across all months. Percentage values
indicate the proportion of land grid points where ESM-derived T 2 m

m,s values have a larger spread in bias as compared to observationally
derived T 2 m

m,s values.

5 Conclusion and outlook

This study presents TIMBER v0.1, a conceptual framework
for representing monthly temperature responses to changes
in tree cover. TIMBER v0.1 starts by modelling minimum,
mean, and maximum surface temperature responses to tree
cover change with a month-specific GAM, which is trained
over the whole globe; 2 m air temperature responses are
then diagnosed from the modelled minimum and maximum
surface temperatures using observational relationships de-
rived by Hooker et al. (2018). Such an approach maintains
the ESM-specific temperature response to tree cover change
whilst ensuring a constant diagnosis and observationally con-
sistent definition of 2 m air temperature.

The GAM is evaluated for its ability to predict in rela-
tion to unseen, i.e. no-analogue, background climate and tree
cover change conditions. This is done using a blocked-cross-
validation procedure in order to account for the spatial struc-

ture of the data when splitting into subsamples used for train-
ing and testing. Overall, the GAM shows good skill in pre-
dicting in relation to no-analogue conditions, with minimal
RMSEs in addition to those that occur when predicting af-
ter having seen the full training dataset and thus all available
background climate and tree cover change information. Such
provides confidence in the GAM’s ability to derive mean-
ingful relationships from the training data provided by the
ESMs. Nevertheless, poorer representation for extreme, lo-
calised tree cover changes was identified, such as for defor-
estation in the tropics, most likely due to the difficulty in ad-
equately representing high spatial variability.

When predicting in relation to new tree cover change sce-
narios, we are especially mindful of the training data only
including grid points which experience extreme tree cover
change in the training simulations. To this extent, surface
temperature responses are sampled from the GAM in a man-
ner that explores all possible shapes of responses in between
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Figure 8. Latitudinally aggregated 1T Smin/max
m,s given by 0min/max

m (a, d, b, e) shown for CESM2 for the months of January (a, b, c) and
July (d, e, f) across the full range of12015treeFrac. The resulting1T 2 m

m,s values obtained using the modified (Hooker et al., 2018) model are
shown in the third column.

the two extreme ends of tree cover change as provided by the
training data; 2 m air temperature responses are then diag-
nosed from the sampled surface temperature responses, and
relevant responses are identified as those that have a high
signal-to-noise ratio (> 0.5).

The final outputs of TIMBER v0.1 are demonstrated for
SSP 1-2.6 and SSP 3-7.0. Generally, areas with less than
±10% tree cover change render a low signal-to-noise ratio,
which is intuitive as responses to such low changes in tree
cover are likely to be minimal. Employing TIMBER v0.1
thus provides an avenue to explore the impacts of tree cover
change and their underlying uncertainty due to the avail-
ability of training data and model calibration. It should be
stressed that, given the lack of comparable ESM simulations
that employ the checkerboard approach to isolate local sig-
nals of land cover changes, TIMBER’s outputs cannot be
thoroughly validated and must therefore be cautioned with
the limitations of its current set-up, specifically that they are
produced with limited amounts of training data and that the

2 m air temperature is diagnosed using observational rela-
tionships – as provided by Hooker et al. (2018) – directly
applied to the ESM space. In the following subsections, we
further highlight areas of potential improvement, elaborate
upon the suitable modes of application for TIMBER v0.1,
and detail possible further developments.

5.1 Areas of potential improvement

One area of potential improvement pertains to the model cali-
bration procedure. When inspecting the calibrated λ parame-
ter values and the number of basis functions, the limits of val-
ues cross-validated for (0.001 and 1 for the λ parameter and 5
and 9 for the number of basis functions) seem to be favoured.
Reasons behind this could be (1) the blocked cross-validation
sometimes removes too-large chunks of data, leading to an
overestimation of RMSEs chosen; and/or (2) the range of λ
parameters and/or number of basis function values calibrated
for is too narrow. The first reason could be tackled by fur-
ther splitting the blocks such that each block has a predefined
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Figure 9.1T 2 m
m,s values resulting from end-of-century changes (i.e. 2100) relative to 2015 in tree cover for SSP 1-2.6 (upper panel) and SSP

3-7.0 (lower panel) scenarios for the months of January (top rows) and July (bottom rows). Mean 1T 2 m
m,s values (second column) and their

signal-to-noise ratios (third column) calculated over the sampling distributions are shown.12015 treeFrac maps are given in the first column,
and grid points with |12015treeFrac|< 0.01 are not considered.

number of samples. Alternatively, the GAM could be fitted
over specific climate regions, and blocked cross-validation
could be conducted with uniformly sized blocks composed
along latitude and longitude dimensions, although, here, it is
likely that the complete spectrum of tree cover change infor-
mation will be lost for some regions. The second reason is
easily solved by cross-validating over a larger range of val-
ues.

Another area of improvement could be to derive ESM-
specific coefficients for the Hooker et al. (2018) model. Such
would entail fitting for the relationships between ESM min-
imum and maximum surface temperatures and the observa-
tional 2 m air temperatures as used by Hooker et al. (2018).

Since the additional biases introduced by using the origi-
nal Hooker et al. (2018) coefficients on the ESM surface
temperatures were ascertained to be minimal (Sect. 4.3.1),
such an exercise would mostly target deriving the complete
Hooker et al. (2018) model for each ESM. The resultant
ESM-specific Hooker et al. (2018) models obtained would
allow for more consistent 2 m air temperature diagnoses, fa-
cilitating better comparison. Furthermore, considering that
the difference between night and day surface temperatures
(that are used as predictors in the original Hooker et al.
(2018) model) and minimum and maximum surface temper-
atures may also be quite large (e.g. minimum winter temper-
atures in the Northern Hemisphere are likely to occur after
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the time of overpass when nighttime temperatures are mea-
sured), such would be an essential step in being able to accu-
rately diagnose 2 m air temperatures.

5.2 Modes of application

TIMBER v0.1 provides a framework to explore local-level
temperature implications of tree cover changes in an agile
manner under different tree cover change scenarios. TIM-
BER v0.1 can be used as both a standalone device and as
a supplement to other emulators. It should be noted that, to
provide complete representation of the biophysical effects of
tree cover change, albedo and thermal fluxes would have to
be considered as well. To this extent, the temperature re-
sponses provided by TIMBER arise from a combination of
the effects of albedo and thermal flux responses to tree cover
changes on the atmospheric energy balance. Here, we sum-
marise some key takeaways pertaining to the use of TIMBER
v0.1 for generating new tree cover change scenarios.

Upon inspection of the T Smean
m,s response patterns across

all tree cover changes (Fig. 6), inter-ESM differences become
quite apparent. Such differences are continuously studied and
mainly arise from differences in model physical represen-
tation (Boisier et al., 2012; Lawrence et al., 2016; Lejeune
et al., 2018; Davin et al., 2020; Boysen et al., 2020; De Her-
tog et al., 2022). Being able to train the GAM across all
ESMs presents the opportunity to capture these uncertain-
ties due to model physical representation, which may some-
times be higher than the parametric uncertainty within the
GAM given the training data. When exploring new tree cover
change scenarios, the need to have as many ESMs repre-
sented should therefore be emphasised. Moreover, the out-
puts of TIMBER v0.1 should always be interpreted as repre-
sentative of the ESM-simulated world, which does not nec-
essarily translate to observed reality.

In applying TIMBER v0.1 to different tree cover change
and climate scenarios, it should furthermore be acknowl-
edged that the effects of initial starting conditions and those
of background global warming levels have not been ac-
counted for (e.g. see Winckler et al., 2017b, for the possible
effects of initial starting conditions on temperature responses
to land cover changes). In order to represent such effects,
TIMBER would require more training data. Furthermore, if
the Hooker et al. (2018) coefficients are recalibrated for the
ESM space, the impacts of changing climate on 2 m air tem-
peratures could well be represented through the CSWR coef-
ficients. Nonetheless, outputs of TIMBER v0.1 should more
so be treated as hypothetical sensitivities and not definite re-
sponses.

Finally, as a conceptual framework, TIMBER v0.1 comes
with its limitations that need to be accounted for and im-
proved in future versions. A noteworthy limitation is the
diagnosis of 2 m air temperature that relies on the modi-
fied Hooker et al. (2018) model. Such a set-up was imple-
mented so as to enable constant diagnosis and definition of

2 m air temperatures across ESMs and observations. How-
ever, since the original Hooker et al. (2018) model takes night
and day surface temperatures as predictors, whereas the mod-
ified model used in this study takes minimum and maximum
surface temperatures, current 2 m air temperature predictions
should be treated with caution. As seen in Fig. 7, such differ-
ences are expected to introduce minimal biases since TIM-
BER looks at relative changes and not absolute values. How-
ever, for select months and regions (e.g. winter in Europe
and North America), there are still added biases as night
and day surface temperatures do not necessarily correspond
to minimum and maximum surface temperatures. An addi-
tional limitation to TIMBER is the lack of available ESM
data to evaluate it against. Such a problem was circumvented
in this study by synthesising the closest representation to no-
analogue condition predictions for TIMBER. Nevertheless,
when applying TIMBER to different scenarios, predictions
should always be treated as approximations. To this extent,
the signal-to-noise ratio calculation from TIMBER is an es-
sential feature as it represents the model confidence in pre-
dictions based on the available training material.

5.3 Future developments

It would be possible to extend TIMBER v0.1 to represent
other impact-relevant climate variables. A variable to start
with could be relative humidity, from which metrics such as
wet-bulb globe temperature (WBGT) and labour productiv-
ity could be derived. In doing so, variable cross-correlations
between temperature and relative humidity should be con-
served, such that compound events – which largely af-
fect WBGTs – are sufficiently captured. To this extent, a
vectorised generalised additive model (VGAM) (Yee and
Stephenson, 2007) could be employed, which retains variable
cross-correlations by constructing a multivariate conditional
probability distribution e.g. by using a bi-normal distribution
as opposed to the normal distribution used within this study.

In its current set-up, TIMBER does not differentiate be-
tween plant functional types (PFTs). Temperature responses
to tree cover changes, however, may differ between differ-
ent PFTs. For example, needleleaf trees in temperate regions
are associated with a stronger winter warming as compared
to broadleaf trees, which otherwise lose their foliage during
winter (Duveiller et al., 2018b). Representing the tempera-
ture responses to different PFTs instead of treating tree cover
fraction as a single element would thus further enrich the out-
puts of TIMBER. A starting point to this could be differen-
tiating between needle- and broadleaf trees. Each of these
tree types could be treated as separate tensor spline terms
within the GAM, and the final temperature results would be
obtained by adding both terms. When doing so, the potential
model accuracy gained should be assessed in relation to the
added model complexity (i.e. increase in the number of ten-
sor spline terms). Given that needle- and broadleaf trees are
unevenly spread geographically (where broadleaf trees occur
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more in the tropics and needleleaf trees occur more in the
temperate regions), it may also be worth training a separate
GAM per geographical region so as to get an even represen-
tation of needle- vs. broadleaf trees, as well as to prevent
model overfitting.

Looking into other land management practices such as ir-
rigation and wood harvest could also be of interest, partic-
ularly as their effects on surface temperatures are expected
to be similar in magnitude compared to those due to land
cover changes (Luyssaert et al., 2014). In doing so, customi-
sation of TIMBER v0.1’s framework in relation to the land
management practice of choice could be necessary. For ex-
ample, when looking at irrigation, the implementation of irri-
gation can be extremely localised and seasonal (Thiery et al.,
2017, 2020), and it would be preferable to train the GAM as
region specific and across all months instead of month spe-
cific and across all grid points. To this extent, the GAM has
the advantage of not prescribing any functional form, giving
it flexibility in deriving climate responses to different types
of LCLM forcings regardless of the format of the training
data.

In order to jointly explore future tree cover and GHG sce-
narios, coupling TIMBER v0.1 with other temperature em-
ulators such as MESMER-M or -X (Beusch et al., 2020;
Nath et al., 2022b; Quilcaille et al., 2022) also proves to be
worthwhile. In doing so, care would have to be taken to not
double-count the tree cover change signal as MESMER-M
and -X are trained on SSP runs, which contain both GHG
and tree cover change signals. Accordingly, it is advisable to
first model the expected tree cover change signals within the
SSP runs using TIMBER v0.1, following which MESMER-
M or -X can be trained on the SSP runs with the modelled
tree cover change signals removed.

https://doi.org/10.5194/gmd-16-4283-2023 Geosci. Model Dev., 16, 4283–4313, 2023



4302 S. Nath et al.: TIMBER v0.1

Appendix A

Figure A1. The leftmost column shows tree cover change maps for full deforestation relative to the year 2015, as derived by Duveiller et al.
(2018c) using observational data. The second to fourth columns show tree cover change maps relative to the year 2015 implemented in the
LAMACLIMA afforestation, AFF (top row), and deforestation, DEF (bottom row), experiments in the CESM2, MPI-ESM, and EC-EARTH
ESMs.

Figure A2. Orography features, defined as metres above sea level, used in input predictor matrix for 0m for observations and ESMs
(columns).
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Appendix B

Figure B1. Composite cluster blocks obtained by combining clusters of grid points with similar background climate and continuous geo-
graphical area. Grid points are clustered into groups with similar background climate usingK-means clustering with temperature and relative
humidity as indicator variables.
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Appendix C

Figure C1. T Smin/max
m,s responses (rows) from the LAMACLIMA afforestation, AFF, and deforestation, DEF, experiments (columns) for the

months of January (a) and July (b).
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Figure C2. Same as Fig. 3 but for CESM2, T Smin, and T Smax.
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Figure C3. Same as Fig. 4 but for CESM2, T Smin, and T Smax.

Figure C4. Same as Fig. 5 but for CESM2, T Smin, and T Smax.
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Appendix D

Figure D1. Shapiro–Wilk test for normality of T Snight observational data obtained by the MODIS satellite. The null hypothesis is that
the residuals are normally distributed. A Benjamini–Hochberg multiple-test correction (Benjamini and Hochberg, 1995) is applied to the
p values before plotting them. Percentage values indicate the proportion of grid points for which the null hypothesis is rejected.
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Figure D2. Same as Fig. D1 but for T Sday observational data obtained by the MODIS satellite.
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Figure D3. Same as Fig. D1 but for T Smin data obtained from CESM2.
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Figure D4. Same as Fig. D1 but for T Smax data obtained from CESM2.
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