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Abstract
We refine and slightly enlarge the recently proposed first-order thermodynamics of
scalar-tensor gravity to include gravitational scalar fields with timelike and past-
directed gradients. The implications and subtleties arising in this situation are
discussed and an exact cosmological solution of scalar-tensor theory in first-order
thermodynamics is revisited in light of these results.
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1 Introduction

There are severalmotivations to extend the theory of gravity beyondEinstein’sGeneral
Relativity (GR). All attempts to reconcile this theory with quantum physics introduce
deviations from GR in the form of extra fields, higher-order equations of motion,
or higher-order curvature invariants. For example, taking the low-energy limit of the
bosonic string theory, the simplest among string theories, produces ω = −1 Brans-
Dicke theory instead of GR, which is the prototype of a scalar-tensor theory (and ω is
the Brans-Dicke coupling) [1, 2].

However, the most compelling motivations to study alternative theories of gravity
come from cosmology. For instance, the inflationary model most favoured by data,
namely Starobinsky inflation, includes quantum corrections to GR. Most importantly,
a satisfactory understanding of the present-day accelerated expansion of the universe
is lacking within the realm of the standard �CDM model of cosmology based on
GR: it requires one to introduce an astonishingly fine-tuned cosmological constant or
another form of ad hoc dark energy, whose nature remains elusive [3].

In any case, even admitting the presence of dark energy still leaves other problems
of�CDMunresolved, such as theHubble tension [4, 5], the requirement for an equally
mysterious dark matter, and the singularity problem that plagues cosmology and black
hole physics. It is at least reasonable, therefore, to study alternative theories of gravity
to resolve or alleviate these issues.

The simplest way to modify GR consists of adding a scalar (massive) degree of
freedom, which resulted in Brans-Dicke gravity [6] and its scalar-tensor generaliza-
tions [7–10]. The class of f (R) theories of gravity, which turns out to be a subclass
of scalar-tensor theories, is extremely popular to explain the present cosmic accel-
eration without dark energy ( [11], see [12–14] for reviews). In the last decade, the
old Horndeski gravity [15] has been revisited and studied intensively (see [16] for a
review). This class of theories was believed to be the most general scalar-tensor grav-
ity admitting second-order equations of motion, but then it was discovered that, if a
suitable degeneracy condition is satisfied, the even more general Degenerate Higher
Order Scalar-Tensor (DHOST) theories admit second-order equations of motion (see
[17] for a review).

Horndeski and DHOST theories contain arbitrary functions in their actions that
make the field equations very cumbersome and their study difficult. The multi-
messenger event GW170817/GRB170817, [18, 19] confirming that gravitational wave
modes propagate at the speed of light, has essentially ruled out Horndeski theories
with the most complicated structure [20], but many possibilities (corresponding to
four free functions in the action) remain. As a result, it is difficult to grasp the detailed
physical meaning of these theories and their solutions and much of the work neces-
sarily remains confined to formal theoretical aspects and to the search for analytical
solutions.
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In an attempt to gain physical intuition for scalar-tensor gravity (including viable
Horndeski theories), it is fruitful to interpret it through an effective fluid description in
which the (Jordan frame) field equations arewritten as effective Einstein equations and
the remaining geometrical terms, when moved to the right-hand side, form the stress-
energy tensor of an effective dissipative fluid [21–24]. This effective fluid description
is possible when the gradient of the scalar field degree of freedom φ of the theory is
timelike [21–23].

In this context, using the three constitutive relations postulated inEckart’s first-order
thermodynamics of dissipative fluids [25], wewere able to introduce an effective “tem-
perature of gravity” and shear and bulk viscosity coefficients [24, 26, 27]. Armed with
these concepts, one can describe GR as the state of thermal equilibrium of gravity cor-
responding to zero temperature and scalar-tensor gravity as a state of non-equilibrium
at higher temperature (this temperature being relative to GR) [24, 26, 27].1 Dissipation
corresponds to the relaxation of this effective fluid toward the GR state of equilibrium.

Weapplied the recent first-order thermodynamics ofmodified gravity to Friedmann-
Lemaître-Robertson-Walker (FLRW) cosmology [30] and additionally searched for
possible alternative equilibrium states, which turned out to be metastable [31, 32].
We also found that the alternative description of scalar-tensor gravity in the Einstein
conformal frame swaps temperature with chemical potential [33].

These early studies do not adequately discuss a potential limitation of the formalism,
i.e., the fact that the scalar field gradientmust be future-directed for it to bemeaningful.

Here we refine the previous discussions [27, 30] to make this limitation explicit and
we discuss a possible extension of the formalism to situations in which this gradient
is timelike but past-directed, which does indeed occur in certain analytical solutions
of scalar-tensor theories. We follow the notations of Ref. [34]: the metric signature is
−+++ and we use units in which the speed of light c and Newton’s constant G are
unity.

2 Past-directed scalar field gradients

We consider scalar-tensor theories described by the action [35]

SST = 1

16π

∫
d4x

√−g

[
φR − ω(φ)

φ
∇cφ∇cφ − V (φ)

]
+ S(m), (1)

where R is the Ricci scalar, V (φ) the scalar field potential and S(m) = ∫
d4x

√−gL(m)

the matter action. Let us define the timelike vector field ua as

ua := ∇aφ√
2X

, X := −1

2
∇aφ∇aφ > 0. (2)

1 The idea of modified (specifically, quadratic f (R)) gravity as a state of non-equilibrium, with GR as
the equilibrium state, goes back to Jacobson’s thermodynamics of spacetime [28, 29]. However, in spite
of many studies, a “temperature of gravity” was never identified in this context, which is entirely different
from the first-order thermodynamics of scalar-tensor gravity discussed here.
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Assuming that the spacetimemanifold (M, gab) admits a chart (t, x)with time coordi-
nate t , then gab ua (∂t )

b > 0 implies that ua is past-directed and it cannot be identified
with the 4-velocity of an effective fluid, which is defined as timelike future-directed
vector field.

Now, let the scalar field φ be such that ∇aφ is past-directed: we can then define a
future-directed vector field as

va := −ua = − ∇aφ√
2X

. (3)

The corresponding projection operator onto the 3-space orthogonal to va is hab, where

hab := gab + vavb = gab + uaub = gab + ∇aφ∇bφ

2X
= hab, (4)

and hab is the projection operator onto the 3-space orthogonal to ua . Thus, hab remains
unaffected by the change of sign in the definition of the 4-velocity when the timelike
gradient ∇aφ is past-directed instead of being future-directed.

2.1 Kinematic quantities

Let us examine now how the kinematic quantities associated with the effective scalar-
tensor dissipative fluid [21–23] change when the definition of 4-velocity is modified to
account for a past-directed gradient ∇aφ. In particular, we make explicit the relations
between the kinematic quantities associatedwith va (denoting themwith (v)) and those
corresponding to ua = −va (denoting them with (u)). For the 4-velocity gradient, we
have

∇avb = −∇aub = − 1√
2X

(
∇a∇bφ − ∇a X∇bφ

2X

)
, (5)

which implies

�(v) = ∇av
a = −∇au

a = −�(u) (6)

for the expansion scalar of the effective fluid,

aa(v) := vc∇cv
a = uc∇cu

a = aa(u) (7)

for its 4-acceleration, while the projection of the velocity gradient onto the 3-space of
the comoving observers reads

V (v)
ab := ha

chb
d∇dvc = −ha

chb
d∇duc = −V (u)

ab , (8)
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and the new shear tensor is

σ
(v)
ab := V (v)

(ab) − �(v)

3
hab = −

(
V (u)
ab − �(u)

3
hab

)
= −σ

(u)
ab . (9)

These kinematic quantities do not depend on the field equations and are the same in
all scalar-tensor gravity theories.

2.2 Effective fluid stress-energy tensor

The effective energy-momentum tensor for scalar-tensor gravity reads

8πTab = ω

φ2

(
∇aφ∇bφ − 1

2
gab∇cφ∇cφ

)
+ 1

φ
(∇a∇bφ − gab�φ) − V

2φ
gab

(10)

and it has been recognised to have the form of an imperfect fluid stress-energy tensor.
In the case of past-directed gradients of φ, we can write it as

T (v)
ab = ρ(v) vavb + q(v)

a vb + q(v)
b va + 


(v)
ab , (11)

where the effective energy density, heat flux density, stress tensor, isotropic pressure,
and anisotropic stress tensor (the trace-free part πab of the stress tensor 
ab) in the
comoving frame of the effective fluid are, respectively,

ρ(v) = Tabv
avb,

q(v)
a = −Tcd vcha

d ,



(v)
ab = P(v)hab + π

(v)
ab = Tcd ha

c hb
d ,

P(v) = 1

3
gab
(v)

ab = 1

3
habTab,

π
(v)
ab = 


(v)
ab − P(v)hab.

It is straightforward to see that some of these quantities are not altered with respect
to those arising from future-directed scalar field gradients:

ρ(v) = ρ(u), 

(v)
ab = 


(u)
ab , P(v) = P(u), π

(v)
ab = π

(u)
ab . (12)

However, the heat flux density changes sign when the 4-velocity changes orientation:

q(v)
a = −Tcd vcha

d = Tcd u
cha

d = −q(u)
a , (13)

which has important consequences for the definition of a meaningful temperature, as
we detail in the following.
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2.3 First-order thermodynamics with past-directed scalar field gradients

Eckart’s thermodynamics provides a simple non-equilibrium thermodynamics that is
first-order in the dissipative variables. Based on its three constitutive equations [25],
we can find relationships between the kinematic quantities of the effective fluid and
the dissipative thermodynamical variables, therefore building an analogy between the
imperfect fluid and scalar-tensor gravity in a thermodynamical setting. The following
relationships between the heat flux and the 4-acceleration, and the anisotropic stress
and shear tensor, respectively, hold when dealing with future-directed gradients [24,
26, 27, 30]:

q(u)
a = −

√
2X

8πφ
a(u)
a , π

(u)
ab =

√
2X

8πφ
σ

(u)
ab . (14)

Hence, given (12) and (13), we have

q(v)
a = −q(u)

a =
√
2X

8πφ
a(u)
a =

√
2X

8πφ
a(v)
a (15)

and

π
(v)
ab = π

(u)
ab =

√
2X

8πφ
σ

(u)
ab = −

√
2X

8πφ
σ

(v)
ab . (16)

This means that, for a scalar field with timelike past-directed gradient, one finds the
“temperature of scalar-tensor gravity”

(KT )(v) = −(KT )(u) = −
√
2X

8πφ
< 0 (17)

(where K is the thermal conductivity, T is the temperature, and these two quantities
always appear together in our analysis). Moreover, the shear viscosity coefficient η

defined by the constitutive relation πab = −2η σab [25] reads

η(v) = −η(u) =
√
2X

16πφ
> 0. (18)

Thus, for past-directed gradients, we find a negative temperature and positive shear vis-
cosity, opposite to the result for future-directed gradients. This is precisely the reason
why making sure the velocity of φ is future-directed is crucial: the thermodynami-
cal analogy built in [24, 26, 27] itself relies on a meaningful notion of temperature.
The fact that such a temperature naturally arose to be positive-definite in the case of
future-directed velocity is one of the promising features of the formalism. Moreover,
modified gravity theories with degrees of freedom additional to those of GR always
have a positive temperature with respect to GR, which is quite intuitive. The only
meaningful situation where we found a negative temperature was that of Nordström
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gravity, that possesses less degrees of freedom thanGR [32]. Additionally, the negative
shear viscosity previously found in [24, 27] made sense as there is no reason to expect
the effective fluid we are dealing with to be isolated. In the present work, a positive η

corresponds to the more usual case of an isolated fluid.
The previous findings [24, 26, 27, 30] remain valid, provided that one restricts the

application of our formalism to scalar fields with future-directed timelike gradients.

2.4 Approach to thermal equilibrium

Let us compute now the evolution of (KT )(v) with respect to the time direction dictated
by va , which is given by [24, 26, 27]

d

dτ
(KT )(v) = va∇a(KT )(v) = (−ua)∇a

[
−(KT )(u)

]
= ua∇a(KT )(u)

= 8π(KT )2(u) − �(u)(KT )(u) + �φ

8πφ

= 8π(KT )2(v) − �(v)(KT )(v) + �φ

8πφ
.

(19)

That is, the effective heat equation describing the approach to (or the departure from)
thermal equilibrium in the first-order thermodynamics of scalar-tensor gravity reads

d

dτ
(KT )(v) = 8π(KT )2(v) − �(v)(KT )(v) + �φ

8πφ
(20)

and is, therefore, not affected by the replacement ua �→ −ua = va .

3 Revisiting the Brans-Dicke dust solution

Many analytical solutions of scalar-tensor gravity are known in various physical con-
texts, ranging from FLRW cosmology (e.g., [35]) to spherically symmetric solutions
describing black holes and other objects (see [36] for a recent review). A large frac-
tion of the literature on Horndeski and DHOST gravity is devoted to the search of
such solutions with disformal (and other) techniques [37–51]. These solutions were
of course derived regardless of the effective fluid formalism and the first-order ther-
modynamics approach which, per se, do not offer new methods for solving the field
equations exactly (although they do offer novel physical interpretations [52]).

Therefore, certain scalar-tensor solutions feature timelike andpast-directed gradient
∇aφ of the scalar degree of freedom. Systematically searching for these solutions and
listing themwould not be particularly illuminating; rather, we focus on a classic simple
FLRW solution that has been known for a long time, namely the Brans-Dicke dust
solution [6], which we analysed in [30]. This is the only solution we studied through
the lens of first-order thermodynamics whose study requires to be revisited in light of
the extension to past-directed fluid velocity that we provide in this paper.
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This solution describes a matter-dominated universe permeated by a pressureless
dust fluid in Brans-Dicke gravity [6] with V (φ) = 0 and ω �= −4/3 and reads

a(t) = a0 t
q , φ(t) = φ0 t

s, ρ(m)(t) = ρ0 t
r , (21)

where a(t) is the cosmic scale factor, ρ(m) = ρ(m)(t) the matter energy density,
ρ0 = C/a30 , C is an integration constant related to the initial conditions, and

q = 2(ω + 1)

3ω + 4
, s = 2

3ω + 4
, r = −3q (22)

satisfy 3q + s = 2. Then, if the dot denotes differentiation with respect to t , we find

φ̇ = s

t
φ. (23)

Since φ > 0, in order to have φ̇ > 0 one has to require s > 0, which implies
ω > −4/3. From these assumptions, it follows that

∇aφ = ga0φ̇ = ga0
sφ

t
, (24)

which implies2 ∇0φ = −sφ/t < 0. Therefore ∇aφ is past-directed.
The 4-velocity of the effective fluid must therefore be defined as

va = −ua = − ∇aφ√
2X

, 2X := −∇aφ∇aφ = s2φ2

t2
. (25)

The product of the temperature and the thermal conductivity is therefore negative and
diverges as the initial cosmological singularity is approached

(KT )(v) = −
√
2X

8πφ
= − s

8π t
−→
t→0+ −∞. (26)

The shear viscosity η(v) vanishes because of the symmetries of FLRW (the heat flux
q(v) would vanish too, but in [30] we chose the heat flux as a timelike vector aligned
with the four-velocity of comoving observers).

4 Conclusions

In this work we extend the first-order thermodynamics of scalar-tensor gravity to
timelike and past-directed gradients of the scalar field. The first-order thermodynamics

2 s > 0 implies an increasing φ and an effective gravitational coupling Geff � φ−1 decreasing with
time. A priori one would expect the weakening of gravity to characterize stability but the past-pointing∇aφ

seems to defy this intuition.
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is a recent approach that aims to provide a novel understanding of the intriguing
relationship between thermodynamics and gravity, by characterising GR as a zero-
temperature equilibrium state and any modified gravity with additional degrees of
freedom than GR as a non-equilibrium state. This idea depicts a “thermodynamics of
gravitational theories" and is based on the imperfect fluid description of scalar-tensor
theories.

Since the whole picture relies on the analogy of modified theories with an effective
scalar field fluid that is supposed to have a meaningful (i.e. future-directed) 4-velocity,
previous works had not considered the possibility of past-directed velocity.

Past-directed scalar field gradients do arise in analytical solutions of scalar-tensor
gravity and it is not surprising that the corresponding temperatures become neg-
ative, which seems natural from the thermodynamic point of view. Time reversal
t → −t achieves the same result, turning future-directed scalar field gradients into
past-directed ones. This feature corresponds to the deterministic character of “stan-
dard” gravity, to go beyond which one would have to concoct a theory of gravity
originating from stochastic dynamics: then time-reversal would not simply turn future-
directed into past-directed ∇aφ. Unfortunately, stochastic semiclassical gravity and
the theoretical efforts on the Einstein-Langevin equation (see [53] for a review) are
quite remote from the first-order thermodynamics of classical gravity, with no obvious
connection.

The present work addresses past-directed scalar field gradients: we find that the
kinematic fluid quantities remain unchanged, but certain thermodynamical variables
such as heat fluxes change sign, leading to a negative temperature and a positive
shear viscosity, at variance with previous works. These results are also confirmed by
revisiting theBrans-Dicke dust solution,which does have a past-directed fluid velocity.

A negative temperature is problematic in first-order thermodynamics, where addi-
tional degrees of freedom to those of GR give modified theories a positive-definite
temperature. We cannot provide an assessment of the physical viability of solutions
in scalar-tensor gravity through the sign of the temperature within our formalism, but
we are now aware of the need to restrict upcoming analyses to situations with future-
directed scalar field velocity only, if the thermodynamical formalism is tomeaningfully
hold.
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