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Abstract: The interaction of neutrino transition magnetic dipole moments with mag-
netic fields can give rise to the phenomenon of neutrino spin-flavour precession (SFP). For
Majorana neutrinos, the combined action of SFP of solar neutrinos and flavour oscillations
would manifest itself as a small, yet potentially detectable, flux of electron antineutrinos
coming from the Sun. Non-observation of such a flux constrains the product of the neutrino
magnetic moment µ and the strength of the solar magnetic field B. We derive a simple
analytical expression for the expected ν̄e appearance probability in the three-flavour frame-
work and we use it to revisit the existing experimental bounds on µB. A full numerical
calculation has also been performed to check the validity of the analytical result. We also
present our numerical results in energy-binned form, convenient for analyses of the data
of the current and future experiments searching for the solar ν̄e flux. In addition, we give
a comprehensive compilation of other existing limits on neutrino magnetic moments and
of the expressions for the probed effective magnetic moments in terms of the fundamental
neutrino magnetic moments and leptonic mixing parameters.
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1 Introduction

The study of neutrino properties is known to be a powerful tool for searching for physics
beyond the Standard Model. The observation of flavour oscillations in experiments with
solar, atmospheric, reactor and accelerator neutrinos imply that neutrinos have nonzero
mass; this, in particular, means that they should also have magnetic dipole moments. As
neutrinos are electrically neutral, they have no direct coupling to electromagnetic fields, and
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their electromagnetic interactions should arise entirely through quantum loop effects. In
the simplest extensions of the Standard Model capable of producing nonvanishing neutrino
mass, the predicted neutrino magnetic dipole moments1 are too small to be probed in a
foreseeable future. However, a number of models with new physics at TeV scale predict
neutrino magnetic moments that may be close to the current experimental upper bounds
(for a recent discussion, see e.g. [1] and references therein).

Photon exchange processes induced by neutrino magnetic moments can contribute to
cross sections of neutrino-electron and neutrino-nucleus scattering, and in particular can
affect the results of coherent elastic neutrino-nucleus scattering experiments. There has been
an increased interest in these topics following the observation by the XENON1T experiment
of an excess of low-energy electron recoil events [2], which could be explained by sufficiently
large neutrino magnetic moments [1–4]. This excess, however, was not supported by the
more recent results of XENONnT [5] and is also at variance with the analysis of the results
of the LUX-ZEPLIN experiment [6] performed in [7]. The possibility of probing neutrino
magnetic moments can be further explored in multiton xenon detectors [8, 9].

Processes induced by neutrino magnetic moments may also play an important role in
astrophysical environments. They can influence stellar evolution and can affect neutrino
emission by core-collapse supernovae. Constraints on neutrino electromagnetic properties
coming from non-observation of these and other processes, including constraints from the
cosmic microwave background and big bang nucleosynthesis, can be found in the literature
[10].

If neutrinos are Majorana particles, the interaction of their transition (flavour off-
diagonal) magnetic moments with the solar magnetic field can result in the conversion of
a fraction of left-handed νe produced in the Sun into right-handed antineutrinos ν̄µ and
ν̄τ . This spin-flavour precession (SFP) process can be resonantly enhanced by solar matter
[11, 12], similarly to the resonance amplification of neutrino flavour conversion in matter
(the MSW effect [13, 14]). Although it is currently firmly established that the observed
deficit of solar νe is due to the MSW effect, SFP could still be present at a subdominant
level. The combined action of neutrino SFP and flavour oscillations would then produce a
small but potentially observable flux of solar electron antineutrinos ν̄e at the Earth (see,
e.g., [15, 16] and references therein). The detection of such a flux would therefore be a clear
signature of both nonzero magnetic moment and Majorana nature of neutrinos.

Electron antineutrinos from the Sun have been searched for experimentally by Kam-
LAND [17–20], Borexino [21, 22] and Super-Kamiokande [23] collaborations. No excess over
the expected backgrounds was found, which allowed the collaborations to establish upper
bounds on the product of the transition neutrino magnetic moment and the solar magnetic
field strength. In the analyses of the data presented in these papers use was made of the
results of the theoretical study [15], which was done within a simplified 2-flavour neutrino
framework and employed a standard solar model that is currently outdated.

1Actually, neutrinos may have magnetic and/or electric dipole moments. The former are described by the
real part of the matrix of neutrino electromagnetic dipole moments µ, whereas the latter, by its imaginary
part. Both can cause the physical processes we consider in this paper. For brevity we refer to µ as simply
the magnetic dipole moment.
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In the present paper we extend the theoretical analysis of [15] to the full 3-flavour
neutrino framework and also use more recent standard solar models. We develop a simple
analytical approach for calculating the expected flux of ν̄e from the Sun and also solve
the full system of neutrino evolution equations numerically without any simplifying ap-
proximations. Good general agreement between the results of these two approaches is
found. All the calculations are performed for two standard solar models (low-metallicity
and high-metallicity) and a number of model solar magnetic field profiles. We also study
the role of various transition neutrino magnetic moments in the production of the ν̄e flux.
To facilitate the extraction of the constraints on the neutrino magnetic moments and solar
magnetic fields from the experimental data, we present our results in the form of simple
analytical formulas as well as of ready-to-use tables of numerically calculated appearance
probabilities and fluxes of solar ν̄e. We then re-analyze the results of refs. [17–23] using our
formalism. For reference, we also present a compilation of bounds on neutrino magnetic
moments obtained from other experiments and astrophysical observations and express the
effective neutrino magnetic moments to which they are sensitive through the fundamental
neutrino magnetic moments and leptonic mixing parameters.

2 Neutrino evolution in the Sun

In the absence of magnetic fields, neutrino transformations in matter are described, in the
3-neutrino framework, by the flavour evolution equation

i
d

dr
νflL =

[
Udiag(0, 2δ, 2∆)U † + diag(Ve + Vn, Vn, Vn)

]
νflL . (2.1)

Here νflL = (νeL νµL ντL)T is the vector of neutrino amplitudes in flavour space and U is
the 3-flavour leptonic mixing matrix, for which we use the standard parametrisation

U = O23ΓδO13Γ†δO12 . (2.2)

Here Oij are the orthogonal matrices of rotation with the angle θij in the i − j plane and
Γδ = diag(1, 1, eiδCP), δCP being the Dirac-type CP-violating phase. In the case of Majorana
neutrinos, the leptonic mixing matrix UM depends on two additional phases: UM = UK,
where K = diag(1, eiλ2 , eiλ3). However, as can be seen from eq. (2.1), these phases play no
role in neutrino oscillations. We are using the notation

δ =
∆m2

21

4E
, ∆ =

∆m2
31

4E
, (2.3)

where ∆m2
ij = m2

i − m2
j are the neutrino mass squared differences, and also denote the

effective potentials due to coherent forward neutrino scattering on matter constituents by

Ve =
√

2GFNe(r) and Vn = −
√

2GFNn(r)/2 . (2.4)

In eq. (2.4), GF is the Fermi constant and Ne(r), Nn(r) are the number densities of electrons
and neutrons in matter, respectively.
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A convenient basis for considering flavour transitions in the Sun is defined through the
relation

νflL = O23ΓδO13ν
′
L (2.5)

with ν ′L ≡ (ν ′eL ν
′
µL ν

′
τL)T . The neutrino evolution equation in the primed basis is then

i
d

dr

ν ′eLν ′µL
ν ′τL

 =

2δs2
12 + c2

13Ve + Vn 2δs12c12 s13c13Ve
2δs12c12 2δc2

12 + Vn 0

s13c13Ve 0 2∆ + s2
13Ve + Vn


ν ′eLν ′µL
ν ′τL

≡H
ν ′eLν ′µL
ν ′τL

 ,

(2.6)
where we used the short-hand notation cij ≡ cos θij , sij ≡ sin θij .

Next, we include the effects of SFP due to the interaction of the neutrino magnetic
moments with external magnetic fields. The evolution equation is then [11, 24, 25]

i
d

dr

(
ν ′L
ν̄ ′R

)
=

(
H B
B† H̄

)(
ν ′L
ν̄ ′R

)
(2.7)

where ν̄ ′R = (ν̄ ′eR ν̄ ′µR ν̄ ′τR)T is the vector of the right-handed antineutrino amplitudes in
the primed basis, H is the Hamiltonian defined in the evolution equation (2.6) and H̄ is
obtained from H by substituting δCP → −δCP, Ve → −Ve and Vn → −Vn. For Majorana
neutrinos, to which we restrict ourselves in the present paper, the matrix B, describing
neutrino interactions with the external magnetic field, can be written as

B =

Be′e′ Be′µ′ Be′τ ′Bµ′e′ Bµ′µ′ Bµ′τ ′
Bτ ′e′ Bτ ′µ′ Bτ ′τ ′

 =

 0 µe′µ′ µe′τ ′

−µe′µ′ 0 µµ′τ ′

−µe′τ ′ −µµ′τ ′ 0

B⊥(r)eiφ(r) ≡ µ′ ·B⊥(r)eiφ(r) . (2.8)

Here µ′ is the matrix of transition magnetic moments in the primed basis. To simplify
notation, the matrix elements of µ′ are merely written with the primed indices as µα′β′ ,
and the overall primes are omitted. The external magnetic field in the plane transverse to
the neutrino momentum is described by the factor B⊥(r)eiφ(r), where B⊥(r) > 0 and the
azimuthal angle φ(r) defines the direction of the magnetic field in this plane.2

It is useful to relate the magnetic moments in the primed basis with the magnetic
moments µm in the neutrino mass eigenstate basis, which are of more fundamental nature:

µ′ = ΓδO12K
∗µmK

∗OT12Γδ . (2.9)

For the nonzero matrix elements of µ′ we find

µe′µ′ = µ12e
−iλ2 , (2.10)

µe′τ ′ =
(
µ13c12 + µ23s12e

−iλ2
)
e−i(λ3−δCP) , (2.11)

µµ′τ ′ =
(
µ23c12e

−iλ2 − µ13s12

)
e−i(λ3−δCP) . (2.12)

2We ignore the contributions of the longitudinal component of the magnetic field as they are inversely
proportional to the neutrino Lorentz factor and are thus negligible in all situations of practical interest.
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The evolution equation (2.7) can now be written in more detailed form as

i
d

dr
ν ′eL = He′e′ν

′
eL +He′µ′ν

′
µL +He′τ ′ν

′
τL + Be′µ′ ν̄ ′µR + Be′τ ′ ν̄ ′τR , (2.13a)

i
d

dr
ν ′µL = Hµ′e′ν

′
eL +Hµ′µ′ν

′
µL + Bµ′e′ ν̄ ′eR + Bµ′τ ′ ν̄ ′τR , (2.13b)

i
d

dr
ν ′τL = Hτ ′e′ν

′
eL +Hτ ′τ ′ν

′
τ ′L + Bτ ′e′ ν̄ ′eR + Bτ ′µ′ ν̄ ′µR , (2.13c)

i
d

dr
ν̄ ′eR = H̄e′e′ ν̄

′
eR + H̄e′µ′ ν̄

′
µR + H̄e′τ ′ ν̄

′
τR − B∗e′µ′ν ′µL − B∗e′τ ′ν ′τL , (2.13d)

i
d

dr
ν̄ ′µR = H̄µ′e′ ν̄

′
eR + H̄µ′µ′ ν̄

′
µR − B∗µ′e′ν ′eL − B∗µ′τ ′ν ′τL , (2.13e)

i
d

dr
ν̄ ′τR = H̄τ ′e′ ν̄

′
eR + H̄τ ′τ ′ ν̄

′
τR − B∗τ ′e′ν ′eL − B∗τ ′µ′ν ′µL . (2.13f)

Here we have taken into account that the diagonal elements of the matrix B vanish and
also that Hµ′τ ′ = Hτ ′µ′ = H̄µ′τ ′ = H̄τ ′µ′ = 0.

2.1 Approximate analytical solution of the evolution equation

Because the diagonal magnetic moments of Majorana neutrinos vanish, direct conversion
of the left-handed electron neutrinos produced in the Sun into ν̄eR is not possible. Still,
νeL → ν̄eR transitions can proceed via two-step processes,

νeL
osc.−→ νµL

SFP−→ ν̄eR , (2.14a)

νeL
SFP−→ ν̄µR

osc.−→ ν̄eR , (2.14b)

and similarly for transitions through the ντL and ν̄τR intermediate states. However, inside
the Sun such conversions should be heavily suppressed because the amplitudes of the pro-
cesses (2.14a) and (2.14b) are of opposite sign and nearly cancel each other [24, 25]. For
the same reasons, the transitions ν ′eL → ν̄ ′eR between the primed states are also suppressed.

The transitions νeL → ν̄eR through the processes (2.14a) and (2.14b) (and similar
transitions with ντL and ν̄τR intermediate states) will, however, not be suppressed if the
flavour conversions and SFP occur in spatially separated regions. Because magnetic fields
outside the Sun are very weak, we are left with the possibility of the transition chain (2.14b),
with SFP taking place inside the Sun and the subsequent flavour conversions occurring on
the flight between the Sun and the Earth. To calculate the flux of solar ν̄eR on the Earth
we therefore first need to find the fluxes of ν̄ ′µR and ν̄ ′τR at the surface of the Sun.

We shall now develop an approximate analytical approach to this problem. First, basing
on the above arguments, we neglect ν ′eL → ν̄ ′eR conversions inside the Sun. We therefore
omit the evolution equation for ν̄ ′eR as well as any terms containing the ν̄ ′eR amplitude
from the equation system (2.13). Next, we neglect the terms containing He′τ ′ = Hτ ′e′ (and
H̄e′τ ′ = H̄τ ′e′), since they are much smaller than the diagonal elements Hτ ′τ ′ and H̄τ ′τ ′ ,
which means that flavour transitions, caused by the above-mentioned off-diagonal terms, are
strongly suppressed. Finally, we take into account that the effects of SFP of solar neutrinos
are expected to be small and restrict ourselves to leading order in perturbation theory in B.
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As we are interested in calculating the amplitudes ν̄ ′µR and ν̄ ′τR, whose evolution equations
contain the amplitudes ν ′eL, ν

′
µL, and ν

′
τL multiplied by the elements of the B matrix, the

amplitudes of these left-handed states should be found to zeroth order in B. Applying these
approximations to eq. (2.13), we find the simplified evolution equations

i
d

dr
ν ′eL =

(
2δs2

12 + c2
13Ve + Vn

)
ν ′eL + 2δs12c12ν

′
µL , (2.15a)

i
d

dr
ν ′µL = 2δs12c12νe′L +

(
2δc2

12 + Vn
)
ν ′µL , (2.15b)

i
d

dr
ν ′τL =

(
2∆ + s2

13Ve + Vn
)
ν ′τL , (2.15c)

i
d

dr
ν̄ ′µR =

(
2δc2

12 − Vn
)
ν̄ ′µR + µ∗e′µ̄′B⊥e

−iφν ′eL − µ∗µ′τ̄ ′B⊥e−iφν ′τL , (2.15d)

i
d

dr
ν̄ ′τR =

(
2∆− s2

13Ve − Vn
)
ν̄ ′τR + µ∗e′τ̄ ′B⊥e

−iφν ′eL + µ∗µ′τ̄ ′B⊥e
−iφν ′µL . (2.15e)

We first note that the first two of these equations, describing the evolution of the amplitudes
ν ′eL and ν ′µL, decouple from the rest of the system and can be solved independently. This
essentially reduces to solving the MSW problem for solar neutrinos. We therefore employ
the adiabatic approximation, which is known to work very well in this case, and obtain

ν ′eL(r) = c13

[
cos θ̃(r0) cos θ̃(r)e

−i
∫ r
r0
E1dr′ + sin θ̃(r0) sin θ̃(r)e

−i
∫ r
r0
E2dr′

]
, (2.16)

ν ′µL(r) = c13

[
− cos θ̃(r0) sin θ̃(r)e

−i
∫ r
r0
E1dr′ + sin θ̃(r0) cos θ̃(r)e

−i
∫ r
r0
E2dr′

]
. (2.17)

Here r0 is the coordinate of the neutrino production point, θ̃(r) is the effective mixing angle
in matter which can be found from the relation

cos 2θ̃(r) =
cos 2θ12 − c2

13Ve/2δ√(
cos 2θ12 − c2

13Ve/2δ
)2

+ sin2 2θ12

, (2.18)

and we have defined

E1,2 ≡ δ + c2
13

Ve
2

+ Vn ∓
√(

δ cos 2θ12 − c2
13Ve/2

)2
+ δ2 sin2 2θ12 . (2.19)

Note that the initial conditions νeL(r0) = 1, νµL(r0) = ντL(r0) = 0 translate, in the primed
basis, to ν ′eL(r0) = c13, ν ′µL(r0) = 0, ν ′τL(r0) = s13.

The evolution equation for the amplitude ν ′τL completely decouples from the rest of
the system and its solution is

ν ′τL(r) = s13e
−i

∫ r
r0

(2∆+s213Ve+Vn)dr′ . (2.20)

Now that ν ′eL, ν
′
µL and ν ′τL are found, it straightforward to solve eqs. (2.15d) and
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(2.15e). For the values of the amplitudes ν̄ ′µR and ν̄ ′τR at the surface of the Sun we obtain

ν̄ ′µR(R�) =

∫ R�

r0

B⊥(r)
[
c13µ

∗
e′µ′ cos θ̃(r0) cos θ̃(r)e−ig1(r) ,

+ c13µ
∗
e′µ′ sin θ̃(r0) sin θ̃(r)e−ig2(r) −s13µ

∗
µ′τ ′e

−ig3(r)
]
dr , (2.21a)

ν̄ ′τR(R�) =

∫ R�

r0

B⊥(r)c13 cos θ̃(r0)
(
µ∗e′τ ′ cos θ̃(r)− µ∗µ′τ ′ sin θ̃(r)

)
e−ig4(r)dr ,

+

∫ R�

r0

B⊥(r)c13 sin θ̃(r0)
(
µ∗e′τ ′ sin θ̃(r) + µ∗µ′τ ′ cos θ̃(r)

)
e−ig5(r)dr , (2.21b)

where we have defined

g1,2(r) ≡ φ+

∫ r

r0

[
E1,2 −

(
2c2

12δ − Vn
)]
dr′ , (2.22a)

g3(r) ≡ φ+

∫ r

r0

[(
2∆ + s2

13Ve + Vn
)
−
(
2c2

12δ − Vn
)]
dr′ , (2.22b)

g4,5(r) ≡ φ+

∫ r

r0

[
E1,2 −

(
2∆− s2

13Ve − Vn
)]
dr′ , (2.22c)

and have dropped the irrelevant overall phase factors from the expressions for ν̄ ′µ and ν̄ ′τ .
Such inconsequential phase factors will also be consistently omitted in what follows.

2.1.1 Analytical expressions for the amplitudes

The integrals in eq. (2.21) are of general form

I =

∫ b

a
f(x)e−ig(x)dx , (2.23)

where f(x) is a slowly varying function of coordinate and |g′(x)| is large except possibly
in the vicinity of a finite number of points in the interval (a, b). Such integrals get their
main contributions from the endpoints of the integration intervals and from the stationary
phase points where g′(x) = 0, if any [26] (see also section 2.1.2 below). Let us first check if
stationary phase points for the integrals in eqs. (2.21a) and (2.21b) exist.

The evolution equation (2.21a) for the amplitude ν̄ ′µR depends on the phases g1, g2 and
g3. The stationary phase conditions are d

drg1,2 = 0 and d
drg3 = 0 or, respectively,

dφ

dr
= 2c2

12δ − Vn − E1,2 , (2.24)

dφ

dr
= 2c2

12δ − 2Vn − 2∆− s2
13Ve . (2.25)

The stationary phase conditions for the integrals in eq. (2.21b) are d
drg4,5 = 0, or

dφ

dr
= 2∆− s2

13Ve − Vn − E1,2 = 0 . (2.26)

Consider first eq. (2.26). The term 2∆ on its right hand side is at least an order of magnitude
larger than the other terms (note that 2∆ ∼ 10−9 − 10−10 eV). For the solution of this
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equation to exist, dφ/dr should be of the same order of magnitude, which corresponds to
∼ 1−10 rad/km. While short-scale stochastic magnetic fields in the Sun may possibly have
such rapid twists, it is unlikely that this is possible for large-scale fields relevant for SFP.
This means that no stationary phase points are expected for the integrals in eq. (2.21b), and
they should receive their main contributions from the endpoints of the integration interval.
The same arguments apply to eq. (2.25) and the integral containing g3 in eq. (2.21a).

Let us now examine eq. (2.24). Using eq. (2.19), one can reduce it to

dφ/dr + 2Vn + c2
13Ve − 2δ cos 2θ12 =

δ2 sin2 2θ12

dφ/dr + 2Vn
, (2.27)

which has a solution as long as

1 + sin2 2θ12
c2

13Ve
dφ/dr + 2Vn

≥ 0 . (2.28)

This condition is satisfied if

dφ

dr
> 2|Vn| or − dφ

dr
≥ c2

13Ve

(
sin2 2θ12 −

1− Ye
c2

13Ye

)
, (2.29)

where Ye is the number of electrons per nucleon in the medium. As Ye varies between
0.67 and 0.88 in the Sun [27], it is easy to see that the expression in the brackets in the
second condition in (2.29) is positive and on the order of 0.3 – 0.7; therefore, for non-twisting
magnetic fields the stationary phase condition cannot be fulfilled. In fact, it requires |dφ/dr|
to be of the same order of magnitude as Ve and |Vn|, which vary from ∼ 7× 10−12 eV near
the neutrino production point to zero at the surface of the Sun, where the solar magnetic
field nearly vanishes as well. One can see that the stationary phase condition can be fulfilled,
for instance, for magnetic fields with constant twist |dφ/dr| ∼ 10/R� ∼ 3× 10−15 eV [25].

We will first focus on the case in which the magnetic fields in the Sun are either non-
twisting or they twist slowly enough, so that no stationary phase points exist. Effects of
possible existence of stationary phase points in the scenario with fast twisting magnetic
fields will be discussed in section 2.1.3.

2.1.2 Non-twisting or slowly twisting magnetic fields

In this case, the integrals in eqs. (2.21a) and (2.21b) are dominated by the contributions
from the endpoints of the integration intervals. To evaluate such contributions to an integral
of the type (2.23), we integrate it by parts. Integrating two times one finds∫ b

a
f(x)e−ig(x)dx =

[(
i
f(x)

g′(x)
+
f ′(x)

g′(x)2
− f(x)g′′(x)

g′(x)3

)
e−ig(x)

]b
a

+O
(

1

g′(x)3

)
. (2.30)

It follows from the definitions of the phases g in eqs. (2.22a)-(2.22c) and eqs. (2.4) and (2.19)
that in the case of interest to us the condition

|g′′(x)|2/g′(x)2 � 1 (2.31)
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is satisfied for all gi(x) (i = 1, ..., 5). Therefore, the third term in the brackets in eq. (2.30)
can be neglected compared to the first term. In addition, the first term dominates over the
second one provided that ∣∣∣∣∣ f(x)

f ′(x)

∣∣∣∣∣� 1

|g′(x)|
. (2.32)

Consider the left hand side of this inequality. It is essentially the scale height of the
function f , i.e. the characteristic distance over which it varies significantly. As follows from
(2.21a) and (2.21b), in the case under discussion f(r) ∝ B⊥(r) times sin θ̃(r) or cos θ̃(r).
Because the effective mixing angle θ̃ is a slowly varying function of coordinate inside the
Sun (which actually justifies using the adiabatic approximation for flavour conversions), the
scale height of f(r) essentially coincides with the scale height of the solar magnetic field,
LB ≡ B⊥(r)/|B′⊥(r)|. Therefore eq. (2.32) reduces to

LB �
1

|g′i(r)|
(2.33)

for each of the five gi(r) defined. For the propagation of neutrinos in the Sun, these
conditions are satisfied if LB � 10−4R�. Magnetic fields with scale heights as small as
LB . 10−4R� can only exist over very short distances in the Sun, and so they cannot
lead to any sizeable SFP. We therefore only consider large-scale solar magnetic fields, which
satisfy (2.32). As a consequence, it is justified to retain only the first term in the brackets
in eq. (2.30). In addition, we take into account that the magnetic field strength at the
surface of the Sun B⊥(R�) is very weak and consider only the contribution of the neutrino
production point r = r0. Eqs. (2.21a) and (2.21b) thus yield

ν̄ ′µR(R�) 'B⊥(r0)

[
c13µ

∗
e′µ′

(
cos2 θ̃(r0)

g′1(r0)
+

sin2 θ̃(r0)

g′2(r0)

)
−
s13µ

∗
µ′τ ′

2∆

]
, (2.34a)

ν̄ ′τR(R�) 'B⊥(r0)
c13µ

∗
e′τ ′

2∆
, (2.34b)

where we have taken into account that g′3 ∼ 2∆, g′4,5 ∼ −2∆ and that∣∣∣∣ 1

g′4
− 1

g′5

∣∣∣∣� ∣∣∣∣ 1

g′4,5

∣∣∣∣. (2.35)

Notice that setting θ13 = 0 and neglecting cos θ̃(r0) compared with sin θ̃(r0) one recovers
the expression for the amplitude of ν̄ ′µR found in [15].

2.1.3 Fast-twisting magnetic fields

Consider now the case when one of the conditions in (2.29) is satisfied, which requires the
solar magnetic field to be sufficiently fast twisting. Let r1 and r2 be such that g′1(r1) = 0 and
g′2(r2) = 0. The contribution of these stationary phase points to the amplitude ν̄ ′µR(R�) in
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eq. (2.21a) is

ν̄ ′µR(R�) = c13µ
∗
e′µ′

[
cos θ̃(r0) cos θ̃(r1)B⊥(r1)

√
2π

g′′1(r1)

+ sin θ̃(r0) sin θ̃(r2)B⊥(r2)

√
2π

g′′2(r2)
e−i(g2(r2)−g1(r1))

]
. (2.36)

From eq. (2.31) it follows that it strongly dominates over the contributions (2.34a) that
come from the endpoints of the integration interval, which can therefore be neglected in
this case. As there are no stationary phase point contributions to the amplitude ν̄ ′τR, it
is still given by eq. (2.34b), just as in the cases of non-twisting or slow-twisting magnetic
fields. Note that the validity of this approximation still relies on the assumption that there
is no νe → ν̄e transitions in the Sun. In the presence of fast-twisting magnetic fields, this
might not be accurate enough [25].

From now on we will constrain ourselves to the case of non-twisting or slowly twisting
magnetic fields, in which there are no stationary phase point contributions to the amplitudes
ν̄ ′µR and ν̄ ′τR. As follows from the above discussion, this may only reduce these amplitudes,
and therefore will make our upper bound on µB⊥ more conservative.

2.1.4 Solar electron antineutrino flux on the Earth

Once the amplitudes ν̄ ′µR and ν̄ ′τR on the surface of the Sun have been calculated, one
can compute the expected flux of ν̄eR that reaches the Earth. As the magnetic field in
the space between the Sun and the Earth is negligible, neutrino evolution en route to
the Earth reduces to pure flavour transformations. Due to coherence loss, solar neutrinos
(or antineutrinos) arrive at the Earth as incoherent sums of mass eigenstates [28]. The
probability that a νeL produced in the Sun will reach the Earth as ν̄eR is therefore

P (νeL → ν̄eR) = |Ue1|2|ν̄1⊕|2 + |Ue2|2|ν̄2⊕|2 + |Ue3|2|ν̄3⊕|2 , (2.37)

where ν̄i⊕ (i = 1, 2, 3) are the amplitudes of the antineutrino mass eigenstates reaching
the Earth. These amplitudes are related to those in the primed basis by ν̄ ′R = Ũ ν̄R with
Ũ = Γ†δO12, where ν̄ ′R = (ν̄ ′eR, ν̄

′
µR, ν̄

′
τR)T and ν̄R = (ν̄1R, ν̄2R, ν̄3R)T . Therefore

|ν̄i⊕|2 = |Ũµ′i|2|ν̄ ′µR(R�)|2 + |Ũτ ′i|2|ν̄ ′τR(R�)|2 , (2.38)

and eq. (2.37) for the electron antineutrino appearance probability can be rewritten as

P (νeL → ν̄eR) =
1

2
c2

13 sin2 2θ12|ν̄ ′µR(R�)|2 + s2
13|ν̄ ′τR(R�)|2. (2.39)
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Substituting here the approximate analytical expressions for the amplitudes ν̄ ′µR and ν̄ ′τR
from eqs. (2.34a) and (2.34b), we find

P (νeL → ν̄eR) =
1

2
c2

13 sin2 2θ12B
2
⊥(r0)

c2
13|µe′µ′ |2

(
cos2 θ̃(r0)

g′1(r0)
+

sin2 θ̃(r0)

g′2(r0)

)2

+

(
s13|µµ′τ ′ |

2∆

)2

− 2Re{µ∗e′µ′µµ′τ ′}

(
cos2 θ̃(r0)

g′1(r0)
+

sin2 θ̃(r0)

g′2(r0)

)
s13c13

2∆


+s2

13B
2
⊥(r0)

(
c13|µe′τ ′ |

2∆

)2

, (2.40)

where the terms containing |µµ′τ ′ |2 and |µe′τ ′ |2 are expected to give very small contribu-
tions,3 since they are proportional to s2

13/∆
2.

There are three main differences between this result and that obtained in ref. [15] in
the 2-flavour approach. First, the main (first) term in (2.40) contains an additional factor
c4

13. Second, there is a cross-term contribution in (2.40) which is absent from the two-
flavour result and which may give rise to a non-negligible correction to the ν̄eR appearance
probability. Finally, the expression in eq. (2.40) can be used for neutrino energies below
∼ 5− 8 MeV, for which the analytical two-flavour result of [15] is not applicable because of
simplifying assumptions made.

It is interesting to note that the main term in (2.40) is proportional to |µe′µ′ |2 which
is equal to |µ12|2, i.e. the electron antineutrino appearance probability is, to a very good
approximation, proportional to |µ12B⊥(r0)|2.

It will be shown in section 3.1 that the ν̄eR appearance probability (2.40) is a relatively
slowly varying function of neutrino energy for E & 5 − 8 MeV, relevant for experiments
on detection of solar 8B neutrinos. Taking for an estimate its value at E = 12 MeV and
electron and neutron number densities at the neutrino production point Ne ' 89 cm−3 and
Nn ' 35 cm−3 [27], the electron antineutrino appearance probability can be written as

P (νeL → ν̄eR) ' 1.1× 10−10

(
µ12B⊥(r0)

10−12µB · 10 kG

)2

, (2.41)

where µB is the electron Bohr magneton. The numerical coefficient here is about a factor
of 1.4 smaller than it is in the two-flavour approach of ref. [15]) (see eq. (25) of that paper).
This is partly due to 3-flavour effects and to using the updated neutrino mixing parameters
and solar models and partly because of the approximation cos θ̃(r0) � sin θ̃(r0) adopted
in [15] (see section 3.1 below).

Note that eq. (2.41) is not suitable for experiments sensitive to pp, pep or 7Be solar
neutrinos, for which the electron antineutrino appearance probability is strongly suppressed
(at E ∼ 1 MeV, it is approximately three orders of magnitude smaller than that given by
eq. (2.41)) and also exhibits a stronger energy dependence. We will discuss this issue in
more detail in section 3.1.

3Unless |µe′µ′ |2 is anomalously small.
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2.2 Numerical calculations

Instead of developing an approximate analytical solution, one can solve the complete set of
the six coupled evolution equations (2.13) numerically, tracing the evolution of the system
from the neutrino production point in the Sun to the Earth. We have developed a numerical
code to calculate the electron antineutrino appearance probability at the surface of the Earth
for 8B neutrinos, which give the main contribution to the solar ν̄eR flux for energies above the
threshold of inverse beta decay on protons, i.e. for E > 1.8 MeV.4 The calculations average
over the production region of 8B neutrinos in the Sun and take into account the electron
and neutron number density profiles in the Sun. We have performed the calculations for
two standard solar models (SSM) which differ on the elemental abundances in the Sun
and hence have different metallicities. These are the high-metallicity GS98 model and the
low-metallicity AGSS09 model, as discussed in [27]. As the profile of the magnetic field
inside the Sun is essentially unknown, one has to resort to model field profiles, which are
actually rather arbitrary. Fortunately, this arbitrariness is to some extent alleviated by the
fact that one expects the ν̄e appearance probability to be mostly sensitive to the magnetic
field strength at the neutrino production point rather than to the complete profile. We test
this numerically by using three different magnetic field profiles that have the same strength
at r = 0.05R� (see section 3.3 below). If not otherwise specified, in our calculations we will
be using the linearly decreasing magnetic field profile inside the Sun

B⊥(r) = B0(r) ≡ 52600(1− r/R�) kG , (2.42)

which takes the value B⊥ ' 5 × 107 G at r0 = 0.05R� and vanishes at the surface of the
Sun. Possible twist of the solar magnetic field will be neglected. The magnetic field profile
(2.42) coincides with the one used in [15].

3 Results

3.1 Comparison between analytical and numerical results

We have shown that the main contribution to the electron antineutrino appearance prob-
ability is proportional to |µe′µ′ |2 = |µ12|2. In this subsection we set µ13 = µ23 = 0 (which
also implies µµ′τ ′ = µe′τ ′ = 0) and compare our analytical expressions with the results
obtained by numerical solution of the system of the evolution equations (2.13). With only
µe′µ′ different from zero, our analytical expression (2.40) becomes

P (νeL → ν̄eR) =
1

2
c4

13 sin2 2θ12B
2
⊥(r0)|µe′µ′ |2

(
cos2 θ̃(r0)

g′1(r0)
+

sin2 θ̃(r0)

g′2(r0)

)2

. (3.1)

We will also consider the simplified analytical expression

P (νeL → ν̄eR)simpl. =
1

2
c4

13 sin2 2θ12B
2
⊥(r0)|µe′µ′ |2

(
sin2 θ̃(r0)

g′2(r0)

)2

, (3.2)

4We are mostly interested in inverse beta decay because the best currently available limits have been
obtained from the experiments that used this detection channel.
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Figure 1. Comparison of different calculations for ν̄eR appearance probability for 8B neutrinos.
Values of the oscillation parameters (sin2 θ12, ∆m2

21) = (0.32, 7.5×10−5 eV2) and sin2 θ13 = 0.022

[29] were chosen. Left and right panels correspond to AGSS09 and GS98 SSM, respectively [27].
Grey curves: numerical calculations assuming that all neutrinos are produced at r0 = 0.05R�.
Green curves: numerical calculation with averaging over the neutrino production region. Orange
curves: results based on the full analytical expression (3.1) (solid) and on the simplified analytical
expression (3.2)(dashed).

obtained from (3.1) by neglecting the first term in the brackets compared to the second
one, the approximation similar to the one adopted in [15]. This approximation is expected
to be valid for relatively high neutrino energies, for which cos2 θ̃(r0)� sin2 θ̃(r0) (note that
|g′1(r0)| and |g′2(r0)| differ by less than a factor of two for all considered energies).

In Figure 1 we compare our analytical results with those found by numerical solution
of the neutrino evolution equations (2.13). The grey wiggly curves show the numerical
results obtained assuming that all neutrinos are produced at the distance r0 = 0.05R�
from the centre of the Sun; the wiggly behaviour gets washed out if one averages over the
neutrino production region, as shown by the green curves. The solid and dashed orange
curves correspond to the analytical expressions (3.1) and (3.2), respectively, assuming that
all neutrinos are produced in the Sun at r0 = 0.05R�. The left and right panels show the
results for AGSS09 and GS98 solar models, respectively. The figure demonstrates a good
general agreement between our numerical and analytical results, especially for neutrino
energies E & 5 MeV. The discrepancy between the numerical and analytical results becomes
larger for smaller E, where the ν̄eR appearance probability is relatively small.

3.2 Neutrino evolution inside the Sun

In order to gain a better insight into the process of anitneutrino appearance, we consider the
evolution of the neutrino system inside the Sun as a function of coordinate. For simplicity,
we do so in the effective 2-neutrino approach, which corresponds to setting s13 → 0. We
have checked that the obtained results give a good approximation to those in the full 3-
flavour case, the reason being that the corresponding corrections are of the order of s2

13.
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Figure 2. Two-flavour antineutrino appearance probabilities for the mass eigenstates (left panel)
and for the states in the primed basis (right panel) as functions of the distance to the centre of the
Sun. Neutrino energy E = 10 MeV, transition magnetic moments µ12 = 10−12µB , µ13 = µ23 = 0

and the νe production coordinate r0 = 0.05R� are chosen.

In Figure 2 we show the evolution of the antineutrino appearance probabilities, obtained
by numerical solution of the evolution equations, for mass-eigenstate (left panel) and primed
(right panel) neutrino states. From the right panel, one can see that the approximation
ν̄ ′e ∼ 0 is reasonably good inside the Sun, though it is less accurate at its surface.

In the two-flavour approximation, SFP converts νe produced in the Sun into ν̄ ′µ.
Close to the neutrino production point the composition of ν̄ ′µ is approximately given by
ν̄ ′µ ' − sin ˜̄θ(r0)ν̄1M + cos ˜̄θ(r0)ν̄2M , where ν̄1,2M are antineutrino matter eigenstates (i.e.
the states that diagonalize the antineutrino Hamiltonian in matter), and the mixing angle
˜̄θ(r) is given by

tan 2˜̄θ(r) =
sin 2θ12

cos 2θ12 + c2
13Ve(r)/2δ

. (3.3)

Close to the neutrino production point the electron number density is rather large, and for
neutrino energies E & 2 MeV one has ˜̄θ(r0) � 1, so that ν̄ ′µ ' ν̄2M . As there is no level
crossing for antineutrinos and, in addition, their evolution is adiabatic in the Sun, ν̄2M

propagate through the Sun without noticeable transformations to ν̄1M . Because matter
density essentially vanishes at r = R�, matter eigenstates become mass eigenstates there,
and therefore antineutrinos emerge at the surface of the Sun as ν̄2. This can be seen in
Figure 3, where we show the appearance probabilities for ν̄1 and ν̄2 (left panel) and for the
matter eigenstates ν̄1M and ν̄2M (right panel), normalised to the unit sum. For r = 0.1R�,
which is relatively close to the neutrino production point, most of the antineutrinos are ν̄2M ,
which is a nontrivial combination of ν̄1 and ν̄2. At the surface of the Sun, the antineutrinos
emerge as ν̄2M as well, which coincides there with ν̄2. This is in accord with left panel of
Figure 2, which shows that at r = R� we mainly find ν̄2. As ν̄2 is a linear combination of
ν̄ ′e and ν̄ ′µ with weights sin2 θ12 ' 1/3 and cos2 θ12 ' 2/3 respectively, at the surface of the
Sun the appearance probability of ν̄ ′µ is about twice that of ν̄ ′e (right panel of Figure 2). It
should be noted that, unlike for the normalised probabilities shown in Figure 3, the sum
of the antineutrino appearance probabilities presented in Figure 2 is not conserved; this is
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Figure 3. Two-flavour evolution of antineutrino appearance probabilities inside the Sun for mass
eigenstates (left panel) and for the matter eigenstates (right panel), normalised to the unit total
antineutrino appearance probability. Assumptions regarding neutrino energy, magnetic moments
and the νe production coordinate are the same as in Figure 2.
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Figure 4. Electron antineutrino appearance probability on the Earth as a function of neutrino
energy for nonzero µ12, µ13 and µ23, for the AGSS09 solar model. Evolution equations were solved
numerically.

due to the fact that some of antineutrinos can precess back to neutrinos in the course of
their evolution inside the Sun.

3.3 The roles of various transition magnetic moments and of the magnetic field
profile

Up to this point, in our numerical analysis we were assuming only one transition magnetic
moment, µe′µ′ = µ12, to be nonzero. This was motivated by our analytical results, which
showed that the contributions µe′τ ′ and µµ′τ ′ , which are linear combinations µ13 and µ23,
are strongly suppressed. To illustrate this point, in Figure 4 we present the ν̄e appearance
probability P (νe → ν̄e) at the Earth when one nonzero magnetic moment at a time is
allowed. It clearly demonstrates that, unless µ13 or µ23 are more than three orders of
magnitude larger than µ12, the latter completely dominates the νe → ν̄e conversion.

In the above, all the numerical results were obtained for the simple linear model mag-
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Figure 5. Left panel: model magnetic field profiles inside the Sun, as defined in eqs. (2.42), (3.4)
and (3.5). Right panel: the corresponding electron antineutrino appearance probabilities on the
Earth. Results of the analytical expression shown by black dotted curve; for the rest of the curves
evolution equations were solved numerically.

netic field of the Sun B0(r) (2.42). We shall now study the sensitivity of νe → ν̄e conversion
to the solar magnetic field profile. To this end, we compare the results obtained for the
linear profile we used above with those for two different parabolic profiles, B1(r) and B2(r).
All the profiles are chosen to have the same strength 5 × 104 kG at r = 0.05R� and to
vanish at the surface of the Sun. The profile

B1(r) = 50000 + 2632
r

R�
− 52632

(
r

R�

)2

kG (3.4)

is almost flat over the production region; the profile

B2(r) = 55000− 102368
r

R�
+ 47368

(
r

R�

)2

kG . (3.5)

corresponds to the magnetic field that is smaller than the linear one for r > 0.05R�.
In Figure 5 (left panel) we plot the magnetic field profiles we use. In the right panel

the corresponding ν̄e appearance probabilities are shown. For neutrino energies E . 7MeV
all the employed magnetic field profiles lead to ν̄e appearance probabilities that are quite
close to each other. The sensitivity to the magnetic field profile increases with neutrino
energy. The reason for this is twofold. First, neutrinos are produced in the Sun not at
the same distance from its centre (such as e.g. 0.05R� which we considered as a reference
value for our estimates and where all our model magnetic field profiles coincide), but their
production actually takes place over the extended region; the νe → ν̄e production probability
is therefore sensitive to the magnetic profile in that region. Second, the ν̄e appearance
probability depends on the “mixing” of the left-handed and right handed neutrinos at their
production point r0, which is proportional to µ12B⊥(r0)/(∆m2

21/2E), which increases with
neutrino energy. From Figure 5 it follows that for E ∼ 8MeV (which is a typical energy of
8B neutrinos) one can expect the sensitivity of the ν̄e appearance probability to the choice
of the magnetic field profile to be of the order of 10 − 15%.
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3.4 Average electron antineutrino appearance probability and expected flux

A number of experimental collaborations have reported upper limits on ν̄e flux from astro-
physical sources. These are obtained for certain energy ranges as

ΦC.L. =
NC.L.

ε · 〈σ〉 · T ·Np
, (3.6)

where NC.L. is upper limit on the number of events at a given confidence level, ε is the
average detection efficiency in the energy range considered, 〈σ〉 is the averaged cross-section
in the same energy range, T is the exposure time and Np is the number of target particles.

In order to make it easier to use our results for analyses of the existing and future
experimental data, we compute, for each energy bin E ∈ [Ei − ∆E/2, Ei + ∆E/2], the
averaged ν̄e appearance probability

〈Pi〉 =

∫
Ei+∆E/2

Ei−∆E/2
φ(E)σ(E)P (E)dE∫

Ei+∆E/2

Ei−∆E/2
φ(E)σ(E)dE

, (3.7)

and the expected ν̄e flux

〈Φi〉 =

∫
Ei+∆E/2

Ei−∆E/2
φ(E)σ(E)P (E)dE∫

Ei+∆E/2

Ei−∆E/2
σ(E)dE

. (3.8)

For simplicity, we have assumed that the detection efficiency ε is nearly energy independent
within each bin (though it may vary from bin to bin); it then cancels out in the ratios
(3.7) and (3.8). We also assumed perfect detector energy resolution; we have checked
that for the KamLAND experiment, taking into account the realistic energy resolution of
6.4%/

√
E(MeV), changes our results by less than 0.5%. This is related to the fact that

the ν̄e appearance probability is a rather smooth function of neutrino energy (see the right
panel of Figure 5).

We restrict ourselves to energies above 1.8 MeV, where only 8B neutrinos give a sig-
nificant contribution to the solar neutrino signal, and we consider the inverse beta decay
as the ν̄e detection process. We compute the ν̄e appearance probability and the expected
flux numerically, using both the numerical and analytical expressions for the probabilities
P (νe → ν̄e). In Tables 1 and 2 we present these probabilities and the expected ν̄e fluxes
for the fixed values µ12 = 10−12µB and B⊥(r0) = 1 kG. As the ν̄e appearance probability
and the ν̄e flux are proportional to (µ12B⊥(r0))2, the values of 〈Pi〉 and 〈Φi〉 for different
µ12B⊥(r0) can be found by simple rescaling.

For better illustration, we also compare in Figure 6 the ν̄e appearance probabilities
(left panel) and the predicted ν̄e fluxes at the Earth (right panel) obtained numerically
and analytically for the case of AGSS09 SSM, magnetic field strength of eq. (2.42) and
µ12 = 10−12µB. It can be seen from the figure that for neutrino energies E & 6 MeV
there is a good agreement between our numerical and analytical results; the agreement
worsens towards smaller E. Thus, while our simple analytical results can be reliably used
at relatively high neutrino energies, numerical results should preferably be used for analysing
experiments sensitive to low-E part of the solar neutrino spectrum, such as Borexino.
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Numerical AGSS09 Analytical AGSS09

E [MeV] 〈Pi〉 〈Φi〉[cm−2s−1MeV−1] 〈Pi〉 〈Φi〉[cm−2s−1MeV−1]

1.8 - 2.8 1.73×10−13 4.62×10−8 5.08×10−14 1.36×10−8

2.8 - 3.8 2.95×10−13 1.18×10−7 1.45×10−13 5.82×10−8

3.8 - 4.8 4.28×10−13 2.24×10−7 2.97×10−13 1.55×10−7

4.8 - 5.8 5.52×10−13 3.34×10−7 4.73×10−13 2.86×10−7

5.8 - 6.8 6.57×10−13 4.19×10−7 6.38×10−13 4.07×10−7

6.8 - 7.8 7.45×10−13 4.62×10−7 7.74×10−13 4.80×10−7

7.8 - 8.8 8.19×10−13 4.55×10−7 8.78×10−13 4.88×10−7

8.8 - 9.8 8.84×10−13 4.03×10−7 9.53×10−13 4.35×10−7

9.8 - 10.8 9.38×10−13 3.15×10−7 1.01×10−12 3.38×10−7

10.8 - 11.8 9.87×10−13 2.11×10−7 1.04×10−12 2.23×10−7

11.8 - 12.8 1.04×10−12 1.12×10−7 1.07×10−12 1.16×10−7

12.8 - 13.8 1.08×10−12 3.87×10−8 1.08×10−12 3.89×10−8

13.8 - 14.8 1.12×10−12 5.77×10−9 1.09×10−12 5.63×10−9

14.8 - 15.8 1.16×10−12 2.83×10−10 1.10×10−12 2.68×10−10

Table 1. Averaged ν̄e appearance probabilities and expected fluxes of ν̄e from the Sun for low-
metallicity AGSS09 SSM. Detection through inverse beta decay is assumed; magnetic field profile
(2.42) and µ12B⊥(r0) = 10−12µB · kG were chosen. For rescaling to different values of µ12B⊥(r0)

see text.

3.5 Existing limits from astrophysical ν̄e fluxes revisited

We will revisit here the existing limits on neutrino magnetic moments and solar magnetic
fields coming from the upper bounds on astrophysical ν̄e fluxes and compare them with
our results. At present, the most stringent limits come from the KamLAND experiment
[20], although Borexino and Super-Kamiokande set comparable bounds [22, 23, 30]. In all
these experiments the detection channel was inverse beta decay on protons. Historically,
SNO also put constraints on astrophysical ν̄e in the MeV energy range using charge-current
interactions with deuterium [31], but these limits are not currently competitive.

The model-independent limits on the ν̄e flux established by the above-mentioned ex-
periments are shown in Figure 7, together with our ν̄e flux prediction for solar electron
antineutrinos for the AGSS09 SSM and for µ12B(r0) = 2.5 × 10−9µB kG. Notice that the
experimental bounds come closest to the predicted flux at neutrino energies E ∼ 10 MeV.
Although the experimental bounds are stronger at energies around 20-30 MeV, the flux
of solar neutrinos is extremely low for energies above 16 MeV. High-energy experimental
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Numerical GS98 Analytical GS98

E [MeV] 〈Pi〉 〈Φi〉[cm−2s−1MeV−1] 〈Pi〉 〈Φi〉[cm−2s−1MeV−1]

1.8 -2.8 2.03×10−13 6.60×10−8 5.43×10−14 1.76×10−8

2.8 - 3.8 3.43×10−13 1.67×10−7 1.55×10−13 7.56×10−8

3.8 - 4.8 4.92×10−13 3.12×10−7 3.19×10−13 2.02×10−7

4.8 - 5.8 6.27×10−13 4.60×10−7 5.06×10−13 3.72×10−7

5.8 - 6.8 7.41×10−13 5.73×10−7 6.82×10−13 5.28×10−7

6.8 - 7.8 8.39×10−13 6.31×10−7 8.26×10−13 6.21×10−7

7.8 - 8.8 9.23×10−13 6.22×10−7 9.35×10−13 6.30×10−7

8.8 - 9.8 9.96×10−13 5.51×10−7 1.0×10−12 5.60×10−7

9.8 - 10.8 1.06×10−12 4.33×10−7 1.07×10−12 4.35×10−7

10.8 - 11.8 1.12×10−12 2.92×10−7 1.10×10−12 2.87×10−7

11.8 - 12.8 1.18×10−12 1.55×10−7 1.13×10−12 1.48×10−7

12.8 - 13.8 1.24×10−12 5.38×10−8 1.14×10−12 4.99×10−8

13.8 - 14.8 1.29×10−12 8.06×10−9 1.15×10−12 7.21×10−9

14.8 - 15.8 1.34×10−12 3.98×10−10 1.16×10−12 3.43×10−10

Table 2. Same as in Table 1 but for high metallicity GS98 SSM.

Figure 6. Comparison of the numerical and analytical results for ν̄e appearance for AGSS09 SSM.
Left panel: appearance probabilities; right panel: expected ν̄e fluxes. Magnetic field of eq. (2.42)
and µ12 = 10−12µB were chosen.
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Figure 7. Model-independent limits on ν̄e flux of astrophysical origin, as reported by KamLAND
[20], Borexino [22] and Super-Kamiokande [23, 30]. For comparison, we show the expected solar
ν̄e flux for µ12B⊥(r0) = 2.5× 10−9µB kG for the AGSS09 SSM, from our analytical and numerical
calculations.

bounds may, however, be relevant for constraining the flux of ν̄e from supernovae.
The 90% C.L. upper limits on the product of the neutrino magnetic moment and the so-

lar magnetic field strength we obtain from the KamLAND upper bound on the astrophysical
ν̄e flux are, for the two SSM considered,

(µ12B⊥(r0))AGSS09 < (4.9− 5.1)× 10−9µB kG ,

(µ12B⊥(r0))GS98 < (4.7− 4.8)× 10−9µB kG . (3.9)

Here the lower numbers correspond to our analytical approximation and the higher ones,
to the full numerical calculation. A good general agreement between the results of the two
approaches can be seen. The obtained results are also consistent with the limits derived in
[20], µB⊥(r0) < 4.9 × 10−9µB kG, where the previous analytical calculation from ref. [15]
was used. Similarly, one can derive the 90% C.L. limits from the Borexino results,

(µ12B⊥(r0))AGSS09 < (1.8− 1.9)× 10−8µB kG ,

(µ12B⊥(r0))GS98 < (1.7− 1.8)× 10−8µB kG , (3.10)

whereas from the Super-Kamiokande results we find

(µ12B⊥(r0))AGSS09 < (7.1− 7.3)× 10−9µB kG

(µ12B⊥(r0))GS98 < (6.8− 6.9)× 10−9µB kG . (3.11)

The previously obtained Borexino limit, derived in [22] for the high-metallicity GS98 SSM,
was µB⊥(r0) < 6.9×10−9µB ·kG. The factor ∼ 2.6 discrepancy between this result and our
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limit (3.10) is presumably related to the fact that in the Borexino analysis the simplified
energy-independent formula (25) from [15], derived for E ∼ 5 − 10 MeV, was used for
neutrinos of smaller energies, i.e. outside its range of validity. As a result, Borexino arrived
at a more stringent limit.

For the Super-Kamiokande experiment, the limit found in [23], µB⊥(r0) < 1.5 ×
10−8µB kG, is approximately a factor 2 weaker than our limit (3.11). This difference is prob-
ably due to the fact that Super-Kamiokande looked for electron antineutrinos in the energy
range 9.3 to 17.3 MeV but used in their analysis the same simplified energy-independent ν̄e
appearance probability that was derived in [15] for smaller energies.

4 Other limits on neutrino magnetic moments

In this section we give an overview of the existing limits on neutrino magnetic moments
coming from various experimental searches, paying special attention to the relations be-
tween the experimentally accessible quantities and neutrino magnetic moments or their
combinations. Neutrino magnetic moment contributions to the cross-sections are often
parametrised in terms of effective magnetic moments. These quantities depend on Dirac
versus Majorana nature of neutrinos, on the flavour of the incoming neutrinos, and may also
depend on other experimental details; in particular, flavour transitions on the way between
the neutrino source and detector may have to be taken into account.

We clarify how these effective quantities are related to each other and to the funda-
mental neutrino magnetic moments in the mass and flavour bases.

4.1 Limits from electromagnetic contributions to scattering processes

Photon exchange processes induced by neutrino magnetic moments can affect neutrino
scattering processes, such as e.g. elastic neutrino-electron scattering (ES) and coherent
elastic neutrino-nucleus scattering (CEνNS). Since the neutrino magnetic dipole moment
interactions flip the neutrino chirality while the Standard Model weak interactions conserve
it, these contributions add up incoherently.

Following the formalism in [32, 33], one can express the effective neutrino magnetic
moment as

µ2
να = ν†L (µ†µ) νL + ν†R (µµ†) νR , (4.1)

where νL and νR denote the vectors of the amplitudes of the incoming neutrinos with
left- and right-handed chiralities, respectively, and µ is the matrix of neutrino magnetic
moments. For Majorana neutrinos, the transformation between the neutrino amplitudes
and magnetic moments in the mass-eigenstate and flavour bases is given by

νm,L = U †νfl,L νm,R = UT νfl,R µm = UTµflU , (4.2)

in an obvious notation. For Dirac neutrinos, the mass matrix is in general diagonalised by
a bi-unitary transformation with separate rotations for the left-handed and right handed
fields, so that the amplitudes and the magnetic moment matrix transform as

νm,L = U †Lνfl,L νm,R = U †Rνfl,R , µm = U †RµflUL (4.3)
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From eqs. (4.2) and (4.3) it is easy to see that the expression for the effective neutrino
magnetic moment in eq. (4.1) is basis-independent, as any observable should be. It is also
valid for both Majorana and Dirac neutrino cases, as far as the final-state neutrinos are not
detected in the scattering processes.

4.1.1 Effective neutrino magnetic moments for short-baseline experiments

For short-baseline scattering experiments, where the distance from the source to the detector
is much shorter than the oscillation lengths Lij = 4πE/∆m2

ij , the oscillations do not have
time to develop. The effective magnetic moment that enters into the cross-section of ES
and CEνNS is then

µ2
ναSB = (µ† µ)αα = µ2

ν̄αSB . (4.4)

Expressed in terms of the elements of the neutrino magnetic moment matrix in the mass
basis, for Dirac neutrinos this effective magnetic moment takes the form

µ2
ναSB = |Uα1|2

(
|µ11|2 + |µ21|2 + |µ31|2

)
+ |Uα2|2

(
|µ12|2 + |µ22|2 + |µ32|2

)
+ |Uα3|2

(
|µ13|2 + |µ23|2 + |µ33|2

)
+ 2 Re{Uα1U

∗
α2 (µ∗11µ12 + µ∗21µ22 + µ∗31µ32)}

+ 2 Re{Uα1U
∗
α3 (µ∗11µ13 + µ∗21µ23 + µ∗31µ33) + Uα2U

∗
α3 (µ∗12µ13 + µ∗22µ23 + µ∗32µ33)} , (4.5)

whereas for Majorana neutrinos,

µ2
ναSB = |Uα1|2

(
|µ12|2 + |µ13|2

)
+ |Uα2|2

(
|µ12|2 + |µ23|2

)
+ |Uα3|2

(
|µ13|2 + |µ23|2

)
+ 2 Re{U∗α1Uα2µ13µ

∗
23} − 2 Re{U∗α1Uα3µ12µ

∗
23}+ 2 Re{U∗α2Uα3µ12µ

∗
13} . (4.6)

Expressed through the elements of µ in the flavour basis, the effective magnetic moment
accessible in short-baseline experiments with the incoming neutrino να looks much simpler:

µ2
να =

∑
β

|µβα|2 for Dirac or Majorana neutrinos . (4.7)

The existing limits reported by the experimental collaborations are summarised in Ta-
ble 3. As can be seen from the Table, the short-baseline accelerator experiments have
constrained all three effective magnetic moments, µνe , µνµ and µντ , whereas reactor exper-
iments have set upper bounds on µνe using both ES and CEνNS.

4.1.2 Effective magnetic moments for solar neutrinos

In this work we focused on the constraints on the product of the neutrino magnetic moments
and solar magnetic field strength that can be obtained from non-observation of the solar
ν̄e flux. However, solar neutrino experiments can also constrain neutrino electromagnetic
interactions through the study of the scattering of solar neutrinos on electrons. The effective
magnetic moment probed in such experiments is different from the one accessible in short-
baseline experiments, since in this case neutrino flavour transitions play an important role.

We have shown that for realistic values of the solar magnetic fields and neutrino mag-
netic moments the flux of right-handed solar (anti)neutrinos arriving at the Earth is much
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Experiment Limit Reference Method

LAMPF µνe < 1.08× 10−9µB at 90%C.L. [34] Accelerator νee−

LSND µνe < 1.1× 10−9µB at 90%C.L. [35] Accelerator νee−

Krasnoyarsk µνe < 1.4× 10−10µB at 90% C.L. [36] Reactor ν̄ee−

ROVNO µνe < 1.9× 10−10µB at 95% C.L. [37] Reactor ν̄ee−

MUNU µνe < 9× 10−11µB at 90% C.L. [38] Reactor ν̄ee−

TEXONO µνe < 7.4× 10−11µB at 90% C.L. [39] Reactor ν̄ee−

GEMMA µνe < 2.9× 10−11µB at 90% C.L. [40] Reactor ν̄ee−

CONUS µνe < 7.5× 10−11µB at 90% C.L [41] Reactor CEνNS

Dresden-II µνe < 2.2× 10−10µB at 90% C.L [42, 43] Reactor CEνNS

LAMPF µνµ < 7.4× 10−10µB at 90%C.L. [34] Accelerator νµe−

BNL-E-0734 µνµ < 8.5× 10−10µB at 90%C.L. [44] Accelerator νµe−

LSND µνµ < 6.8× 10−10µB at 90%C.L. [35] Accelerator νµe−

DONUT µντ < 3.9× 10−7µB at 90%C.L. [45] Accelerator ντe−

Table 3. Current experimental constraints on the effective neutrino magnetic moments from short-
baseline accelerator and reactor experiments.

smaller than that of the left-handed neutrinos; therefore, their contribution can be safely
neglected when considering ES of solar neutrinos.5 The expression for the effective magnetic
moment accessible in solar neutrino experiments therefore depends only on the left-chirality
amplitudes νL = (νeL νµL ντL)T , which can be obtained in the standard three-flavour pic-
ture. We find

µ2
νSOLAR = ν†L(µ†µ)νL

= (|µ11|2 + |µ21|2 + |µ31|2)|ν1L|2 + (|µ12|2 + |µ22|2 + |µ32|2)|ν2L|2

+ (|µ13|2 + |µ23|2 + |µ33|2)|ν3L|2 + 2Re{(µ∗11µ12 + µ∗21µ22 + µ∗31µ32)(ν1Lν
∗
2L)}

+ 2Re{(µ∗11µ13 + µ∗21µ23 + µ∗13µ33)(ν1Lν
∗
3L)}

+ 2Re{(µ∗12µ13 + µ∗22µ23 + µ∗32µ33)(ν2Lν
∗
3L)} . (4.8)

This expression is valid for both Dirac and Majorana neutrinos (it should be remem-
bered that in the latter case the diagonal elements of the matrix µ vanish).

Next, we note that the coherence of different neutrino mass eigenstates is lost on the
way to the Earth, that is ν∗iLνjL averages to zero for i 6= j [28, 33]. Taking into account

5We have demonstrated this for Majorana neutrinos. However, from the consistency of the solar neutrino
and KamLAND data, it is known that electromagnetic interactions cannot play a major role for solar
neutrinos and thus, even for Dirac neutrinos, the amplitudes of the solar νR arriving at the Earth have to
be much smaller than νL.
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Experiment Limit at 90%C.L. Reference Energy range

Borexino µνSOLAR < 2.8× 10−11µB [46, 47] 0.19 MeV − 2.93 MeV

Super-Kamiokande µνSOLAR < 1.1× 10−10µB [48] 5 MeV − 20 MeV

LUX-ZEPLIN µνSOLAR < 6.2× 10−12µB [7] E ≤ 2 MeV

XENONnT µνSOLAR < 6.3× 10−12µB [5] E ≤ 1 MeV

Table 4. Limits on the effective neutrino magnetic moment from elastic scattering of solar neutrinos
on electrons.

that neutrino flavour conversion in the Sun is adiabatic, for the probabilities of finding the
mass-eigenstate components of the solar neutrino flux at the Earth we find

|ν1L|2 = c2
13 cos2 θ̃ , |ν2L|2 = c2

13 sin2 θ̃ and |ν3L|2 = s2
13 , (4.9)

where the mixing angle θ̃(r) was defined in eq. (2.18) and the averaging over the coordinate
of the neutrino production point in the Sun is implied. From eq. (4.8) we then find

µ2
νSOLAR = (|µ11|2 + |µ21|2 + |µ31|2)c2

13 cos2 θ̃

+ (|µ12|2 + |µ22|2 + |µ32|2)c2
13 sin2 θ̃

+ (|µ13|2 + |µ23|2 + |µ33|2)s2
13 for Dirac neutrinos. (4.10)

µ2
νSOLAR = |µ12|2c2

13 + |µ13|2(c2
13 cos2 θ̃ + s2

13)

+ |µ23|2(c2
13 sin2 θ̃ + s2

13) for Majorana neutrinos. (4.11)

For neutrino energies E . 1 MeV, solar matter effects can be neglected and θ̃ ' θ12.
The effective neutrino magnetic moments can then be found from (4.10) and (4.11) by
substituting there θ̃ = θ12; the obtained results are in accord with eq. (10) of [3]. For
E & 5− 7 MeV one has θ̃ ' π/2. In general, to consistently extract the limits on neutrino
magnetic moments from solar neutrino scattering measurements, it is important to carefully
take the energy dependence of θ̃ into account.

The limits derived by Borexino and Super-Kamiokande collaborations are shown in
Table 4. We also include there the constraints derived in [7] from the analysis of the data of
the dark matter search experiment LUX-ZEPLIN [6] as well as the recent constraints from
the XENONnT experiment [5]. The excess of low-energy electron recoil events previously
reported by XENON1T [2] is not confirmed by XENONnT and was probably due to tritium
contamination [5].

It should be noted that it is possible to derive stronger limits on neutrino magnetic
moments than those quoted in this subsection by combining the available data on neutrino
scattering, see for instance [49], where the Majorana neutrino case was considered. Such
analyses can also shed some light on the so-called blind spots in the neutrino parameter
space [50, 51].
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Limit Reference Method

µνPLASMON < 1.2× 10−12µB at 95%C.L. [54] Tip of red-giant branch

µνPLASMON < 1.0× 10−11µB at 95%C.L. [55] Pulsating white dwarfs

µνPLASMON < 2.2× 10−12µB at 95%C.L. [57] Luminosity

µνPLASMON < 2.2× 10−12µB at 95%C.L. [58] Luminosity

Table 5. Limits on effective neutrino magnetic moments from plasmon decays in stars.

4.2 Other limits from astrophysics and cosmology

4.2.1 Plasmon decay and related processes in astrophysical environments

Photons in plasma (plasmons) have nonzero effective mass and so can decay into neutrino-
antineutrino pairs. The rate of such processes depend on effective neutrino magnetic mo-
ment given by

µ2
νPLASMON =

∑
i,j

|µij |2 . (4.12)

The plasmon decay process leads to increased energy loss in stellar environments. By
studying the impact of the extra energy loss on the luminosity of stars one can derive
bounds on the neutrino magnetic moment, see Table 5. In red giants, plasmon decay would
be an additional source of cooling, delaying helium ignition. Non-observation of such delay
was also used to constrain magnetic moments [52]. Besides that, additional energy losses
would lead to a larger core mass at helium ignition and consequently, the tip of the red-giant
branch (TRGB) would be brighter than predicted by the standard stellar models [53, 54].
There are also bounds on the neutrino magnetic moments from observations of the rate of
change of the period of pulsating white dwarfs of spectral type DB (which have only helium
absorption lines in its spectrum) [55].

There are other processes contributing to stellar cooling that are sensitive to neutrino
magnetic moments: for instance, γe− → e−ν̄ν, electron-positron annihilation to neutrinos
e+e− → ν̄ν and bremsstrahlung e−(Ze) → (Ze)e−ν̄ν. Note that all these processes probe
the same combination of neutrino magnetic moments as that probed by plasmon decay. It
has been shown that they could lead to considerable changes in the evolution of stars with
masses between 7M� and 18 M�, [56]. The resulting sensitivity to the magnetic moment
µνPLASMON is at the level of (2− 4)× 10−11µB.

4.2.2 Limits from SN1987A

If neutrinos are Dirac particles, their nonzero magnetic moments could lead to conversion of
a significant fraction of supernova (SN) neutrinos and antineutrinos into (practically) sterile
νR and ν̄L. For sufficiently high conversion efficiency, this would not be compatible with
the observed neutrino signal from SN1987A. There are several processes that have been
considered in this context and that could lead to a significant outflow of sterile neutrinos.
In a hot and dense SN core, sterile neutrinos can be produced via neutrino scattering on
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electrons (νLe− → νRe
−) and protons (νLp → νRp) mediated by photon exchange, and

similarly for ν̄R scattering. Once sterile neutrinos are produced, they will easily escape the
SN, since their mean free path is much larger than the radius of the core. Limits based on
this argument were found to be [59]

µν ≤ (0.1− 1)× 10−12µB . (4.13)

A detailed analysis of mediated by virtual plasmons chirality-flip neutrino scattering
processes on electrons and protons in plasma was carried out in [60–62]. The following
limits on flavour- and time-averaged Dirac neutrino magnetic moments were found in these
papers for a number of SN models:

µν < (1.1− 2.7)× 10−12µB . (4.14)

It is difficult to interpret these results in terms of more fundamental quantities since they
involve weighing the contribution from different neutrino flavours depending on their abun-
dances which vary with time.

The above limits were questioned in ref. [63]. The authors argued that a cooling proto-
neutron star is not the only possible source of neutrino emission in core-collapse SN. If the
canonical delayed neutrino mechanism failed to explode SN1987A, and if the pre-collapse
star was rotating, an accretion disk could form. Neutrinos from SN1987A could have been
emitted from such an accretion disk and not from the SN core. As the disc should be
optically thin for neutrinos, their electromagnetic interactions would play negligible role
and so would be the additional energy loss in the form of sterile neutrinos.

4.2.3 Conversion of νe from supernova neutronisation burst into ν̄e

Similarly to νe → ν̄e conversion of solar neutrinos discussed in this paper, electron neutrinos
produced in SN can be converted into electron antineutrinos due to the combined action
of neutrino SFP in strong SN magnetic fields and flavour transitions [64–67] (note that
SFP can be resonantly enhanced in this case). Such a conversion would have a very clear
signature for neutrinos emitted during the prompt neutronisation stage of SN evolution, as
the produced neutrino flux consists almost exclusively of νe at this stage. The ν̄e appearance
probability will depend on the product of the effective neutrino magnetic moment µν and
the SN magnetic field strength B0 at the resonance of SFP. The expression for µν takes
the simplest form in a rotated (primed) basis, which differs from our primed basis defined
in (2.5) by the absence of the 1–3 rotation and Γδ transformation. For normal neutrino
mass ordering, µν = µ′eµ′ , whereas for the inverse ordering µν = µ′eτ ′ . These quantities are
related to the neutrino magnetic moments in the mass eigenstate basis as

µ′eµ′ = µ12c13e
−iλ2 + (µ13s12 − µ23c12e

−iλ2)s13e
i(δCP−λ3) , (4.15)

µ′eτ ′ = (µ13c12 + µ23s12e
−iλ2)e−iλ3 . (4.16)

Conversion of SN neutronisation burst νe’s into ν̄e’s can be searched for in future
neutrino experiments. For example, the Hyper-Kamiokande experiment is expected to
have the senstivity to µνB0 ∼ (5× 10−3 – 6× 10−4)µB G, depending on the neutrino mass
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ordering [67]. Assuming B0 ' 1010 G, this would imply the sensitivity to µν at the level of
(5× 10−13 – 6× 10−14)µB.

4.2.4 Cosmology

Neutrino magnetic moments can also be constrained by cosmology. Nonzero magnetic
moments could increase the time during which neutrinos remain in thermal contact with
the cosmic plasma. In [68] the impact of this effect on the production of deuterium in big
bang nucleosynthesis was addressed, assuming that, due to their electromagnetic scattering
on electrons and positrons, neutrinos remained coupled to the plasma until the epoch of
electron-positron annihilation.

In [69] the impact of transition magnetic moments of Majorana neutrinos on the neu-
trino decoupling temperatures and the corresponding consequences for Big Bang Nucle-
osynthesis were studied. Upper limits on the transition magnetic moments in the flavour
basis (4.7) of the order O(10−10µB) were obtained.

In a different approach, a number of authors considered the production of sterile νR
through neutrino scattering on electrons and positrons e± + νL → e± + νR and electron-
positron annihilation e++e− → νL,R+ν̄L,R, mediated by active-to-sterile neutrino transition
magnetic moments. Depending on the mass of the sterile neutrino states, their production
can have two important consequences, (i) if sterile neutrinos are sufficiently light, they
contribute to the radiation density of the Universe and modify its expansion rate, and (ii)
they can also experience radiative decay νR → γ + νL, which would increase the photon
energy density. Both effects can modify the primordial abundances of light elements, see for
instance [70, 71]. It is difficult to interpret the results of these works in terms of fundamental
magnetic moments based on the provided information on the underlying assumptions. Also,
the limits have a strong dependence on the mass of the right-handed neutrino.

4.3 Collider

Bounds on neutrino magnetic moments are also set by collider searches for the process
e+e− → ν̄νγ [72], including the searches for anomalous production of energetic single
photons in e+e− annihilation at the Z resonance [73, 74]. In the latter case, the dominant
mechanism for the production of single-photon events via the neutrino magnetic moment
interaction is radiation of a photon from the final-state neutrino or anti-neutrino; off the
resonance, it is mainly bremsstrahlung from e+ or e−, with the ν̄ν pair production being
mediated by an s-channel exchange of a virtual photon. The process e+e− → ν̄νγ is
sensitive to the same combination of the neutrino magnetic moments as the plasmon decay,
eq. (4.12). The constraints coming from LEP are of the order of 10−6µB [73, 74]; they are
much weaker than those from astrophysical observations, but on the other hand they are
more direct.

Other processes potentially sensitive to neutrino magnetic moments could also be ex-
plored, such as e.g. π0 → γν̄ν, but so far the obtained limits are of the same order of
magnitude as those from LEP [75, 76]. The combination of magnetic moments constrained
in these searches is the same as that in plasmon decay, eq. (4.12).
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5 Discussion

Assuming neutrinos to be Majorana particles, we have studied the conversion of solar νe
into electron antineutrinos through the combined action of SFP of solar neutrinos, caused
by the interaction of their transition magnetic moments with solar magnetic fields, and the
ordinary flavour transitions. To this end, we have derived the neutrino evolution equations
in the three-flavour framework in a rotated basis convenient for studying solar neutrinos.
Making use of the fact that the effect of SFP in the Sun can at most be subleading, we
developed a perturbation-theoretic approach and obtained a simple analytical expression
for the probability of appearance of solar ν̄e on the Earth. The possibility that the solar
magnetic fields may be twisting was taken into account. The obtained expression can be
readily employed for the analysis and interpretation of the experimental results on searches
of astrophysical ν̄e fluxes.

To check the validity of our approximations and the accuracy of the obtained analytical
solution, we also carried out, for a number of model solar magnetic fields B⊥(r), a full
numerical solution of the system of coupled neutrino evolution equations. We have found a
good general agreement between our numerical and analytical results, especially for neutrino
energies E & 5 MeV. The discrepancy between the numerical and analytical results is larger
for smaller E, where the ν̄e appearance probability is, however, relatively small.

We have found that the ν̄e appearance probability is to a good accuracy proportional
to [µ12B⊥(r0)]2, where r0 is the coordinate of the neutrino production point in the Sun,
over which averaging has to be performed. The contribution of the other two transition
magnetic moments, µ13 and µ23, are strongly suppressed unless they exceed µ12 by several
orders of magnitude. The shape of the profile of the solar magnetic field turns out to play
relatively minor role, as the flux of the produced ν̄e is mostly determined by the average
magnetic field in the neutrino production region.

With the aim to facilitate accurate analysis of and derivation of constraints from future
experiments searching for solar antineutrinos, we provided the ν̄e appearance probabilities
as well as the expected fluxes on the Earth in the binned form in Tables 1 and 2. The
calculations were done for two solar models – low metallicity and high metallicity ones. We
have also revisited and updated the existing upper bounds on µ12B⊥ using the 3-flavour
formalism developed here. The best current limit on the product of the neutrino magnetic
moment and the solar magnetic field comes from the KamLAND upper bound on the
astrophysical ν̄e flux, from which we have obtained µ12B⊥(r0) . 5 × 10−9µB kG, with a
mild dependence on the solar model considered.

For reference purposes, we have also presented a comprehensive review of the other ex-
isting constrains on neutrino magnetic moments. In particular, we discussed, both for Dirac
and Majorana neutrinos, how the different effective neutrino magnetic moments probed in
a variety of experiments are related to the magnetic moments in the mass and flavour
eigenstates bases and leptonic mixing parameters.

If the magnetic field strength in the solar core were known, one could use the upper
bounds on µ12B⊥ obtained from non-observation of solar ν̄e to derive constraints on µ12 for
Majorana neutrinos. Unfortunately, very little (if anything) is known about the magnetic
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field strength in the core of the Sun. There is a very conservative upper bound B < 109 G
coming from the requirement that the pressure of the magnetic field in the solar core
does not exceed matter pressure [77]. For illustrative purposes, let us assume the actual
value of the magnetic field strength coincides with this upper limit. With the KamLAND
result, this would translate to the limit µ12 < 5 × 10−15µB. There are some constraints
on the magnetic fields in the radiative zone of the Sun. From solar oblateness and the
analysis of the splitting of the solar oscillation frequencies, one finds B . 7MG [78]. If one
assumes (rather arbitrarily) that the magnetic field in the solar core, where the neutrinos
are produced, is of similar magnitude, this would translate to the limit µ12 < 7.1×10−13µB.
From the requirement of the stability of toroidal magnetic fields in the radiative zone of
the Sun, a much more stringent limit B . 600G can be found [79, 80]. Assuming that
the magnetic field in the core of the Sun is of similar magnitude, one would obtain the
constraint µ12 < 8.3 × 10−9µB. We stress once again that there is no a priori reason to
believe that the magnetic fields in the core of the Sun are of the same order as those in the
radiative zone; we use the latter just as some reference values.

Can one combine an independent measurement of the neutrino magnetic moment with
the upper limit on µB⊥ coming from non-observation of solar ν̄e in order to put constraints
on the solar magnetic field? Assume, for example, that in the future XENONnT observes
a signal that can be interpreted as being due to µ-induced scattering of solar pp neutrinos.
Let the corresponding effective magnetic moment µνXENON, which can be obtained from
eq. (4.10) or eq. (4.11) by setting θ̃ = θ12, be about 5×10−12µB, which is slightly below the
current upper bound [5]. Assuming that neutrinos are Majorana particles and that µνXENON

is dominated by µ12, from the discussed above KamLAND constraint on µ12B⊥(r0) we then
obtain for the magnetic field strength in the neutrino production region in the Sun the upper
limit B⊥ < 1MG. This would apparently be the most stringent constraint on the magnetic
field in the solar core currently available. However, it is obviously model dependent: it
relies heavily on the assumption of significant contribution of µ12 to µνXENON, whereas the
latter can be nonzero even if µ12 vanishes. It may, however, be possible to obtain a model-
independent constraint on B⊥ if several independent measurements of neutrino magnetic
moments coming from experiments of different type become available.

The limits on the product of the neutrino magnetic moment and the solar magnetic
field strength are expected to be improved in the near future by current and next-generation
neutrino observatories with high potential to detect electron antineutrinos from astrophys-
ical sources, which include Super-Kamiokande loaded with gadolinium, JUNO and Hyper-
Kamiokande. The simple analytical expression for the electron antineutrino appearance
probability derived here as well as the calculated expected values of the ν̄e flux can facili-
tate the analyses of forthcoming data.
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