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We introduce a bilinear form for Weyl scalar perturbations of Kerr. The form is symmetric and
conserved, and we show that, when combined with a suitable renormalization prescription involving
complex r integration contours, quasinormal modes are orthogonal in the bilinear form for different
ðl; m; nÞ. These properties are apparently not evident consequences of standard properties for the radial and
angular solutions to the decoupled Teukolsky relations and rely on the Petrov type D character of Kerr and
its t-ϕ reflection isometry. We show that quasinormal mode excitation coefficients are given precisely by
the projection with respect to our bilinear form. These properties can make our bilinear form useful to set up
a framework for nonlinear quasinormal mode coupling in Kerr. We also provide a general discussion on
conserved local currents and their associated local symmetry operators for metric and Weyl perturbations,
identifying a collection containing an increasing number of derivatives.
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I. INTRODUCTION

Quasinormal ringing is the principal gravitational-wave
signature of the final black hole after a binary merger.
This is described by a spectrum of complex quasinormal
frequencies ωlmn, which are uniquely specified in linear
perturbation theory by the mass and spin of the Kerr
background1 [2–4]. Precise measurement of these frequen-
cies therefore characterizes the background [5] and more-
over constrains deviations from general relativity (with
more than one mode, or when combined with other
measurements) [6–9]. Although data today already hint
at modes beyond the fundamental [10–13], future obser-
vations with sensitive detectors are sure to enable detailed
spectroscopy [7,14,15].

To interpret future observations, however, it will be
necessary to understand quasinormal mode interactions.
The ringdown follows a highly nonlinear phase (themerger),
and although numerical calculations indicate that a sum of
modes may be sufficient to represent the gravitational-wave
emission [16–18], it is not clear that this corresponds to a full
nonlinear description. Indeed, nonlinear ringdown effects
have been identified in numerical simulations of binary
mergers [19,20] as well as in anti–de Sitter black holes
[21,22]. In other contexts (e.g., perturbations of large anti–
de Sitter black holes) quasinormal modes can interact and
even become turbulent [23,24]. The point of this paper is to
introduce some tools that may be helpful when developing a
theory of quasinormal mode interactions.
Compared to normalmodes, quasinormalmodes do not in

general form in a straightforward sense a complete “basis” of
solutions to the linearized field equations. In fact, black hole
perturbations are only described by quasinormal modes for
an intermediate time period in their evolution; at early times
they are described by a free propagation piece, and at late
times by a power law tail [25–27]. The spatial wave function
of a decaying quasinormal mode also diverges at the
bifurcation surface and at spatial infinity. This makes it
hard to write down canonical (conserved) L2-type inner
products based on the usual Cauchy surfaces of Kerr.2
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1We are assuming here the applicability of the no-hair
theorems; see, e.g., [1].

2Note, however, that one may choose hyperboloidal slices
[28–31]; see the conclusions for a discussion of this alternative in
connection with our approach.
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Without an inner product, it is not clear how to project onto
quasinormal modes to study nonlinear mode mixing.
The main goal of this paper is to point out an unconven-

tional bilinear form which may take the place, for some
purposes, of an inner product on quasinormalmodes ofKerr.
Beforewe introduce this notion,we develop a general theory
for conserved—under time evolution—bilinear forms for
Weyl scalars or metric perturbations. Similar to [32,33], the
key idea is to start with a “Klein-Gordon” type current for
Weyl scalars or metric perturbations and to apply symmetry
operators to the entries of this bilinear expression. As we
show, in Kerr spacetimes, such symmetry operators include,
besides the obvious ones descending from the Killing
symmetry, also an infinite tower of operators built from
Carter’s Killing tensor. (For the Weyl scalars, the symmetry
operator of lowest differential order has two derivatives; for
metric perturbations, it has six derivatives.) In particular,
using a combination of such operators we find an infinite set
of new conserved, local, gauge invariant current associated
with Carter’s constant [34] in Kerr.3

The bilinear form of main interest for this paper is,
however, not obtained from such differential symmetry
operators but rather the symmetry operator associated with
the discrete t-ϕ reflection. We show that gravitational
quasinormal modes with different frequencies are orthogo-
nal with respect to this bilinear form. For the reader
interested in the main result, the bilinear form is presented
explicitly for quasinormal modes in (55). We show fur-
thermore that the quasinormal mode excitation coefficients
of a solution are given precisely by the projection of data
onto the corresponding modes via the bilinear form.
The plan of this paper is as follows. In Sec. II we recall

the standard recipe for constructing conserved bilinear
forms for partial differential operators. In Sec. III we
introduce symmetry operators (including symmetry oper-
ators related to the Killing tensor; see also footnote 3) to
construct further conserved bilinear forms, and currents. In
Sec. IV we construct the bilinear form ⟪·; ·⟫ using the t-ϕ
reflection symmetry, which gives orthogonality of quasi-
normal modes in Sec. V. Finally, in Sec. VI we explain the
relation with excitation coefficients. Some technical aspects
of this paper are deferred to various appendixes.

II. BILINEAR FORM—BASIC CONSTRUCTION

Consider a partial differential operator X acting on
sections of some vector bundle, E, over a manifold M.
We assume thatM is equipped with a volume form, ϵa1���an ;
later we will always have a metric gab, so the volume form
is chosen as the one compatible with the metric. Let Ẽ
be the dual vector bundle, i.e., each fiber is given by the
C-linear maps of the corresponding fiber of E. If ψ is a

section of E and ψ̃ is a section of Ẽ, we can pointwise form
the scalar ψ̃ψ ∈ C. The formal adjoint is the unique
differential operator X † defined by the formula

ðX†ψ̃Þψ − ψ̃Xψ ¼ ∇axa½ψ̃ ;ψ �; ð1Þ
where xa½ψ̃ ;ψ � is local, i.e., at any point built from finitely
many derivatives of the fields at that point. The divergence
operator on the right is defined by our volume form, and if
it comes from a metric, as we assume from now, it is equal
to the usual covariant derivative operator. Said differently,
X†ψ̃ is obtained by the usual “partial integration” pro-
cedure dropping surface terms as if the above equation were
placed under an integral sign. Note that, by contrast to
quantum mechanics, † as defined above is C-linear, rather
than antilinear.
Now let ðψ̃ ;ψÞ be a pair of solutions to Xψ ¼ 0 ¼ X†ψ̃ ,

and let Σ be a codimension 1 submanifold ofM (later to be
chosen as a constant t slice of Kerr). Then, by Gauss’
theorem, if ψ̃ , ψ have sufficient decay on Σ for the
following integral to be suitably convergent (e.g., if they
are compactly supported), then the bilinear form

X½ψ̃ ;ψ � ≔
Z
Σ
xa½ψ̃ ;ψ �dΣa ≡

Z
Σ
ð⋆xÞ½ψ̃ ;ψ � ð2Þ

is unchanged under local deformations of Σ, and we say
that it is “conserved.” (Here ⋆ denotes the Hodge dual.)
As a simple example, consider X ¼ ∇a∇a −m2, the
Klein-Gordon operator acting on real-valued functions
ψ , so E ¼ Ẽ ¼ R is the trivial bundle. Then X† ¼ X
and xa ¼ −ψ̃∇aψ þ ψ∇aψ̃ is the Klein-Gordon (symplec-
tic) current, which is of course conserved for any pair of
solutions. The bilinear form in this case is just the
symplectic form for the Klein-Gordon theory. It is anti-
symmetric under ψ̃ ↔ ψ, but note that in the general case
we cannot say that about the bilinear form since the bundles
E and Ẽ cannot usually be identified in a natural way.
As a second example, let E be the linearized Einstein

operator on a Ricci-flat spacetime. It acts on symmetric
covariant rank-2 tensors hab, so E is equal to SymðT�M ⊗
T�MÞ in this case, and the dual bundle Ẽ corresponds to
symmetric contravariant rank-2 tensors, SymðTM ⊗ TMÞ.
The formula is

EabðhÞ≡ 1

2
½−∇c∇chab −∇a∇bhþ 2∇c∇ðahbÞc

þ gabð∇c∇ch −∇c∇dhcdÞ�; ð3Þ

and under the identification of E with Ẽ (by using the
metric gab to raise indices), we have E† ¼ E. As in the
Klein-Gordon case, this last relation follows because
the linearized Einstein equation arises from an action
principle. By explicit calculation, the boundary term
wa ≡ xa½h̃; h� is given by [40]

3For an explanation of the relation with previous works
[32,35–39], see Sec. III.
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wa ¼ pabcdefðhbc∇dh̃ef − h̃bc∇dhefÞ; ð4Þ

where

pabcdef ¼ gaegfbgcd −
1

2
gadgbegfc −

1

2
gabgcdgdf

−
1

2
gbcgaegfd þ 1

2
gbcgadgef: ð5Þ

The bilinear form

W½h̃; h� ¼
Z
Σ
pabcdefðhbc∇dh̃ef − h̃bc∇dhefÞdΣa ð6Þ

is the symplectic form of general relativity [40].
Our third, and most important, example concerns the

Teukolsky operator(s) for the perturbed Weyl scalars of the
Kerr spacetime ðM; gabÞ, to which we will restrict attention
from now on. For this, we shall employ the Geroch-Held-
Penrose (GHP) formalism [33,41–43] in the following, and
we now briefly review the essential portions of this
formalism which simplifies and also conceptualizes many
calculations in the Kerr—or more generally, Petrov type D
—geometry. la and na are taken to be the repeated principal
null directions which are completed to a null tetrad by
defining a smooth pair of complex null rays ðma; m̄aÞ that
span the remaining dimensions. We choose the normali-
zation lana ¼ 1 and mam̄a ¼ −1, corresponding to the −2
signature. The metric then takes the form

gab ¼ 2lðanbÞ − 2mðam̄bÞ: ð7Þ

The basic idea is to contract any tensor field on M into the
legs of the Newman-Penrose (NP) tetrad ðla; na; ma; m̄aÞ in
all possible ways4 and to represent the action of the
covariant derivative operator ∇a in terms of these tetrad
components, in a way that preserves a natural grading by
spin and boost weights.
Fields η obtained by contracting with the tetrad are

classified according to their spin and boost weights as
follows. Under a local rotation that preserves the real null
pair, the tetrad transforms as ðla; na; eiΓma; e−iΓm̄aÞ,
whereas under a local boost that preserves the directions
of the real null pair, it transforms as ðΛla;Λ−1na;ma; m̄aÞ,
where Λ, Γ are smooth real-valued functions. If we
combine these functions into the complex function
λ2 ¼ ΛeiΓ, then η is said to possess (real) GHP weights
ðp; qÞ if under the above combined local rotation and boost
of the tetrad, it transforms as

η → λpλ̄qη: ð8Þ

Wewrite η¼∘ ðp; qÞ if this is the case. In theGHP formalism,
only quantities with the sameweight may be added, whereas
weights behave additively under multiplication.
From the mathematical viewpoint, the GHP formalism

can be understood in terms of principal fiber bundles and
their associated vector bundles, as follows. Consider the set
of oriented null frames alignedwith the givennull directions.
On each such frame, we may pointwise perform a boost/
rotation, which as we described can be combined into a
nonzero complex number λ ∈ C×. Thus, we have a multi-
plicative action of C× on the set of frames which gives this
set the structure of a principalG-bundle: A principal bundle
is abstractly a bundlePoverM such that a groupG can act by
right multiplication X → X · g in the fiber—in our case X is
an NP frame aligned with the principal null directions and
g ↔ λ. Given a principalG-bundle and a representationR of
G on some vector space V, there is a canonical construction
of an “associated” vector bundle. The sections of this bundle
correspond physically to quantities defined on M that
“transform in the representation R.” More precisely, the
elements in this associated bundle are the equivalence
classes of pairs ðX; vÞ where X ∈ P and v ∈ V where
ðX; vÞ is declared to be equivalent to ðX · g; RðgÞvÞ. In
the present example, Rp;qðλÞv ¼ λpλ̄qv and V ¼ C, which
corresponds precisely to the “transformation law” (8). The
associated vector bundle is denoted in general by P ⋉R V
and its fibers are isomorphic to V. In our case, we get one-
dimensional complex (“line”) bundles Lp;q ¼ P ⋉p;q C
over M labeled by the GHP weights ðp; qÞ. The number
s ¼ 1

2
ðp − qÞ is commonly referred to as the spin.Of course,

we could tensorLp;qwith the usual tensor bundlesTðr;sÞM to
host objects that have GHPweights and tensor indices at the
same time such as la or Rabcdmamd.
The advantage of the above invariant viewpoint involv-

ing associated vector bundles is that we can naturally see
what quantities are defined in a frame independent manner,
which quantities can naturally be added, etc. This provides
not only an extremely useful guiding principle in the—
usually very complicated—calculations related to Kerr, but
also means that one is always intrinsically dealing with
objects that behave in a well-defined manner under a
change of frame. To make the formalism really useful,
one needs covariant derivative operators on the bundles
Lp;q. These are given by

Θa ¼ ∇a −
1

2
ðp − qÞm̄b∇amb −

1

2
ðpþ qÞnb∇alb: ð9Þ

The Teukolsky operators also feature the “gravito-magnetic
potential” which is given by

Ba ≡ −ðρna − τm̄aÞ¼∘ ð0; 0Þ; ð10Þ

where ρ, τ are related to spin coefficients [41–43]; see
Appendix F. The Teukolsky operator acts on GHP scalars

4We do not require tensor fields to be fully contracted with the
tetrad, so in general we refer to NP tensors, not just scalars. In
other words, there can remain tensor indices after contraction.
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of the same weight5 as the perturbed Weyl scalar ψ0, i.e.,
ðp; qÞ ¼ ð4; 0Þ, and is given by

O ¼ gabðΘa þ 4BaÞðΘb þ 4BbÞ − 16Ψ2 ð11Þ

with Ψ2 a background Weyl scalar. So E ¼ L4;0 now. Since
the dual vector bundle to Lp;q is L−p;−q, the adjoint
Teukolsky operator O† acts on GHP scalars of weight
ð−4; 0Þ. It is given by

O† ¼ gabðΘa − 4BaÞðΘb − 4BbÞ − 16Ψ2: ð12Þ

It follows that the boundary term xa½ϒ̃;ϒ�≡ πa [with
ϒ̃¼∘ ð4; 0Þ;ϒ¼∘ ð−4; 0Þ] is given in the case of the Teukolsky
operator by

πa ¼ ϒ̃ðΘa − 4BaÞϒ −ϒðΘa þ 4BaÞϒ̃: ð13Þ

We denote the corresponding bilinear form—formally
similar to the Klein-Gordon inner product of a charged
scalar field—by

Π½ϒ̃;ϒ�¼
Z
Σ
½ϒ̃ðΘa−4BaÞϒ−ϒðΘaþ4BaÞϒ̃�dΣa: ð14Þ

The Teukolsky equation/operator and the linearized
Einstein equation/operator are well-known to be related,
and this implies that the bilinear forms W and Π as in (6)
and (14) are related, too. The authors of [44] have
shown that for ϒ a smooth solution to O†ϒ ¼ 0 arising
from compact support data and hab a smooth solution to
Ehab ¼ 0, an identity of the following form holds:

wa½h;S†ϒ� ¼ −πa½T h;ϒ� þ∇bHab½ϒ; h�; ð15Þ

where Hab is a skew symmetric local tensor. Furthermore
[45,46]

SðTÞ ¼ ZbcdaðΘa þ 4BaÞΘbTcd; ð16aÞ

T ðhÞ ¼ −
1

2
ZbcdaΘaΘbhcd; ð16bÞ

where Zabcd ≡ ZabZcd, and Zab ≡ 2l½amb�, are operators
such that the Teukolsky-Wald identity holds:

SE ¼ OT : ð17Þ

This equation encodes that the action T ðhÞ on a metric
perturbation hab—which equals the perturbed Weyl scalar
ψ0—gives a solution to Teukolsky’s equation Oψ0 ¼ 0.
Conversely, taking an adjoint of (17), i.e., ES† ¼ T †O†,

shows that any solution O†ϒ ¼ 0 of GHP weight ð−4; 0Þ
(“Hertz potential”) is such that hab ¼ ReS†

abϒ is a solution
to the linearized Einstein equations.
The authors of Ref. [44] did not derive the explicit form

for Hab but argued for Eq. (15) to hold on general grounds
based on (17). The main use of the above identity (15) is to
relate the corresponding bilinear forms W½h;S†ϒ� and
Π½T h;ϒ� for a Cauchy surface Σ of the exterior of Kerr.
This identity is obtained by simply integrating the above
identity over Σ. If all fields are falling off rapidly at the
horizon and spatial infinity, then the boundary term arising
from Hab will not contribute; in other cases, Hab will
contribute surface terms. Their computation is fairly long
and nontrivial and therefore deferred to Appendix A. If Σ is
a codimension one surface with boundary ∂Σ,ϒ is a smooth
solution to O†ϒ ¼ 0, and hab is a smooth solution to
Ehab ¼ 0, then we have

W½h;S†ϒ� ¼ −Π½T h;ϒ� þ B½h;ϒ�; ð18Þ

where B ¼ R
∂Σ H

abdΣab. When Σ is a slice of constant t in
Boyer-Lindquist coordinates, ∂Σ would correspond to the
bifurcation surface at r ¼ rþ and the sphere at r ¼ ∞.
Using this formula, the reader can readily transfer results on
bilinear forms in this paper between the metric perturbation
and Teukolsky variables.

III. BILINEAR FORMS FROM INFINITESIMAL
SYMMETRY OPERATORS

Consider again a general partial differential operator X
acting on sections of some vector bundle, E, over a
manifoldM. We have the corresponding conserved bilinear
form X½ψ̃ ;ψ � defined by (2). Now suppose C is a partial
differential operator acting on E mapping solutions to
Xψ ¼ 0 to solutions—this is equivalent to the statement
that there is a partial differential operator D such that
XC ¼ DX . Such an operator is called a “symmetry
operator.” The symmetry operators form an algebra which
is trivial for a generic operator X. If we have a symmetry
operator, then X½ψ̃ ; Cψ � is also a conserved bilinear form,
i.e., invariant under local changes of the surface Σ in (2);
see, e.g., [32,35] for a similar observation.
Let us apply this recipe to the linearized Einstein

operator E on the Kerr spacetime. The Kerr spacetime
has two Killing vector fields, ta;ϕa corresponding to
asymptotic time translations and rotations. The Lie deriv-
atives Lt;Lϕ evidently commute with E and thus provide
two conserved quadratic forms:

E½h� ¼ W½h;Lth�; J½h� ¼ W½h;Lϕh�: ð19Þ

They correspond to the canonical energy and canonical
angular momentum of the perturbation hab when Σ is a

5For the definition of O and O† for general GHP weights see
Appendix B.
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Cauchy surface stretching between the bifurcation surface
and spatial infinity [47].
If we want to repeat a similar construction for the

Teukolsky operator O and the corresponding bilinear form
Π, we face the problem that the Lie derivative in general is
not well-defined on an arbitrary vector bundle (though it is
on the usual bundles of tensors over M). In the GHP
formalism, the vector bundles Lq;p in question are defined
relative to an NP tetrad, and in such a case we can still give a
definition of the Lie derivative along a Killing vector field,
though not an arbitrary vector field, as we now describe. The
point is that if gab has an isometry φ that preserves the
globally defined null directions, then this constitutes an
intrinsically defined action on GHP tensors η¼∘ ðp; qÞ. More
explicitly, if φ preserves the null directions, then it must be
the case that it acts on a given null frame as φ�la ¼ Λla,
φ�na ¼ Λ−1na, and φ�ma ¼ eiΓma, for some real functions
Λ,Γ onM that depend on the chosen frame andφ. The action
of φ on η is then invariantly defined since GHP tensors are
functionals of the null tetrads giving rise to the prescribed
pair of null directions. In the given null frame, this action
amounts to φGHP� η≡ λ−pλ̄−qφ�η, where λ2 ¼ ΛeiΓ and φ� is
the standard pushforward on functions (or tensors). In
particular, the tetrad vectors are invariant under φGHP� .
Infinitesimally, if φt is a 1-parameter group of trans-

formations generated by a Killing field χa with correspond-
ing λt, then the corresponding “Lie” transport of η¼∘ ðp; qÞ
is given by [48]

Łχη ¼ lim
t→0

ðφ−tÞGHP� η − η

t

¼ ðLχ − pw − qw̄Þη¼∘ ðp; qÞ ð20Þ

in the given frame. Here, L denotes the standard Lie
derivative, and

w ¼ d
dt

log λtjt¼0 ð21Þ

¼ 1

2
ðnaLχla − m̄aLχmaÞ: ð22Þ

If we introduce the bivector Y ≡ n ∧ l − m̄ ∧ m (for
further details on the bivector calculus see, e.g., [45,49])
and use the fact that χa is a Killing field, so ∇ðaχbÞ ¼ 0,
then (20) can be manipulated to obtain

Łχη ¼
�
LΘ
χ −

p
4
YabΘaχb −

q
4
ðYabΘaχbÞ�

�
η; ð23Þ

where LΘ is the standard Lie derivative with ∇a derivatives
replaced by Θa derivatives. In this notation, the GHP Lie
derivative is also defined for GHP tensors, i.e., sections in a
bundleLp;q tensoredwith TM or T�M. In any case, the GHP

Lie derivative defined here is manifestly GHP covariant, and
it can be checked that it satisfies the Leibniz rule. The
expression for Łχ in a chosen NP tetrad will depend on that
choice. For the Kinnersley tetrad (F5), w ¼ 0, but w can be
different from zero for other choices of the frame.
With these definitions, it then follows that Łχ for χa

either ta or ϕa commutes with the covariant derivative Θa
and annihilates gab; na; la; ma; m̄a; Ba. Therefore, Łχ also
commutes with the Teukolsky operators,

½Łχ ;O� ¼ 0 ¼ ½Łχ ;O†�; χa ¼ ta;ϕa; ð24Þ

and it thus defines a symmetry operator. The corresponding
conserved currents arising from πa (13) using the general
construction described above have been discussed by [33].
There exist other symmetry operators in the Kerr (and

more generally, Petrov type D-) spacetimes related to
the Killing tensor Kab that exists in those spacetimes.
The construction of those operators for spin s ¼ 0; 1

2
in the

Teukolsky equation goes back to [32,35]; here we present
the corresponding symmetry operator for arbitrary GHP
weights ðp; qÞ. Similar operators have appeared also in
[36,37] (Eq. III.3) for spin s ¼ 1, 2, though not in
the GHP covariant form presented here which makes
manifest the relationship with the Killing tensor. This
tensor is given by

Kab ¼ −
1

4
ðζ − ζ̄Þ2lðanbÞ þ 1

4
ðζ þ ζ̄Þ2mðam̄bÞ; ð25Þ

where we use the shorthand

ζ ¼ −Ψ−1
6

2 Ψ̄−1
6

2 ρ−
1
2ρ̄

1
2¼∘ f0; 0g ð26Þ

with ρ one of the spin coefficients in the GHP formalism.
The desired symmetry operatorK acting on GHP scalars of
weights ðp; qÞ is defined as

Kη ¼ ðΘa þ pB0
a þ qB̄0

aÞKabðΘb þ pB0
b þ qB̄0

bÞη
þ 2ðpγ þ qγ̄ÞŁξη; ð27Þ

where

ξa ¼ ζðBa − B0
aÞ ð28Þ

is proportional to a Killing vector field and γ ¼
ðζ2 − ζ̄2Þ=ð8ζÞ. Here and in the following, a prime as in
B0
a means the GHP priming operation na ↔ la; ma ↔ m̄a.

In Boyer-Lindquist coordinates and the Kinnersly frame
(see Appendix F), ξa ¼ M−1=3ta, γ ¼ M−1=3 −ia cos θ

2ðr−ia cos θÞ, and
Łξη ¼ M−1=3

∂tη. K is called a symmetry operator because
one can show that

½K;O� ¼ 0 ¼ ½K;O†� ð29Þ
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when acting on GHP quantities of weight (4,0) or ð−4; 0Þ,
respectively. The proof of this statement is rather nontrivial
and deferred to Appendix B, where we also prove the
commutation property for arbitrary ðp; qÞ. It follows from
the properties of the GHP Lie derivative that ½Łχ ;K� ¼ 0 for
any Killing vector field χa, so we have the following:
Theorem 1. Łt;Łϕ;K generate a commutative, infinite-

dimensional algebra of symmetry operators for Teukolsky’s
operator O for any GHP weights ðp; qÞ.
Hence, by the general scheme, if we have solutions to

Oϒ̃ ¼ 0 ¼ O†ϒ, and symmetry operators A, B, then the
bilinear form Π½Aϒ̃;Bϒ�, with Π as in (14), is conserved,
i.e., unchanged under local deformations of the Cauchy
surface Σ. We caution the reader that such bilinear forms
can be trivial, i.e., be equivalent to forms that are conserved
identically; see Appendix C for some discussion.
It is possible to derive symmetry operators also for the

linearized Einstein tensor E (and for the Maxwell equa-
tions) on Kerr or more generally, a Petrov type D spacetime.
Let n ¼ 0; 1; 2;…, and set

Cn ¼ S†Knζ2sT 0; ð30Þ

as well as

Dn ¼ T †Knζ2sS0; ð31Þ

where for spin-2 considered here we should take s ¼ 2, and
where we use the GHP priming operation. Then

ECn ¼ ES†Knζ2sT 0

¼ T †O†Knζ2sT 0

¼ T †KnO†ζ2sT 0

¼ T †Knζ2sO0T 0

¼ T †Knζ2sS0E

¼ DnE; ð32Þ

where we used twice the Teukolsky-Wald identity (17), the
commutation ½O†;K� ¼ 0, as well as the intertwining
relation O†ζ2s ¼ ζ2sO0. When acting on a perturbation
hab, T 0ðhÞ gives the perturbed Weyl scalar ψ4, which is
gauge invariant. Therefore, we see that CnðhÞ ¼ 0 for any
gauge perturbation hab ¼ Lξgab.
By the results of Appendix B another symmetry operator

for E would be Cn ¼ S†Gnζ2sT 0, with Dn ¼ T †G†nζ2sS0
(with similar proof, see Appendix B for the definition of G),
and further symmetry operators are obtained by the GHP
prime- and overbar operations applied to these Cn’s. Finally,
by putting s ¼ 1 in the above expressions, and defining T , S
so that the analog of the Teukolsky-Wald identity (17) holds
for electromagnetic perturbations,where ðEAÞa ¼ ∇b∇½aAb�,
we get similar operators in the electromagnetic case.

As a consequence, in all cases, Cn give symmetry
operators for E of order 4þ 2n for spin-2 and of order
2þ 2n for spin-1. Regarding our operator C0 for spin-2, we
remark that a very similar looking operator has been
considered by [36], Eq. III.14. Regarding our operator
C1, a similar looking operator has been considered in [36],
Eq. III.47, and also in [39], Thm. 16. However, closer
inspection of the operator6 in [36], Eq. III.47 shows that it is
nonlocal, while our operators are all local and also
manifestly GHP covariant. The relation of our operators
C1 to the order 6 symmetry operator asserted in [39] is not
completely clear to us and the same goes for our other
operators C01, etc. For spin-1, symmetry operators of orders
2 and 4 have been discussed in [37,38], and the comparison
to ours is qualitatively similar.7

By the general theory, for example (n ¼ 0; 1; 2;…)

χðnÞ½h� ¼ W½C0h; Cnh� ð33Þ

with W as in (6) are conserved for all solutions hab to the
linearized Einstein equations, i.e., unchanged under local
deformations of the Cauchy surface Σ. The corresponding
conserved currents are

jaðnÞ ¼ wa½C0h; Cnh� ð34Þ

with wa as in (4). Note that each jaðnÞ is local and gauge

invariant from the properties of Cn. The concrete expres-
sions of jaðnÞ are very long and contain 2nþ 9 derivatives of

hab. For the reason explained below, we call jaðnÞ the “Carter
current(s).”
To gain some insight into the meaning of the conserved

quantities χðnÞ, we make a Wentzel-Kramers-Brillouin
(WKB) (high frequency) analysis similar to [50]; see also
[36]. If the momentum of the sharply collimated WKB
wave packet hab is pa and its amplitudes defined with
respect to a suitable basis of polarization tensors are Aþ;×,
the result is

χðnÞ½h� ¼
Z
Σ
jaðnÞdΣa

∼ −ið−1Þn
Z
Σ
paImðAþĀ×Þ

×QðpÞnþ4dΣa; ð35Þ
where Kabpapb ¼ QðpÞ denotes the Carter constant. See
Appendix D for more detail on the derivation of this
formula and on the precise definitions of the WKB wave
functions, polarizations, etc.

6Reference [36], Eq. III.14, on the other hand, is manifestly
local.

7In the spin-0 case where Eϕ ¼ ∇a∇aϕ, the corresponding
symmetry operators are powers Cn ¼ Kn where K ¼ ∇aKab∇b,
which are of order 2n and have already been described.
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We can obviously form alternative conserved quantities
by other combinations of the various symmetry operators of
the linearized Einstein operator described above giving,
e.g., the GHP primed version of our Carter currents ja0ðnÞ. We
note also that such currents could have alternatively been
constructed from πa (13), taking ϒ ¼ ζ4ψ4 and ϒ̃ ¼ ψ0

and acting on those with various symmetry operators for the
Weyl scalars, as described above.
We finally remark that conserved currents for metric

perturbations related to Carter’s constant have also been
considered in [36], Eqs. IV.14–16. Equation IV.14 is very
similar to our jað0Þ but their currents Eqs. IV.15–16 are
different from our Carter currents jaðnÞ or their GHP primes

because unlike ours, they are based on nonlocal currents
requiring a mode decomposition of the solutions.

IV. BILINEAR FORM FROM t –ϕ REFLECTION

In the previous section, we combined the basic con-
served bilinear form (14) with symmetry operators, which
arise in particular from the Killing vector fields of Kerr.
One naturally expects that a similar construction should be
possible for the discrete isometry of Kerr, namely the t-ϕ
reflection map J∶ ðt;ϕÞ → ð−t;−ϕÞ where here and in the
following we refer to Boyer-Lindquist coordinates.
However, just as for Killing vectors, some care has to be
taken when defining the action of J on GHP scalars with
nontrivial weights ðp; qÞ. So we first turn to this issue.
The map J swaps the null directions la and na and

changes the orientation on the orthogonal complement
of these null directions spanned by ma, m̄a. There must
thus be Λ, Γ depending on the null tetrad such that
J�la ¼ −Λna, J�na ¼ −Λ−1la, and J�ma ¼ eiΓm̄a, where
we have defined J to act on tensors by the pushforward. By
analogy with the previous case of isometries which are
continuously deformable to the identity, it is then natural to
define for η¼∘ ðp; qÞ a GHP reflection

J η≡ ipþqλ−pλ̄−qη∘J¼∘ ð−p;−qÞ ð36Þ

in the given frame.
The operator J is evidently a GHP priming operation

combined with t → −t;ϕ → −ϕ, and is therefore easily
seen to be GHP covariant (i.e., defined intrinsically as a
map from sections in Lp;q to sections in L−p;−q, irrespective
of the chosen frame), but, by contrast to the “pullback”
arising from isometries continuously connected to the
identity as considered above, it changes the GHP weights.
In this sense it is similar to the CPT operator arising in
quantum field theory. It is clear that J 2 ¼ 1 and one can
relatively easily show the “anticommutation” relations
ŁtJ ¼ −JŁt, ŁφJ ¼ −JŁφ with the GHP Lie-derivative
defined above. We also note an important intertwining
property of the t-ϕ reflection operator J with the
Teukolsky operator and its adjoint, namely,

OΨ4=3
2 J ¼ Ψ4=3

2 JO†; ð37Þ

where we used basic properties of gravito-magnetic field
Ba and its GHP prime B0

a, as well as the relation

ΘaΨ2 ¼ −3ðBa þ B0
aÞΨ2: ð38Þ

In the Kinnersley frame and Boyer-Lindquist coordinates
(see Appendix F), the J operator corresponds to sending
t → −t;ϕ → −ϕ and multiplication according to (36) by
appropriate powers of λ; λ̄, where λ is given in this case
explicitly by

λ ¼
ffiffiffi
2

p
ðr − ia cos θÞΔðrÞ−1=2: ð39Þ

We are now in a position to define the bilinear form. For
simplicity, we restrict at first to entries having compact
support on the Cauchy surface Σ in order to avoid any
convergence problems.
Definition 1 (Bilinear form for compact support). Let

ϒ1;ϒ2 ¼∘ ð−4; 0Þ be smooth GHP scalars of compact
support on Σ in the kernel of O†. Then we set

⟪ϒ1;ϒ2⟫≡ ΠΣ½Ψ4=3
2 Jϒ1;ϒ2� ð40Þ

with Π as in (14).
Lemma 2. Under the conditions of the definition,

we have
(i) ⟪ϒ1;ϒ2⟫ is C-linear in both entries,
(ii) ⟪ϒ1;ϒ2⟫ ¼ ⟪ϒ2;ϒ1⟫,
(iii) ⟪Łtϒ1;ϒ2⟫ ¼ ⟪ϒ1;Łtϒ2⟫ for ta the time trans-

lation Killing field, and
(iv) ⟪ϒ1;ϒ2⟫ is independent of the chosen Cauchy

surface Σ.
Before we prove this lemma, we remark that, e.g.,

by (46), the bilinear form may be viewed as defined on
the initial data of the Teukolsky equation on the Cauchy
surface Σ. On an initial dataset Łt corresponds to the action
of a suitably defined Hamiltonian operator H. Then item
(iii) corresponds to the statement that

⟪ϒ1;Hϒ2⟫ ¼ ⟪Hϒ1;ϒ2⟫; ð41Þ

i.e., to the fact that the Hamiltonian operator is symmetric
with respect to our bilinear form. We refer the interested
reader to Appendix E for details on the Hamiltonian
formulation of the Teukolsky equation.
We also note that although we defined our bilinear form

on s ¼ −2 GHP scalars (i.e., solutions to the adjoint
Teukolsky equation), we could also define a bilinear form
on s ¼ þ2 solutions to the original Teukolsky equation. In
this case, we set ⟪ϒ̃1; ϒ̃2⟫≡ ΠΣ½ϒ̃1;Ψ

−4=3
2 J ϒ̃2�. It can be

shown that the s ¼ þ2 bilinear form satisfies all the same
properties as the s ¼ −2 form.
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Proof.
(i) This is obvious from the definition.
(ii) By explicit calculation, we have with πabc ¼ ϵabcdπ

d and πa as in (13),

πabcðΨ4=3
2 Jϒ1;ϒ2Þ ¼ ϵdabc½ðΨ4=3

2 Jϒ1ÞðΘd − 4BdÞϒ2 −ϒ2ðΘd þ 4BdÞðΨ4=3
2 Jϒ1Þ�

¼ J ϵdabc½Ψ4=3
2 ϒ1ðΘd − 4B0dÞðJϒ2Þ − ðJϒ2ÞðΘd þ 4B0dÞðΨ4=3

2 ϒ1Þ�
¼ J ϵdabc½ϒ1ðΘd þ 4BdÞðΨ4=3

2 Jϒ2Þ − ðΨ4=3
2 Jϒ2ÞðΘd − 4BdÞϒ1�

¼ −J πabcðΨ4=3
2 Jϒ2;ϒ1Þ; ð42Þ

using J 2 ¼ 1 and (38). Now integrate over Σ. Since J
reverses the orientation of Σ, the claim follows.
(iii) We first remark that, by Cartan’s magic formula,

we have that on solutions (where π ¼ πabcdxa ∧
dxb ∧ dxc)

Ltπ ¼ dðt · πÞ; ð43Þ

if dπ ¼ 0. Integrating over Σ and using Stokes’s
theorem,

Z
Σ
Ltπ ¼

Z
∂Σ
t · π ¼ 0; ð44Þ

as, for compact support data, the contribution on ∂Σ
evaluates to zero. In our case,ϒ1 ∈ kerO†, therefore
Ψ4=3

2 Jϒ1 ∈ kerO, thus πðΨ4=3
2 Jϒ1;ϒ2Þ is indeed

closed, dπ ¼ 0. On the other hand, we have, since

background quantities are all GHP-Lie-derived by
ta ¼ M1=3ξa, and since JŁt ¼ −ŁtJ , that

LtπðΨ4=3
2 Jϒ1;ϒ2Þ

¼πðΨ4=3
2 ŁtJϒ1;ϒ2ÞþπðΨ4=3

2 Jϒ1;Łtϒ2Þ
¼−πðΨ4=3

2 JŁtϒ1;ϒ2ÞþπðΨ4=3
2 Jϒ1;Łtϒ2Þ: ð45Þ

Inserting this into the left-hand side of (44) evaluated
on the solutions Ψ4=3

2 Jϒ1 and ϒ2 immediately
yields the claim.

(iv) Holds by Gauss’s theorem because π is closed on
solutions, and Ψ4=3

2 J takes kerO† into kerO. ▪
We end this section with an explicit expression of our

bilinear form in Boyer-Lindquist coordinates and the
Kinnersley frame:

⟪ϒ1;ϒ2⟫ ¼ 4M4=3

Z
Σ
drdθdϕ

sin θ
Δ2

�
ϒ1j t→−t

ϕ→−ϕ

�
Λ
Δ
∂t þ

2Mra
Δ

∂ϕ þ 2

�
−r − ia cos θ þM

Δ
ðr2 − a2Þ

��
ϒ2

þϒ2

��
Λ
Δ
∂t þ

2Mra
Δ

∂ϕ þ 2

�
−r − ia cos θ þM

Δ
ðr2 − a2Þ

��
ϒ1

�
t→−t
ϕ→−ϕ

�
; ð46Þ

where we refer to Appendix F for the definitions of Σ, Δ,
and Λ.8

V. QUASINORMAL MODE ORTHOGONALITY

A. Quasinormal modes

Consider modes of the form

sϒlmω ¼ e−iωtþimϕ
sRlmωðrÞsSlmωðθÞ; ð47Þ

with m ∈ Z and ω ∈ C, in the Kinnersley frame. This
form leads to separation of the spin-s Teukolsky equation

[51], Oϒ ¼ 0 (for any integer spin s), into an angular
equation,

�
1

sin θ
d
dθ

�
sin θ

d
dθ

�
þ
�
K −

m2 þ s2 þ 2ms cos θ
sin2θ

− a2ω2sin2θ − 2aωs cos θ

��
sSlmωðθÞ ¼ 0; ð48Þ

and a radial equation,

�
Δ−s d

dr

�
Δsþ1

d
dr

�
þ
�
H2−2isðr−MÞH

Δ

þ4isωrþ2amω−Kþsðsþ1Þ
��

sRlmωðrÞ¼0; ð49Þ
8Depending on the context and following a standard notation,

we use the symbol Σ for the metric function or a codimension one
surface.
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with H ≡ ðr2 þ a2Þω − am. Here K is a separation con-
stant. Imposing regularity at the poles θ ¼ 0; π, the angular
equation leads to a discrete set of modes sSlmω and
separation constants sKlmω, both of which are indexed
by l ∈ Z≥maxðjmj;jsjÞ. The functions sSlmωðθÞeimϕ are
known as spin-weighted spheroidal harmonics [51]. For
ω ∈ R, the angular problem reduces to a Sturm-Liouville
eigenvalue problem. Modes with the same s,m, and real ω,
but different l are orthogonal, and we normalize them
such that

Z
π

0

dθ sin θsSlmωðθÞsSl0mωðθÞ ¼ δll0 : ð50Þ

Orthogonality can be checked by verifying that the
angular operator is symmetric with respect to this
product.
To discuss boundary conditions of the radial equation

it is convenient to introduce a “tortoise” coordinate
dr� ¼ ðr2 þ a2Þ=Δdr; see (F3). For fixed s, l, m, ω one
considers the solutions Rin and Rup “defined” by the
“boundary conditions”

Rin ∼
e−ikr�

Δs ; r� → −∞; ð51aÞ

Rup ∼
eiωr�

r2sþ1
; r� → ∞; ð51bÞ

where k≡ ω −mΩH, whereΩH is the angular frequency of
the outer horizon ΩH ¼ a=ð2MrþÞ, and where the radii of
the inner and outer horizons (roots of Δ) are denoted by r�,
respectively.
The conditions (51) correspond physically to the absence

of incoming radiation from the past horizon and past null
infinity, respectively. As stated (51) do not really pick out
uniquely a solution in the case Imω < 0 because we may
always add a multiple of the subdominant solution as
jr�j → ∞ without affecting the asymptotic behavior. More
precisely, mode solutions may be obtained via series
expansions [52], involving three-term recurrence relations
for the coefficients. Selecting the so-called “minimal
solution” [53] of the recurrence relations ensures that
the series representation converges at the horizon (in)
or infinity (up).9 Imposing both of these conditions

simultaneously10 gives rise to a discrete set of quasinormal
modes ωn ∈ C, where n ¼ 0; 1; 2;…, are the so-called
“overtone” numbers. We restrict to frequencies with
Imω ≤ 0, as modes growing exponentially in time are
not in the specturm of Kerr [55].

B. Bilinear form on quasinormal modes

We would now like to extend our definition of the
bilinear form ⟪·; ·⟫, originally only for compactly sup-
ported solutions/data on the Cauchy surface Σ, to quasi-
normal modes. The immediate problem is that, according
to the boundary conditions on the corresponding solutions
to the radial equation, these blow up both at the
horizon r ¼ rþ and infinity r → ∞. In this subsection,
inspired by the work of [56], we show that the Kerr bilinear
form can be defined for quasinormal mode data by a
suitable deformation of the radial integration into the
complex plane.11

Consider the bilinear form acting on two quasinormal
modes with quasinormal frequencies ω1 and ω2. The
integrand in the bilinear form (55) goes as ∼e�iðω1þω2Þr�
as r� → �∞, and therefore diverges exponentially for
Imðω1 þ ω2Þ < 0, which is the case for all modes that
decay in time. Therefore, we clearly see that the
bilinear form as defined for compact support data (46) is
divergent.
We can obtain a finite bilinear form by analytic con-

tinuation in r. The radial mode functions Rin=upðrÞ are
analytic with branch points at r ¼ r� [52], and we take the
branch cut as the wiggly line in Fig. 1 going from rþ to r−.
We take the branch cut for the tortoise coordinate (F3) r�ðrÞ
to be identical, so that we can think of both the radial
functions Rin=up and r� as defined on the same multisheeted
covering of the twice cut complex r-plane. The integrand of
the bilinear form, given by the 3-form πabc ¼ ϵabcdπ

d [see
(13)] evaluated on two mode functions as in (40) or
equivalently (46), therefore has an analytic continuation
on the multisheeted complex r-plane.
In (40) or equivalently (46), we now define an integration

contour going into this complex r-plane as shown quali-
tatively in Fig. 1. In terms of r�ðrÞ, which is a function on
the same multisheeted complex r-plane, the contour is
defined in such a way that 0 < argððω1 þ ω2Þr�Þ < π on

9This definition is satisfied by a radial solution of the
form

RðrÞ ¼ eiωrðr − r−Þ−1−sþiωþiσþðr − rþÞ−s−iσþfðrÞ; ð52Þ

where σþ ¼ ðωrþ − amÞ=ðrþ − r−Þ and fðrÞ ¼ P∞
n¼0 dnðr−rþr−r−

Þn
with dn coefficients that are a minimal solution to a three-term
recursion relation [54] so that the series is uniformly absolutely
convergent as r → ∞.

10The problem is made complicated, however, because ω and
K appear in both the angular and radial equations, ω nonlinearly.
One must jointly solve both equations to obtain a self-consistent
solution of this nonlinear eigenvalue problem. Using Hamiltonian
methods (see Appendix E) one can recast this as the eigenvalue
problem Hϒ ¼ iωϒ; i.e., the problem is linear in ω, but
the angular and radial problems remain coupled.

11In the quantum mechanics literature, this method is known
also as (exterior) complex scaling [57]. Complex scaling and
complex integration contours have already been used in the
context of black hole quasinormal modes; see, for instance,
[58,59] and [26,60].
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the right limit, −π < argððω1 þ ω2Þr�Þ < 0 on the left, and
then as jr�j → ∞, the volume integral will converge
exponentially with jr�j.
To achieve this for any Imðω1 þ ω2Þ < 0 we may take a

snake shaped contour u ↦ r�ðu; ϵÞ of the radial coordinate
in the complex r� plane, with the properties

8>><
>>:

r�ðu; ϵÞ ¼ u for r�1 < r� < r�2
arg r�ðu; ϵÞ → þπ − ϵ for r� → ∞
arg r�ðu; ϵÞ → 0þ ϵ for r� → −∞;

ð53Þ

where r�1 < 0, r�2 > 0 can in principle be chosen
arbitrarily. We give a sketch of this contour, C�, which
corresponds to one in terms of r, in the right panel
of Fig. 1. The corresponding three-dimensional sub-
manifold (depending on ϵ > 0 and on t ∈ R) of the
analytixcally continued Kerr manifold MC is denoted
by ΣC ¼ fðt; r�ðu; ϵÞ; θ;ϕÞju ∈ Rg. In practice, the
angle ϵ > 0 is chosen sufficiently small such that the
integral in the following definition of the bilinear form
converges:

⟪ϒ1;ϒ2⟫ ¼ ΠΣC
½Ψ4=3

2 Jϒ1;ϒ2�: ð54Þ

Replacing Σ with the contour ΣC as described in Sec. IV,
thanks to the analyticity of the integrand and its falloff on
∂ΣC, all properties of the bilinear form of Lemma 2 continue
to hold on quasinormal modes. In particular, from item (iii)
of Lemma 2, we get ðω1−ω2Þ⟪ϒ1;ϒ2⟫¼0 for a pair of
quasinormal modes with complex frequencies ω1, ω2.
Furthermore, by (iv), the value of the bilinear form is
independent of the precise choice of t, details of the complex
integration contour such as the asymptotic angle ϵ against
the real half-axes and/or r�1; r�2, as long as the integrand is
exponentially decaying.
Corollary 3 (Orthogonality of quasinormal modes). Let

ϒ1 and ϒ2 be quasinormal modes for the s ¼ 2 Teukolsky
equation with frequencies ω1 and ω2. Then either
⟪ϒ1;ϒ2⟫ ¼ 0 or ω1 ¼ ω2.
Our bilinear form takes the following form on quasi-

normal mode solutions (47). After plugging two s ¼ −2
mode solutions in separated form into (46), we can carry
out the ϕ integration to obtain

⟪ϒl1m1ω1
;ϒl2m2ω2

⟫ ¼ 8πM4=3δm1m2
e−iðω2−ω1Þt

Z
C�
dr�

Z
π

0

dθ
ðr2 þ a2Þ sin θ

Δ
S1ðθÞS2ðθÞR1ðrÞR2ðrÞ

�
−
iΛ
Δ

ðω1 þ ω2Þ

þ 2iMra
Δ

ðm1 þm2Þ þ 2

�
−r − ia cos θ þM

Δ
ðr2 − a2Þ

��
ð55Þ

with C� the contour for the r�-integration described above
and the Kerr quantities Δ, Σ, Λ as given in Appendix F.
The integrands depend on θ and r in a nonfactorizable

way, so this expression is the best that can be achieved in
general: for Kerr, the orthogonality relation expressed by
the previous corollary (vanishing of the above inner
product for ω1 ≠ ω2) is fundamentally two-dimensional.
This has to do with the fact that the orthogonality

relation (50) for spin-weighted spheroidal harmonics
occurs between modes of different l but the same m
and ω; if ω1 ≠ ω2, then no such relation exists, and one
cannot expect to be able to perform the θ integration to
obtain a δl1l2

factor.
In the a → 0 Schwarzschild limit, however, the integral

does factorize: the θ dependence of the integrand reduces
to the sin θ volume factor on the sphere, the spheroidal

FIG. 1. Left: Sketch of the complex r contour C� defining the bilinear form on quasinormal modes. The contour cannot be pulled back
to the real axis because the integrand crosses (an infinite number of) different sheets associated with the branch points r− and rþ. Right:
Same contour, but in the complex r� plane. Note that this contour cannot be pulled back to the real axis due to the presence of Stokes
lines along which the integrand of the bilinear form would diverge.
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harmonics reduce to spherical harmonics (independent of
ω), and the θ integral is proportional to δl1l2 . One is left
with a radial integration, which must vanish for ω1 ≠ ω2.
In Fig. 2, we numerically evaluate the bilinear form on

two pairs of Kerr quasinormal modes. We do so along the
most convergent contour—along which the integrand is
purely damped—for the given pair of frequencies ω1, ω2:
arg r�ðuÞ þ argðω1 þ ω2Þ ¼ π=2 for r� → ∞ and
arg r�ðuÞ þ argðω1 þ ω2Þ ¼ −π=2 for r� → −∞. In other
words, the two complex sections of the contour are given
by r�ðuÞ ¼ r�;1;2 þ ue−i argðω1þω2Þþiπ=2 with u < 0 in the
section emanating from r�1 and with u > 0 in the other (see
again Fig. 1). We then integrate u between 0 and a finite
ulower;upper, respectively, and study the convergence of the
integral as we take uupper;lower → �∞. As we can see from
the figure, the contour integral in the bilinear form con-
verges quite well, which is useful in practice when using it

to extract excitation coefficients, as we describe in the next
section. Furthermore, since orthogonality is an exact result
for quasinormal modes, it can be used potentially as a
benchmark check for approximations. For example, we
have considered approximations to quasinormal modes
based on a matched asymptotic expansion for near-
extremal black holes, and have found that the orthogonality
relation is typically satisfied to a very high accuracy.
We remark that our “norm” on quasinormal modes has

some similarities with the “norm” of resonant state wave
functions in quantum mechanics defined by [62]. Rather
than taking the integral of jψ j2, the norm used by [62] also
involves ψ2, whereas our bilinear is complex linear in both
arguments as opposed to an inner product (antilinear in the
first argument, complex linear in the second). Our regu-
larization procedure differs from that proposed by [62]
but was rather inspired by the investigations [56] in the
context of leaky optical one-dimensional cavities, and
on Schwarzschild black holes in [63]. In [64,65] it was
recognized that phase space was the natural setting for the
bilinear form.12 In fact, in several ways our work was
inspired by some of these papers: we work within the
Teukolsky formalism, we arrive at the bilinear form starting
from the symplectic form, and we recognize the funda-
mental importance of the t-ϕ reflection symmetry.

VI. EXCITATION COEFFICIENTS

If ⟪·; ·⟫ were a scalar product in a Hilbert space and
fsϒlmng an orthonormal basis, then an arbitrary wave
function ϒs could evidently be expanded as

ϒs ¼
X
lmn

clmnsϒlmn; ð56Þ

where the excitation coefficients are

clmn ¼
⟪sϒlmn;ϒs⟫

⟪sϒlmn; sϒlmn⟫
: ð57Þ

Here
P

lmn denotes
P∞

l¼jsj
Pl

m¼−l
P∞

n¼0. In the present
context, ⟪·; ·⟫ is of course only a symmetric bilinear form
on solutions to the spin s Teukolsky equation (for the case
of interest in this paper, s ¼ −2). It is neither positive
definite nor is the set of quasinormal modes, while being
orthogonal, in any obvious mathematical sense a complete
basis for a reasonable function space in as far as we can see.
Inspired by [56], we will nevertheless show in this

section that for solutions ϒs to the adjoint Teukolsky
equation with compact support on a Cauchy surface Σ, the
above expansion can formally be “derived” in the Laplace
transform formalism [3,26] for the retarded propagator if
we deform the frequency integration contours into the

FIG. 2. Numerical check of the orthogonality between two
Kerr quasinormal modes with the same l ¼ m ¼ 2 and different
n ¼ 0, 1 (upper panel) and modes with the same n ¼ 0,
m ¼ 2 and different l ¼ 2, 3 (lower panel). We show the result
of the numerical evaluation of the bilinear form (55) along the
most convergent contour (black points), integrating the complex
sections of the contour up to a finite ulower;upper. Because of the
difficulty in handling the branch cut in Mathematica, the lower
integration limit ulower sets the overall accuracy of this numerical
evaluation of the bilinear form. We also show an exponential fit
converging to zero as ulower → −∞ (red line). We use the mode
solutions (normalized at the horizon) provided by the Black Hole
Perturbation Toolkit [61]. In this example, we set M ¼ 1,
a ¼ 0.7, r�1 ¼ −8, and r�2 ¼ 5.

12Avariational method for computing quasinormal frequencies
of “dirty” Schwarzschild black holes was developed in [66,67].
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complex plane and collect only contributions from the
quasinormal mode frequencies. Thus, Eq. (57), while not
an exact equality, is expected to capture the transient
behavior of the solution ϒs.

A. Laplace transform

The Laplace transform f̂ðωÞ ¼ LfðtÞ of a function fðtÞ
is given by

f̂ðωÞ ¼
Z

∞

0

eiωtfðtÞdt; ð58Þ

where Imω > 0. The Laplace transform is related to
the Fourier transform Ff ¼ R∞

−∞ eiωtfðtÞdt by sending
fðtÞ → fðtÞθðtÞ, where θðtÞ is the Heaviside distribution.
Sufficient conditions for the existence of f̂ðωÞ are that the
function fðtÞ be Riemann integrable (continuous except on
sets of measure zero) on every closed subinterval of the
path of integration and that it be of exponential order;
i.e., at any t one can find constants a and N such that
je−atfðtÞj < N. If the Laplace integral exists for some value
of ω ¼ ω0, then it also exists for all ω with Imω > Imω0.
The lowermost Imω0 where convergence occurs is called
the abscissa of convergence and the region above this line
called the convergence region. The function f̂ðωÞ is
analytic in the convergence region.
The Laplace transform formalism is naturally adapted to

the study of causal dynamics of linear second-order
systems, as it incorporates the initial data into a source
by taking time derivatives into field values at the initial time

Lf0ðtÞ ¼ −iωf̂ðωÞ − fð0Þ; ð59Þ

Lf00ðtÞ ¼ −ω2f̂ðωÞ þ iωfð0Þ − f0ð0Þ: ð60Þ

The Laplace transform ϒ̂s of the spin-s master function ϒs
is given by

ϒ̂sðω; r; θ;ϕÞ ¼
Z

∞

0

eiωtϒsðt; r; θ;ϕÞdt: ð61Þ

This decomposed into modes in the usual way,

ϒ̂s ¼
X
lm

sSlmωðθÞsRlmωðrÞeimϕ: ð62Þ

The inverse transform is given by

ϒsðt; r; θ;ϕÞ ¼
1

2π

Z
∞þic

−∞þic
e−iωtϒ̂sðω; r; θ;ϕÞdω; ð63Þ

where c > 0 is chosen such that the integral contour lies
within the convergence region.
To formulate the initial data problem within the mode

decomposition, we take the Laplace transform of the

Teukolsky master equation and substitute (62). We then
collect the terms in the master equation with transformed
time derivatives to the right-hand side and project onto the
angular mode function. This yields a sourced equation for
the radial function

LsRlmω ¼ sIlmω: ð64Þ

Here, L is given in (49) and the source sIlmω ¼ sIlmωðrÞ is
composed of ðl; mÞ-projected initial data [68]:

sIlmω ¼
Z

2π

0

Z
π

0

�
Λ
Δ
ð∂tϒs − iωϒsÞ

− 2s

�
Mðr2 − a2Þ

Δ
− r − ia cos θ

�
ϒs

þ 4Mar
Δ

∂ϕϒs

�
t¼0

sSlmωðθÞe−imϕ sin θdθdϕ; ð65Þ

which we take to be of compact support. Imposing the
outgoing boundary conditions (51) fixes the freedom of
homogeneous solutions to (64) and therefore defines a radial
Green’s function sglmωðr; r0Þ ¼ sR

in
lmωðr<ÞsRup

lmωðr>Þ=W
where r<ðr>Þ is the lesser (greater) of r and r0. Here, for
any two solutions of the radial equation at fixed s;m;l;ω,
the (“Δ-scaled”) Wronskian

W½R1; R2� ¼ Δ1þs

�
R1

dR2

dr
− R2

dR1

dr

�
ð66Þ

has been defined which is independent of r. If R1 andR2 are
linearly dependent, then the Wronskian vanishes. Thus, if
we takeR1 → Rin,R2 → Rup, theWronskian vanishes when
ω attains a quasinormal frequency.
The quasinormal mode contribution to ϒs can be found

by closing the contour of the Laplace integral in the lower-
half complex ω plane, and can be expressed as a discrete
sum over the residues of the radial Green’s function arising
at the points in the complex frequency plane where the
Wronskian vanishes:

ϒs¼−i
X
nlm

e−iωntþimϕ
sSlmnðθÞ

×
Z

∞

rþ

sRin
lmnðr<ÞsRup

lmnðr>Þ
dW=dωjωn

sIlmnðr0ÞΔsðr0Þdr0; ð67Þ

where sIlmn ¼ sIlmωjω¼ωn
. In considering only the poles

when closing the contour, we are effectively ignoring the
early-time “direct” contribution from the large-ω arc and
the late-time “tail” contribution resulting from the branch
point at zero frequency. Thus, the ¼ sign in the above
equation is not actually justified and should be understood
as meaning this approximation.
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On a quasinormal mode, Rin is a constant multiple of
Rup, and either may be moved outside the radial integral to
write the field as

ϒs ¼
X
nlm

clmnsϒlmn; ð68Þ

where we have isolated the familiar form of the excitation
coefficient

cnlm ¼ −
i

dW=dωjωn

Z
∞

rþ
sIlmnðr0ÞsRlmnðr0ÞΔsðr0Þdr0:

ð69Þ

B. Equivalence between (69) and (57)

To begin, for a given radial function R, and l; m;ω,
we can define a s ¼ −2 GHP scalar ϒlmω in separated
form (47) by appending a spin-weighted spheroidal har-
monic and e−iωt time dependence. For the time being, we
do not require R to satisfy any equation. We have the
following lemma relating the Wronskian to t · π integrated
over the 2-sphere.
Lemma 4. Let ϒ1;ϒ2 ¼∘ ð−4; 0Þ be two GHP scalars in

separated form (47), with the same m;l;ω, where S1, S2
are normalized spin-weighted spheroidal harmonics solv-
ing the angular equation, but where R1, R2 are not
necessarily solutions to the radial equation. Then

8πM4=3W½R1; R2� ¼
Z
S2ðt;rÞ

t · πðΨ4=3
2 Jϒ1;ϒ2Þ; ð70Þ

where S2ðt; rÞ is a sphere of constant t and r, πabc ¼
ϵabcdπ

d and πa as in (13).
Proof. Consider the Cauchy surface ΣðtÞ¼ft¼const:g

in Boyer-Lindquist coordinates. The future directed normal
to Σ and induced area element on S2ðt; rÞ are given by,
respectively,

νa ¼
� ffiffiffiffiffiffiffi

Λ
ΔΣ

r
; 0; 0;

2Marffiffiffiffiffiffiffiffiffiffi
ΔΣΛ

p
�
; ð71Þ

dA ¼
ffiffiffiffiffiffiffi
ΣΛ

p
sin θdθdϕ: ð72Þ

From the first relation one can read off the lapse function N
of ta from νa ¼ ðta − NaÞ=N. The action of the reflection
reverses νa, and from this fact and the formula for πa

[see (13)], one can deduce that

Z
S2ðt;rÞ

t · πðΨ4=3
2 Jϒ1;ϒ2Þ

¼
Z
S2ðt;rÞ

NΨ4=3
2 fðJϒ1ÞraðΘa − 4BaÞϒ2

−ϒ2J ½raðΘa − 4BaÞϒ1�gdA; ð73Þ

where ra is the normal to S2ðr; tÞ inside ΣðtÞ. An explicit
calculation shows that in the Kinnersley frame,

raðΘa − 4BaÞϒ ¼
ffiffiffiffi
Δ
Σ

r
∂rϒ − 2

ðr −MÞffiffiffiffiffiffiffi
ΔΣ

p ϒ: ð74Þ

Using this, as well as expressions for N, dA, and J [using
(39)], we obtain

Z
S2ðt;rÞ

t · πðΨ4=3
2 Jϒ1;ϒ2Þ

¼ 4M4=3

ΔðrÞ
�
R1

dR2

dr
− R2

dR1

dr

�

×
Z

π

0

Z
2π

0

S1ðθÞS2ðθÞ sin θdθdϕ: ð75Þ

Finally, performing the integration and using the normali-
zation (50) for the angular functions, we obtain the
result. ▪
Next, we take R1 and R2 to be solutions ingoing at the

horizon and outgoing at infinity. Considered as a function
of ω, the Wronskian vanishes at quasinormal frequencies
ωn, because at these frequencies the two solutions become
linearly dependent. The first derivative with respect to ω,
however, is proportional to the “norm” of the quasinor-
mal mode.
Lemma 5. Let Rin

ω ; R
up
ω be solutions to the radial

equation for fixed s ¼ −2;l; m, and allowing ω to vary,
that are ingoing at the horizon and outgoing at infinity,
respectively, as in (51). Construct ϒin

ω ;ϒ
up
ω ¼∘ ð−4; 0Þ as

mode solutions based on the radial functions. Then the
derivative of the Wronskian at a quasinormal frequency ωn
can be written

d
dω

W½Rin
ω ; R

up
ω �j

ω¼ωn

¼ −i
8πM4=3 ⟪ϒ

in
ωn
;ϒup

ωn⟫: ð76Þ

Proof. Consider the current πðΨ4=3
2 Jϒin

ωn
;ϒup

ω Þ evalu-
ated at a generic frequency ω and a quasinormal frequency
ωn. By Cartan’s magic formula and the fact that π is closed
on solutions,

dðt · πðΨ4=3
2 Jϒin

ωn
;ϒup

ω ÞÞ ¼ LtπðΨ4=3
2 Jϒin

ωn
;ϒup

ω Þ
¼ −iðω−ωnÞπðΨ4=3

2 Jϒin
ωn
;ϒup

ω Þ;
ð77Þ

where in contrast to the previous lemma the right side does
not vanish on account of the different frequencies. We
integrate over a partial Cauchy surface S, and apply
Stokes’s theorem,
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Z
∂S
t · πðΨ4=3

2 Jϒin
ωn
;ϒup

ω Þ

¼ −iðω − ωnÞ
Z
S
πðΨ4=3

2 Jϒin
ωn
;ϒup

ω Þ: ð78Þ

Next, we differentiate this equation with respect to ω
and take the limit ω → ωn. On the right side (r.h.s), we
trivially get

d
dω

����
ω¼ωn

¼ −i
Z
S
πðΨ4=3

2 Jϒin
ωn
;ϒup

ωnÞ: ð79Þ

The left side (l.h.s.) can be expressed as three terms, namely

d
dω

����
ω¼ωn

¼
Z
∂Sþ

t · π

�
Ψ4=3

2 Jϒin
ωn
;
d
dω

����
ω¼ωn

ϒup
ω

�

−
d
dω

����
ω¼ωn

Z
∂S−

t · πðΨ4=3
2 Jϒin

ω ;ϒ
up
ω Þ

þ
Z
∂S−

t · π

�
d
dω

����
ω¼ωn

Ψ4=3
2 Jϒin

ω ;ϒ
up
ωn

�
: ð80Þ

By Lemma 4 we can write the second of these terms as the
derivative of the Wronskian,

d
dω

����
ω¼ωn

Z
∂S−

t · πðΨ4=3
2 Jϒin

ω ;ϒ
up
ω Þ

¼ 8πM4=3 d
dω

W½Rin
ω ; R

up
ω �

���
ω¼ωn

: ð81Þ

Summarizing our results so far, we have shown that

8πM4=3 d
dω

W½Rin
ω ; R

up
ω �

���
ω¼ωn

¼ −i
Z
S
πðΨ4=3

2 Jϒin
ωn
;ϒup

ωnÞ

−
Z
∂S−

t · π
�

d
dω

����
ω¼ωn

Ψ4=3
2 Jϒin

ω ;ϒ
up
ωn

�

−
Z
∂Sþ

t · π

�
Ψ4=3

2 Jϒin
ωn
;
d
dω

����
ω¼ωn

ϒup
ω

�
: ð82Þ

As S → ΣC, the boundary integrals vanish exponentially, so
the right-hand side of (82) reduces to −i⟪ϒin

ωn
;ϒup

ωn⟫. ▪
The desired equivalence between (69) and (57) can be

seen immediately by substituting (65) for sIlmn, comparing
with (46), and applying Lemma 5.
We checked numerically that the excitation factors

obtained via the bilinear form, Eq. (76), are in good
agreement (for some a, n within a few %, which we
believe arises from inaccuracies of our mode functions

close to the horizon) with the ones computed via direct
differentiation of the Wronskian in Refs. [69,70].

VII. CONCLUDING REMARKS

We end this paper with some potential applications and
alternatives to our formalism.
The main motivation of this work is to provide some

tools needed to study the black hole ringdown beyond
linear order in perturbation theory. Higher orders are
already needed to interpret high-precision numerical rela-
tivity simulations of binary mergers [19,20], and could be
needed to analyze gravitational wave observations by
future detectors. Roughly speaking, we wish to make an
ansatz for the solution of the nonlinear system as a linear
combination of quasinormal modes with time dependent
excitation coefficients similar to (56). The idea is that the
bilinear form will help us writing down a dynamical system
for these coefficients by analogy with wave equations on
compact spaces, where the normal modes would be used
instead to compute the overlap integrals required for terms
in this dynamical system that are nonlinear in the modes.
As extremality is approached, it is well known that a

family of quasinormal modes becomes arbitrarily long-
lived, with Reω ≈mΩH [54,71–75]. With a commensurate
frequency spectrum and arbitrarily slow decay, these modes
have been conjectured to become turbulent as a → M [76].
By considering the nonlinear excitation coefficients near
extremality using the approach detailed above, one may
hope to establish (or rule out) the emergence of turbulent
behavior, or to get a new perspective on the Aretakis
instability [77]. It would also be interesting to see if our
bilinear form can be used directly at extremality. This
would involve understanding better the behavior of the
complex contour integrals that we employ to regulate the
bilinear form at extremality.13

Applications along similar lines could include mode
mixing in clouds of ultralight scalar fields that could form
outside Kerr black holes [80]. Here, once these clouds grow
via the superradiant instability, nonlinear interactions
between the modes have been conjectured to give rise to
a coherent emission of gravitational waves or a bosenova
[81]; see [82,83] for recent proposals based on heuristic
methods. It would be interesting to see whether our
methods could be used to conceptualize or shed more light
on the theoretical basis of such proposals.
In [31], a different approach is taken to quasinormal

modes. Their essential idea is to consider, instead of a time t
Cauchy surface intersecting the bifurcation surface and
spatial infinity, a “hyperboloidal” slice intersecting the
future event horizon and future null infinity. On such a
slice, they define a certain space of “almost analytic”
functions (a “Gevrey space”) encoding somehow the

13For recent work on mode solutions to the Teukolsky equation
at extremality, see [78,79].

STEPHEN R. GREEN et al. PHYS. REV. D 107, 064030 (2023)

064030-14



“boundary conditions” (51). Their space is in fact a genuine
Hilbert space, and the time evolution is represented on this
space by a semigroup whose generator is essentially the
Hamiltonian, H (see Appendix E). Their inner product is
noncanonical—and is not conserved—and the generator of
the semigroup is correspondingly not symmetric, as is also
not physically expected due to the “dissipative” nature of
quasinormal modes. Nevertheless, their analysis shows that
quasinormal modes are genuine eigenfunctionsHϒ ¼ iωϒ
in this space—crucially, by contrast to their restriction to a
constant t surface, they do not blow up on the hyperboloidal
slice as the horizon or scri are approached. While the
quasinormal modes are not orthogonal in their inner
product, the definition of our bilinear form with a hyper-
boloidal slice is also clearly possible, and it would be
interesting to see whether quasinormal modes, as defined in
the setting of [31] (see also [28–30]) are still orthogonal in
this bilinear form, as we conjecture. This would provide an
alternative to our regularization procedure involving com-
plex contours.
Finally, it will be interesting to explore the relation

between our bilinear form and the adjoint-spheroidal
functions introduced in Ref. [84].
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APPENDIX A: PROOF OF (18) AND EXPLICIT
FORM OF Hab

For the current calculations, we use the following forms
for the Einstein operator E, the separation operator S, T ,
and the Teukolsky operator O. In the expressions below,
the GHP operators ð ¼ maΘa, ð0 ¼ m̄aΘa, Þ ¼ laΘa, Þ0 ¼
naΘa are understood, and their commutation relations as
well as the algebraically special properties of an NP tetrad
aligned with the principal null directions in a Petrov type D
spacetime (implying that σ¼σ0 ¼ κ¼ κ0 ¼0;Ψi¼0;i≠2
in GHP notation) are heavily used in all subsequent
manipulations,

ðEhÞab ¼
1

2
ð∇c∇ahbc þ∇c∇bhac −∇a∇bhcc −∇c∇chab − gab∇c∇dhcd þ gab∇c∇chddÞ

¼ Pcabdef∇c∇dhef; ðA1aÞ

ST ¼−ðð− τ0 − 4τÞðð− τ0ÞTll− ðÞ− ρ̄− 4ρÞðÞ− ρ̄ÞTmmþ ½ðð− τ0 − 4τÞð−2ρ̄Þþ ðÞ− ρ̄− 4ρÞðð− 2τ0Þ�Tlm; ðA1bÞ

T h ¼ 1

2
ðð − τ0Þðð − τ0Þhll þ

1

2
ðÞ − ρ̄ÞðÞ − ρ̄Þhmm −

1

2
½ðÞ − ρ̄Þðð − 2τ0Þ þ ðð − τ0ÞðÞ − 2ρ̄Þ�hlm ¼ −ψ0; ðA1cÞ

Oη ¼ 2½ðÞ − 4ρ − ρ̄ÞðÞ0 − ρ0Þ − ðð − 4τ − τ0Þðð0 − τ0Þ − 3Ψ2�η; ðA1dÞ

where

Pabcdef ¼ 1

2
gadgbcgef þ 1

2
gaegbdgcf þ 1

2
gaegbfgcd

−
1

2
gabgcdgef −

1

2
gadgbegcf −

1

2
gafgbcgde: ðA2Þ

The corresponding adjoint operators satisfy

∇awa½h; h0� ¼ hbcðEh0Þbc − h0bcðE†hÞbc; ðA3aÞ

∇aσ
a½ϕ; T� ¼ ϕðSTÞ − TabðS†ϕÞab; ðA3bÞ

∇ata½η; h� ¼ ηðT hÞ − habðT †ηÞab; ðA3cÞ

∇aπ
a½ϕ; η� ¼ ϕðOηÞ − ηðO†ϕÞ: ðA3dÞ

which defines wa, σa, ta, πa up to a total divergence.
Below, we make specific choices, which will lead to a
specificHab. One can derive the adjoint operators explicitly
in GHP form as

ðE†hÞab ¼ ðEhÞab; ðA4aÞ
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ðS†ϕÞab ¼ −lalbðð − τÞððþ 3τÞϕ −mambðÞ − ρÞðÞþ 3ρÞϕþ lðambÞfðÞ − ρþ ρ̄Þððþ 3τÞ þ ðð − τ þ τ0ÞðÞþ 3ρÞgϕ
¼ ∇cððlðambÞlc − lalbmcÞððþ 3τÞϕþ ðlðambÞmc −mamblcÞðÞþ 3ρÞϕÞ
¼ ∇cð∇d − 4τm̄d þ 4ρndÞðϕð2lðambÞlðcmdÞ − lalbmcmd −mamblcldÞÞ; ðA4bÞ

ðT †ηÞab ¼
1

2
lalbðð − τÞðð − τÞηþ 1

2
mambðÞ − ρÞðÞ − ρÞη − 1

2
lðambÞfððþ τ0 − τÞðÞ − ρÞ þ ðÞ − ρþ ρ̄Þðð − τÞgη

¼ −
1

2
∇c∇dðηð2lðambÞlðcmdÞ − lalbmcmd −mamblcldÞÞ; ðA4cÞ

O†ϕ ¼ 2½ðÞ0 − ρ0ÞðÞþ 3ρÞ − ðð0 − τ̄Þððþ 3τÞ − 3Ψ2�ϕ: ðA4dÞ

When computing these, the boundary terms wa, σa, ta, πa drop out as

wa½h; h0� ¼ hbcðFh0Þabc − h0bcðFhÞabc; ðA5aÞ

σa½ϕ; T� ¼ la½TmmðÞþ 3ρÞϕ − ϕðÞ − ρ̄ÞTmm þ ϕðð − 2τ0ÞTlm − Tlmððþ 3τÞϕ�
þma½Tllððþ 3τÞΦ −Φðð − τ0ÞTll þΦðÞ − 2ρ̄ÞTlm − TlmðÞþ 3ρÞΦ�; ðA5bÞ

ta½η; h� ¼ 1

2
la½ηðÞ − ρ̄Þhmm − hmmðÞ − ρÞηþ hlmðð − τÞη − ηðð − 2τ0Þhlm�

þ 1

2
ma½ηðð − τ0Þhll − hllðð − τÞηþ hlmðÞ − ρÞη − ηðÞ − 2ρ̄Þhlm�; ðA5cÞ

πa½ϕ; η� ¼ ϕðΘa þ 4BaÞη − ηðΘa − 4BaÞϕ; ðA5dÞ

where

ðFhÞabc ¼ Pabcdef∇dhef: ðA6Þ

The operator F is related to the linearized Einstein operator by ðEhÞab ¼ ∇cðFhÞcab.
Using the equation OT ¼ SE, one obtains the following relation (A7) between wa, σa, πa, and ta:

∇aðwa½S†Φ; h� þ σa½Φ; Eh� − πa½Φ; T h� − ta½O†Φ; h�Þ ¼ 0: ðA7Þ

The author of Ref. [85] has proven that one learns from this equation that there must exist a 2-formH, constructed out of the
fields hab;Φ and their derivatives such that wþ σ − π − t ¼ d⋆H, where w ¼ waðS†Φ; AÞ⋆dxa, σ ¼ σaðΦ; EAÞ⋆dxa,
π ¼ πaðΦ; T AÞ⋆dxa, and t ¼ taðO†Φ; AÞ⋆dxa. In divergence form, the identity for Hab½Φ; h� is

∇bHba½Φ; h� ¼ −wa½S†Φ; h� − σa½Φ; Eh� þ ta½O†Φ; h� þ πa½Φ;T h�: ðA8Þ

Of course, Hab is defined by the above equation only up to a total local divergence ∇cC½abc�, or equivalently, ⋆H is only
defined up to an exact local 1-form. Therefore, the expression for Hab given below only represents one possible solution.
Unfortunately, the proof given in [85] is not really useful to actually find an Hab in practice, so we simply try to “peel off”
the total divergence from the right side of (A8) by hand.
For this, it is convenient to write out the divergence operator on Hab in terms of GHP operators as

∇bHba ¼ ½naðÞ − ρ − ρ̄Þ − laðÞ0 − ρ0 − ρ̄0Þ þ m̄aðτ − τ̄0Þ −maðτ0 − τ̄Þ�Hnl

þ ½maðÞ − ρÞ − laðð − τÞ�Hm̄n þ ½m̄aðÞ − ρ̄Þ − laðð0 − τ̄Þ�Hmn

þ ½maðÞ0 − ρ̄0Þ − naðð − τ̄0Þ�Hm̄l þ ½m̄aðÞ0 − ρ0Þ − naðð0 − τ0Þ�Hml

þ ½m̄aðð − τ − τ̄0Þ −maðð0 − τ0 − τ̄Þ þ naðρ − ρ̄Þ − laðρ0 − ρ̄0Þ�Hm̄m: ðA9Þ
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We now substitute the above expressions for S†Φ, Eh,
O†Φ, and T h, respectively, into wa, σa, ta, and πa on the
right side of (A8). Next, by comparing the result with (A9)
we should in principle be able to get the components of the
2-form Hab½Φ; h� up to a total divergence. This calculation
is extremely tedious and was done using the XTENSOR

package of Mathematica, along the following lines. First,
we neglect the terms containing less than three derivatives
on the right side of (A8) and try to “peel off” a total
divergence by making suitable choices of the NP compo-
nents ofHab appearing in (A9). In fact, we cannot peel off a
divergence exactly, but only at the cost of terms containing
less than three derivatives. Having determined the highest

derivative parts of the NP components of Hab, we collect
any terms with less than three derivatives that were left over
when peeling off the total divergence, and combine them
with all terms with less than three derivatives on the right
side of (A8) that were neglected so far. Of these remaining
terms, we now discard all terms with less than two
derivatives and repeat the process until no terms are left.
We are ensured on general grounds that this must happen,
though it is in practice rather nontrivial and time-consum-
ing to determine all terms. The correspondingMathematica
notebooks are provided at [86]. All in all, it is found that a
skew symmetric tensorHab which satisfies (A8) is given by
the following expression:

Hab ¼
�
−
1

2
hllðS†ΦÞnn þ hlmðS†ΦÞnm̄ −

1

2
hmmðS†ΦÞm̄ m̄ − ρhlmððþ 3τÞΦþ T hΦ

− ððFhÞmlm − ðFhÞlmm − τhlmÞðÞþ 3ρÞΦ
	
ðlanb − nalbÞ

þ f−hlnðS†ΦÞnm̄ þ hlm̄ðS†ΦÞnn − hmm̄ðS†ΦÞnm̄ þ hnmðS†ΦÞm̄ m̄ þ ðIhÞððþ 3τÞΦ
þ ðJ hÞðÞþ 3ρÞΦþ ðKhÞΦgðlamb −malbÞ
þ fððFhÞmlm − ðFhÞlmm þ ρhmmÞððþ 3τÞΦ − τhmmðÞþ 3ρÞΦgðlam̄b − m̄albÞ
þ fððFhÞllm − ðFhÞmll þ τhllÞðÞþ 3ρÞΦ − ρhllððþ 3τÞΦgðnamb −manbÞ

þ
�
1

2
hllðS†ΦÞnn − hlmðS†ΦÞnm̄ þ 1

2
hmmðS†ΦÞm̄ m̄ þ τhlmðÞþ 3ρÞΦ − T h

þ ððFhÞllm − ðFhÞmll − ρhlmÞððþ 3τÞΦΦ
	
ðmam̄b − m̄ambÞ; ðA10Þ

where

Ih ¼ ðÞþ ρ − ρ̄Þhmm̄ − ðð − τ0Þhlm̄ − ρ0hll − ðρþ ρ̄Þhln þ τ0hlm;

J h ¼ ððþ τ − τ0Þhln − ðÞ − ρ̄Þhnm þ ρ0hlm − τ0hmm − ðτ þ τ̄0Þhmm̄;

Kh ¼ 1

2
½ðÞ0 − τ̄0Þ0 þ ð3ρ0 − ρ̄0Þðþ 2ðρ0 þ ρ̄0Þτ�hll −

1

2
½ðÞþ ðτ − 2τ̄0ÞÞþ ðρ − ρ̄Þðþ 2ðρτ − ρ̄τ̄0Þ�hln

−
1

2

�
Þ0Þþ ð0ðþ ð2ρ0 − ρ̄0ÞÞþ ðρ − 2ρ̄ÞÞ0 þ ð2τ0 − τ̄Þðþ ðτ − 2τ̄0Þð0

þ 2

�
2ττ0 − τ̄τ̄0 − 2ττ̄ − ρ̄ρ̄0 − 2ρ0ρ̄þ 2ρρ0 −

1

2
Ψ̄2

ρ

ρ̄
þ 1

2
Ψ2

ρ̄

ρ

��
hlm þ 1

2
½ððþ 2ðτ − τ̄0Þðþ 2τðτ − τ̄0Þ�hlm̄

þ 1

2
½ÞÞþ 2ðρ − ρ̄ÞÞþ 2ρðρ − ρ̄Þ�hnm þ 1

2
½ð0Þ − ðτ̄ − 2τ0ÞÞþ ðρ − ρ̄Þð0 þ 2ρðτ̄ þ 2τ0Þ�hmm

−
1

2
½ðÞþ ðτ − 2τ̄0ÞÞþ ðρ − ρ̄Þðþ 2ðρτ − ρ̄τ̄0Þ�hmm̄: ðA11Þ

When integrating Hab over a 2-surface we need the Hodge-dual, which is given by
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⋆H ¼ −i
�
1

2
hllðS†ΦÞnn − hlmðS†ΦÞnm̄ þ 1

2
hmmðS†ΦÞm̄ m̄ þ τhlmðÞþ 3ρÞΦ − T hΦ

þ ððFhÞllm − ðFhÞmll − ρhlmÞððþ 3τÞΦ
	
ðl ∧ nÞ

þ if−hlnðS†ΦÞnm̄ þ hlm̄ðS†ΦÞnn − hmm̄ðS†ΦÞnm̄ þ hnmðS†ΦÞm̄ m̄ þ ðIhÞððþ 3τÞΦ
þ ðJ hÞðÞþ 3ρÞΦþ ðKhÞΦgðl ∧ mÞ
− ifððFhÞmlm − ðFhÞlmm þ ρhmmÞððþ 3τÞΦ − τhmmðÞþ 3ρÞΦgðl ∧ m̄Þ
− ifððFhÞllm − ðFhÞmll þ τhllÞðÞþ 3ρÞΦ − ρhllððþ 3τÞΦgðn ∧ mÞ

− i

�
−
1

2
hllðS†ΦÞnn þ hlmðS†ΦÞnm̄ −

1

2
hmmðS†ΦÞm̄ m̄ − ρhlmððþ 3τÞΦþ T hΦ

− ððFhÞmlm − ðFhÞlmm − τhlmÞðÞþ 3ρÞΦ
	
ðm ∧ m̄Þ: ðA12Þ

We remind the reader that ⋆H is unique only up to an exact
local form. Such a contribution could be introduced, e.g., to
simplify the form of ⋆H. We have not attempted to do this.
Finally, we remark that for spin-1, the tensor Hab has
already been constructed in [87]. It seems to have a much
simpler form than in the spin-2 case.

APPENDIX B: PROOF OF (29)

In this appendix, we will prove (29). Although that
relation is used in the body of the paper only for gravitational
perturbations, i.e., spin s ¼ ðp − qÞ=2 ¼ �2, most of the
calculations work for arbitrary s, and in fact p and q. We
therefore state the results in their most general form in view
of their potential applicability to various values of the spin
and for general Petrov typeD spacetimes, ofwhichKerr is an
example.
We begin by defining

Pη ¼ ðΘa þ pB0
a þ qB̄0

aÞðΘa þ pB0a þ qB̄0aÞη

þ 2

�
p
ζ
þ q

ζ̄

�
Łξη; ðB1Þ

where Ba was given above in (10), ζ was given in (26), ξa

was given in (28), and where here and in the following we
use the GHP priming operation. Strictly speaking, P
denotes not one operator, but several operators depending
on the chosen ðp; qÞ, and the same is understood for other
operators below.
The following lemma is checked by direct computation.
Lemma 6. The operators P and K [see (27)] have the

following properties:
(i) They are self-dual, i.e., K† ¼ K and P† ¼ P.
(ii) They are real, i.e., Kη ¼ Kη̄ and Pη ¼ Pη̄ for every

smooth weighted scalar η, where we mean the GHP
overbar operation.

(iii) K0η0 ¼ ζ−pζ̄−qKζpζ̄qη0 and P0η0 ¼ ζ−pζ̄−qPζpζ̄qη0

for any η¼∘ ðp; qÞ.

(iv) PΦ ¼ O†Φ for every smooth weighted scalar
Φ¼∘ ð−2s; 0Þ.

(v) Pϕ ¼ Oϕ for every smooth weighted scalar
ϕ¼∘ ð2s; 0Þ,

where s ¼ ðp − qÞ=2 is the spin of the theory, i.e., s ¼ 1 for
electromagnetic and s ¼ 2 for gravitational perturbations.
Next, we construct the following operators G, R, and L

by combining K and P in a certain way:

G ¼ K −
1

4
KP;

R ¼ 1

4
jζj2P þ G;

L ¼ 1

4
jζj2P − G: ðB2Þ

HereK ¼ gabKab is the trace of the Killing tensorKab (25).
See (27) for the definition of the “Carter” operator K for
general ðp; qÞ. We will make use of the following Lemma 7
observed by the authors of [88].
Lemma 7. Suppose we have partial differential oper-

ators A, B (defined on suitably compatible vector bundles)
such that

(i) ½A;B� ¼ 0,
(ii) AðαfÞ ¼ αAðfÞ, and
(iii) BðβfÞ ¼ βBðfÞ

for all f, where α, β are certain functions, i.e., multipli-
cation operators. Then

�
1

αþ β
ðAþ BÞ; α

αþ β
A −

β

αþ β
B
�
¼ 0: ðB3Þ

This lemma is used to prove the following result.
Theorem 8. Let η¼∘ fp; qg. Then in any type D

spacetime
(i) ½K;P� ¼ 0,
(ii) jζj−2Gjζj2 ¼ G†, and
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(iii) ½jζj2P;G� ¼ 0.
Proof. Let α ≔ Kln ¼ − 1

8
ðζ − ζ̄Þ2, β ≔ Kmm̄ ¼ 1

8
ðζ þ ζ̄Þ2 and

A ≔ R≡ 1

2
jζj2ðÞ − ρ − ρ̄ÞðÞ0 − pρ0 − qρ̄0Þ þ 1

2
jζj2ðÞ0 − ðpþ 1Þρ0 − ðqþ 1Þρ̄0ÞÞþ 1

2
ðpþ qÞðζ þ ζ̄ÞŁξ;

B ≔ L≡ −
1

2
jζj2ðð − ðqþ 1Þτ̄0 − τÞðð0 − pτ0Þ − 1

2
jζj2ðð0 − ðpþ 1Þτ0 − τ̄Þðð − qτ̄0Þ − 1

2
ðp − qÞðζ − ζ̄ÞŁξ: ðB4Þ

Through a long tedious calculation using heavily the type D property of the background, one can show that
(i) ½R;L�η ¼ 0,
(ii) RðKlnηÞ ¼ KlnRη, and
(iii) LðKmm̄ηÞ ¼ Kmm̄Lη.

Consequently, using Lemma 7, we conclude that

½2jζj−2ðRþ LÞ; 2jζj−2KlnR − 2jζj−2Kmm̄L� ¼ ½P;K� ¼ 0: ðB5Þ

Further,

G† ¼ K −
1

4
PK ¼ α

αþ β
R −

β

αþ β
L −

1

αþ β
ðRþ LÞ α − β

2

¼ 1

αþ β
Rα −

1

αþ β
Lβ −

1

αþ β
ðRþ LÞ α − β

2
¼ 1

αþ β
ðR − LÞ αþ β

2

¼ jζj−2Gjζj2: ðB6Þ

In addition, we can also conclude that

½Rþ L;R − L� ¼
�
1

2
jζj2P; 2G

�
¼ ½jζj2P;G� ¼ 0: ðB7Þ

This demonstrates the claimed relations in the theorem. ▪

APPENDIX C: TRIVIAL CONSERVATION LAWS

An important question when deriving conservation
laws is whether the current is nontrivially conserved. A
conservation law is said to be trivial if either (a) the
conserved quantity itself vanishes on solutions, or
(b) the quantity is conserved even on nonsolutions [89].
A generic trivial conserved quantity will be a combination
of (a) and (b), e.g., if by adding a term involving the
equation of motion to a conserved current, it becomes
conserved even on nonsolutions, then the conservation law
is trivial.
As an example, consider a real Klein-Gordon field ψ ,

and a second order symmetry operator L2
ξ for a Killing

vector ξa. The associated current xaðψ ;L2
ξψÞ is conserved

as follows:

∇axaðψ ;L2
ξψÞ ¼ ðXψÞðL2

ξψÞ − ψðXL2
ξψÞ

¼ ðXψÞðL2
ξψÞ − ψðL2

ξXψÞ
¼ Lξ½ðXψÞðLξψÞ − ðLξXψÞψ �
¼ ∇aξa½ðXψÞðLξψÞ − ðLξXψÞψ �: ðC1Þ

Thus if we add the quantity ξa½ðXψÞðLξψÞ − ðLξXψÞψ �—
which vanishes on solutions Xψ ¼ 0—to xaðψ ;L2

ξψÞ, then
the resulting current is identically conserved. Hence the
current associated with L2

ξ is trivial. It is easy to see that in
this context symmetry operators Ln

ξ for odd n (i.e., skew-
adjoint operators) generate nontrivial conserved quantities,
whereas those with even n generate trivial ones.
In general, for a symmetry to generate a nontrivial

conservation law, it must be a symmetry not just of the
equation of motion, but also the Lagrangian. A complete
analysis of triviality for the conserved currents discussed in
the present manuscript is left for future work.

APPENDIX D: WKB ANALYSIS
OF CONSERVED CURRENTS

We make a WKB (high frequency) ansatz for the metric
perturbation of the usual form

hab ∼ ReAabeiωS ðD1Þ

with real frequency ω ≫ 1. For hab to be a solution to the
linearized Einstein equation, S should as usual satisfy the
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eikonal equation gab∇aS∇bS ¼ 0, so that ka ¼ ∇aS is
tangent to a future directed—by assumption—congruence
of affine null geodesics. We may take the (complex)
amplitude Aab to be varying slowly on time scales of order
one, and supported in a very small tube around such a
geodesic. Imposing the usual transverse-traceless gauge
conditions, Aab is found to obey a set of transport equations
which are solved order by order in ω−1; see, e.g., [50]. In
addition, kaAab ¼ gabAab ¼ 0; i.e., Aab is a polarization
tensor. To be precise, when the expansion for Aab is carried
out up to order ω−N, we only get a solution to the linearized
Einstein equation up to that order, which must be supple-
mented with a nonperturbative (in ω−1) correction of order
Oðω−NÞ. This correction can be chosen such that hab is still
supported near the world tube of the geodesic in the vicinity
of a given Cauchy surface Σ; see [50] for details of this
nontrivial construction.
When a derivative ∇a hits AabeiωS, the oscillations

dominate, corresponding effectively to the substitution

∇a → ipa ≡ iωka; ðD2Þ

familiar from quantum mechanics. Under this substitution
(also called the “principal symbol” in the mathematics
literature), the operators Cn in (30) become

Cn abcd → −
1

2
ζ4½−QðpÞ�neabðpÞecdðpÞ0; ðD3Þ

where QðpÞ ¼ Kabpapb is Carter’s constant which is
conserved along the null geodesic on account of
∇ðaKbcÞ ¼ 0, and where eabðpÞ and eabðpÞ0 are the
polarization tensors

eabðpÞ¼ZacZbdpcpd; eabðpÞ0 ¼Z0
acZ0

bdp
cpd; ðD4Þ

in which the polarization tensor properties follow from the
definitions Z ¼ l ∧ m and Z0 ¼ n ∧ m̄. Thus, in the high
frequency limit, Cn is basically the nth power of Carter’s
constant, dressed by the tensor structure eabðpÞecdðpÞ0
involving polarization tensors related to the principal null
direction la, respectively, na. For the GHP primed sym-
metry operator C0n, the roles of the polarization tensors
should be reversed.
We now wish to evaluate χðnÞ½h� (35) on our WKB

solution hab (D1). Using the definition of Zab and of Zab0,
we can see that

ēabðpÞeabðpÞ¼ðlapaÞ4; eabðpÞeabðpÞ¼0;

ēabðpÞ0eabðpÞ0 ¼ ðnapaÞ4; eabðpÞ0eabðpÞ0 ¼0; ðD5Þ

in addition to the usual properties eabðpÞpa ¼
gabeabðpÞ ¼ 0, and similarly for the primed polarization
tensor e0abðpÞ. This means that

ϵþabðpÞ ¼
1ffiffiffi
2

p ReeabðpÞ0=ðncpcÞ2;

ϵ×abðpÞ ¼
1ffiffiffi
2

p ImeabðpÞ0=ðncpcÞ2 ðD6Þ

form an orthonormal basis of (real) polarization tensors
unless pa ∝ na which we assume for simplicity is not the
case. In particular, we can write the complex amplitude of
our WKB approximation as

Aab ¼ Aþϵþab þ A×ϵ
×
ab ðD7Þ

up to a “gauge-transformation,”14 which does not matter
since ja is gauge invariant. Making use of such relations in
(4) and (34), we find that in the high frequency limit, the
conserved quantity χ—the flux of Carter current through
Σ—on a WKB solution (D1) is given to leading order
in ω by

χðnÞ½h� ¼
Z
Σ
jaðnÞdΣa

∼ −ið−1Þn
Z
Σ
pajζj8ImðAþĀ×Þðp · lÞ4

× ðp · nÞ4QðpÞndΣa; ðD8Þ

where Kabpapb ¼ QðpÞ denotes the Carter constant. The
Killing tensor (25) can be written as Kab ¼ jζj2lðanbÞ−
1
2
ðReζÞ2gab, and since gabpapb ¼ 0, we find that

jζj8ðp · lÞ4ðp · nÞ4 ¼ QðpÞ4. This leads to (35).
The integrand is by construction sharply localized at the

point where the geodesic pierces the Cauchy surface Σ, so
the integral is basically the integrand at that point. Thus,
χðnÞ½h� is essentially a power of the Carter constant for a
WKB solution [50] in the high frequency limit. An
analogous result [50] holds for the canonical energy
E½h� (19): In that case we get the energy of a particle in
the WKB limit.
Due to the presence of ImðAþĀ×Þ coupling the different

polarizations, the Carter currents jaðnÞ are of “zilch”-type in
the terminology of [36].

APPENDIX E: LAGRANGIAN
AND HAMILTONIAN FOR THE

TEUKOLSKY EQUATION

One can write down a Lagrangian for the Teukolsky
equation:

Lðϒ̃;ϒÞ ¼ ϵ½gabðΘa þ 4BaÞϒ̃ðΘb − 4BbÞϒþ 16Ψ2ϒ̃ϒ�;
ðE1Þ

14A tensor of the form ξðapbÞ where paξ
a ¼ 0.
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involving the fields ϒ̃¼∘ ð4; 0Þ andϒ¼∘ ð−4; 0Þ [33]. These
fields should be varied independently to obtain the field
equations O†ϒ ¼ 0 and Oϒ̃ ¼ 0, respectively. The
Lagrangian obviously bears close resemblance to that of
a Uð1Þ charged scalar field; however, Ba is not pure
imaginary, and ϒ and ϒ̃ are not complex conjugates of
each other.
Next we take the Legendre transform to obtain a

Hamiltonian. We foliate our Kerr spacetime by Cauchy
surfaces Σt of constant Boyer-Lindquist time t. Our time
flow vector is taken to be the Kerr time-translation Killing
vector field ta, which is related to the type D Killing field
by ta ¼ M1=3ξa. These satisfy ta∇at ¼ 1. This gives the
3þ 1 decomposition of the metric,

gab ¼ qab þ νaνb; ðE2Þ

where qab is a negative definite spatial metric intrinsic to Σt

and νa ¼ 1
N ðta − NaÞ is the unit surface normal which

defines the lapse N and shift Na of ta. In our sign
conventions N ¼ taνa and Na ¼ qabt

b. We also introduce
the Lagrangian density via L ¼ Le, where eabcd is a fixed

time-independent coordinate volume element. See
Appendix E of [90] for further details.
We work in a tetrad adapted to the Kerr principal null

directions so that the Łt derivative annihilates the back-
ground quantities. We take this to be our “time derivative”
and take the Legendre transform with respect to _ϒ≡ Łtϒ

and _̃ϒ≡ Łtϒ̃. The associated canonical momenta are

ϖ ¼ ∂L

∂
_̃ϒ
¼ ffiffiffiffiffiffi

−q
p

νaðΘa − 4BaÞϒ; ðE3Þ

ϖ̃ ¼ ∂L

∂ _ϒ
¼ ffiffiffiffiffiffi

−q
p

νaðΘa þ 4BaÞϒ̃: ðE4Þ

Note the slightly nonstandard convention where we take the
derivative with respect to the conjugated field rather than
the unconjugated field to define the canonical momentum.
This is so that a field and its conjugate momentum have the
same GHP weight, and it will be convenient when we write
the equations in first order form.
Finally, the Hamiltonian density is given by

H≡ϖ _̃ϒþ ϖ̃ _ϒ−L

¼ Nffiffiffiffiffiffi−qp ϖϖ̃ þϖð2M1=3ðΨ2=3
2 − 2BaξaÞ þ NaðΘa þ 4BaÞÞϒ̃þ ϖ̃ð−2M1=3ðΨ2=3

2 − 2BaξaÞ þ NaðΘa − 4BaÞÞϒ

− N
ffiffiffiffiffiffi
−q

p ðqabðΘa þ 4BaÞϒ̃ðΘb − 4BbÞϒþ 16Ψ2ϒϒ̃Þ; ðE5Þ
with Hamiltonian H ¼ R

Σt
H. This gives rise to Hamilton’s equations of motion,

_ϒ ¼ δH
δϖ̃

¼ Nffiffiffiffiffiffi−qp ϖ − 2M1=3ðΨ2=3
2 − 2ξaBaÞϒþ NaðΘa − 4BaÞϒ; ðE6Þ

_ϖ ¼ −
δH

δϒ̃

¼ −
ffiffiffiffiffiffi
−q

p fqabðΘa − 4BaÞ½NðΘb − 4BbÞϒ� − 16NΨ2ϒg − 2M1=3ðΨ2=3
2 − 2ξaBaÞϖ þ ðΘa − 4BaÞðNaϖÞ; ðE7Þ

as well as corresponding equations for conjugated fields.
It is convenient to also express these equations in matrix form,

ŁtY ¼ HY; Y ≡
�
ϒ

ϖ

�
; ðE8Þ

where

H ¼

0
B@ sM1=3ðΨ2=3

2 − 2ξaBaÞ þ NaðΘa þ 2sBaÞ Nffiffiffiffiffi−qp

− ffiffiffiffiffiffi−qp ½qabðΘa þ 2sBaÞNðΘb þ 2sBbÞ − 4s2NΨ2� sM1=3ðΨ2=3
2 − 2ξaBaÞ þ ðΘa þ 2sBaÞNa

1
CA: ðE9Þ

Note that the derivative operators act on everything to the right; here s should again be viewed in the operator sense, as the
weight of the field on whichH acts (in this case s ¼ −2). The equation for the conjugated fields has the same operator (but
now with s ¼ 2), ŁtỸ ¼ HỸ.
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APPENDIX F: KERR GEOMETRY

The Kerr metric is an asymptotically flat nonextremal,
rotating black hole spacetime for the values of the para-
meters M > jaj, assumed throughout the text. In Boyer-
Lindquist coordinates, the Kerr metric takes the form

g ¼
�
1 −

2Mr
Σ

�
dt2 þ 4Mar sin2 θ

Σ
dtdϕ

−
Σ
Δ
dr2 − Σdθ2 −

Λ
Σ
sin2 θdϕ2; ðF1Þ

where

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2cos2θ;

Λ ¼ ðr2 þ a2Þ2 − Δa2sin2θ: ðF2Þ

We usually refer to the exterior of the Kerr manifold
defined by r > rþ, with rþ (event horizon) the greater
root r� of Δ. Sometimes we also refer to the tortoise
coordinate

r� ¼ rþ r2þ þa2

rþ − r−
ln
�
r− rþ
rþ

�
−
r2−þa2

rþ − r−
ln
�
r− r−
rþ

�
: ðF3Þ

The Kerr geometry has two commuting continuous sym-
metries generated by the Killing fields

ta ¼ ð∂=∂tÞa; φa ¼ ð∂=∂ϕÞa: ðF4Þ

The Kerr spacetime is Petrov type D, and therefore has two
repeated principal null directions. There is some freedom in
choosing a NP tetrad aligned with these null directions, but
we will find it convenient to choose the Kinnersley tetrad in
explicit calculations [91]. This tetrad is given in the above
coordinates ðt; r; θ;ϕÞ by

la ¼ 1

Δ
ðr2 þ a2;Δ; 0; aÞ; ðF5aÞ

na ¼ 1

2Σ
ðr2 þ a2;−Δ; 0; aÞ; ðF5bÞ

ma ¼ 1ffiffiffi
2

p ðrþ ia cos θÞ ðia sin θ; 0; 1; i csc θÞ: ðF5cÞ

The Kinnersley tetrad is regular on the past horizon of the
black hole. This choice of tetrad also sets the spin
coefficient ϵ ¼ 0; the remaining nonzero spin coefficients
appearing in this paper are

ρ ¼ −
1

r − ia cos θ
; ρ0 ¼ −

ρΔ
2Σ

;

τ ¼ −
ia sin θffiffiffi

2
p

Σ
; τ0 ¼ −

iaρ2 sin θffiffiffi
2

p : ðF6Þ

The only nonzero Weyl scalar is

Ψ2 ¼ −
M

ðr − ia cos θÞ3 ¼ Mρ3: ðF7Þ
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