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We study the mass-radius relations of finite temperature white dwarfs modified by the

quadratic generalized uncertainty principle (QGUP), a prediction that arises from quan-
tum gravity phenomenology. This QGUP approach extends the Heisenberg uncertainty

principle by a quadratic term in momenta, which then modifies the phase space vol-

ume in the Chandrasekhar equation of state (EoS). This EoS was first calculated by
treating the GUP parameter β as perturbative. This perturbative EoS exhibits the ex-
pected thermal deviation for low pressures, while showing conflicting behaviors in the

high pressure regime dependent on the sign of the jth order of approximation, (O(βj)).
To explore the effects of QGUP further, we proceed with a full numerical simulation,

and showed that in general, finite temperatures cause the EoS at low pressures to soften,

while QGUP stiffens the EOS at high pressures. This modified EoS was then applied
to the Tolman-Oppenheimer-Volkoff equations and its classical approximation to obtain
the modified mass-radius relations for general relativistic and Newtonian white dwarfs.

The relations for both cases were found to exhibit the expected thermal deviations at
small masses, where low-mass white dwarfs are shifted to the high-mass regime at large

radii, while high-mass white dwarfs acquire larger masses, beyond the Chandrasekhar

limit. Additionally, we find that for sufficiently large values of the GUP parameter and
temperature, we obtain mass-radius relations that are completely removed from the ideal

case, as high-mass deviations due to GUP and low-mass deviations due to temperature
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are no longer mutually exclusive.
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1. Introduction

Several theories associated with quantum gravity such as string theory,1–4 path in-

tegral quantum gravity,5–8 loop quantum gravity,9,10 and doubly special relativity

(DSR)11–13 predict the existence of a minimum measurable length, on the order of

the Planck length lp
(
∼ 10−35 m). In string theory for example, it is suggested that

there is a minimum possible distance at which strings interact, that being the length

of the string itself.1 Additionally, in black hole physics,14–16 particularly in the ob-

servation of photons scattered through Hawking radiation,17 it is also suggested that

a photon cannot carry information more detailed than its own wavelength.14 The

existence of such a minimal length introduces a modification to the Heisenberg un-

certainty principle (HUP), which is then called the generalized uncertainty principle

(GUP), with the modification believed to have a gravitational origin.9,10,18

An approach to GUP, consistent with string theory and black hole physics, pro-

poses a modification of the HUP at the Planck scale called the quadratic GUP -

quadratic in the sense that the HUP is extended by an extra term of momentum

squared such that ∆x∆p ∼ ~[1 + β(∆p)2], which leads to the modified phase space

volume (1 + βp2)−3d3xd3p.19 The constant coefficient β is known as the quadratic

GUP parameter, whose exact value is debated by several previous studies.20–25 An-

other approach, consistent with string theory, black hole physics, and DSR is called

the linear GUP, with modified uncertainty principle ∆x∆p ∼ ~(1−α∆p) and phase

space volume (1−αp)−4d3xd3p.13 Numerous other approaches exist in the literature,

such as the linear-quadratic GUP,26 various higher-order GUP approaches,27–35 and

extended GUP for nonzero cosmological constant.36 For simplicity, this paper fo-

cuses on the quadratic GUP alone.

As pointed out by References 37–39, GUP effects are most evident in physical

systems of ultra-high energy, strong gravity, or ultra-fine length scales. Compact ob-

jects such as white dwarfs therefore arise as a natural candidate for investigation.

Most notable is the effect of GUP on the maximum allowable mass of a white dwarf,

known classically as the Chandrasekhar mass limit (∼ 1.4M�).40 Under normal cir-

cumstances, a white dwarf surpassing this limit is expected to undergo gravitational

collapse, evolving into denser compact objects; a neutron star for objects less than

3M�, or a black hole for much more massive objects.41 When applying quadratic

GUP effects, curiously this isn’t the case:

Wang, Yang, and Zhang in Ref. 20 considered an approximate GUP modification

to white dwarfs composed of an ultra-relativistic Fermi gas, and found that the

Chandrasekhar mass limit is increased by a small positive factor, inferring that

the quadratic GUP tends to resist the collapse of white dwarfs. Moussa in Ref. 42
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also approximated the GUP modification to find that the white dwarf radius tends

toward infinity as the stellar mass approaches the Chandrasekhar limit. Rashidi in

Ref. 37 employed the same assumptions as Wang et al. without approximating the

GUP modification, and found that as the central Fermi momentum of a white dwarf

increases, the stellar mass and radius increase without bounds, essentially removing

the Chandrasekhar mass limit. The same findings are reported by Ong in Ref. 38,

where heuristic calculations of GUP corrections to relativistic Fermi gases resulted

in white dwarfs becoming unbounded in size. In the same paper, Ong suggests that

this is avoided if β is a negative value. Finally, a complete investigation into the

removal of the mass limit is employed by Mathew and Nandy in Ref. 39 by deriving

the analytical form of the GUP-modified Newtonian structure equations for white

dwarfs. Their mass-radius relations still showed that the masses and radii increase

without bounds, but the relations may terminate at certain finite masses beyond

Chandrasekhar’s limit, if the white dwarf’s central momentum is restricted by either

the deformation of phase space due to GUP, or neutronization of white dwarf matter

due to inverse β-decay.

It is important to note however, that the above studies were performed under the

mathematical idealization of a cold white dwarf, by employing a zero temperature

Equation of State (EoS). Using the finite temperature EoS would prove to be more

realistic for new-born white dwarfs that start out at high temperatures, before

cooling in the billions of years after. A review of existing literature suggests this

has not been done before. Additionally, these studies limited their investigations

by only studying quadratic GUP effects in classical white dwarfs, by using the

stellar structure equations of Newtonian gravity.20,37,39 While this assumption is

sufficient in studying the essential features of white dwarfs without GUP,43 recall

that GUP effects appear at ultra-high energies, which are found in the most massive

white dwarfs. These objects have gravities that significantly warp spacetime, hence,

studying GUP effects in the context of general relativity (GR) should be more

appropriate.

To this cause, we present the objective of this paper, which is to investigate the

effects of the quadratic GUP on the structure of finite temperature white dwarfs,

particularly by obtaining the modified mass-radius relations in Newtonian grav-

ity and GR. The white dwarf is assumed to be a plasma ball of pressure-ionized

matter, whose degeneracy pressure and total energy density are related by the Chan-

drasekhar EoS.43,44 GUP modifications appear primarily in the EoS, which are then

fed to the stellar structure equations to obtain the mass-radius relation. We find

that in both Newtonian gravity and GR, hotter white dwarfs in the low-mass regime

acquire slightly larger masses, yet our consideration of thermal effects does not pro-

tect the white dwarf from surpassing the Chandrasekhar mass limit. The value of

β also determines how strongly the modified relations deviate from the ideal case,

with larger β aftecting more low-mass white dwarfs and vice versa. Furthermore,

for sufficiently large values of β, deviations due to GUP and temperature overlap,

producing a mass-radius relation that is completely removed from the ideal case.
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For completeness, this study derives approximate and exact forms for the modi-

fied finite temperature EoS, both employing an energy dispersion relation describing

Fermi gases of arbitrary relativity, as opposed to limiting our consideration to ultra-

relativistic gases. Furthermore, the structure equations are solved numerically for a

variety of white dwarf central pressures, allowing us to investigate GUP effects over

a wide range of stellar masses and radii (on the mass-radius relation), as opposed

to restricting investigations on the white dwarf’s limiting mass alone.

This paper is structured as follows. In Section 2, we derive the modified thermo-

dynamic properties of white dwarf matter to arrive at the modified Chandrasekhar

EoS. In Section 3, we explore two approaches to calculating this EoS: an approxi-

mate solution that involves expanding the EoS as a Taylor series, which we will call

the perturbative approach, and a full numerical approach that involves re-expressing

the EoS in terms of energies instead of momenta, which we refer to as the non-

perturbative approach. In Section 4, we introduce the Tolman-Oppenheimer-Volkoff

(TOV) structure equations in GR, the corresponding Newtonian approximation,

and feed the non-perturbative EoS into the equations to obtain the mass-radius

relations. Finally, in Section 5, we discuss our conclusions, recommendations, and

possible extensions to the study.

2. Quadratic GUP and the equation of state

2.1. The quadratic GUP

In the introduction, we mentioned that the quadratic GUP is an approach consistent

to string theory and black hole physics. The following examples illustrate this point:

Ref. 1 analyzed the ultra high-energy scatterings of strings (in string theory), to

check the inconsistencies of quantum gravity at the Planck scale, finding that strings

can’t interact at distances shorter than its own length λs =
√
~α, where α is the

string’s tension.1,3, 15,18 Meanwhile, thought experiments proposed to measure a

black hole’s apparent horizon also lead to a generalization of the HUP that agrees

with the above suggestion from string theory.45 This measurement is performed by

observing the photons scattered by a black hole emitting Hawking radiation, where

detecting said radiation allows us to make a black hole “image”. Both theories

suggest a commutaton relation18,19,46 of the form:

[x,p] = i~(1 + βp2) (1)

as introduced in the seminal paper by Kempf, Mangano, and Mann (1995) (Ref.

46). From (1), we can derive the uncertainty relation

∆x∆p ≥ ~
2

(
1 + β

〈
p2
〉)
→ ~

2

[
1 + β(∆p)2 + β〈p〉2

]
(2)

Where we have used the relation (∆p)2 =
〈
p2
〉
− 〈p〉2 on the RHS. The parameter

β is given by

β =
β0

M2
p c

2
=
β0l

2
p

~2
(3)
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where Mp is the Planck mass, c is the speed of light, and β0 is a dimensionless GUP

parameter. The exact value of β0 is currently unknown, but previous works have

attempted to provide estimates for its boundaries. Wang, Yang, and Zhang (2010)

proposed a lower bound of β0 > 104, imposed by the Hagedorn temperature of rela-

tivistic strings.20 Brau and Buisseret (2006) proposed an upper bound of β0 < 1034,

obtained by comparing the energy spectrum of the gravitational quantum well mod-

ified by a first order perturbation of β, with energy spectrum results obtained from

the GRANIT experiment.21 Das and Vagenas (2008) propose various upper bounds

to β0, obtained by showing that the existence of a minimal length produces quan-

tum gravity corrections to various quantum phenomena:22 (1) β0 < 1036 from the

accuracy in precision measurements of the Lamb shift of the H atom, (2) β0 < 1050

from the accuracy of direct measurements of Landau levels using STM (scanning

tunneling microscopy), and (3) β0 < 1021, the value needed for a GUP induced

current (in the quantum tunneling of electrons in STM) to add up to the charge of

just one electron, in the span of 1 year. Scardigli, Lambiase, Vagenas (2016) also

propose that β = 82π/5
(
β0 ∼ 1010

)
, from computing the Hawking temperature for

a Swarzschild black hole.23

Recently, A. Das, S. Das, Mansour, and Vagenas (2021) obtained upper bounds

by comparing graviton and photon speeds in a GUP-modified curved spacetime with

speeds obtained from gravitational wave events GW150914 and GW190521. Consid-

ering GUP modifications in graviton speed only, an upper bound of β0 < 2.56×1060

was obtained, while considering modifications in both graviton and photon speed

generated an upper bound as small as β0 < 8.83× 1035.24 Tamburini, Feleppa, and

Thide (2022) obtained an upper bound by comparing the orbital angular momentum

acquired after light is lensed by a GUP-modified rotating black hole, with experi-

mental data acquired for M87. They found an upper bound of β0/2M
2 ≤ 0.01064,

where M is the black hole mass. M87 has a mass of 6.5× 109M�, hence producing

an upper bound of β0 ∼ 1078.25

2.2. Modification to phase space

Chang et al. in Ref. 19 reports that the RHS of (2) implies a p-dependence in the

“effective value of ~”. This in turn implies that the size of the unit cell that each

quantum state occupies in phase space is also p-dependent. The modified phase

space volume thus takes the form

dDxdDp

(1 + βp2)
D
→ V

(2π~)D
dDp

(1 + βp2)
D

(4)

where the volume V arises from the trivial configuration space integration
∫
dDx =

V , and (2π~)−D arises when considering quantum mechanical systems. The phase

space volume above has been checked by Chang et al. to contain an unchanging

number of states as the volume evolves in time (an analog of the Liouville theorem).
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2.3. Modified equation of state

Because no white dwarfs have been observed to surpass the Chandrasekhar mass

limit,47–49 the Chandrasekhar EoS is often used to describe the relation between

the pressure and energy density of white dwarf matter. Said matter is assumed to

consist of a highly-degenerate Fermi gas of non-interacting electrons,50,51 exerting

an outward pressure that counteracts the object’s self-gravity.52 For a purely New-

tonian investigation of white dwarf structure, it is sufficient to assume that only

the nucleons contribute to the energy density, but our general relativistic treatment

requires we consider contributions from both nucleons and electrons.44

The modified phase space volume affects the statistical mechanics of Fermi par-

ticles, which by extension, affects the thermodynamic properties involved in con-

structing the EoS. To derive the modified properties, we begin with the grand

canonical partition function52–54 for a a system of particles with microstates j,

energies Ej , and number of particles nj , given as

Z =
∑
nj

∏
j

[
e(µ−Ej)/kBT

]nj

→ lnZ =
∑
j

ln
[
1 + e(µ−Ej)/kBT

]
(5)

where Z is summed over all possible microstates. µ is the chemical potential, kB
is Boltzmann’s constant, and T is the temperature of the system. On the RHS, we

have expressed Z in terms of its natural logarithm, from which we can derive the

thermodynamic properties.55 For systems of large volume, we rewrite the summation

as an integral over the modified phase space (4), such that lnZ becomes

lnZ =
gV

(2π~)3

∫ ∞
0

4πp2dp

(1 + βp2)
3 ln

[
1 + e(µ−E)/kBT

]
(6)

where we have used D = 3, and
∫
d3p has been reduced to 4π

∫
p2dp assuming

spherical symmetry. g is the degeneracy factor, equal to 2 for electrons.53 E is given

by the energy-momentum dispersion relation of arbitrary relativity,

E =
√
p2c2 +m2

ec
4 (7)

where me is the electron mass. Following methods discussed in Ref. 42, we can derive

from (6) the particle number density n, electron energy density ε, and pressure P :

n =
1

π2~3

∫ ∞
0

1

1 + e(E−µ)/kBT
p2dp

(1 + βp2)
3 (8)

ε =
1

π2~3

∫ ∞
0

E

1 + e(E−µ)/kBT
p2dp

(1 + βp2)
3 (9)

P =
kBT

π2~3

∫ ∞
0

ln
[
1 + e(µ−E)/kBT

] p2dp

(1 + βp2)
3 (10)

In (8) and (9), we encounter the Fermi-Dirac distribution f(E),

f(E) = (1 + e(E−µ)/kBT )−1 (11)
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f(E) can be found in the pressure expression by integrating (10) by parts, which

yields:

P =
1

π2~3

∫ ∞
0

[
arctan(

√
βp)

8β3/2
+

p(βp2 − 1)

8β(1 + βp2)2

]{[
1

1 + e(E−µ)/kBT

]
c2p

E
dp

}
(12)

From (8), we can construct an expression for the mass density ρ:

ρ = µemun (13)

where µe is the molecular weight per electron, and mu is the atomic mass unit. For

white dwarfs made of He, C, and O, µe ≈ 2,43 which is the specific µe we will use

for the rest of the paper. Finally, the total energy density εt is defined as

εt = c2ρ+ ε (14)

where the first term on the right-hand side corresponds to the nucleon contribution,

while the second term is the electron contribution.

The Chandrasekhar EoS is therefore obtained by calculating (14) and (12) at

various µ, and subsequently interpolating those values to obtain a function of the

form εt(P ). For convenience in numerical calculations, we further obtain the dimen-

sionless EoS by using the quantities:

ε̃ =
εt
ε0

; P̃ =
P

ε0
; ε0 =

m4
ec

5

π2~3
(15)

where ε0 has units of pressure.

3. Approaches to calculate the equation of state

3.1. Perturbative approach

The pressure integral (12) is arguably a complicated integral to solve numerically,

hence the need arises to rewrite the integral toward a more suitable form for numer-

ical integration. A first, reasonable approach would be to treat β as a perturbative

parameter, thus allowing us to expand the thermodynamic integrals around β.

We first notice that the GUP modification to (12) is found in the factor in square

brackets before f(E). Its corresponding Taylor series is given as

arctan(
√
βp)

8β3/2
+

p(βp2 − 1)

8β(1 + βp2)2
≈ 1

3
p3− 3

5
βp5+

6

7
β2p7− 10

9
β3p9+

15

11
β4p11+ ... (16)

which is similar in form to the series obtained by Wang et al. in Ref. 20. Moussa in

Ref. 42 only kept terms up to O(β) in the modified zero-temperature EoS; in this

paper, we will use higher-order terms.
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Plugging the Taylor series back into (12), we obtain:

P =
1

π2~3

∫ ∞
0

[
1

3
p3 − 3

5
βp5 +

6

7
β2p7 − 10

9
β3p9 +

15

11
β4p11 + ...

]
×
{[

1

1 + e(E−µ)/kBT

]
c2p

E
dp

} (17)

= P0 + P1 + P2 + P3 + P4 + . . . =

∞∑
j=0

Pj (18)

We are interested in deriving an expression for Pj to be able to approximate P up

to any order j. We do so by introducing the following substitutions56

E = mec
2(θx+ 1); Ek = E −mec

2; µ′ = µ−mec
2

θ =
kBT

mec2
; x =

Ek
kBT

; η =
µ′

kBT

p =
√

2mekBTx (1 + θx/2)
1/2

; dp = kBT
E

c2p
dx

(19)

such that Pj is written as

Pj = Cj
m4
ec

5

π2~3
2[ 3

2+j]θ[
5
2+j]β̃2j

j+2∑
i=1

DiF( 1
2+j+i)

(20)

where Cj is the jth coefficient in the Taylor series (16), Di is the ith term in the

polynomial
(
1 + θ

2

)j+1
, β̃ is related to β & β0 by

β̃ = mec
√
β =

melpc

~
√
β0 (21)

and

Fk =

∫ ∞
0

xk
√

1 + θx/2

1 + ex−η
dx (22)

is known as the Generalized Fermi-Dirac integral.43,56 The presence of Fk in the

above expressions is particularly convenient, as numerous methods already exist to

calculate Fk for any value of k and η, such examples being References 57–59.

We note however, that using the lowest-ordered terms in the expansion is only

valid for β̃ << 1. The approximation reasonably breaks down for β̃ & 1, because the

coefficient β̃2j in (20) would create higher-order terms that are larger in magnitude

compared to preceding terms, i.e. Pj−1 < Pj .

For the number and energy density integrals (8) & (9), we can expand the factor

p2(1 + βp2)−3 through the following Taylor series

p2

(1 + βp2)3
≈ p2 − 3βp4 + 6β2p6 − 10β3p8 + 15β4p10 + ... (23)
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and thus derive the following expressions for nj and εj :

nj = Gj
m3
ec

3

π2~3
2[ 1

2+j]θ[
3
2+j]β̃2j

j+2∑
i=1

HiF(j+i− 1
2 )

εj = Gj
m4
ec

5

π2~3
2[ 1

2+j]θ[
3
2+j]β̃2j

j+3∑
i=1

JiF(j+i− 1
2 )

(24)

where Gj is the jth coefficient in the Taylor series (23), Hi is the ith term in the

polynomial (1+θ)
(
1 + θ

2

)j
, and Ji is the ith term in the polynomial (1+θ)2

(
1 + θ

2

)j
.

3.2. Visualizing the perturbative equation of state

Using (15), we can calculate the EoS at various orders of approximation. The re-

sulting graphs are found on Figure 1, where we have used β0 = 1040 (or β̃ ∼ 10−3)

and T = 107 K. Due to limitations in computation, we limit the approximation

to fourth order. For comparison purposes, we superimpose the EoS for β0 = 1040

& T = 0 K (solid sky-blue line), which starts as coinciding with the regular zero

temperature EoS (β0 = 0 & T = 0 K) as P̃ increases, but later saturatinga toward

a constant energy density, thus indicating a stiffer EoS.60 Here, “stiffen” refers to

the continuously large increases in pressure corresponding to minimal changes in

energy density, indicative of a gas that is harder to compress.61

The perturbative EoS (for all orders of approximation) exhibits the expected

thermal deviation at low pressures,43 diverging from the ideal case with a steeper

slope (indicating a softer EoS), before converging with the ideal case at ε̃ & 10−1.

In the high pressure regime, we encounter the following behaviors: The O(β) EoS

(dashed yellow line) dips and shoots downward at ε̃ ∼ 108 because EoS values

beyond this point are negative – thus becoming undefined in the logarithmic plot.

This may be attributed to the negative sign of β1 terms in the Taylor series (17)

and (23). Through the plot, we can infer that terms proportional to β are larger

in magnitude compared to terms proportional to β0, with the former dominating

the latter where the EoS starts to dip. For the O(β2) EoS however (solid red line),

values remain positive all throughout, gaining a larger slope than the ideal EoS at

ε̃ & 1011, once again indicative of the dominance of the last truncated term (which

now has a positive sign). Furthermore, the occurence of a larger slope is reminiscent

of behavior found in the zero temperature EoS with linear GUP, as explored by

Ref. 62, 63. These behaviors are repeated (and more pronounced) for O(β3) and

O(β4), each dictated by the sign of the largest-ordered term.

One can observe that the high-pressure deviations occur in the region where

saturation also begins for the zero temperature EoS with GUP. This allows us to

further infer that as the order increases, and thermodynamic integrals (nj , εj , Pj)

a“saturate” as used in the context of the EoS is a term that is lifted from the GUP discussions of

Ref. 39.
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Fig. 1. Perturbative EoS at various orders of approximation, for β0 = 1040 and T = 107 K.

of higher order j are taken into account, the perturbative EoS should approach the

zero temperature GUP case. We note however, that further increasing the order j

would entail a Fermi-Dirac integral of the form

∫ ∞
0

xj→∞
[
other terms

]
dx (25)

which is quite an impractical integral to solve. We are also hampered by the con-

flicting behaviors shown by the EoS at various orders, due to the alternating signs

of the Taylor series expansion. Choosing a large j does not eliminate the fact that

the EoS behaves differently for j + 1. We are therefore urged to forego the approx-

imation in the interest of a full numerical approach to solve the thermodynamic

integrals.

3.3. Non-perturbative approach

To remedy the above problems, here we calculate the modified EoS in its exact

form. We begin with the modified number and energy density integrals (8) & (9),

and the pressure integrated by parts (12). Using (19), while choosing the equivalent
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Fig. 2. The GUP-modified finite temperature EoS at T = 107 K.

p substitution p = mec
√

(θx+ 1)2 − 1, we obtain the integrals:

n =
m3
ec

3

π2~3
θ

∫ ∞
0

[
(θx+ 1)

1 + ex−η

] √
(θx+ 1)2 − 1

{1 + β̃2 [(θx+ 1)2 − 1]}3
dx (26)

ε =
m4
ec

5

π2~3
θ

∫ ∞
0

[
(θx+ 1)2

1 + ex−η

] √
(θx+ 1)2 − 1

{1 + β̃2 [(θx+ 1)2 − 1]}3
dx (27)

P =
m4
ec

5

π2~3
θ

8β̃3

∫ ∞
0

{[
1

1 + ex−η

]
arctan

[
β̃
√

(θx+ 1)2 − 1
]

+

[
β̃2
[
(θx+ 1)2 − 1

]
− 1

1 + ex−η

]
β̃
√

(θx+ 1)2 − 1

{1 + β̃2 [(θx+ 1)2 − 1]}2

}
dx

(28)

Although this exact approach does not share the convenience of the perturbative

EoS and the pre-existing algorithms to solve Fk, the numerical work required is

somewhat reduced through our efforts to re-express the integrals in terms of kinetic

energy x, instead of the momentum p, the latter being inconveniently nested in E

and f(E) throughout the original integrals. More importantly, this approach should

be applicable for arbitrary temperature T and GUP parameter β̃.

Using the above integrals to calculate the EoS allows us to obtain the plot in

Figure 2, where we have used the GUP parameters in the range 1038 ≤ β0 ≤ 1044

(as employed by Mathew and Nandy in Ref. 39, all of which falling within the esti-

mated boundaries in Section 2.1), with temperature T = 107 K. In the low-pressure
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regime, we find the expected thermal deviation of a softer EoS, occuring for all β0.

In the high-pressure regime, the EoS stiffens and saturates toward constant energy

densities at high pressures. The “saturation point,” i.e. the point at which saturation

toward constant energy densities starts to occur, is dependent on the magnitude of

β0. Larger β0 leads to stronger deviations, resulting in a saturation point that occurs

at smaller pressure. Conversely, smaller β0 leads to a higher saturation point. We

can also confirm the validity of our results in Figure 2 by comparing them with the

GUP EoS plots at zero temperature as produced by Mathew and Nandy in Ref. 39.

Sans the thermal deviation in the former figure, both exhibit identical GUP effects.

4. Quadratic GUP and white dwarf structure

4.1. The Tolman-Oppenheimer-Volkoff equations

The Tolman-Oppenheimer-Volkoff (TOV) equations are a system of first-order or-

dinary differential equations (ODEs) describing the pressure P and mass M of a

spherically-symmetric, general relativistic star from center to surface.47 To derive

the ODEs, Tolman,64 Oppenheimer and Volkoff65 solved the Einstein field equa-

tions for a static and isotropic star made of a perfect fluid, whose exterior spacetime

is described by the Schwarzschild metric.66 The ODEs read as

dP

dr
= −GMεt(r)

c2r2

[
1 +

P

εt(r)

] [
1 +

4πr3P

Mc2

] [
1− 2GM

c2r

]−1
(29)

dM

dr
=

4πr2εt(r)

c2
(30)

where εt(r) is the interpolated EoS, a function of the pressure P . (29) is a statement

of hydrostatic equilibrium, i.e. the balance between a star’s pressure and self-gravity.

It is a monotonically decreasing function, vanishing at the stellar radius R?. (30)

is the mass continuity equation, which tells us that a star’s mass increases with

its radius, capping off at the stellar radius with a total mass M?. These ODEs

are to be solved numerically as there are no analytic solutions;67 for this paper we

use the standard fourth-order Runge-Kutta method (RK4) as employed by Refs.

44, 52, 53, 62, 67. To do so, we employ the boundary conditions P (r = 0) = P0,

where P0 is the central pressure, and M(r = 0) = 0.

The factors in square brackets on (29) can be considered positive GR correc-

tions to the stellar pressure.44 Without these corrections, we recover the Newtonian

structure equations, given by the pressure equation

dP

dr
= −GMεt(r)

c2r2
(31)

and the same mass equation in (30). Comparing (29) and (31), one can conclude

that the gravitational pull is stronger in GR.67 This Newtonian approximation to

the TOV equations is sufficient to study the essential features of white dwarfs,43

since most are found within the 0.5 to 0.7 solar mass range.48 However, the TOV
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equations in their exact form are needed in studying the most massive white dwarfs,

as these objects significantly warp spacetime.52,66,67

To avoid dealing with astronomically-large quantities of mass and radius, which

may incur large and unnecessary numerical errors,52 we rewrite the TOV equations

into their computationally-efficient dimensionless forms:

dP̃

dr̃
= −M̃(r̃)ε̃(r̃)

r̃2

[
1 +

P̃ (r̃)

ε̃(r̃)

][
1 +

αr̃3P̃ (r̃)

R3
0M̃(r̃)

][
1− 2M̃(r̃)

r̃

]−1
(32)

dM̃

dr̃
=

α

R3
0

r̃2ε̃(r̃) (33)

where

α =
4πε0
M�c2

, r̃ =
r

R0
, R0 =

c2

GM�
, M̃ =

M

M�
(34)

and ε̃(r̃) is given by (15). It should be easy to see that the Newtonian approximation

to (32) takes the form

dP̃

dr̃
= −M̃(r̃)ε̃(r̃)

r̃2
(35)

while the Newtonian mass retains the form of (33).

4.2. Newtonian solutions

We first solve the Newtonian ODEs for a large number of central pressures to obtain

a variety of stellar masses and radii. A stellar radius versus central pressure plot is

shown on Figure 3, where we see that similar radii are produced for 1039 ≤ β0 ≤
1042, decreasing as P̃0 increases. The same behavior is observed for β0 = 1043, albeit

with slightly larger radii obtained across central pressures. For β0 = 1044 however,

the radii rapidly increase even at small central pressures. It is also at small central

pressures that we see the effects of temperature. As shown on the inset, higher

temperatures lead to slightly larger radii, as is observed even for regular white

dwarfs.43 At larger pressures however, this thermal effect disappears.

A stellar mass versus central pressure plot is also shown on Figure 4, where

masses produced for β0 = 1039, 1040 are similar to those found in the ideal case, both

of which plateauing at the Chandrasekhar mass limit of MCh = 1.456M�
40,52–54,67

as P̃0 increases. Masses for β0 = 1041 are slightly elevated from the previous β0
values, while masses for β0 = 1042 forego the plateau and increase steadily instead.

This effect is also observed for larger β0 but stronger, with masses rapidly increasing

from the outset – a strange result as opposed to the constancy of the Chandrasekhar

mass in the limit of infinite central pressure (at least within the Newtonian context).

As shown on the inset, no thermal effect can be seen for the masses across all β0.

Finally, by plotting the stellar masses against the radii, we obtain the modified

mass-radius relations in color on Figure 5, superimposed over the ideal case in black.

The relations obtained using our modified EoS at various β0 all exhibit the expected
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Fig. 3. R? vs. P̃0 for GUP-modified Newtonian white dwarfs at finite temperatures.

thermal deviation in the low-mass regime, where masses found to the right of the

plot are slightly larger than the ideal case.43 In the high mass regime, the relation

for β0 = 1039 closely follows the ideal case, while relations of larger β0 deviate and

extend toward infinite mass values. Larger β0 corresponds to stronger deviations,

in the sense that more low-mass white dwarfs stray from the ideal behavior, as the

relation is lifted from the ideal case. On the inset is the relation for β0 = 1044 with

the y-axis limits extended toward large masses beyond the Chandrasekhar limit,

showing that indeed, both masses and radii increase without bounds. The relations

produced here resemble those produced in Ref. 39 (see Figure 6), only differing in the

thermal deviation found in the low-mass regime. They also confirm the results found

from the heuristic calculations of Ref. 38, of white dwarfs being able to “bounce”

from gravitational collapse, this bouncing effect being the tendency of the modified

relations to approach a limiting mass toward the left of the graph, only to make a

turn for the right as the central pressure approaches infinity.

The absence of a mass limit for white dwarfs is, as far as current observations

are concerned,48,49,68 a nonphysical result. Beyond the mass limit, white dwarfs are

expected to collapse into neutron stars and black holes.66,67,69–71 Additionally, as

pointed out by References 42 and 38, the GUP phenomenon of allowing arbitrarily

large values of mass and radius is also far removed from the reality that white dwarfs
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Fig. 4. M? vs. P̃0 for GUP-modified Newtonian white dwarfs at finite temperature.

from observation have smaller radii than what is predicted by theory.72–74

4.3. General relativistic solutions

Here, we reproduce our solutions in the previous section, this time using the exact

TOV equations. The GR stellar radii across central pressures on Figure 7 obtain

similar values with the Newtonian radii, with thermal effects still occurring at small

pressures (see Figure 3). For the GR stellar masses on Figure 8, prominent differ-

ences with the Newtonian masses are most evident for β0 = 1039, 1040, as shown on

the inset. The β0 = 1039 masses closely resemble the GR ideal masses – both peak

at 1.419M�, then subsequently decrease as P̃0 increases. For small enough β0, it ap-

pears that GR continues to support the white dwarf’s gravitational collapse beyond

a finite mass limit.44,66,67,70 At β0 = 1040 however, the masses begin to increase

beyond the limit, the GR masses in particular falling below the Newtonian masses

in dotted grey, because the onset of this increase occurs beyond the supposed GR

mass dip. This behavior of a dip due to gravitational collapse being reversed by a

sudden rise in mass is a clearer depiction of the“bouncing effect” mentioned in the

Newtonian mass-radius relations.
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Fig. 5. GUP-modified mass-radius relations for Newtonian white dwarfs at T = 107 K.

Fig. 6. GUP-modified mass-radius relations for Newtonian white dwarfs at zero temperature.

Finally, we obtain the GR mass-radius relations on Figure 9. Behaviors found

here are reminiscent of those found in the Newtonian relations, where the expected

thermal deviation is found in the low-mass regime and the GUP effects occur in

the high-mass regime. We find the GR tendency to produce slightly reduced masses



October 20, 2022 0:41 WSPC/INSTRUCTION FILE GUP˙WhiteDwarf

Modified White Dwarfs from GUP 17

Fig. 7. R? vs. P̃0 for GUP-modified GR white dwarfs at finite temperatures.

occurring for β0 = 1039, 1040, where relations are slightly shifted downward, but the

tendency seems to disappear for larger β0. For β0 = 1039 the relation follows the

ideal GR case, having a mass limit 1.419M� at the stellar radius Rlim,GR = 1084

km. For larger β0, we still find the relations being lifted from the ideal case, shooting

toward infinity as the modified white dwarfs acquire arbitrarily large masses and

radii.

It is also worth noting that for a large enough temperature and β0, we obtain a

mass-radius relation that is completely removed from the ideal cases, as shown on

Figure 10 for emphasis. It is here that we find the effects of temperature and GUP

truly overlapping, as opposed to the exclusivity of these two types of deviations

within the low and high mass regions when both parameters are relatively small.

Although quite the extraordinary finding, we are still led by observation to believe

that these relations are nonphysical, given the existence of heavier compact objects

beyond the Chandrasekhar mass limit.

5. Conclusions and Recommendations

In this study, we have explored the phenomenological effects of quantum gravity, as

manifested by GUP modifications in finite temperature white dwarfs. This was done

by applying the modified phase space volume to the thermodynamic properties of
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Fig. 8. M? vs. P̃0 for GUP-modified GR white dwarfs at finite temperatures.

a degenerate Fermi gas, from which the equation of state was derived. The first

approach in calculating this EoS involved expanding the EoS as a Taylor series by

treating the GUP parameter as perturbative, which led to the derivation of general

formulas to calculate the EoS up to any order of approximation in the series. In the

low-pressure regime, this perturbative EoS exhibited the expected thermal deviation

across all orders of approximation. At high pressures however, the EoS showed

conflicting behaviors at each order, as dictated by the sign and magnitude of the

last term of the truncated Taylor series. Furthermore, the perturbative approach

proved to be numerically impractical for large orders. We therefore resorted to using

the non-perturbative approach, where we found that the EoS should saturate toward

constant energy densities in the high-pressure regime, which is the exact behavior

shown by the modified zero temperature EoS. The non-perturbative EoS differed

from this modified cold EoS in the thermal deviations present at low pressures.

The non-perturbative EoS was then used to complete the stellar structure equa-

tions. In Newtonian gravity, the solutions to these equations produced a mass-radius

relation with two primary deviations from the ideal case: in the low-mass regime,

white dwarfs obtain slightly larger masses, which is what is expected when tem-

perature is involved, while in the high-mass regime, white dwarfs obtain arbitrarily

large masses and radii, the same nonphysical result observed for modified cold white
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Fig. 9. GUP-modified mass-radius relations for GR white dwarfs at T = 107 K.

Fig. 10. GUP-modified mass-radius relations for GR white dwarfs, for temperatures T = 106, 5×
106, 107 K.

dwarfs. Furthermore, increasing the quadratic GUP parameter causes stronger de-

viations in the mass-radius relation, affecting more low-mass white dwarfs in the

region near the Chandrasekhar limit. The solutions in GR follow the same behavior,
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albeit shifting the relations downward in the high-pressure regime. Indeed, GR con-

tinues to decrease the masses of white dwarfs approaching Chandrasekhar’s limit,

but in the context of the quadratic GUP, the modified white dwarfs do not evade

unbounded growth in size and mass. We also saw that for a large enough tempera-

ture and GUP parameter, these two effects overlap, leading to mass-radius relations

that are completely removed from the ideal case.

A possible extension to this paper can be made by performing statistical analyses

to determine which modified mass-radius relation best describes observational data

of white dwarf parameters. Methods employed by Ref. 49 may be used, where one

can also find a table of model-independent white dwarf masses and radii. Another

option is the method employed by Ref. 26, in which data was compared to mass-

radius relations obtained using a linear-quadratic GUP.

Future studies may employ more sophisticated EoS’s in conjuction with

quadratic GUP and finite temperature considerations. One example is the Salpeter

EoS, which considers the effects of local inhomogeneities of the electron distribution,

or the relativistic Feynman-Metropolis-Teller EoS, which generalizes the Salpeter

EoS by taking into account β-equilibrium and Coulombic interactions under a full

relativistic fashion.43,75 Additionally, more realistic mass-radius relations may be

produced by also considering effects of the white dwarf’s angular momentum, mag-

netic field, and lattice energy, which in combination with quantum gravity (as man-

ifested by GUP) may produce a finite mass limit.38,42

As mentioned in the introduction, one may also choose to employ different ap-

proaches to the GUP, varied in derivation and form due to the absence of a full

theory of quantum gravity.9,20,76 An example is the linear-quadratic GUP used in

Ref. 26, whose GUP factor is of the form (1−βp+γp2)−4. Various combinations of

β and γ produce a corresponding variety of mass-radius relations, some with mass

limits and others without, but a finite temperature extension in conjuction with

these combinations is yet to be performed. Another approach is the extended GUP

(EGUP) used in Ref. 36, which takes the form ∆x∆p ∼ ~[1 + α(∆p)2 + β(∆x)2],

with the β(∆x)2 term being related to the cosmological constant. Through heuris-

tic methods, EGUP is shown to “protect” the Chandrasekhar limit – it would be

interesting to confirm this prediction using the numerical methods of our study. To

do this, one must first find the correct deformation of phase space when using the

EGUP. As a benchmark, this has been found by Ref. 77 for the modified commuta-

tor [x, p] ∼ ~[1 + αx2] known as the EUP (extended uncertainty principle), or the

EGUP without the term proportional to p2.

Lastly, one may choose to modify the TOV equations by taking into account the

cosmological constant Λ. By assuming a nonzero Λ in the Einstein field equations,

Ref. 67 notes that the right-hand side of dP/dr in the TOV equations is only ex-

tended by an extra term. A finite Λ is associated with the presence of dark energy,78

and the acceleration of the universe’s expansion. While its value is considered to be

small, one might observe deviations in the mass-radius relations, hence completing

this modified TOV equation with a finite temperature EoS, in combination with
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any of the previous suggestions, could produce some interesting results.
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