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ABSTRACT: The computational discovery of novel materials has
been one of the main motivations behind research in theoretical
chemistry for several decades. Despite much effort, this is far from a
solved problem, however. Among other reasons, this is due to the
enormous space of possible structures and compositions that could
potentially be of interest. In the case of inorganic materials, this is
exacerbated by the combinatorics of the periodic table since even a
single-crystal structure can in principle display millions of
compositions. Consequently, there is a need for tools that enable
a more guided exploration of the materials design space. Here,
generative machine learning models have recently emerged as a
promising technology. In this work, we assess the performance of a
range of deep generative models based on reinforcement learning, variational autoencoders, and generative adversarial networks for
the prototypical case of designing Elpasolite compositions with low formation energies. By relying on the fully enumerated space of 2
million main-group Elpasolites, the precision, coverage, and diversity of the generated materials are rigorously assessed. Additionally,
a hyperparameter selection scheme for generative models in chemical composition space is developed.

1. INTRODUCTION
Generative machine learning (ML) models are increasingly
used for the targeted generation of images,1 video sequences,2

text,3 or music.4 This can be achieved by approximately
representing the underlying data distribution as inferred from a
provided data set and sampling from this distribution.
Alternatively, the underlying “construction rules” of a dataset
can be learned from examples without taking the underlying
distribution into account explicitly. Ultimately, both ap-
proaches provide access to the novel but realistic examples,
which incorporate the decisive features of the training data.
In the context of organic chemistry, such ML models have

already been successfully applied for the inverse design of
novel molecular candidates.5,6 Rather than using an explicit set
of rules that link molecular fragments to new molecules, the
underlying wealth of construction principles is captured from
data in the training phase,7−9 often using existing (public)
libraries of organic molecules presented to the model. The
generation process then allows for overcoming the limitations
of the initially presented molecular library10−14 by accessing
molecules with a wide variety of chemical functionalities that
are still consistent with the training examples.
Beyond merely proposing realistic molecules, molecular

design typically additionally demands the focused generation
of candidates with desired properties. This can be achieved15

by enhancing generative approaches via transfer learning,16−20

semisupervised learning,21,22 conditional generation,21−26

reinforcement learning,27−30 or by carrying out optimization
in a well-structured (latent) representation space.31−33

In essence, this molecular design toolbox can equally be
applied to the proposition of novel and useful inorganic
materials for catalysis, energy conversion, or other applications.
However, inorganic materials present notable challenges in this
regard. This is because, on the one hand, a suitable (i.e.,
invertible) material representation that respects the symmetry
and the periodicity of a three-dimensional crystal and is
(ideally) independent of the number of atoms in the unit cell is
not trivial to define.34 On the other hand, a much larger variety
of chemical compositions are possible for inorganic systems.
The current paper will focus on the latter aspect.
In the prevailing data scarcity, inverse design of inorganic

materials has usually focused more on structural prediction in
limited composition spaces35−40 or compositional optimization
with fixed structural prototypes.41−43 However, even if trained
on a limited subset of structure types, it has been shown that
these models are able to generalize to new structure types that
were not included in the training process.34

Deep generative frameworks employing neural networks
(NNs) have proven to be an invaluable tool in this context.44

Notably, these comprise a large zoo of approaches, including
variational autoencoders (VAEs),34−36,39,42,45−47 generative
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adversarial networks (GANs),37,38,41−43,48,49 and reinforcement
learning (RL).50,51 Given this wide range of approaches, it is a
priori difficult to decide which method should be used for a
new inverse design task.
While different ML models can be compared objectively by

checking their predictive accuracy on an unseen test set for
regression or classification tasks, this is much less straightfor-
ward for generative models, where each model generates new
data independently. Here, one must instead evaluate to what
extent the new data covers the underlying distribution of the
training set and how well it generalizes to new samples that are
unlike the training examples.11−13,52 Furthermore, in the
context of targeted materials design, an important question is
whether the proposed candidates reliably display the desired
properties.
Due to these questions, comparative studies which have

been performed for organic molecule generation11−14,52,53 and
(less frequently) inorganic materials,54 are particularly
valuable. Aiming to establish deeper insight into the advantages
and disadvantages of the variety of generative frameworks for
inorganic materials design, we here embark on such a
comparative study. Specifically, we use the targeted search
for novel, stable compositions within a fixed structural
prototype as a suitable benchmark for comparing the
performance of three prevalent generative ML approaches
(VAE, GAN, and RL).
To this end, we rely on a well-established computational

data set of Elpasolite structures reported by Faber et al.,55

which has previously served as a benchmark for regression
models.56−60 This set comprises the fully enumerated space of
nearly 2 million systems, which can be derived by the main-
group elemental exchange on the pristine quaternary Elpasolite
mineral AlNaK2F6. Notably, this mineral is part of the
quaternary double-perovskite prototype ABC2D6, which is of
significant technological interest.
Relying on the distribution provided by this fully

enumerated chemical composition space, we demonstrate
that straightforward realizations of different generative frame-
works using simple NN architectures can reliably generate
promising material candidates. Noting the plethora of
algorithmic ramifications and subtleties in hyperparameter
settings in each generative model class, we define general
performance metrics with regard to the diversity, coverage, and
fitness of the proposed materials. With this, we hope to
establish a well-defined and representative benchmark problem
for future assessment and tailoring of generative models.

2. METHODS
2.1. Dataset and Material Representation. The prototypical

Elpasolite mineral ABC2D6 is reproduced in Figure 1a. The complete
Elpasolite material space considered herein then emerges from all
possible combinations of main-group elements (from H to Bi, 39
overall) on the four lattice sites (A, B, C, and D), leading to 1,974,024
possible structures. In ref 55, formation energies Eformation

DFT computed at
the PBE level are reported for a subset of 10,590 structures (assuming
perfect cubic symmetry). Additionally, that work also provides
accurate estimates of Eformation

regression for the remaining structures, predicted
by a kernel ridge regression (KRR) model with a mean absolute error
of 0.1 eV; see Figure 1e,f. In the following, we use DFT values to train
the conditional generative models, while estimated values from the
KRR model are used to gauge the quality of generated samples. All
formation energies are given per atom.

To represent different Elpasolites, we employ a simplified version
of the bag-of-atoms42 representation, closely following Faber et al.55

In this way, each composition is represented by an eight-dimensional
vector x8D. As illustrated in Figure 1b, its entries correspond to the
row number nrow (ranging from 1 to 6) and the main-group number
ngroup (ranging from 1 to 8) of each of the four sites in the structure.
The different absolute ranges of the row and main-group entries in the
vector are thereby normalized to the common interval (−1,1) by
rescaling to

=x
x

n
2 1

18D,scaled
8D

row/group (1)

Note that this representation also encodes structures with
nonexistent elements (e.g., first-row elements of group number 2−
7) or structures with repeated elements. The generative models can
therefore in principle also generate such invalid structures. However,
as structure generation is not a time-limiting factor and the proportion
of invalid compositions is generally low, we simply disregard invalid
samples, rather than fixing this shortcoming of the compositional
representation.

It should further be noted that the A and B sites are equivalent in
the Elpasolite structure, so that structure ABC2D6 should have the
same formation energy as BAC2D6. This permutational symmetry is
not exploited in the DFT training set of ref 55. Indeed, there are only
34 occurrences where both structures are contained (with slightly
different DFT formation energies deviating on average by 2.3 meV/
atom). As part of our data curation, we augmented the DFT training
set by consistently adding all A/B permutations, obtaining a final DFT
training set size of 21,112 structures.

Figure 1d depicts the elemental distribution of the final training set.
The corresponding DFT formation energies range from −3.07 to

Figure 1. (a) Prototypical Elpasolite structure ABC2D6. (b) 8D
representation of the Elpasolite elemental composition by row and
main group number in the periodic table exemplified for AlNaK2F6.
(c) Scaling of the 8D representation by eq 1. (d) Elemental
distribution of the training dataset. (e) Formation energy distribution
of DFT training and the full reference data set from ref 55, split into
10 equal-range energy classes, see text. (f) Formation energy of the
DFT data vs the predicted one from the regression model.
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5.02 eV/atom, with a negative value indicating stability with respect
to elemental decomposition. In order to conditionally generate
samples in given stability ranges, the training data was split into 10
classes, each containing an equal span of 0.81 eV/atom on the
Eformation
DFT scale. Class 1 spans the lowest formation energies and thus

the most stable Elpasolite compositions, while class 10 spans the
highest formation energies and thus the least stable compositions.
When necessary for conditional training, these classes are encoded
into a 10-dimensional one-hot vector, which is concatenated to the
structural representation discussed above. Note that this division into
classes is mainly performed in order to simplify the subsequent
analysis of the models. It would also be possible to directly condition
the models on the formation energy.

During training, batches are formed by randomly sampling training
compositions with a probability that is the inverse of the frequency
with which the corresponding energetic class appears in the DFT
training set. This weighted sampling allows us to mitigate the class
imbalance in the DFT training set, that is, the fact that, for example,
much fewer samples are in class 1 than in class 5 as apparent in Figure
1e. Note that all cost functions below are defined for a single training
example, for notational convenience. Extension to batch-based
training is straightforward. For practical implementation, a common
interface to the data set is provided by a custom data loader. This
code implements the described preprocessing steps and handles the
balanced sampling of batches during the training of the generative
models. For reference and further benchmarks, the Python code is
freely available at https://gitlab.mpcdf.mpg.de/fhi-theory/elpasolite_
generative_model_assessment.
2.2. Performance Metrics. Using the DFT training set, we build

deep generative models for the inverse design of Elpasolite
compositions. Ideally, these models should (i) propose compositions
in a targeted energy class with high precision, (ii) yield a high diversity
among the proposed compositions, and (iii) display high coverage of
the chemical composition space. While the first of these is directly
enforced by the conditional generation (and in the RL reward),
diversity and coverage are more subtle factors. Indeed, so-called

mode- or posterior collapse is commonly observed in GAN61 or VAE
models,62,63 ultimately resulting in a limited number of samples that
the models can generate.

To assess these factors, we exploit the fact that the full Elpasolite
composition space is known from the prior work of Faber et al.55 We
thus know the total number of Nclass of compositions in each class (see
Figure 1e) and the elemental distributions on the four sites (A, B, C,
and D) in each class. Based on this, we define the following
quantitative performance metrics:

(1) Precision (right class) measures the model’s ability to generate
samples in the desired class. To this end, the fraction of generated
compositions that actually fall into the desired class is computed

=
N
N

precision (right class) class
gen

gen (2)

where Ngen is the total number of generated samples and Nclass
gen is the

number of generated samples which belong to the desired class. This
means that high precision is achieved if the model reliably produces
samples in the desired class. Note however that this can also be
achieved from only a few repetitively produced samples (or even by
memorizing the training set).

(2) Precision (neighboring class) analogously measures the fraction
of samples falling into the classes just above or below the requested
class

=
+ +N N

N
precision (neigh. class) class 1

gen
class 1
gen

gen (3)

This allows capturing the tails of the predicted formation energy
distributions. Since the models are trained on DFT data but evaluated
using the approximate KRR energetics for the full Elpasolite space,
this metric captures the residual uncertainty in the definition of the
energy classes.

(3) Coverage (right class) measures the fraction of unique
compositions in the desired class that could be generated by the
model

Figure 2. Reference JS distances between the training set and the full Elpasolite space.
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=
N

N
coverage (right class) class,un.

gen

class (4)

where Nclass,un.
gen is the number of unique compositions generated in the

desired class.
(4) Coverage (neighboring class) analogously measures the

fraction of unique compositions in the classes just above or below
the requested class

=
+
+

+

+

N N

N N
coverage (neigh. class) class 1,un.

gen
class 1,un.
gen

class 1,un. class 1,un. (5)

(5) The Jensen−Shannon (JS) distance measures how strongly the
elemental distribution in the generated examples differs from the
corresponding distribution in the full Elpasolite composition space
(for a given class). Specifically, we consider probabilities p(Z|S) of
finding element Z on site S in a given dataset. To compare two such
probability distributions, we use the JS distance dJS, which provides
intuitively interpretable values between 0 and 1 (with 0 indicating that
the distributions are identical and 1 indicating no overlap at all). For
two elemental distributions p and q, this is calculated as

= | |
|

+ |
|
|

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅ
i
k
jjjj

y
{
zzzz

i
k
jjjj

y
{
zzzz

É

Ö

ÑÑÑÑÑÑÑÑÑÑ

d p q p Z S
p Z S
m Z S

q Z S
q Z S
m Z S

( )
1
4

1
2

( )log
( )
( )

1
2

( )log
( )
( )

S Z
JS 2

2

1/2

(6)

where the first sum runs over all sites A, B, C, and D, the second sum
runs over all elements in the Elpasolite dataset, and m(Z|S) = 1/
2[p(Z|S) + q(Z|S)].

To provide some reference values for the JS distance, we compare
the elemental distributions corresponding to different classes in the
training set and the full Elpasolite space in Figure 2. This shows that
identical classes have low JS distances between training and full sets,
while different classes have high distances. Unsurprisingly, the
distance for identical classes is lower when many examples are
included in the training set (i.e., for class 5). Furthermore, the
distances change smoothly across the classes, so the distance between
class 1 and class 2 is lower than the distance between class 1 and class
5. Overall, values of 0.25 or lower can be considered as a good
agreement between the distributions.
2.3. Generative Frameworks. Our comparative study specifically

covers the three deep generative frameworks shown in Figure 3. The
ideas behind the three models differ fundamentally. In RL, an agent
constructs the materials in a step-wise procedure. During training, the
agent receives feedback about the quality of the samples (i.e., whether
they fall into the desired class) and thus improves its decision-making
policy. In contrast, VAEs and GANs are both trained to generate data
similar to the training examples when sampling from a low-
dimensional latent space. Both models therefore effectively learn a
(conditional) probability distribution of material compositions.
However, the way this is achieved differs markedly. On the one

hand, the VAE consists of an encoder network, which maps training
samples to latent space, and a decoder network, which reconstructs
them back. On the other hand, the GAN uses an adversarial principle.
A generator network is trained to translate random samples from latent
space to realistic material representations. In parallel, a discriminator is
trained to distinguish the “fake” samples from the generator and the
“real” samples from the training set. Through a feedback process, the
generator ultimately learns to fool the discriminator.

To implement the three models, we employ fully connected
multilayered artificial NNs. This is the simplest and most general NN
architecture, and it is not specifically tailored to the problems at hand.
The corresponding generative models therefore serve to establish
simple baselines, while specifically tailored architectures may display
even better performance. All models are implemented using PyTorch
(v1.9.0) and executed with Python (v3.8.8).

As a nonlinearity after every hidden layer, the commonly used
LeakyReLU64 function is used with a negative slope of 0.2. Based on
the model-dependent cost function, the free parameters (weights and
biases) of these networks are updated by gradient descent using the
Adam optimizer65 and gradients obtained through backpropagation.
While some of the illustrations below are based on one representative
model fit, all reported performance metrics are obtained from 50
separate model initializations, unless otherwise stated.

As is always the case for deep learning models, a variety of
additional hyperparameters must be set to determine the NN
architecture (e.g., the number of hidden layers and neurons per
layer) and training procedure (e.g., the learning rate and batch size).
We optimize these model- and training hyperparameters with respect
to two objective functions, which can be cheaply computed against
the training set: (1) the model’s ability to reproduce the elemental
distribution occurring in the targeted lowest formation energy class of
the training set (practically measured by the JS distance12) and (2)
the model’s ability to generate an overall large number of unique new
samples not contained in the training set. To identify suitable
combinations of hyperparameters, a simple random search66 was
performed. See Table S4 for a listing of all searched parameters and
their ranges. Figure S4 and Tables S5−S7 fully detail the procedure.

2.3.1. Variational Autoencoder. The generation of high-dimen-
sional data with VAEs67,68 proceeds as follows: a low-dimensional
latent space vector z is drawn from a predefined probability
distribution and mapped to a realistic data point x by a NN Pϕ
called the decoder (with trainable parameters ϕ).

= Px z( ) (7)

During training, the decoder is paired with a second trainable
NN�the encoderQθ (with trainable parameters θ). The encoder takes
a sample xi from the training set and produces a representation of this
data point in the latent space. Importantly, VAEs use a probabilistic
mapping for this purpose: each input sample xi is mapped to a
multivariate normal distribution N in latent space so that the output
of the encoder is a vector of means μ(xi) and variances σ2(xi). The
corresponding probability distribution qθ(z|xi) in latent space is thus
defined as

Figure 3. Schematic overview of the generative frameworks compared in this study.
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| =q z x x x( ) ( ( ), ( ))i i i
2

(8)

Here, the subscript θ indicates that this probability distribution
depends on the trainable parameters of the encoder Qθ.

Ideally, the decoder should be able to reconstruct xi as accurately as
possible, given a random sample zϵ from the distribution qθ(z|xi).
Furthermore, the probabilistic mapping of the training data should be
smooth and continuous in latent space to obtain an effective
generative model. This is achieved by training the VAE with a
combined cost function J(ϕ, θ), defined as

| = + |J P D qx x z z x( , ) ( ( )) ( ( ) (0,1))i i i
2

reconstruction

KL

regularization
Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

(9)

Here, the reconstruction term is simply the squared deviation
between the original and reconstructed input. The regularization term
is given by the Kullback−Leibler divergence69DKL, which quantifies
the statistical distance between the learned distribution qθ(z|xi) and a
multivariate normal distribution with zero means and unit variances.

Minimizing this combined cost function during training requires
finding a trade-off between reconstruction and regularization.
Intuition about this process can be gained from looking at the two
terms separately. If only the reconstruction term was included, the
model would be very accurate in reproducing the training set, but its
generalization capability toward novel compositions would suffer.
Similarly, if the regularization prevails and only the Kullback−Leibler
divergence is minimized, the decoder would resort to generating very
few unique samples and instead output an average representation of
the training set (since all inputs xi would be mapped to the same
latent space distribution). This latter problem is known as posterior
collapse.63,70 To balance between these extremes, the regularization
parameter λ in the loss can be adjusted.

As described so far, the VAE would simply propose materials from
the full chemical composition space. For a targeted generation of
materials with specific properties, we operate the VAE as a conditional
model.71,72 Such class-conditional learning can easily be incorporated
while keeping a similar training procedure. To this end, both the
encoder and the decoder receive the class label of each training
sample, which is concatenated with their respective inputs. After
training, the decoder can then generate new samples from a specific
class when provided with a random latent space vector and the
desired class label.

Following the hyperparameter search described above, the final
VAE models used below are constructed as follows: the class-
conditional input x18D is encoded to an eight-dimensional latent
space, and decoded into the scaled eight-dimensional representation
of the composition. Both the encoder and decoder NNs have 2
hidden layers with 256 nodes. Layer normalization73 is employed. The
final output function of the decoder is a hyperbolic tangent that
returns values between −1 and 1. All models were trained for 10,000
network updates on batches of 500 samples each, using the Adam
optimizer with a learning rate of 0.001. The regularization parameter λ
in the loss is fixed at 0.1.62

2.3.2. Generative Adversarial Network. Similar to the VAE, the
GAN74 framework uses a generator model Gθ (with trainable
parameters θ), which is trained to generate realistic synthetic samples

= Gx z( ) from a random latent space vector zϵ. Training of Gθ
thereby follows an adversarial approach, which can be understood as a
contest between Gθ and a discriminator model Dϕ (with trainable
parameters ϕ). The role of Dϕ is to discriminate between real samples
from the training set and the synthetic samples created by Gθ. The
feedback from Dϕ is in turn used to maximize the ability of Gθ to
generate increasingly realistic samples, essentially trying to fool Dϕ
into misclassification. Over the course of this competition, both
models successively improve.

While this idea is highly intuitive, successfully training a GAN can
be challenging. For example, a commonly observed problem61 is the
so-called mode collapse�where Gθ resorts to fooling Dϕ by
repetitively generating the same highly convincing samples. Intensive
research has therefore been devoted to improving the training

procedure of GANs. This has led to a series of different proposed cost
functions and modified NN architectures that improve training
stability75 or generative performance.76 We here rely on the
Wasserstein GAN77 with a gradient-penalty78 term (WGAN-GP).
In this framework, Dϕ is usually referred to as a “critic” and returns a
scalar value that represents the sample quality, instead of a mere
binary classification of data as real or fake.

As for the VAE, Dϕ and Gθ are represented by fully connected NNs
herein, whose parameters are optimized during the adversarial training
by gradient descent. Due to the adversarial nature of the GAN, two
separate cost functions JD and JG are used for the discriminator and
generator, respectively. The former is defined as

| = + +J D D G Gx x z x z( , ) ( ) ( ( )) ( , ( ))i i iD
real fake gradient penalty

Ö́ÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖ Ö́ÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖ Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
(10)

Here, the first and second terms reward high scores for real and low
scores for fake samples, respectively. Sparing the details,78 the
gradient-penalty term represents a practical solution to enforce a well-
behaved critic function. Its evaluation depends on linearly
interpolated data points between the real and fake data points. The
recommended penalty coefficient λ = 10 is used throughout.78

Meanwhile, the cost function of the generator is simply

=J D G z( , ) ( ( ))G (11)

that is, it tries to maximize the score that Dϕ assigns to the generated
samples.

In analogy to the VAE, our model operates as a conditional
GAN,79,80 with sample class-conditional information provided to Gθ
and Dϕ alongside the input during training. After training, this again
allows us to query the generator network for samples from the desired
class.

Note that to achieve stable training, the parameters of Dϕ are
updated five times as frequently as θG.

78 Based on the hyperparameter
optimization, the final models use one hidden layer with 512 nodes
each for Gθ and Dϕ. An eight-dimensional latent space vector is passed
to Gθ and decoded to the structural representation x8D, scaled, again
employing a hyperbolic tangent output layer. The networks are
trained for 200,000 update steps on batches of 100 samples with a
learning rate of 0.00001.

2.3.3. Reinforcement Learning. In RL an agent makes goal-
oriented decisions in a successively evolving environment. To this
end, a reward function is defined, which provides feedback about
whether the actions of the agent lead to the desired outcomes.
Because of this focus on acting in a complex environment, the classic
fields of application of RL are the control of robots or other
autonomous agents (e.g., in games). Nonetheless, RL has also been
applied to the design of molecules and materials.28,30,81−84

In this case, the agent sequentially adds atoms or functional groups
to a system. The main challenge associated with this is that the reward
(e.g., as a measure of stability or the desired property) can only be
determined for the complete system. It is therefore not straightfor-
ward to judge the quality of actions taken early on in the generation
process (the so-called “credit assignment” or “sparse reward”
problem). In this sense, designing a material is similar to a game of
chess, where the reward (win/loose/draw) can only be determined at
the end of the game.

In the context of this paper, a RL agent makes sequential decisions
about the elemental composition of an Elpasolite, with the goal of the
final formation energy being in the desired range. This step-wise
process is illustrated for the composition of KMgXe2O6 (where the
scaling of eq 1 is omitted for clarity)
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The agent thus starts from an empty composition vector and
chooses the row of the element at site A of the Elpasolite structure
(see Figure 1). This leads to an updated composition vector and a
new decision to make, namely, what the group of element A should
be. In RL terminology, the composition vector defines the state s of
the environment and each decision the agent makes is an action a,
which leads to a new state s′. The generation process can thus be
described as a sequence of state-action pairs (s0, a0, s1, a1, ..., s7, a7, s8),
with a final state s8. Such a structure generation sequence is called an
episode (e) in the following.

During training, the agent receives a reward r after each action,
which is based on the formation energy of the new state s′, according
to the classes introduced above. Specifically

=
l
m
ooooo
n
ooooo

r s a
s
s
s

( , )
0 if non final
1 if final and in desired class

1 if final and not in desired class (12)

The key component of any RL model is the policy π, which is the
algorithm used to decide on the next action of the agent based on the
current state of the environment. Importantly, to overcome the sparse
reward problem the policy cannot simply maximize the immediate
reward for the current action. Indeed, this would be completely
ineffective for the task at hand since the reward for most actions is
zero. Instead, the ideal policy maximizes the sum of the current and all
future rewards. This optimal long-term reward Q* for a given state-
action pair (s, a) is formalized by the Bellman equation

* = + *Q s a r s a Q s a( , ) ( , ) max ( , )
a (13)

The optimal long-term reward Q*(s, a) (referred to as the state-
action value) is thus recursively defined as a sum of the immediate
reward r(s, a) and the state-action value Q*(s′, a′), where a′ is the
action that maximizes Q*(s′, a′). The discount factor γ takes the
potentially diminishing relevance of recursively included future
actions into account. Specifically, by choosing γ = 1, all future
rewards are weighted equally, whereas γ ≤ 1 leads to a reduced impact
of rewards that are acquired much after the action a.

Clearly, the state-action value Q* in principle provides a sound
basis for guiding the actions of an agent. However, it is generally only
computable by exhaustively exploring all possible actions into the
future, which would defeat the purpose of RL. The Q-learning
approach85 provides a way out of this problem as it allows the iterative
approximation of Q*. In the original Q-learning approach, this is
achieved via a table of Q-values for all possible state-action
combinations. This Q-table is iteratively updated as the agent
explores the state space, according to

= + +Q s a Q s a r s a Q s a( , ) (1 ) ( , ) ( ( , ) max ( , ))
a

(14)

where α is a learning rate. Although the Q-table is initialized with
arbitrary values, this algorithm eventually converges to the true state-
action values.

Relying on a Q-table is impractical for high-dimensional settings
(such as materials design), however, because enumerating all possible
states is in general not possible in this case. To overcome this
limitation, the deep-Q network (DQN) approach was developed.86

Here, the discrete Q-table is replaced by a NN Qθ (with trainable

parameters θ). This function takes any state s as an input and predicts
the corresponding Q-values for all possible actions a.

To train this network, the cost function J(θ) defines a least-squares
regression with eq 13 as the target value85

= [ + ]J e Q s a r s a Q s a( , ) ( , ) ( , ) max ( , )i
s a e a, prediction target

2

i
Ö́ÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖ Ö́ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

(15)

This function sums over the state-action pairs (s, a) of a given
training episode ei. Here, a peculiarity of DQNs compared to other
deep learning methods is that both the prediction and the target value
in the loss depend on Qθ. This is directly analogous to conventional
Q-learning, where the Q-values are updated based on the immediate
reward r(s, a) and other (randomly initialized) Q-values in the table.
This works because the information about the reward r(s, a) obtained
at the end of each episode propagates to earlier state-action pairs as
the training progresses.

It should be noted that the above description refers to the “batch”
or “offline” RL setting,87 which assumes a fixed training set of
episodes which are collected independently from the model itself. In
principle, “active” or “online” learning training schemes are also
possible, which use the model itself to explore the action space and
thus construct the training set. In the present context, this would
require performing DFT calculations on-the-fly during training.

The interdependence of predictions and targets in eq 15 causes
some stability problems when training DQN models.88 To mitigate
this, we use the double deep Q-learning89 approach, in which two
different versions of Qθ are used during training. The first of these is
the policy network which is used to make the predictions in the first
term of eq 15 and whose weights are updated at every training step.
The second is the target network, which is used to obtain the Q-values
in the target term of eq 15 and whose parameters are synchronized
with the policy network in regular intervals. This breaks the direct
dependence of prediction and target in the loss function and thus
stabilizes training.

Once the training is completed, Qθ can be used to estimate the
long-term reward of any action a given a state s. To construct a
generative model based on this, we must finally specify the policy π,
that is, the algorithm according to which the next action a is selected.
Here, a greedy algorithm which simply selects the action with the
highest Qθ(s, a) would be possible, but this would obviously not lead
to a diverse sample of materials. For a better balance between
exploration and exploitation, we therefore sample actions according to
probabilities p(s, a), which are obtained from Qθ(s, a) with the
softmax function

=p s a
Q s a

Q s a
( , )

exp( ( , ))

exp( ( , ))a (16)

Here, the sum in the denominator is over all possible actions
(including a) and the hyperparameter β behaves like an inverse
temperature. These state-action probabilities can thus be tuned from
uniform random sampling (for β = 0) to a fully greedy policy (for β
→ ∞). In practice, we found a value of β = 5 to be optimal (see
Figure S7 in the Supporting Information).

From the hyperparameter search, we obtained a network
architecture with five hidden layers with 512 nodes each (with layer
normalization73). The RL model was trained for 800,000 network
updates with a batch size of 250 and a learning rate of 0.00001.
Following common practice in the DQN literature, a discount factor γ
= 0.999 is used and the target network is synchronized every 10 steps.

3. RESULTS AND DISCUSSION
3.1. Targeted Generation in a Minority Class. As

discussed above, the goal of inverse materials design is to
generate promising sample candidates from a large design
space. Importantly, these promising candidates are typically
exceedingly rare. In the Elpasolite dataset, this challenge can be
emulated by attempting the targeted generation of composi-
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tions in the lowest energy class 1. As shown in Figure 1e, this
class is one of the least populated and contains only 86
samples, corresponding to 0.4% of the total training set. This
imbalance is equally present in the full Elpasolite space, with
only 3757 compositions amounting to 0.2% of all possible ones
falling into this minority class. For comparison, the neighboring
class 2 already amounts to 20,097 compositions (1.0% of the
full Elpasolite space).
Figure 4 illustrates the performance of a representative GAN

model conditioned on the minority class 1 for the first 250,000

generated samples. Here, we distinguish between “novel
discoveries” (unknown compositions proposed for the first
time), “repetitions” (compositions which have previously been
generated by this model), and “rediscoveries” (compositions
which are part of the training set). The novel discoveries are
further discerned according to their class.
This reveals that the model initially displays a high degree of

novel discoveries in the target class, which saturates after ca.
10,000 generated samples. At this point, the number of
repetitions begins to dominate the generation process,
although some novel materials from class 2 are still discovered.
Meanwhile, the numbers of rediscoveries and novel discoveries
from other classes remain very low. Similar plots can be
obtained for the VAE and RL models; see the Supporting
Information.
This behavior can be understood from the fact that the

generative models essentially learn a conditional probability
distribution. When sampling from this distribution, initially
mostly unique, high-probability samples are drawn. However,
upon continued sampling, there is an increased likelihood that
lower-probability samples are generated or that high-
probability samples are repeated. This explains the fact that
the number of unique class 2 samples eventually overtakes the
number of unique class 1 samples. While they are considered
to be less probable candidates by the model, there are simply
many more unique class 2 compositions to discover in the
dataset. Importantly, very few compositions from class 3 and
beyond are generated, however, even though these make up
the bulk of the Elpasolite composition space. The model thus
correctly assigns very low probabilities to these compositions.

For all models generated in this work, the curve for the
number of novel discoveries eventually flattens. In other words,
the models display a limited capacity for generating unique
samples, which is unsurprising since the number of possible
Elpasolites is also limited. Notably, the rediscoveries constitute
a low share throughout so the model clearly does more than
mere training-set memorization. Since repetitions begin to
dominate the generation procedure after 10,000 samples, we
terminate the generation procedure at this point for the
following analyses of minority class generation.
Figure 5 shows the formation energy distributions of the

unique compositions produced by representative VAE, GAN,

and RL models. All three models obviously achieve conditional
generation in the minority class 1 with great success.
Specifically, they produce sample distributions with low
formation energies, completely unlike the formation energy
distribution of the original training set.
This plot also illustrates from how little class 1 data the

models are able to learn. On this scale, the 87 class 1 samples
in the training set are not even visible. Nonetheless, all three
models generate over 1000 unique new compositions in this
class. It can also be seen how the formation energy
distributions decay into the neighboring class, generating a
negligible amount of samples in higher-energy classes.
For a more quantitative comparison of the generative

frameworks considered herein, average performance metrics
obtained from 50 model initializations are summarized in
Table 1. These metrics confirm the relatively high precision
with which all three models generate compositions in the
target minority class 1. Given the discrete class boundaries and
the larger size of the neighboring class 2, it is not surprising
that the generated distributions tail into it. Essentially, all
unique samples (>94%) produced by the models therefore
jointly fall into these two classes. All three models can thus
capture the underlying building principles that lead to stable

Figure 4. Performance of a representative GAN model for the first
250,000 generated valid samples when conditioned on the minority
class 1. Repetitions are previously generated samples. Rediscoveries
correspond to known training compositions. Novel discoveries are
further discerned by the classes they belong to (in gray).

Figure 5. Formation energy distribution (in 0.2 eV/atom bins) of the
unique class 1 conditioned compositions proposed by the three
generative models (VAE, GAN, and RL) over 10,000 valid samples.
Additionally shown is the corresponding distribution over the entire
training set of 21,112 compositions.
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Elpasolite compositions while covering at least half of the full
class 1 composition space.
Notably, both VAE and GAN models display a very low

standard deviation for these metrics, indicating that essentially
every model fit robustly yields this high precision. There also
seems to be a slight trade-off between precision and coverage
between VAE and GAN, with the GAN yielding higher
coverage but lower precision. In contrast, the RL models
display somewhat higher variance.
As indicated by the JS distance, all models accurately

reproduce the elemental distribution of the targeted class, with
comparatively small values of 0.16 for VAE and GAN and a
slightly larger distance of 0.2 for RL. Notably, these distances

are actually closer to the target distribution than the training
set (0.236, see Figure 2). A more detailed illustration of the
elemental distributions is given in Figure 6. A prominent
feature of all elemental distributions is the overwhelmingly
dominant occupation of site D by fluorine, likely due to its
high electronegativity and reactivity. Other sites also exhibit
preferences for certain element types, for example, alkali metals
and alkaline earth on site C, although this tendency is less
pronounced. The generative models thus develop a useful
chemical intuition for how to construct stable Elpasolites.
To put these metrics into perspective, simple baseline

models based on the prevalence of element combinations in
class 1 were also developed (see the Supporting Information).
The deep generative models discussed herein display higher
coverage and precision by at least a factor of 2, as well as
significantly lower JS distances. Since the choice of terminating
the generation after 10,000 samples is rather arbitrary, the
same analysis was also performed for 3500 samples (see Table
S2). This reveals that precision and JS distance are unaffected
by the number of samples, whereas (unsurprisingly) the
coverage is somewhat lower when fewer samples are generated.
3.2. Targeted Generation in the Majority Class.

Complementary to the generation in class 1, we can also
consider conditional generation in the majority class 5. This is
particularly interesting with respect to the capacity of the
generative models. With 907,094 compositions, class 5 spans

Table 1. Performance Metrics for the Three Generative
Models Conditioned to Generate Minority Class 1
Compositions after 10,000 Valid Samplesa

RL VAE GAN

precision (right class) 69 ± 8% 83 ± 1% 66 ± 2%
Precision (neigh. class) 30 ± 7% 16 ± 1% 28 ± 1%
coverage (right class) 53 ± 3% 54 ± 2% 62 ± 1%
coverage (neigh. class) 4 ± 1% 5 ± 0% 10 ± 1%
JS distance 0.20 ± 0.03 0.16 ± 0.01 0.16 ± 0.01

aShown are averages over 50 model fits together with the standard
deviation.

Figure 6. Comparison of the normalized elemental distributions p(Z|S) in class 1 over the four sites (A, B, C, and D) for the full Elpasolite space,
the training set, and datasets conditionally generated by the three models (VAE, GAN, and RL). The color scale is chosen to depict the details of
the overall distribution. The value of fluorine on lattice site D surpasses its limits, exceeding 0.997 in all cases.
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46% of the entire Elpasolite composition space and is thus by
far the dominant majority class. Taken together, its
neighboring classes 4 and 6 account for another 39.9% of
the entire Elpasolite design space. The dominance of class 5 is
also reflected in the DFT training set, which contains 9650
such compositions, a much larger number than the 86
compositions of class 1. However, compared to the total size
of the class 5 composition space, this only amounts to 1%. In
relative terms, the coverage of training data in the class 5
composition space is thus even worse than for the minority
class 1 (2%, see above).
Analyzing the generation run of a representative GAN model

for the majority class (Figure 7) reveals largely analogous

behavior to the minority class case shown in Figure 4. The
rediscovery rate of training examples is again low throughout
the run. With continued sampling, the number of repetitions
rises steeply, overtaking the novel generations after around 2.5
million samples. The number of novel discoveries is fully
converged after 25 million valid samples. Comparable findings
are obtained for VAE and RL (see the Supporting
Information) so that we evaluate the performance metrics for
the majority class after 25 million valid samples in the
following.
Table 2 collects the respective metrics. Both GAN and VAE

achieve average class coverages of 86% or higher, with
precisions between 50 and 60%. In contrast, the RL models
achieve significantly higher precision (87% on average) but
lower coverages (typically <50%). We observe such trade-offs
between precision and coverage frequently, and they should

not be strictly attributed to a fundamental difference between
the RL and VAE/GAN frameworks. For example, the RL
agents could in principle achieve higher coverage at the
expense of lower precision by decreasing the inverse
temperature β in eq 16. Similarly, different network
architectures in the random hyperparameter search form a
Pareto front with respect to the number of unique discoveries
(coverage) and the JS distance to the training set (precision)
(see Figure S4). As above, a similar analysis was performed for
a smaller number of generated samples (2.5 million, see Table
S3). Again, the precision and JS distance are unaffected by this
choice, whereas the coverage decreases.
We do see fundamental differences between RL and VAE/

GAN-based models with respect to the elemental distributions,
however. This can be seen from the substantially larger JS
distance of the RL-generated data with respect to the target
distribution (on average 0.49 for RL vs 0.21/0.16 for VAE/
GAN). By analyzing the corresponding elemental distributions
in detail (see Figure S3), we find that VAE and GAN sample
elements are relatively evenly across the periodic table, in fairly
good agreement with the reference data. In contrast, RL
models display a much more selective elemental distribution.
Indeed, we find that differently initialized RL models converge
to different local minima, each with its own characteristic
elemental fingerprints. This is also reflected by the fact that RL
displays a much higher number of repetitions in the generation
process. Overall, this indicates that the distribution learners
(GAN and VAE) are better suited for representing large
composition spaces than agent-based RL models. However, the
latter may also be improved in this respect by using more
sophisticated reward functions.
3.3. Influence of Training Data. The generative frame-

works discussed herein thus display promising performance for
inverse materials design, in particular for minority classes.
However, this capability does not come for free as it relies on
an extensive training set of labeled compositions (for which
DFT calculations are required). The size of this training set
amounts to ∼1.0% of the full Elpasolite design space that spans
nearly 2 million compositions. At first sight, this seems like
impressively little data.
However, it should be noted that in a materials discovery

setting additional DFT calculations would be required to verify
the formation energies of all unique generated samples. Taking
the example of the GAN, this would mean around 4,500
additional calculations, leading to the discovery of 2329 class 1
materials (and 2009 class 2 materials). For comparison, to
discover a similar number of class 1 materials through brute-
force random screening, would require a factor of 50 more
DFT calculations. Since the bulk of the DFT calculations for
the generative models is spent on training data generation,
decreasing the size of the training sets would thus be an
appealing route to further boost the computational efficiency
of this approach.
To explore this possibility, we assessed the performance

metrics for minority class generation when training with
randomly selected subsets of the full training set, keeping all
other settings fixed. As in the original training set, we again
account for the permutational symmetry of the A and B sites in
each subset so that the total number of DFT calculations
required for each subset is N

2
train . These results are summarized

in Figure 8. For comparison, we also include the results for

Figure 7. Same as Figure 4, but for a GAN model conditioned on the
majority class 5. Note the much larger number of samples required to
saturate the number of unique novel discoveries generated, reflecting
the much larger composition space covered by class 5.

Table 2. Performance Metrics for the Three Generative
Models Conditioned to Generate Majority Class 5
Compositions after 25 Million Valid Samplesa

RL VAE GAN

precision (right class) 87 ± 7% 58 ± 1% 54 ± 1%
Precision (neigh. classes) 13 ± 7% 34 ± 1% 36 ± 1%
coverage (right class) 44 ± 15% 86 ± 9% 89 ± 2%
coverage (neigh. class) 9 ± 4% 82 ± 11% 85 ± 3%
JS distance 0.49 ± 0.14 0.21 ± 0.01 0.16 ± 0.01

aShown are averages over 50 model fits together with the standard
deviation.
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models trained with the original training set reported by Faber
et al. (without permutational symmetry).

This reveals that our data augmentation approach works
very well. Models trained on 10,000 data points (including
permutations) reach the same performance as models trained
on the original set while reducing the number of required DFT
calculations by a factor of two. In general, we find that both
precision and (particularly) coverage for the target class
decrease when the training set decreases. Similarly, the JS
distance between generated and target distribution increases.
Here, the RL models are somewhat less sensitive, retaining
higher coverages for the smallest training sets.
Nonetheless, even reduced training sets yield models capable

of discovering a significant number of new materials. Again,
taking the GAN as an example, even at the smallest training set
size of 1000 compositions, on average, 11% (>410 samples) of
all possible class 1 compositions are discovered, easily
surpassing the 86 examples found in the original training set.
Given a precision of around 50% for this class, this means that
roughly 1000 further DFT calculations would be required to
obtain the formation energies of all generated samples. With
random sampling, finding the same number of class 1 materials
would require 220,000 DFT calculations (i.e., a factor of 100
more).
Importantly, these estimates are somewhat conservative. For

one, all model hyperparameters were kept fixed, although small
datasets often lead to different optimal network architectures.
Furthermore, random sampling is a fairly strong baseline in this

example due to the limited size of the Elpasolite composition
space. In reality, chemical space is practically unlimited and
brute-force random search is not a viable strategy at all.

4. CONCLUSIONS
We herein assessed the performance of three deep generative
ML frameworks (VAE, GAN, and RL) for the exploration of a
large chemical composition space. To this end, we relied on
the fully enumerated space of Elpasolite minerals (ABC2D6) as
a target, which allowed us to quantitatively assess the
generative models in terms of precision, coverage, and
elemental distributions. In our view, this is highly valuable as
evaluating and comparing generative ML models is notoriously
difficult.
Despite being built from simple NN architectures, all studied

models are capable of reliably generating candidates within the
desired formation energy classes. This shows that reasonable
model hyperparameters could be determined by an automated
procedure while accommodating a reasonable trade-off
between coverage and precision in a conditional generation.
Nonetheless, there are a number of notable differences

between the approaches. The RL models showed greater
robustness toward small datasets but also greater variability
between differently initialized models (i.e., a tendency to
converge to distinct local minima). In contrast, the VAE and
GAN approaches usually produced models that more faithfully
reproduced the target elemental distributions, as quantified by
the JS-distance.
From a technical perspective, the RL models were trained to

generate samples from a given class. We therefore had to train
completely new models (with a different reward function) for
the majority class generation. In contrast, the VAE and GAN
models directly capture class-conditional probability distribu-
tions so that a single model can generate all classes. Among
these, the VAE showed slightly higher precision and was
(subjectively) somewhat easier to train than the GAN. From
this perspective, the VAE appears to us to be overall best suited
for large-scale materials discovery, although this certainly
depends on the application. Indeed, high coverage and faithful
reproduction of the target distribution are not always
necessary. If the objective is simply to generate a limited
number of high-quality samples, a goal-oriented RL model may
be the better choice. RL furthermore has the advantage that
the reward function can easily be modified to accommodate
more complex design targets.
It should be noted that ML-based regression models remain

a powerful alternative to generative models for materials
discovery, particularly in relatively small design spaces such as
the one considered herein. The question of whether a
generative or regression model is more appropriate for a
given task thus remains interesting. In previous work on
organic semiconductors, we found that regression models are
not well suited for discovering exceptional materials since these
are by definition strongly underrepresented in the training
set.90 The excellent performance of the generative models for
minority class generation is highly promising in this context.
We hope that the present work provides a sound basis for

the development of deep generative models for materials
discovery in chemical composition space. To this end, the
establishment of quantitative performance metrics is of
paramount importance. In future work, we aim to generalize
the current models beyond a single crystal prototype.

Figure 8. Influence of training set size on the performance metrics of
VAE, GAN, and RL models for minority class generation after 10,000
generated samples. Shown are averages over 50 model fits employing
50 different random training subsets. Shaded areas represent the
corresponding standard deviations.
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