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Abstract
We study theMasur–Veech volumes𝑀𝑉g ,𝑛 of the princi-
pal stratumof themoduli space of quadratic differentials
of unit area on curves of genus g with 𝑛 punctures.
We show that the volumes 𝑀𝑉g ,𝑛 are the constant
terms of a family of polynomials in 𝑛 variables gov-
erned by the topological recursion/Virasoro constraints.
This is equivalent to a formula giving these polyno-
mials as a sum over stable graphs, and retrieves a
result of [Delecroix, Goujard, Zograf, Zorich, Duke J.
Math 170 (2021), no. 12, math.GT/1908.08611] proved by
combinatorial arguments. Our method is different: it
relies on the geometric recursion and its application to
statistics of hyperbolic lengths of multicurves developed
in [Andersen, Borot, Orantin, Geometric recursion,
math.GT/1711.04729, 2017]. We also obtain an expression
of the area Siegel–Veech constants in terms of hyperbolic
geometry. The topological recursion allows numerical
computations ofMasur–Veech volumes, and thus of area
Siegel–Veech constants, for low g and 𝑛, which leads us
to propose conjectural formulae for low g but all 𝑛. We
also relate our polynomials to the asymptotic counting
of square-tiled surfaces with large boundaries.
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256 ANDERSEN et al.

1 INTRODUCTION

We consider two facets of the geometry of surfaces. On the one hand, hyperbolic geometry with
associated Teichmüller space and Weil–Petersson metric, and, on the other hand, flat geome-
try associated with quadratic differentials and the Masur–Veech measure. We will show that
invariants of flat geometry of surfaces, namely the Masur–Veech volumes and the area Siegel–
Veech constants, can be expressed as asymptotics of certain statistics of multicurves on hyperbolic
surfaces. Using the geometric recursion developed in [3] for these statistics, we prove that the
Masur–Veech volumes satisfy some form of topological recursion à la Eynard–Orantin [24].

1.1 The Masur–Veech volumes

We will let Σ denote a smooth, compact, oriented, not necessarily connected surface, which can
be closed, punctured or bordered. We consider those cases to be mutually exclusive and we shall
indicate which situation is considered when necessary. When Σ is not closed, the punctures or
boundary components are labelled 𝜕1Σ, … , 𝜕𝑛Σ. We assume that Σ is stable, that is, the Euler char-
acteristic of each connected component is negative. We say that Σ has type (g , 𝑛) if it is connected
of genus g with 𝑛 boundary components. We use 𝑃 (respectively, 𝑇) to refer to surfaces with the
topology of a pair of pants (respectively, of a torus with one boundary component).
The Teichmüller space Σ of a bordered Σ is the set of hyperbolic metrics on Σ such that the

boundary components are geodesic, modulo diffeomorphisms of Σ that restrict to the identity on
𝜕Σ and which are isotopic to IdΣ among such. The Teichmüller space Σ fibres over ℝ𝑛

+ and we
denote the fibre over 𝐿 = (𝐿1, … , 𝐿𝑛) ∈ ℝ𝑛

+ by Σ(𝐿). For a surface of type (g , 𝑛), Σ(𝐿) is a smooth
manifold of dimension 6g − 6 + 2𝑛. Hereℝ+ is the positive real axis, excluding 0. In several places,
we will also consider 𝐿𝑖 = 0, which means that the 𝑖th boundary corresponds to a cusp for the
hyperbolic metric. The slice Σ(0, … , 0) = 𝔗Σ is the Teichmüller space of complete hyperbolic
metrics of finite area on Σ − 𝜕Σ, which is then considered as a punctured surface.𝔗Σ can also be
seen as the space of Riemann structures on the punctured surface. The cotangent bundle to𝔗Σ is
isomorphic to the bundle𝑄𝔗Σ of holomorphic integrable quadratic differentials on the punctured
surface. For any (𝜎, 𝑞) ∈ 𝑄𝔗Σ, the quadratic differential 𝑞 has either a removable singularity or a
simple pole at each puncture of Σ. These spaces also exist for closed surfaces.
The mapping class group ModΣ is the group of isotopy classes of orientation-preserving dif-

feomorphisms of Σ. It admits as subgroup the pure mapping class groupMod𝜕Σ, consisting of the
isotopy classes of diffeomorphisms that restrict to the identity on 𝜕Σ. The pure mapping class
group acts on the Teichmüller spaces Σ(𝐿) and on𝔗Σ and on the space of quadratic differentials
𝑄𝔗Σ. This action is properly discontinuous and the quotient spaces Σ(𝐿), 𝔐Σ and 𝑄𝔐Σ are
smooth orbifolds, called, respectively, the moduli space of bordered surfaces, the moduli space
of punctured surfaces and the moduli space of quadratic differentials. The moduli spaces for all
surfaces of given type (g , 𝑛) are all canonically isomorphic and simply denoted byg ,𝑛(𝐿),𝔐g ,𝑛

and 𝑄𝔐g ,𝑛.
The spaces Σ(𝐿) for𝐿 ∈ ℝ𝑛

+ and𝔗Σ are endowedwith theWeil–Peterssonmeasures𝜇WP. These
measures are invariant under the action of the mapping class group and descend to the quotients
g ,𝑛(𝐿) and 𝔐g ,𝑛. If 𝑌Σ is a Mod𝜕Σ-invariant function on Σ, we denote by 𝑌g ,𝑛 the function it
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 257

induces ong ,𝑛 and we introduce

𝑉𝑌g ,𝑛(𝐿) = ∫g ,𝑛(𝐿)
𝑌g ,𝑛(𝜎) d𝜇WP(𝜎) (1.1)

if this integral makes sense.
Likewise, if Σ is a closed or punctured surface, 𝑄𝔐Σ is endowed with the Masur–Veech mea-

sure 𝜇MV coming from its piecewise linear integral structure. The function which associates to
a quadratic differential 𝑞 on Σ its area ∫Σ |𝑞| provides a natural way to define an induced mea-
sure on the space 𝑄1𝔐g ,𝑛 of quadratic differentials of unit area (see Section 3.1). By a theorem of
Masur and Veech [36, 49] the total mass of this measure is finite. Its value is, by definition, the
Masur–Veech volume and it is denoted by𝑀𝑉g ,𝑛. Its computation is relevant in the study of the
geometry of moduli spaces and the dynamics of measured foliations and has been the object of
numerous investigations [5, 15, 20, 30, 41].

1.2 Topological recursion for Masur–Veech volumes: overview and
results

In Section 2, we review the definition and main properties of the geometric and topological
recursion, mainly taken from [3].
In Section 3, for each connected bordered surface Σ of genus g with 𝑛 > 0 boundaries, we

construct a Mod𝜕Σ-invariant continuous function ΩMV
Σ ∶ Σ → ℝ. It is such that the integral

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) is a polynomial function in the variables 𝐿1, … , 𝐿𝑛 and theMasur–Veech volume

𝑀𝑉g ,𝑛 of 𝑄1𝔐g ,𝑛 consisting of unit area quadratic differentials satisfies

𝑀𝑉g ,𝑛 =
24g−2+𝑛(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!
𝑉ΩMV

g ,𝑛 (0, … , 0). (1.2)

The family of functionsΩMV can be defined via the geometric recursion, with initial data found
in Proposition 3.7. The polynomials 𝑉ΩMV , which we call Masur–Veech polynomials, have five
different descriptions:

(𝟏) they are sums over stable graphs (Section 3.3), which we reproduce in (1.4) below;
(𝟐) they encode the asymptotic growth of the integral (against 𝜇WP) of statistics of the hyperbolic

lengths of multicurves on a surface of type (g , 𝑛)with large boundaries, see Section 3.2 for the
precise statement;

(𝟑) they are obtained by integration of ΩMV , in coherence with the notation (1.1);
(𝟒) they satisfy the topological recursion—which is equivalent to the Virasoro constraints stated

in Theorem 1.2 below— for the spectral curve

𝑥(𝑧) =
𝑧2

2
, 𝑦(𝑧) = −𝑧, 𝜔MV

0,2 (𝑧1, 𝑧2) =
1
2

d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

+
1
2

𝜋2 d𝑧1 ⊗ d𝑧2

sin2(𝜋(𝑧1 − 𝑧2))
.

(𝟓) they govern the asymptotic counting of square-tiled surfaces with large boundaries, see
Section 6 for the precise statement.

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12686 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [17/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



258 ANDERSEN et al.

The identity between (𝟏) and (𝟐) is proved in Theorem 3.5, which is the crux of our argument. The
identity between (𝟏), (𝟑) and (𝟒) is proved in Proposition 3.7 and follows from general properties of
the geometric and the topological recursion. In Corollary 3.6, we prove the relation (1.2) between
the constant term of these polynomials and the Masur–Veech volume. Lemma 3.4 implies that
the value of the Masur–Veech volumes for closed surfaces of genus g ⩾ 2 can be retrieved from
𝑉ΩMV

g ,1 .
In Section 4, we extend these arguments to show in Corollary 4.5 that the area Siegel–Veech

constants can be expressed in terms of asymptotics of certain derivative statistics of hyperbolic
lengths of multicurves. Our current proof of Corollary 4.5 uses Goujard’s recursion [29] (here
quoted in Theorem 4.1) for the area Siegel–Veech constants of the principal stratum in 𝑄1𝔐g ,𝑛 in
terms of Masur–Veech volumes. It would be more satisfactory if one could obtain an independent
proof of the identity of Corollary 4.5, as our Section 4 would then give a new proof of Goujard’s
recursion for the principal stratum. Section 5 is devoted to explicit computation of Masur–Veech
volumes and conjectures that can be drawn from them.
In Section 6, we discuss the enumeration of square-tiled surfaces with boundaries, via gener-

ating series including a parameter 𝑞 coupled to the number of tiles. We show in Proposition 6.7
that sending 𝑞 → 1while rescaling the boundary lengths by 1∕ ln(1∕𝑞) retrieves theMasur–Veech
polynomials, that is, give the identity between (𝟏) and (𝟓). In the absence of boundaries, a related
asymptotic enumeration of square-tiled surfaces with a number of tiles ⩽ 𝑁 → ∞was the crucial
ingredient in the proof of (1.2) given by [15]. We also prove in Proposition 6.11 that— before taking
any asymptotics — the 𝑞-series counting square-tiled surfaces are governed by Eynard–Orantin
topological recursion for the spectral curve

𝑥(𝑧) = 𝑧 +
1
𝑧
, 𝑦(𝑧) = 𝑧,

𝜔0,2(𝑧1, 𝑧2) =
1
2

d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

+
d𝑢1 ⊗ d𝑢2

2

(
℘(𝑢1 − 𝑢2; 𝗊) +

𝜋2𝐸2(𝗊)

3

)
,

where 𝑧𝑗 = 𝑒2i𝜋𝑢𝑗 , ℘ is Weierstraß elliptic function and 𝐸2 the second Eisenstein series. In the
𝗊 → 1 limit, we show that it retrieves the topological recursion for Masur–Veech polynomials
mentioned in (𝟒), thus giving a second proof of the identity between (𝟏) and (𝟦).

Main results for the computation of Masur–Veech volumes and polynomials

Concretely, our results lead to two ways of computing Masur–Veech volumes. Firstly, the Masur–
Veech polynomials are expressed as a sum over the set 𝐆g ,𝑛 of stable graphs (see Definition 2.9).
Stable graphs encode topological types of primitive multicurves, which naturally appear via (2).
Let us introduce the polynomials

𝑉ΩK
g ,𝑛(𝐿1, … , 𝐿𝑛) = ∫𝔐g ,𝑛

exp

(
𝑛∑
𝑖=1

𝐿2𝑖
2

𝜓𝑖

)
, (1.3)

which from Kontsevich’s work [33] compute the volume of the combinatorial moduli spaces. The
application of Theorem 3.5 to the computation of Masur–Veech volumes can be summarised as
follows.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 259

Theorem1.1. For g , 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 > 0, theMasur–Veech polynomials can be expressed
as

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) =

∑
Γ∈𝐆g ,𝑛

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩK
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒d𝓁𝑒
𝑒𝓁𝑒 − 1

,

(1.4)

where𝑉Γ is the set of vertices of Γ and 𝐸(𝑣) (respectively,Λ(𝑣)) is the set of edges (respectively, leaves)
incident to 𝑣. In particular the Masur–Veech volumes can be computed as

𝑀𝑉g ,𝑛 =
24g−2+𝑛(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!

×
∑

Γ∈𝐆g ,𝑛

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩK
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (0)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒d𝓁𝑒
𝑒𝓁𝑒 − 1

.

(1.5)

Formula (1.5) was obtained prior to ourwork in [15] by combinatorialmethods. It was presented
by V.D. in a reading group organised by A.G. and D.L. The discussions which followed led to the
present work where, in particular, we give a new proof of formula (1.5).
Secondly, the coefficients of the Masur–Veech polynomials satisfy Virasoro constraints,

expressed in terms of values of the Riemann zeta function at even integers. This is summarised
by the following theorem, which combines the results of Lemma 3.4, Corollary 3.6, Theorem 3.7
and Section 5.2 of this paper.

Theorem 1.2. For any g ⩾ 0 and 𝑛 > 0 such that 2g − 2 + 𝑛 > 0, we have a decomposition

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) =

∑
𝑑1,…,𝑑𝑛⩾0

𝑑1+⋯+𝑑𝑛⩽3g−3+𝑛

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛]
𝑛∏
𝑖=1

𝐿
2𝑑𝑖
𝑖

(2𝑑𝑖 + 1)!
.

Let us set 𝐹0,1[𝑑1] = 𝐹0,2[𝑑1, 𝑑2] = 0 for all 𝑑1, 𝑑2 ⩾ 0. The base cases

𝐹0,3[𝑑1, 𝑑2, 𝑑3] = 𝛿𝑑1,𝑑2,𝑑3,0, 𝐹1,1[𝑑] = 𝛿𝑑,0
𝜁(2)

2
+ 𝛿𝑑,1

1
8

determine uniquely all other coefficients via the following recursion on 2g − 2 + 𝑛 ⩾ 2, for
𝑑1, … , 𝑑𝑛 ⩾ 0:

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛] =
𝑛∑

𝑚=2

∑
𝑎⩾0

𝐵
𝑑1
𝑑𝑚,𝑎

𝐹g ,𝑛−1[𝑎, 𝑑2, … , 𝑑𝑚,… , 𝑑𝑛]

+
1
2

∑
𝑎,𝑏⩾0

𝐶
𝑑1
𝑎,𝑏

⎛⎜⎜⎜⎜⎝
𝐹g−1,𝑛+1[𝑎, 𝑏, 𝑑2, … , 𝑑𝑛] +

∑
ℎ+ℎ′=g

𝐽⊔𝐽′={𝑑2,…,𝑑𝑛}

𝐹ℎ,1+|𝐽|[𝑎, 𝐽] 𝐹ℎ′,1+|𝐽′|[𝑏, 𝐽′]
⎞⎟⎟⎟⎟⎠
,
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260 ANDERSEN et al.

where

𝐵𝑖
𝑗,𝑘 = (2𝑗 + 1) 𝛿𝑖+𝑗,𝑘+1 + 𝛿𝑖,𝑗,0 𝜁(2𝑘 + 2),

𝐶𝑖
𝑗,𝑘 = 𝛿𝑖,𝑗+𝑘+2 +

(2𝑗+2𝑎+1)!𝜁(2𝑗+2𝑎+2)
(2𝑗+1)!(2𝑎)!

𝛿𝑖+𝑎,𝑘+1 +
(2𝑘+2𝑎+1)!𝜁(2𝑘+2𝑎+2)

(2𝑘+1)!(2𝑎)!
𝛿𝑖+𝑎,𝑗+1

+ 𝜁(2𝑗 + 2)𝜁(2𝑘 + 2)𝛿𝑖,0.

For surfaces of genus g with 𝑛 > 0 boundaries, the Masur–Veech volumes are identified as

𝑀𝑉g ,𝑛 =
24g−2+𝑛(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!
𝐹g ,𝑛[0, … , 0],

while for closed surfaces of genus g ⩾ 2 they are obtained through

𝑀𝑉g ,0 =
24g−2(4g − 4)!

(6g − 6)!
𝐹g ,1[1].

We use Theorem 1.2 to compute many Masur–Veech volumes and Masur–Veech polynomials
for low g and 𝑛 (Section 5). Based on numerical evidence, we propose polynomiality conjectures
for𝑀𝑉g ,𝑛 for all𝑛 and fixed g (Conjecture 5.4), with explicit coefficients up to g ⩽ 6. Conditionally
on this conjecture, we discuss the consequences for area Siegel–Veech constants in Corollary 5.5
and for the 𝑛 → ∞ asymptotics in Section 5.6.
The paper is supplementedwith three appendices. InAppendixA,we establish a closed formula

for all𝜓 classes intersections in genus one,whichwehave not found in the literature andwhichwe
use for computations of 𝑉ΩMV

1,𝑛 via stable graphs. In Appendix B, we illustrate the computation of
Masur–Veech polynomials and generating series of square-tiled surfaces fromPropositions 3.8 and
6.11 using the original formulation of the topological recursion à la Eynard–Orantin, via residues
on the associated spectral curves. Appendix C contains tables of coefficients for the Masur–Veech
polynomials and area Siegel–Veech constants.

Remark 1.3. Since the first arXiv release of our work, our polynomiality Conjectures 5.4 and thus
5.5 have been proved via intersection-theoretic methods by Chen, Möller and Sauvaget [14]. This
proof opened up a parallelism between Masur–Veech volumes and the Euler characteristic of the
moduli space of smooth curves, discussed in [28].

2 REVIEWOF GEOMETRIC AND TOPOLOGICAL RECURSION

We review some aspects of the formalism of geometric recursion developed in [3] and its relation
to topological recursion which are directly relevant for the analysis carried out in the present
paper, in Section 3 and onwards.

2.1 Preliminaries

Let 𝑆◦Σ be the set of isotopy classes of simple closed curves in the interior of Σ,𝑀Σ the set of multic-
urves (i.e. isotopy classes of finite disjoint unions of simple closed curves which are not homotopic
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 261

to boundary components of Σ) and 𝑀′
Σ the subset of primitive multicurves (the components of

the multicurve must be pairwise non-homotopic). By convention𝑀Σ and𝑀′
Σ contain the empty

multicurve, but 𝑆◦Σ does not contain the empty closed curve. In particular

𝑀Σ ≅
{
(𝛾,𝑚) | 𝛾 ∈ 𝑀′

Σ, 𝑚 ∈ ℤ
𝜋0(𝛾)
+

}
,

where ℤ+ is the set of positive integers (it does not include 0).

2.2 Geometric recursion

In the present context, the geometric recursion (in brief, GR) is a recipe to construct Mod𝜕Σ-
invariant functions ΩΣ on Σ for bordered surfaces Σ of all topologies, by induction on the Euler
characteristic of Σ. The initial data for GR is a quadruple (𝐴, 𝐵, 𝐶, 𝐷) where 𝐴, 𝐵, 𝐶 are functions
on the Teichmüller space of a pair of pants, and 𝐷 is a function on the Teichmüller space of a
torus with one boundary component. Since 𝑃 ≅ ℝ3

+, the functions 𝐴, 𝐵 and 𝐶 are just functions
of three positive variables. We further require that 𝐴 and 𝐶 are invariant under exchange of their
two last variables. In the construction we need that initial data satisfy some decay conditions. Let
[𝑥]+ = max(𝑥, 0).

Definition 2.1. We say that an initial data (𝐴, 𝐵, 𝐶, 𝐷) are admissible if

∙ 𝐴 is bounded on 𝑃 and 𝐷 is bounded on 𝑇 ,
∙ For any 𝑠 > 0 and some 𝜂 ∈ [0, 2),

sup
𝐿1,𝐿2,𝓁⩾0

(
1 + [𝓁 − 𝐿1 − 𝐿2]+

)𝑠 |𝐵(𝐿1, 𝐿2,𝓁)|𝓁𝜂 < +∞,

sup
𝐿1,𝓁,𝓁′⩾0

(
1 + [𝓁 + 𝓁′ − 𝐿1]+

)𝑠 |𝐶(𝐿1,𝓁,𝓁′)| (𝓁𝓁′)𝜂 < +∞.

Let us now briefly recall the recursion introduced in [3], which relies on successive excisions of
pairs of pants. Assume that Σ has genus g and 𝑛 boundary components such that 2g − 2 + 𝑛 ⩾ 2.
We consider the set of homotopy classes of embedded pairs of pants 𝜙∶ 𝑃 ↪ Σ such that

∙ 𝜕1𝑃 is mapped to 𝜕1Σ,
∙ 𝜕2𝑃 is either mapped to a boundary component of Σ, or mapped to a curve that is not null-
homotopic neither homotopic to a boundary component of Σ.

Let Σ the set of homotopy classes of such embeddings. It is partitioned into the subsets ∅
Σ

and 𝑚
Σ for 𝑚 ∈ {2,… , 𝑛}, consisting respectively of those classes of embeddings such that 𝜕2𝑃

is mapped to the interior of Σ, respectively, mapped to 𝜕𝑚Σ. Given a hyperbolic metric 𝜎 with
geodesic boundaries on Σ, each element of Σ has a representative 𝑃 such that 𝜙(𝑃) has geodesic
boundaries. We denote by 𝓁𝜎(𝜕𝑃) the ordered triple of lengths of 𝜙(𝑃) for the metric 𝜎. Removing
this embedded pair of pants from Σ gives a bordered surface Σ − 𝑃. Our assumptions imply that
Σ − 𝑃 is stable. It is also equipped with a hyperbolic metric 𝜎|Σ−𝑃 with geodesic boundaries. We
decide to label the boundary components of Σ − 𝑃 by putting first the boundary components that
came from those of 𝑃 (respecting the order in which they appeared in 𝜕𝑃) and then the boundary
components that came from those of Σ (with the order in which they appeared in Σ).
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262 ANDERSEN et al.

The GR amplitudes ΩΣ are now defined as follows. For surfaces with Euler characteristic −1,
we declare

Ω𝑃 = 𝐴, Ω𝑇 = 𝐷.

For disconnected surfaces, we use the identification Σ1∪Σ2 ≅ Σ1 × Σ2 to set
ΩΣ1∪Σ2

(𝜎1, 𝜎2) = ΩΣ1
(𝜎1)ΩΣ(𝜎2),

and for connected surfaces with Euler characteristic ⩽ −2, we set

ΩΣ(𝜎) =
𝑛∑

𝑚=2

∑
[𝑃]∈𝑚

Σ

𝐵(𝓁𝜎(𝜕𝑃))ΩΣ−𝑃(𝜎|Σ−𝑃) + 1
2

∑
[𝑃]∈∅

Σ

𝐶(𝓁𝜎(𝜕𝑃))ΩΣ−𝑃(𝜎|Σ−𝑃). (2.1)

The latter is a countable sum and its absolute convergence was addressed† in [3]. We recall the
main construction theorem of that paper here. Let(Σ, ℂ) be the set of complex valued functions
on Σ.
Theorem2.2. If (𝐴, 𝐵, 𝐶, 𝐷) is an admissible initial data, thenΣ ↦ ΩΣ ∈ (Σ, ℂ) is awell-defined
assignment. More precisely:

∙ the series (2.1) is absolutely convergent for the supremum norm over any compact subset of Σ;
∙ ΩΣ is invariant under all mapping classes inModΣ which preserve 𝜕1Σ;
∙ if the initial data are continuous (or measurable),ΩΣ is also continuous (or measurable).

2.3 Two examples

We describe two examples of initial data which play a special role for us. The first one appears in
Mirzakhani’s generalisation [38] of McShane identity [37], which is a prototype of GR and which
we can formulate in GR terms as follows.

Theorem 2.3 (Mirzakhani and McShane). The initial data

𝐴M(𝐿1, 𝐿2, 𝐿3) = 1,

𝐵M(𝐿1, 𝐿2,𝓁) = 1 −
1
𝐿1

ln

⎛⎜⎜⎜⎝
cosh

(
𝐿2
2

)
+ cosh

(
𝐿1+𝓁
2

)
cosh

(
𝐿2
2

)
+ cosh

(
𝐿1−𝓁
2

)⎞⎟⎟⎟⎠,

𝐶M(𝐿1,𝓁,𝓁
′) =

2
𝐿1

ln
⎛⎜⎜⎝ 𝑒

𝐿1
2 + 𝑒

𝓁+𝓁′

2

𝑒−
𝐿1
2 + 𝑒

𝓁+𝓁′

2

⎞⎟⎟⎠,
𝐷M
𝑇 (𝜎) =

∑
𝛾∈𝑆◦𝑇

𝐶M(𝓁𝜎(𝜕𝑇),𝓁𝜎(𝛾),𝓁𝜎(𝛾)),

(2.2)

† The notion of admissibility adopted in the present paper is more restrictive than the one appearing in [3], but is sufficient
for our purposes.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 263

are admissible, and for any bordered Σ the corresponding GR amplitudeΩM
Σ is the constant function

1 on Σ.
The second example is obtained by rescaling all length variables in Mirzakhani initial data as

follows:

𝑋K(𝐿1, 𝐿2, 𝐿3) = lim
𝛽→∞

𝑋M(𝛽𝐿1, 𝛽𝐿2, 𝛽𝐿3), 𝑋 ∈ {𝐴, 𝐵, 𝐶}. (2.3)

More explicitly

𝐴𝐾(𝐿1, 𝐿2, 𝐿3) = 1,

𝐵𝐾(𝐿1, 𝐿2,𝓁) =
1
2𝐿1

(
[𝐿1 − 𝐿2 − 𝓁]+ − [−𝐿1 + 𝐿2 − 𝓁]+ + [𝐿1 + 𝐿2 − 𝓁]+

)
,

𝐶K(𝐿1,𝓁,𝓁
′) =

1
𝐿1

[𝐿1 − 𝓁 − 𝓁′]+,

𝐷K
𝑇 (𝜎) =

∑
𝛾∈𝑆◦𝑇

𝐶K(𝓁𝜎(𝜕𝑇),𝓁𝜎(𝛾),𝓁𝜎(𝛾)).

(2.4)

It is easy to check that these initial data are admissible, and we call them the Kontsevich initial
data. Unlike the previous situation, the resulting GR amplitudes ΩK

Σ are non-trivial functions onΣ. Their geometric interpretation and basic properties are studied in [1].

2.4 Hyperbolic length statistics and twisting of initial data

Let 𝔻 ⊂ ℂ be the open unit disk. Let 𝑓∶ ℝ+ → ℂ and 𝑓∶ ℝ+ → 𝔻 be two functions related by

𝑓(𝓁) =
∑
𝑘⩾1

(𝑓(𝓁))𝑘 =
𝑓(𝓁)

1 − 𝑓(𝓁)
. (2.5)

Definition 2.4. We call 𝑓∶ ℝ+ → ℂ an admissible test function if 𝑓 is Riemann-integrable on ℝ+

and for any 𝑠 > 0

sup
𝓁>0

(1 + 𝓁)𝑠 |𝑓(𝓁)| < +∞. (2.6)

This condition is stronger than what is needed in [3], but is sufficient here.
Following [3], we consider multiplicative statistics of hyperbolic lengths of multicurves

𝑁Σ(𝑓; 𝜎) =
∑
𝑐∈𝑀′

Σ

∏
𝛾∈𝜋0(𝑐)

𝑓(𝓁𝜎(𝛾)) =
∑
𝑐∈𝑀Σ

∏
𝛾∈𝜋0(𝑐)

𝑓(𝓁𝜎(𝛾)). (2.7)

It can be written either as a sum over all multicurves or as a sum over primitive multicurves only,
the two expressions being related via the geometric series (2.5). According to our conventions, the
empty multicurve gives a term equal to 1 in this sum.

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12686 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [17/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



264 ANDERSEN et al.

In fact, these statistics satisfy the geometric recursion. If (𝐴, 𝐵, 𝐶, 𝐷) are some initial data, we
define its twisting

𝐴[𝑓](𝐿1, 𝐿2, 𝐿3) = 𝐴(𝐿1, 𝐿2, 𝐿3),

𝐵[𝑓](𝐿1, 𝐿2,𝓁) = 𝐵(𝐿1, 𝐿2,𝓁) + 𝐴(𝐿1, 𝐿2,𝓁) 𝑓(𝓁),

𝐶[𝑓](𝐿1,𝓁,𝓁
′) = 𝐶(𝐿1,𝓁,𝓁

′) + 𝐵(𝐿1,𝓁,𝓁
′)𝑓(𝓁) + 𝐵(𝐿1,𝓁

′,𝓁)𝑓(𝓁′) + 𝐴(𝐿1,𝓁,𝓁
′)𝑓(𝓁)𝑓(𝓁′),

𝐷[𝑓]𝑇(𝜎) = 𝐷𝑇(𝜎) +
∑
𝛾∈𝑆◦𝑇

𝐴(𝓁𝜎(𝜕𝑇),𝓁𝜎(𝛾),𝓁𝜎(𝛾)) 𝑓(𝓁𝜎(𝛾)). (2.8)

Theorem2.5 [3]. If we choose (𝐴, 𝐵, 𝐶, 𝐷) to beMirzakhani initial data (2.2) and𝑓 is an admissible
test function, the twisted initial data (2.8) are admissible and the resulting GR amplitudes coincide
with the assignment Σ ↦ 𝑁Σ(𝑓; ⋅ ).

The idea of the proof is, for each 𝑐 ∈ 𝑀′
Σ, to multiply the product in (2.7) by 1, seen as a function

on the Teichmüller space of Σ − 𝑐. Then, one decomposes 1 using Mirzakhani’s identity on Σ−𝑐,
and interchanges the summation over primitive multicurves with the summation over embedded
pairs of pants. As the curves do not intersect the pair of pants, the structure of the geometric
recursion (2.1) appears again, but the initial data aremodified as in (2.8). It is important to consider
only simple closed curves, as otherwise Σ − 𝑐 would not be any more a bordered surface and the
recursive procedure could not be carried out in this way.

2.5 Relation to the topological recursion

Being invariant under the pure mapping class group, the GR amplitudesΩΣ descend to functions
on the moduli spaceg ,𝑛, and we denote them byΩg ,𝑛. The structure of the geometric recursion
is compatible with factorisations of the Weil–Petersson volume form 𝜇WP when excising pairs
of pants. This means that, if we integrate GR amplitude against 𝜇WP, the outcome will again be
governed by a recursion with respect to the Euler characteristic, which is called the topological
recursion (TR for short). The (countable) sum over homotopy classes of pairs of pants is replaced
with a sum over the (finitely many) diffeomorphism classes of embeddings of pair of pants.
Recall the notation

𝑉Ωg ,𝑛(𝐿1, … , 𝐿𝑛) = ∫g ,𝑛(𝐿1,…,𝐿𝑛)
Ωg ,𝑛(𝜎) d𝜇WP(𝜎),

whenever the integral on the right-hand sidemakes sense; by convention, we set𝑉Ωg ,𝑛 = 0when
2g − 2 + 𝑛 ⩽ 0.

Theorem 2.6 (From GR to TR, [3]). If (𝐴, 𝐵, 𝐶, 𝐷) are admissible, 𝑉Ωg ,𝑛 is well defined as the
integrand is Riemann-integrable, and it satisfies the topological recursion, that is, for any g ⩾ 0 and
𝑛 ⩾ 1 such that 2g − 2 + 𝑛 ⩾ 2
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 265

𝑉Ωg ,𝑛(𝐿1, 𝐿2, … , 𝐿𝑛) =
𝑛∑

𝑚=2
∫ℝ+

𝐵(𝐿1, 𝐿𝑚,𝓁)𝑉Ωg ,𝑛−1(𝓁, 𝐿2, … , 𝐿𝑚,… , 𝐿𝑛)𝓁 d𝓁

+
1
2 ∫ℝ2

+

𝐶(𝐿1,𝓁,𝓁
′)

⎛⎜⎜⎜⎜⎝
𝑉Ωg−1,𝑛+1(𝓁,𝓁

′, 𝐿2, … , 𝐿𝑛)

+
∑

ℎ+ℎ′=g

𝐽⊔𝐽′={𝐿2,…,𝐿𝑛}

𝑉Ωℎ,1+|𝐽|(𝓁, 𝐽)𝑉Ωℎ′,1+|𝐽′|(𝓁′, 𝐽′)

⎞⎟⎟⎟⎟⎠
𝓁𝓁′ d𝓁 d𝓁′. (2.9)

The base cases are

𝑉Ω0,3(𝐿1, 𝐿2, 𝐿3) = 𝐴(𝐿1, 𝐿2, 𝐿3), 𝑉Ω1,1(𝐿1) = 𝑉𝐷(𝐿1) = ∫1,1(𝐿1)
𝐷(𝜎) d𝜇WP(𝜎).

We call any sequence of functions𝑉Ωg ,𝑛 satisfying a recursion of the form (2.9) TR amplitudes.
Let us come back to the two examples of Section 2.3.
According to Theorem 2.3, 𝑉ΩM

g ,𝑛(𝐿1, … , 𝐿𝑛) is the Weil–Petersson volume ofg ,𝑛(𝐿1, … , 𝐿𝑛),
and the topological recursion (2.9) in this case is Mirzakhani’s recursion for these volumes [38].
To be complete, we should record the Weil–Petersson volume for1,1(𝐿1)

𝑉𝐷M(𝐿1) =
𝜋2

6
+

𝐿21
48

,

which is also mentioned in [38]. Mirzakhani also expressed the Weil–Petersson volumes via
intersection theory on the Deligne–Mumford compactified moduli space of punctured surfaces
𝔐g ,𝑛.

Theorem 2.7 [39]. The Weil–Petersson volumes satisfy

𝑉ΩM
g ,𝑛(𝐿1, … , 𝐿𝑛) = ∫𝔐g ,𝑛

exp

(
2𝜋2𝜅1 +

𝑛∑
𝑖=1

𝐿2𝑖
2
𝜓𝑖

)
.

Similar considerations apply to 𝑉ΩK. Actually, the topological recursion for 𝑉ΩK is equivalent
to the set of Virasoro constraints for the intersection of 𝜓 classes on𝔐g ,𝑛.

Theorem 2.8 (Conjecture [52], theorem of [33] and [16]). The amplitudes 𝑉ΩK satisfy

𝑉ΩK
g ,𝑛(𝐿1, … , 𝐿𝑛) = ∫𝔐g ,𝑛

exp

(
𝑛∑
𝑖=1

𝐿2𝑖
2
𝜓𝑖

)
.

In particular, 𝑉𝐷K(𝐿1) =
𝐿21
48
.
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266 ANDERSEN et al.

This is also a corollary of Theorem 2.7, as can be seen if we multiply all length variables by 𝛽 in
Mirzakhani initial data, let 𝛽 → ∞ and recall definition (2.3). Themain analysis carried out in this
paper consists in rescaling length variables by 𝛽 → ∞ in the twisted GR amplitudes to understand
properties of the asymptotic number of multicurves.
There are several other ways to see that Theorem 2.7 implies or is implied by Theorem 2.8, see

[7, 17, 43]. They will be discussed in the broader context of the geometric recursion in [1].

Symmetry issues

The GR amplitudes ΩΣ are a priori invariant under mapping classes that preserve 𝜕1Σ (see
Theorem 2.2). Therefore, after integration, the TR amplitudes 𝑉Ωg ,𝑛(𝐿1, … , 𝐿𝑛) are symmetric
functions of 𝐿2, … , 𝐿𝑛. The topological recursion also gives a special role to the length 𝐿1 of the
first boundary.
The framework of quantum Airy structures [34] provides sufficient conditions for the invari-

ance of TR amplitudes under all permutations of (𝐿1, … , 𝐿𝑛). These conditions are quadratic
constraints on (𝐴, 𝐵, 𝐶, 𝑉𝐷)which are explicitlywritten down in [2, Section 2.2]. They are satisfied
by the Mirzakhani and Kontsevich initial data obtained from spectral curves in the Eynard–
Orantin description (Section 2.7.3), and they are stable under the twisting operation [2]. Therefore,
all TR amplitudes that considered in this article have the full𝔖𝑛-symmetry.
The situation is different at the level of GR amplitudes. For instance, one can prove that ΩK

Σ is
not always invariant under mapping classes that do not respect 𝜕1Σ [1].

2.6 Twisting and stable graphs

If (𝐴, 𝐵, 𝐶, 𝐷) are admissible initial data, the upper bound on the number of multicurves of
bounded length directly implies that the twisted initial data (𝐴[𝑓], 𝐵[𝑓], 𝐶[𝑓], 𝐷[𝑓]) remain
admissible when 𝑓 is an admissible test function (2.6). Therefore, the integrals

𝑉Ωg ,𝑛(𝑓; 𝐿1, … , 𝐿𝑛) = ∫g ,𝑛(𝐿1,…,𝐿𝑛)
Ωg ,𝑛(𝑓; 𝜎) d𝜇WP(𝜎)

of the GR amplitudes Ωg ,𝑛(𝑓; ⋅ ) satisfy TR (2.9) for the initial data (𝐴[𝑓], 𝐵[𝑓], 𝐶[𝑓]), completed
by

𝑉𝐷(𝑓; 𝐿1) = 𝑉𝐷(𝐿1) +
1
2 ∫ℝ+

𝑓(𝓁) 𝐴(𝐿1,𝓁,𝓁)𝓁d𝓁. (2.10)

The function𝑉Ωg ,𝑛(𝑓; ⋅ ) can also be evaluated by direct integration, exploiting the factorisation of
the Weil–Petersson volume form when cutting along simple closed curves — which is clear from
its expression in Fenchel–Nielsen coordinates. The result is that, while Ωg ,𝑛(𝑓; ⋅ ) is a (count-
able) sum over primitive multicurves, its integral 𝑉Ωg ,𝑛(𝑓; ⋅ ) is a sum over the (finitely many)
topological types of such multicurves. The latter are described by stable graphs.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 267

Definition 2.9. A stable graph Γ of type (g , 𝑛) consists of the data(
𝑉Γ,𝐻Γ, ΛΓ, ℎ, 𝗏, 𝗂

)
satisfying the following properties.

1. 𝑉Γ is the set of vertices, equipped with a function ℎ∶ 𝑉Γ → ℕ, called the genus.
2. 𝐻Γ is the set of half-edges, 𝗏∶ 𝐻Γ → 𝑉Γ associate to each half-edge the vertex it is incident to,

and 𝗂 ∶ 𝐻Γ → 𝐻Γ is the involution.
3. 𝐸Γ is the set of edges, consisting of the 2-cycles of 𝗂 in𝐻Γ (loops at vertices are permitted).
4. ΛΓ is the set of leaves, consisting of the fixed points of 𝗂, which are equipped with a labelling

from 1 to 𝑛.
5. The pair (𝑉Γ, 𝐸Γ) defines a connected graph.
6. If 𝑣 is a vertex, 𝐸(𝑣) (respectively, 𝐸(𝑣)) is the set of edges incident to 𝑣 including (respectively,

excluding) the leaves and 𝑘(𝑣) = |𝐸(𝑣)| is the valency of 𝑣. We require that for each vertex 𝑣,
the stability condition 2ℎ(𝑣) − 2 + 𝑘(𝑣) > 0 holds.

7. The genus condition

g =
∑
𝑣∈𝑉Γ

ℎ(𝑣) + 𝑏1(Γ)

holds. Here 𝑏1(Γ) = |𝐸Γ| − |𝑉Γ| + 1 is the first Betti number of the graph Γ.

An automorphism of Γ consists of bijections of the sets 𝑉Γ and 𝐻Γ which leave invariant the
structures ℎ, 𝗏, and 𝗂 (and hence respect 𝐸Γ andΛΓ). We denote byAut Γ the automorphism group
of Γ.

We denote by 𝐆g ,𝑛 the set of stable graphs of type (g , 𝑛). It parametrises the topological types
of primitive multicurves on a bordered surface Σ of genus g with 𝑛 labelled boundaries:

𝐆g ,𝑛 = 𝑀′
Σ ∕ Mod𝜕Σ.

The stable graph with a single vertex of genus g corresponds to the empty multicurve. The other
stable graphs are in bijective correspondence with the boundary strata of 𝔐g ,𝑛; more precisely
Γ ∈ 𝐆g ,𝑛 refers to a boundary stratum of complex codimension |𝐸Γ| that contains the union over
𝑣 ∈ 𝑉Γ of smooth complex curves of genus ℎ(𝑣) with 𝑘(𝑣) punctures, glued in a nodal way along
punctures that correspond to the two ends of the same edge.
By direct integration, we have that

Theorem 2.10 [3]. Assume that𝑉Ωg ,𝑛 is𝔖𝑛-invariant for any g ⩾ 0 and 𝑛 ⩾ 1 such that 2g − 2 +
𝑛 > 0. Then, for any admissible test function 𝑓∶ ℝ+ → ℂ we have

𝑉Ωg ,𝑛(𝑓; 𝐿1, … , 𝐿𝑛) =
∑

Γ∈𝐆g ,𝑛

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉Ωℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 𝑓(𝓁𝑒)d𝓁𝑒.

We record two useful combinatorial identities, valid for any Γ ∈ 𝐆g ,𝑛.
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268 ANDERSEN et al.

Lemma 2.11.

𝜒Γ =
∑
𝑣∈𝑉Γ

(2 − 2ℎ(𝑣) − 𝑘(𝑣)) = 2 − 2g − 𝑛,

𝑑Γ =
∑
𝑣∈𝑉Γ

(3ℎ(𝑣) − 3 + 𝑘(𝑣)) = 3g − 3 + 𝑛 − |𝐸Γ|.
Proof. The claim follows by combining edge counting with the definition of the first Betti number
𝑏1(Γ), namely ∑

𝑣∈𝑉Γ

𝑘(𝑣) = 2|𝐸Γ| + 𝑛, 1 − |𝑉Γ| + |𝐸Γ| + ∑
𝑣∈𝑉Γ

ℎ(𝑣) = g .
□

2.7 Equivalent forms of the topological recursion

In this section, we describe equivalent forms of the topological recursion (2.9), which can be con-
venient for either carrying out calculations or for exploiting properties proved in the context of
Eynard–Orantin topological recursion.

2.7.1 Polynomial cases

Let 𝜙1 ∶ ℝ+ → ℝ and 𝜙2 ∶ ℝ+ × ℝ+ → ℝ be measurable functions. The operators

𝐵̂[𝜙1](𝐿1, 𝐿2) = ∫ℝ+

𝐵(𝐿1, 𝐿2,𝓁) 𝜙1(𝓁)𝓁 d𝓁, 𝐶̂[𝜙2](𝐿1) = ∫ℝ2
+

𝐶(𝐿1,𝓁,𝓁
′) 𝜙2(𝓁,𝓁

′)𝓁 𝓁′ d𝓁 d𝓁′

(2.11)
play an essential role in the topological recursion (2.9). It turns out that for Mirzakhani or Kont-
sevich initial data, these operators preserve the space of polynomials in one (for 𝐵̂) or two (for
𝐶̂) variables that are even with respect of each variable (we call them even polynomials). Since in
both examples the base cases (g , 𝑛) = (0, 3) and (1, 1) are even polynomials in the length variables,
it implies that 𝑉ΩM

g ,𝑛 and 𝑉Ω
K
g ,𝑛 are even polynomials.

Definition 2.12. We say that an initial data (𝐴, 𝐵, 𝐶, 𝐷) is polynomial if (𝐵, 𝐶) are such that the
operators 𝐵̂ and 𝐶̂ defined in (2.11) preserve the spaces of even polynomials and 𝐴 and 𝑉𝐷 are
themselves even polynomials.

For polynomial initial data, it is sometimes more efficient for computations to decompose
𝑉Ωg ,𝑛 on a basis of monomials and write the effect of 𝐵̂ and 𝐶̂ on these monomials. For instance,
let us decompose

𝑉Ωg ,𝑛(𝐿1, … , 𝐿𝑛) =
∑

𝑑1,…,𝑑𝑛⩾0

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛]
𝑛∏
𝑖=1

e𝑑𝑖 (𝐿𝑖), e𝑑(𝓁) =
𝓁2𝑑

(2𝑑 + 1)!
,
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 269

and

𝐵̂[e𝑑3](𝐿1, 𝐿2) =
∑

𝑑1,𝑑2⩾0

𝐵
𝑑1
𝑑2,𝑑3

e𝑑1(𝐿1)e𝑑2(𝐿2), 𝐶̂[e𝑑2 ⊗ e𝑑3](𝐿1) =
∑
𝑑1⩾0

𝐶
𝑑1
𝑑2,𝑑3

e𝑑1(𝐿1).

The topological recursion (2.9) then takes the form, if 2g + 𝑛 − 2 ⩾ 2

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛]

=
𝑛∑

𝑚=2

∑
𝑎⩾0

𝐵
𝑑1
𝑑𝑚,𝑎

𝐹g ,𝑛−1[𝑎, 𝑑2, … , 𝑑𝑚,… , 𝑑𝑛]

+
1
2

∑
𝑎,𝑏⩾0

𝐶
𝑑1
𝑎,𝑏

⎛⎜⎜⎜⎜⎝
𝐹g−1,𝑛+1[𝑎, 𝑏, 𝑑2, … , 𝑑𝑛] +

∑
ℎ+ℎ′=g

𝐽⊔𝐽′={𝑑2,…,𝑑𝑛}

𝐹ℎ,1+|𝐽|[𝑎, 𝐽] 𝐹ℎ′,1+|𝐽′|[𝑏, 𝐽′]
⎞⎟⎟⎟⎟⎠
.

(2.12)

For the sake of uniformity, we introduce a similar notation for the base cases of the recursion

𝐹0,3[𝑑1, 𝑑2, 𝑑3] = 𝐴
𝑑1
𝑑2,𝑑3

, 𝐹1,1[𝑑1] = 𝐷𝑑1 .

For the Kontsevich initial data, we have in the chosen basis

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛] =
𝑛∏
𝑖=1

(2𝑑𝑖 + 1)!!∫𝔐g ,𝑛

𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖
,

which vanishes unless 𝑑1 +⋯ + 𝑑𝑛 = 3g − 3 + 𝑛. Translating the Virasoro constraints of [52] —
or computing directly with (2.4) — we find

𝐹0,3[𝑑1, 𝑑2, 𝑑3] = 𝛿𝑑1,𝑑2,𝑑3,0, 𝐹1,1[𝑑] =
𝛿𝑑,1
8

, (2.13)

and

𝐵
𝑑1
𝑑2,𝑑3

= (2𝑑2 + 1)𝛿𝑑1+𝑑2,𝑑3 , 𝐶
𝑑1
𝑑2,𝑑3

= 𝛿𝑑1,𝑑2+𝑑3+2. (2.14)

A similar computation for Mirzakhani initial data can be found in [38] and is reviewed in [10]
with notations closer to ours.
Other bases of the space of even polynomials are sometimes useful to consider. For instance,

the linear isomorphism given by the Laplace transform

∶
ℂ[𝐿2] ⟶ ℂ[𝑝−2]d𝑝

𝜙 ⟶
(∫ℝ+

𝑒−𝑝𝓁𝜙(𝓁)𝓁 d𝓁
)
d𝑝

makes the bridge towards the Eynard–Orantin form of the topological recursion (see Sec-
tion 2.7.3).

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12686 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [17/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



270 ANDERSEN et al.

2.7.2 Twisting

The operation of twisting (2.8) preserves the polynomiality of initial data. Indeed, the condition
(2.6) guarantees that all moments of the test function 𝑓 exist and if we set

𝑢𝑑1,𝑑2 = ∫ℝ+

𝓁2𝑑1+2𝑑2+1

(2𝑑1 + 1)!(2𝑑2 + 1)!
𝑓(𝓁) d𝓁, (2.15)

we obtain

𝐴[𝑓]
𝑑1
𝑑2,𝑑3

= 𝐴
𝑑1
𝑑2,𝑑3

,

𝐵[𝑓]
𝑑1
𝑑2,𝑑3

= 𝐵
𝑑1
𝑑2,𝑑3

+
∑
𝑎⩾0

𝐴
𝑑1
𝑑2,𝑎

𝑢𝑎,𝑑3 ,

𝐶[𝑓]
𝑑1
𝑑2,𝑑3

= 𝐶
𝑑1
𝑑2,𝑑3

+
∑
𝑎⩾0

(
𝐵
𝑑1
𝑎,𝑑3

𝑢𝑎,𝑑2 + 𝐵
𝑑1
𝑎,𝑑2

𝑢𝑎,𝑑3

)
+

∑
𝑎,𝑏⩾0

𝐴
𝑑1
𝑎,𝑏

𝑢𝑎,𝑑2𝑢𝑏,𝑑3 ,

𝐷[𝑓]𝑑1 = 𝐷𝑑1 +
1
2

∑
𝑎,𝑏⩾0

𝐴
𝑑1
𝑎,𝑏

𝑢𝑎,𝑏.

(2.16)

Let us denote by 𝐹g ,𝑛[𝑓; ⋅ ] the coefficients of decomposition of the twisted TR amplitudes.
According to Theorem 2.10, it can be expressed as a sum over decorated stable graphs

𝐹g ,𝑛[𝑓; 𝑑1, … , 𝑑𝑛] =
∑

Γ∈𝐆g ,𝑛
𝑑∶ 𝐻Γ→ℕ

1|Aut Γ| ∏
𝑒∈𝐸Γ

𝑒=(ℎ,ℎ′)

𝑢ℎ,ℎ′
∏
𝑣∈𝑉Γ

𝐹ℎ(𝑣),𝑘(𝑣)

[
(𝑑𝑒)𝑒∈𝐸(𝑣)

]
. (2.17)

In this sum we impose that the decoration of the 𝑖th leaf is 𝑑𝑖 . Similar twisting operations appear
in the context of Givental group action on cohomological field theories, see [3] for the comparison.

2.7.3 Eynard–Orantin form

Originally, the topological recursion was formulated by Eynard and Orantin as a residue compu-
tation on spectral curves [24]. We present it in a restricted setting adapted to our needs. A local
spectral curve is a triple (𝑥, 𝑦, 𝜔0,2) where

∙ 𝑥 and 𝑦 are holomorphic functions on a smooth complex curve ;
∙ the set 𝔞 of zeros of d𝑥 is finite; each zero 𝛼 ∈ 𝔞 is simple and such that d𝑦(𝛼) ≠ 0;
∙ 𝜔0,2 is a meromorphic symmetric bidifferential on 2 with a double pole on the diagonal with
biresidue 1. The latter means that for any choice of local coordinate 𝑝 on , the bidifferential
𝜔0,2(𝑧1, 𝑧2) −

d𝑝(𝑧1)⊗d𝑝(𝑧2)
(𝑝(𝑧1)−𝑝(𝑧2))2

is holomorphic near the diagonal in 2.

We consider𝑥∶  → ℂ as a double branched cover in a neighbourhood of𝛼 ∈ 𝔞; it admits (locally)
a non-trivial holomorphic automorphism 𝜏𝛼 exchanging the two sheets, that is, 𝜏2𝛼 = id and
𝑥◦𝜏𝛼 = 𝑥, but 𝜏𝛼 ≠ id and 𝜏𝛼(𝛼) = 𝛼. We introduce the recursion kernel

𝐾𝛼(𝑧1, 𝑧) =
1
2

∫ 𝑧
𝜏𝛼(𝑧)

𝜔0,2(⋅, 𝑧1)

(𝑦(𝑧) − 𝑦(𝜏𝛼(𝑧)))d𝑥(𝑧)
,
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 271

and proceed to define multidifferentials 𝜔g ,𝑛(𝑧1, … , 𝑧𝑛) for g ⩾ 0 and 𝑛 ⩾ 1 as follows. We set
𝜔0,1 = 𝑦d𝑥, further 𝜔0,2 is part of the data of the local spectral curve, and for 2g − 2 + 𝑛 > 0 we
define inductively

𝜔g ,𝑛(𝑧1, 𝑧2, … , 𝑧𝑛) =
∑
𝛼∈𝔞

Res
𝑧=𝛼

𝐾𝛼(𝑧1, 𝑧)

⎛⎜⎜⎜⎜⎝
𝜔g−1,𝑛+1(𝑧, 𝜏𝛼(𝑧), 𝑧2, … , 𝑧𝑛)

+
no (0,1)∑
ℎ+ℎ′=g

𝐽⊔𝐽′={𝑧2,…,𝑧𝑛}

𝜔ℎ,1+|𝐽|(𝑧, 𝐽) ⊗ 𝜔ℎ′,1+|𝐽′|(𝜏𝛼(𝑧), 𝐽′)
⎞⎟⎟⎟⎟⎠
,

(2.18)

where
∑no (0,1)means that the sum excludes the caseswhere (ℎ, 1 + |𝐽|) = (0, 1) or (ℎ′, 1 + |𝐽′|) =

(0, 1). For 𝑛 = 0 and g ⩾ 2, we also define the numbers

𝜔g ,0 =
1

2 − 2g

∑
𝛼∈𝔞

Res
𝑧=𝛼

(
∫

𝑧

𝛼
𝑦d𝑥

)
𝜔g ,1(𝑧). (2.19)

As in the (𝐴, 𝐵, 𝐶, 𝐷) formulation, there is an operation of twisting in the Eynard–Orantin
topological recursion, which consists in shifting 𝜔0,2.

Theorem 2.13. Let (, 𝑥, 𝑦, 𝜔0,2) and (, 𝑥, 𝑦, 𝜔0,2) be two local spectral curves, 𝜔g ,𝑛 and 𝜔g ,𝑛 the
respective outputs of the Eynard–Orantin topological recursion. We define two projectors𝒫 and𝒫
acting on the space of meromorphic 1-forms on , by the formulae

𝒫[𝜙](𝑧) =
∑
𝛼∈𝔞

Res
𝑧′=𝛼

(
∫

𝑧′

𝜔0,2(⋅, 𝑧)

)
𝜙(𝑧′),

and likewise𝒫 with 𝜔0,2. We denote𝒱 ∶= Im𝒫. We assume that there exists a 2-cycle𝒞 ⊂ 2 and
a germ Υ of holomorphic function at𝒞 such that

𝜔0,2(𝑧1, 𝑧2) − 𝜔0,2(𝑧1, 𝑧2) = ∫𝒞 Υ(𝑧′1, 𝑧
′
2) 𝜔0,2(𝑧1, 𝑧

′
1)𝜔0,2(𝑧2, 𝑧

′
2).

We define a linear form 𝒪 on𝒱⊗2 by the formula

𝒪[𝜛] = ∫𝒞 Υ(𝑧′1, 𝑧
′
2)𝜛(𝑧′1, 𝑧

′
2).

Then, we have

𝜔g ,𝑛(𝑧1, … , 𝑧𝑛) =
∑

Γ∈𝐆g ,𝑛

1|Aut Γ|
(

𝑛⨂
𝑖=1

𝒫𝑧𝑖
⊗

⨂
𝑒∈𝐸Γ

𝒪𝑧′
𝑒
,𝑧′
−𝑒

)[⨂
𝑣∈𝑉Γ

𝜔ℎ(𝑣),𝑘(𝑣)

(
(𝑧′𝑒)𝑒∈𝐸⃗(𝑣), (𝑧𝜆)𝜆∈Λ(𝑣)

)]
.
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272 ANDERSEN et al.

In this formula: 𝐸⃗(𝑣) is the set of oriented edges pointing to 𝑣; each oriented edge 𝑒 carries a variable
𝑧′
𝑒
; to each 𝑒 ∈ 𝐸Γ corresponds two oriented edges 𝑒 and−𝑒; we indicate in subscripts of the operators

which are the variables they act on.

Sketch of proof. When is a compact Riemann surface and 𝜔̃0,2 = 𝜔0,2 + 𝑡ℎwhereℎ is a fixed sym-
metric holomorphic bidifferential, [23, Theorem 6.1, proved in Appendix B] establishes a formula
for the first derivative of 𝜔g ,𝑛 with respect to 𝑡. Integrating this relation with respect to 𝑡 yields the
result — in that case 𝒞 is an element of Sym2𝐻1(, ℂ) and Υ = (2i𝜋)−2. The same proof in fact
works under the assumptions of the theorem. Notice that the order of integration of the variables
𝑧𝑒 is irrelevant, by the assumptions on (𝒞, Υ) and the fact that𝜔ℎ,𝑘 only has poles on 𝔞𝑘 ⊂ 𝑘. □

2.7.4 Equivalences

The correspondence with Section 2.7.1 appears if we decompose the 𝜔g ,𝑛 on a suitable basis of
1-forms. We explain it when d𝑥 has a single zero, which is the only case where we are going to use
this correspondence. Let us choose a coordinate𝑝 near𝛼 such that𝑥 = 𝑝2∕2 + 𝑥(𝛼).We introduce
the 1-form globally defined on 

𝜉𝑑(𝑧0) = Res
𝑧=𝛼

d𝑝(𝑧)

𝑝(𝑧)2𝑑+2

(
∫

𝑧

𝛼
𝜔0,2(⋅, 𝑧0)

)
. (2.20)

We also introduce

𝜉∗𝑑(𝑧) = (2𝑑 + 1)𝑝(𝑧)2𝑑+1,

𝜃(𝑧) =
−2

(𝑦(𝑧) − 𝑦(𝜏(𝑧)))d𝑥(𝑧)
∼

𝑧→𝛼

∑
𝑘⩾−1

𝜃𝑘
𝑝(𝑧)2𝑘

d𝑝(𝑧)
,

𝑢0,0 = lim
𝑧1→𝑧2

(
𝜔0,2(𝑧1, 𝑧2)

d𝑝(𝑧1)d𝑝(𝑧2)
−

1
(𝑝(𝑧1) − 𝑝(𝑧2))2

)
.

Theorem 2.14 [2]. For 2g − 2 + 𝑛 > 0, we have

𝜔g ,𝑛(𝑧1, … , 𝑧𝑛) =
∑

𝑑1,…,𝑑𝑛⩾0
𝑑1+⋯+𝑑𝑛⩽3g−3+𝑛

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛]
𝑛⨂
𝑖=1

𝜉𝑑𝑖 (𝑧𝑖),

where the functions of 𝐹g ,𝑛 are given by the recursion (2.12) with

𝐴
𝑑1
𝑑2,𝑑3

= Res
𝑧=𝛼

𝜉∗𝑑1
(𝑧)d𝜉∗𝑑2

(𝑧)d𝜉∗𝑑3
(𝑧) 𝜃(𝑧),

𝐵
𝑑1
𝑑2,𝑑3

= Res
𝑧=𝛼

𝜉∗𝑑1
(𝑧)d𝜉∗𝑑2

(𝑧)𝜉𝑑3(𝑧) 𝜃(𝑧),

𝐶
𝑑1
𝑑2,𝑑3

= Res
𝑧=𝛼

𝜉∗𝑑1
(𝑧)𝜉𝑑2(𝑧)𝜉𝑑3(𝑧) 𝜃(𝑧),

𝑉𝐷𝑑 =
𝜃0 + 𝑢0,0𝜃−1

8
𝛿𝑑,0 +

𝜃−1
24

𝛿𝑑,1.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 273

The functions of 𝐹g ,𝑛 associated with Kontsevich or Mirzakhani initial data are described by
Theorem 2.14 for the spectral curve  = ℂ, 𝑥(𝑧) = 𝑧2∕2 and 𝜔0,2(𝑧1, 𝑧2) =

d𝑧1⊗d𝑧2
(𝑧1−𝑧2)2

, for which
𝜏(𝑧) = −𝑧 and

𝑦K(𝑧) = −𝑧, 𝑦M(𝑧) = −
sin(2𝜋𝑧)

2𝜋
. (2.21)

In other words

𝜃K(𝑧) =
1

𝑧2 d𝑧
, 𝜃M(𝑧) =

2𝜋
𝑧 sin(2𝜋𝑧) d𝑧

. (2.22)

More generally, if we assume that polynomial GR initial data (𝐴, 𝐵, 𝐶, 𝐷) lead to TR amplitudes
described by Theorem 2.14 for a certain spectral curve, then 𝜔g ,𝑛(𝑧1, … , 𝑧𝑛) and 𝑉Ωg ,𝑛(𝐿1, … , 𝐿𝑛)
are two equivalent ways of collecting the numbers 𝐹g ,𝑛, which are related by the Laplace trans-
form. Indeed, we notice that 𝜉𝑑 = 𝑝−(2𝑑+2)d𝑝 + 𝑂(d𝑝) and 𝑝−(2𝑑+2)d𝑝 = [e𝑑]. Let us introduce
the projection operator

[𝜙](𝑝0) = Res
𝑧=𝛼

𝜙(𝑧)

𝑝(𝑧) − 𝑝0
,

which takes as input a meromorphic 1-form on  and outputs the element of ℂ[𝑝−1
0 ]d𝑝0 such that

𝜙(𝑧0) − [𝜙](𝑝0) is holomorphic when 𝑧0 → 𝛼. Hence [𝜉𝑑] = [e𝑑] and
⊗𝑛[𝑉Ωg ,𝑛](𝑝1, … , 𝑝𝑛) = ⊗𝑛[𝜔g ,𝑛](𝑝1, … , 𝑝𝑛). (2.23)

Furthermore, twisting the GR initial data amounts to shifting [3]

𝜔0,2(𝑧1, 𝑧2) ⟶ 𝜔0,2(𝑧1, 𝑧2) + [𝑓](±𝑝(𝑧1) ± 𝑝(𝑧2)
)
d𝑝(𝑧1)d𝑝(𝑧2), (2.24)

where the two choice of signs± are independent and arbitrary— they do not affect the right-hand
side of (2.23).

3 ASYMPTOTIC GROWTH OFMULTICURVES

3.1 Preliminaries

We review some aspects of the space of measured foliations which play a key role in this article.
For a more complete description we refer to [26].
LetΣ be a closed or punctured surface. Ameasured foliation is an ordered pair 𝜆 = ( , 𝜈)where

 is a foliation of Σ whose leaves are 1-dimensional submanifolds, except for the possible exis-
tence of isolated singular points of valency 𝑝 ⩾ 3 away from the punctures and univalent at the
punctures; 𝜈 is a transverse measure invariant along  . Two measured foliations are Whitehead
equivalent if they are related by a sequence of isotopies (relatively to the punctures), and contrac-
tion or expansion of edges between two singularities (which should not be both punctures). We
denote byMFΣ the set of Whitehead equivalence classes of measured foliations. For each 𝜎 ∈ 𝔗Σ,
MFΣ is equipped with a hyperbolic length function which we denote by 𝓁𝜎 ∶ MFΣ → ℝ+.
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274 ANDERSEN et al.

The space MFΣ is endowed with an integral piecewise linear structure, and the set of mul-
ticurves 𝑀Σ is in (length-preserving) bijection with the set of integral points of MFΣ. One can
then define a measure 𝜇Th by lattice point counting, which is called the Thurston measure in this
context; we normalise 𝜇Th such that 𝑀Σ has covolume one in MFΣ. Let us emphasise that our
normalisation differs from the Thurston symplectic volume form by a constant factor, see [4, 42].
The space of quadratic differentials 𝑄𝔗Σ is intimately linked to MFΣ by considering the hor-

izontal and vertical foliations associated to a quadratic differential. More precisely we have a
homeomorphism

𝑄𝔗Σ ⟶ MFΣ ×MFΣ ⧵ ΔΣ

𝑞 ⟼
([√| Im(𝑞)| ], [√|Re(𝑞)| ]), (3.1)

where

ΔΣ =
{
(𝜆1, 𝜆2) ∈ MF2Σ | ∃𝜂 ∈ MFΣ, 𝜄(𝜂, 𝜆1) + 𝜄(𝜂, 𝜆2) = 0

}
,

and 𝜄 ∶ MFΣ ×MFΣ → ℝ⩾0 is the geometric intersection pairing, which extends continuously
the topological intersection of (formal ℚ+-linear combinations of) simple closed curves, see, for
example, [8].
The subset of 𝑄𝔗Σ made of quadratic differentials with only simple zeros, the so-called princi-

pal stratum, has an integral piecewise linear structure defined in terms of holonomy coordinates.
The Masur–Veech measure 𝜇MV is defined from this structure by lattice point counting [36, 49].
We define the Masur–Veech measure on the bundle 𝑄1Σ of quadratic differentials of unit area as
follows. If 𝑌 ⊆ 𝑄1𝔗Σ, we put

𝜇1
MV(𝑌) = (12g − 12 + 4𝑛)𝜇MV(𝑌), 𝑌 =

{
𝑡𝑞 | 𝑡 ∈ (

0, 1
2

)
and 𝑞 ∈ 𝑌

}
when 𝑌̃ is measurable. This normalisation follows the one chosen in [5, 15, 29]. Then the Masur–
Veech volume is by definition the total mass𝑀𝑉g ,𝑛 = 𝜇1

MV(𝑄
1𝔐g ,𝑛) < ∞.

Finally, we need to discuss Teichmüller spaces with zero boundary lengths. We introduce the
space

̂Σ =
⋃

𝐿1,…,𝐿𝑛⩾0

Σ(𝐿1, … , 𝐿𝑛),

which is a stratified manifold. Its top-dimensional stratum is Σ and lower-dimensional strata
correspond to some of the boundary length𝐿𝑖 equal to zero. The lowest-dimensional stratum𝔗Σ =
Σ(0, … , 0) is identified with the Teichmüller space of punctured Riemann surfaces on Σ. The
quotient of the action ofMod𝜕Σ on ̂Σ obviously respects the stratification, and is denoted by ̂g ,𝑛.
Inside this moduli space, the lowest-dimensional stratum𝔐g ,𝑛 = g ,𝑛(0, … , 0) is identified with
the usual moduli space of complex curves with punctures.
Following Thurston [47], we consider an asymmetric pseudo-distance on ̂Σ defined for 𝜎, 𝜎′ ∈̂Σ as

dTh(𝜎, 𝜎
′) = sup

𝛾∈𝑆◦Σ

ln

(
𝓁𝜎′(𝛾)

𝓁𝜎(𝛾)

)
.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 275

The fact that this quantity is finite follows from the compactness of the space of projective
measured foliations. We emphasise that 𝑆◦Σ does not include boundary curves and hence dTh is
constant equal to zero on the Teichmüller space ̂𝑃 of the pair of pants 𝑃. It is expected that,
on any other stable surface, dTh is actually an asymmetric distance, but this is irrelevant for our
purposes. We will simply use the facts that dTh is non-negative, continuous and vanishes on the
diagonal, that is, dTh(𝜎, 𝜎) = 0.

3.2 Masur–Veech volumes

In this paragraph, g , 𝑛 are non-negative integers and 2g − 2 + 𝑛 > 0. Let 𝜙∶ ℝ+ → ℂ be an
admissible test function and Σ a surface of type (g , 𝑛). We introduce the additive statistics for
𝜎 ∈ ̂Σ

𝑁+
Σ (𝜙; 𝜎) =

∑
𝑐∈𝑀Σ

𝜙(𝓁𝜎(𝑐)).

We are interested in some scaling limit of the additive statistics 𝑁+
Σ (𝜙; 𝜎). Namely, we define for

𝛽 > 0 the scaling operator

𝜌∗
𝛽
𝜙(𝑥) = 𝜙(𝑥∕𝛽). (3.2)

and we want to understand the behaviour of 𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜎) and its integrals over the moduli spaces

with fixed boundary lengths.
The result (Lemma 3.2) will be governed by two ingredients. First, the dependence on the test

function will involve the following linear forms, for 𝑘 ⩾ 0

𝑐𝑘[𝜙] = ∫ℝ+

𝓁𝑘−1

(𝑘 − 1)!
𝜙(𝓁) d𝓁. (3.3)

Note that 𝑐0[𝜙] is not always well defined; we will assume that it is only when necessary. Second,
the dependence on the metric will be governed by the function

𝑋Σ∶
̂Σ ⟶ ℝ+

𝜎 ⟼ (6g − 6 + 2𝑛)! 𝜇Th({𝜆 ∈ MFΣ | 𝓁𝜎(𝜆) ⩽ 1})
.

The function 𝑋Σ is an important ingredient in [38], where most of its properties are proven. In
particular, its integral over moduli space is proportional to the Masur–Veech volumes.

Lemma 3.1. The function 𝑋Σ descends to a function 𝑋g ,𝑛 on the moduli space ̂g ,𝑛. Further, the
following properties hold.

∙ The logarithm ln(𝑋Σ) is Lipschitz with respect to 𝑑Th, namely

𝑋Σ(𝜎)

𝑋Σ(𝜎′)
⩽ 𝑒(6g−6+2𝑛)𝑑Th(𝜎,𝜎

′).

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12686 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [17/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



276 ANDERSEN et al.

∙ The average 𝑉𝑋g ,𝑛(𝐿1, … , 𝐿𝑛) exists and is a continuous function of (𝐿1, … , 𝐿𝑛) ∈ (ℝ⩾0)
𝑛.

∙ We have that

𝑀𝑉g ,𝑛 =
24g−2+𝑛(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!
𝑉𝑋g ,𝑛(0, … , 0).

Lemma 3.2. Let 𝜎 ∈ ̂Σ and 𝜙∶ ℝ+ → ℂ be an admissible test function. Then

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜎) = 𝑐6g−6+2𝑛[𝜙] 𝑋Σ(𝜎),

and further, the following limit exists and it equals

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝐿1, … , 𝐿𝑛) = 𝑐6g−6+2𝑛[𝜙]𝑉𝑋g ,𝑛(𝐿1, … , 𝐿𝑛).

for all (𝐿1, … , 𝐿𝑛) ∈ ℝ𝑛
⩾0.

Proof of Lemma 3.1. The first property follows from the inclusion of the unit 𝓁𝜎-ball in a 𝓁𝜎′ -ball:

{𝜆 ∈ MFΣ | 𝓁𝜎(𝜆) ⩽ 1} ⊆
{
𝜆 ∈ MFΣ | 𝓁𝜎′(𝜆) ⩽ 𝑒𝑑Th(𝜎,𝜎

′)
}
.

The integrability of𝑋Σ is proven in Theorem 3.3 of [41, p. 106]. Namely, the function𝑋Σ is bounded
by the function

𝐾Σ(𝜎) = 𝜅
∏
𝛾∈𝑆◦Σ

𝓁𝜎(𝛾)⩽𝜖

1
𝓁𝜎(𝛾)

for appropriate constants 𝜅, 𝜖 > 0 that depend only on g and 𝑛. The function𝐾Σ is invariant under
the action of themapping class group andwe denote by𝐾g ,𝑛 the function it induces on themoduli
space. Mirzakhani showed that 𝐾g ,𝑛 is integrable with respect to 𝜇WP over g ,𝑛(𝐿) for any 𝐿 ∈
ℝ𝑛
⩾0 (see her proof of Theorem 3.3 in [41, pp. 111–112]).
We now prove that the integral 𝑉𝑋g ,𝑛(𝐿) is a continuous function of 𝐿. Let us choose a

pair of pants decomposition of Σ and consider the corresponding Fenchel–Nielsen coordinates
(𝓁𝑖 , 𝜏𝑖)

3g−3+𝑛
𝑖=1

realising Σ(𝐿) ≃ (ℝ+ × ℝ)3g−3+𝑛. By continuity of 𝑋Σ(𝜎), for any compact set 𝑍 ⊂
(ℝ+ × ℝ)3g−3+𝑛 the following function is continuous:

𝐿 ⟼ ∫{𝐿}×𝑍 𝑋Σ(𝜎)d𝜇WP(𝜎).

In order to show the continuity of 𝑉𝑋g ,𝑛, it remains to show that the contribution coming from
the set <𝜖′

g ,𝑛 (𝐿) ⊂ g ,𝑛(𝐿) of surfaces with a non-peripheral curve of length smaller than 𝜖′ is
uniformly small in 𝜖′. We use again the function 𝐾g ,𝑛, for which

∫<𝜖′
g ,𝑛 (𝐿)

𝑋g ,𝑛(𝜎)d𝜇WP ⩽ ∫<𝜖′
g ,𝑛 (𝐿)

𝐾g ,𝑛(𝜎)d𝜇WP.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 277

The set<𝜖′
g ,𝑛 (𝐿) is covered by the (3g − 3 + 𝑛)23g−4+𝑛 sets

𝑌<𝜖′

𝑖0,𝐽
(𝐿) = 𝜋

(
{𝐿} ×

{
(𝓁𝑖 , 𝜏𝑖)

3g−3+𝑛
𝑖=1 | 𝓁𝑖0 ⩽ 𝜖′, 𝓁𝑗 ⩽ 𝜖 ∀𝑗 ∈ 𝐽, 𝓁𝑖 ⩽ 𝑏g ,𝑛(𝐿) ∀𝑖, 0 ⩽ 𝜏𝑖 ⩽ 𝓁𝑖

})
,

where 𝐽 is a subset of {1, 2, … , 3g − 3 + 𝑛}, 𝑖0 an integer in the complement of 𝐽, 𝜋∶ Σ → Σ

is the projection map and 𝑏g ,𝑛(𝐿) is the Bers constant of Σ(𝐿). It is shown in [6] that 𝑏g ,𝑛(𝐿) is
uniformly bounded for 𝐿 in compact subsets of ℝ𝑛

⩾0. Now, given a point in<𝜖′
g ,𝑛 , one can always

choose a hyperbolic structure in its 𝜋-preimage so that all curves shorter than 𝜖 are contained in
the pants decomposition. Hence

∫<𝜖′
g ,𝑛 (𝐿)

𝐾g ,𝑛(𝜎) d𝜇WP(𝜎) ⩽ 𝜅
∑
𝑖0,𝐽

∫𝑌<𝜖′
𝑖0,𝐽

∏
𝑗∈𝐽

1
𝓁𝑗

3g−3+𝑛∏
𝑖=1

d𝓁𝑖d𝜏𝑖

⩽ 𝜅
∑
𝑖0,𝐽

𝜖′ 𝜖|𝐽| (𝑏g ,𝑛(𝐿)
)2(3g−4+𝑛−|𝐽|)

⩽ 𝜅(3g − 3 + 𝑛) 23g−4+𝑛
(
𝑏g ,𝑛(𝐿)

)2(3g−4+𝑛)
𝜖′.

This concludes the proof of the continuity.
The proportionality with the Masur–Veech volume is derived in [40] for closed surfaces and

extended to punctured surfaces in [15]. We only sketch the idea. Associated to any maximal
measured foliation 𝜆, Thurston [47] and Bonahon [9] constructed an analytic embedding

𝐺𝜆 ∶ 𝔗Σ ⟶ HΣ(𝜆),

whereHΣ(𝜆) are the transverse Hölder distributions on (the support of) 𝜆. The transverse Hölder
distributions form a vector space of dimension 6g − 6 + 2𝑛 which plays the role of the tangent
space at 𝜆 inMFΣ, see [9]. Mirzakhani then proved that 𝐺𝜆 factors through the space of measured
foliations as 𝐺𝜆 = 𝐼𝜆◦𝐹𝜆, where

𝐹𝜆 ∶ 𝔗Σ ⟶ MFΣ(𝜆) 𝐼𝜆 ∶ MFΣ(𝜆) ⟶ HΣ(𝜆)

are, respectively, the horocyclic foliation and shearing coordinates, and where

MFΣ(𝜆) =
{
𝜂 ∈ MFΣ | ∀𝛾 ∈ 𝑆◦Σ, 𝜄(𝜆, 𝛾) + 𝜄(𝜂, 𝛾) > 0

}
.

It is shown in [9, 40] that thesemaps are symplectomorphisms with respect to theWeil–Petersson
symplectic form on𝔗Σ and the Thurston symplectic forms onHΣ(𝜆) andMFΣ. As a consequence,
on the subsetMFmax

Σ ofmaximal foliations—which has full measure inMFΣ—we obtain amap

𝔗Σ ×MFmax
Σ ⟶ MFΣ ×MFΣ

(𝜎, 𝜆) ⟼ (𝜆, 𝐹𝜆(𝜎)),

which is again a symplectomorphism.
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278 ANDERSEN et al.

On the other hand, the homeomorphism (3.1) 𝑄𝔗Σ → MFΣ ×MFΣ ⧵ ΔΣ maps 𝜇MV to 𝜇Th ⊗
𝜇Th, up to a constant factor. In order tomatch our normalisation of 𝜇MV one has to include the fac-
tor that corresponds to the ratio between the Thurston symplectic volume form and the measure
obtained via integral points inMFΣ, see [4, 42]. □

Proof of Lemma 3.2. Since 𝜙 is Riemann integrable, we have

lim
𝛽→∞

𝛽−6g−6+2𝑛𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜎) = ∫MFΣ

𝜙◦𝓁𝜎(𝜆) d𝜇Th(𝜆). (3.4)

Now, we can desintegrate the Thurston measure with respect to the function 𝓁𝜎. We denote by 𝜇
the projectivised measure on ℙMFΣ defined by

𝜇(𝐴) = 𝜇Th({𝜆 ∈ MFΣ | [𝜆] ∈ 𝐴 and 𝓁𝜎(𝜆) ⩽ 1}),

where [𝜆] denotes the projective class of 𝜆. Thenwehave the ‘polar form’ of the Thurstonmeasure

𝜇Th = (6g − 6 + 2𝑛) 𝑡6g−7+2𝑛 d𝑡 d𝜇.

The right-hand side in (3.4) hence can be rewritten as

(6g − 6 + 2𝑛)

(
∫ℝ+

𝑡6g−7+2𝑛 𝜙(𝑡) d𝑡

)
𝜇Th({𝜆 ∈ MFΣ | 𝓁𝜎(𝜆) ⩽ 1}).

The above is equivalent to the first part of the lemma.
To complete the proof, we should justify that the limit 𝛽 → ∞ and the integral over the moduli

spaces can be exchanged. We will do so by dominated convergence. Let us denote

𝒩Σ(𝑅; 𝜎) = {𝑐 ∈ 𝑀Σ | 𝓁𝜎(𝑐) ⩽ 𝑅}.

By [41, Proposition 3.6 and Theorem 3.3] we have

|𝒩Σ(𝑅; 𝜎)| ⩽ 𝐾Σ(𝜎) 𝑅
6g−6+2𝑛.

Now we have

𝛽−(6g−6+2𝑛) 𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜎) = 𝛽−(6g−6+2𝑛)

∑
𝑘⩾0

∑
𝑐∈𝑀Σ

𝛽𝑘⩽𝓁𝜎(𝑐)<𝛽(𝑘+1)

𝜙

(
𝓁𝜎(𝑐)

𝛽

)

⩽ 𝐾Σ(𝜎)

(∑
𝑘⩾0

(𝑘 + 1)6g−6+2𝑛 sup
𝑘⩽𝓁<𝑘+1

|𝜙(𝓁)|)

⩽ 𝐾Σ(𝜎)

(∑
𝑘⩾0

(𝑘 + 1)−2
)
sup
𝓁⩾0

(𝓁 + 2)6g−4+2𝑛|𝜙(𝓁)|.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 279

The right-hand side is bounded by the decay assumption (2.6). By Lemma 3.1, for any 𝐿 ∈ ℝ𝑛
⩾0 the

right-hand side is integrable against the Weil–Petersson measure overg ,𝑛(𝐿). It is independent
of 𝛽, so the conclusion follows by dominated convergence. □

3.3 Definition of the Masur–Veech polynomials

We introduce theMasur–Veech polynomials, for any g , 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 > 0, by setting

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) =

∑
Γ∈𝐆g ,𝑛

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩK
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒d𝓁𝑒
𝑒𝓁𝑒 − 1

.

(3.5)

These are polynomials in the variables (𝐿2
𝑖
)𝑛
𝑖=1

of total degree 3g − 3 + 𝑛. Its terms ofmaximal total
degree come from the stable graph with a single vertex of genus g with 𝑛 leaves and therefore
coincide with the Kontsevich volumes of the combinatorial moduli space 𝑉ΩK

g ,𝑛(𝐿1, … , 𝐿𝑛). In
order to evaluate the sum over stable graphs, we need the following integral.

Lemma 3.3. The function 𝑓MV(𝓁) = 1
𝑒𝓁−1

is such that, for any 𝑘 ⩾ 0,

∫ℝ+

𝑓MV(𝓁)𝓁2𝑘+1 d𝓁 = (2𝑘 + 1)!𝜁(2𝑘 + 2).

Proof. We compute

(2𝑘 + 1)!𝜁(2𝑘 + 2) =
∑
𝑛⩾1

1

𝑛2𝑘+2 ∫ℝ+

𝑒−𝑡 𝑡2𝑘+1 d𝑡 =
∑
𝑛⩾1

∫ℝ+

𝑒−𝑛𝓁 𝓁2𝑘+1 d𝓁

= ∫ℝ+

𝑒−𝓁

1 − 𝑒−𝓁
𝓁2𝑘+1 d𝓁 = ∫ℝ+

1

𝑒𝓁 − 1
𝓁2𝑘+1 d𝓁. □

For 𝑛 = 0 and g ⩾ 2, 𝑉ΩMV
g ,0 is a number, which can also be extracted from 𝑉ΩMV

g ,1 (𝐿1), as a
particular case of the following formula.

Lemma 3.4. For any g , 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 > 0, we have the dilaton equation[
𝐿2𝑛+1
2

]
𝑉ΩMV

g ,𝑛+1(𝐿1, … , 𝐿𝑛+1) = (2g − 2 + 𝑛)𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛),

where [𝓁
2

2
] extracts the coefficient of 𝓁

2

2
in the polynomial to its right. In particular, for g ⩾ 2we have

that [
𝐿2

2

]
𝑉ΩMV

g ,1 (𝐿) = (2g − 2)𝑉ΩMV
g ,0 .

Proof. We introduce

𝐆∙
g ,𝑛 =

{
(Γ, 𝑣) | Γ ∈ 𝐆g ,𝑛 and 𝑣 ∈ 𝑉Γ

}
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280 ANDERSEN et al.

and the surjective map 𝜋∶ 𝐆g ,𝑛+1 → 𝐆∙
g ,𝑛 which erase the (𝑛 + 1)th leaf from the stable graph,

but records the information of the vertex 𝑣 to which this leaf was incident. In general 𝜋 is not
injective, but one can check that for any Γ ∈ 𝐆g ,𝑛, 𝑣 ∈ 𝑉Γ and Γ̃ ∈ 𝜋−1(Γ, 𝑣), we have

|Aut Γ| = |𝜋−1(Γ, 𝑣)| |Aut Γ̃|. (3.6)

The dilaton equation for the 𝜓 classes intersections yields, for 2ℎ − 2 + (𝑘 + 1) > 0[
𝓁2
𝑘+1

2

]
𝑉ΩK

ℎ,𝑘+1(𝓁1, … ,𝓁𝑘+1) = (2ℎ − 2 + 𝑘)𝑉ΩK
ℎ,𝑘(𝓁1, … ,𝓁𝑘),

and this expression vanishes when 2ℎ − 2 + 𝑘 = 0. Therefore[
𝐿2𝑛+1
2

]
𝑉ΩMV

g ,𝑛+1(𝐿1, … , 𝐿𝑛+1)

=
∑

(Γ,𝑣)∈𝐆∙
g ,𝑛

2ℎ(𝑣) − 2 + 𝑘(𝑣)|Aut Γ̃| ∫ℝ
𝐸Γ
+

∏
𝑤∈𝑉Γ

𝑉ΩK
ℎ(𝑤),𝑘(𝑤)

(
(𝓁𝑒)𝑒∈𝐸(𝑤), (𝐿𝜆)𝜆∈Λ(𝑤)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 d𝓁𝑒
𝑒𝓁𝑒 − 1

,

where Γ̃ is any element of 𝜋−1(Γ, 𝑣), 𝐸(𝑤) and Λ(𝑤) are the sets of edges and leaves incident to 𝑤
in the graph Γ (and not in Γ̃). Using (3.6) we deduce that

[
𝐿2𝑛+1
2

]
𝑉ΩMV

g ,𝑛+1(𝐿1, … , 𝐿𝑛+1) =
∑

Γ∈𝐆g ,𝑛

( ∑
𝑣∈𝑉Γ

2ℎ(𝑣) − 2 + 𝑘(𝑣)

)

×
1|Aut Γ| ∫ℝ

𝐸Γ
+

∏
𝑤∈𝑉Γ

𝑉ΩK
ℎ(𝑤),𝑘(𝑤)

(
(𝓁𝑒)𝑒∈𝐸(𝑤), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 d𝓁𝑒
𝑒𝓁𝑒 − 1

.

By Lemma 2.11, the sum of Euler characteristics at the vertices is 2g − 2 + 𝑛, hence the claim. □

3.4 Main result

In [15], V.D., Goujard, Zograf and Zorich obtained by combinatorial methods a formula for the
Masur–Veech volumes as a sum over stable graphs, exploiting the relation betweenMasur–Veech
volumes and lattice point counting in the moduli space of quadratic differentials. Our proof is
different and relies on ideas of the geometric recursion reviewed in Section 2. Our method gives
access to more general quantities, which we introduced under the name of Masur–Veech poly-
nomials. We now prove that they record the asymptotic growth of the number of multicurves on
surfaces with large boundaries, after integration against theWeil–Petersson measure. As a conse-
quence of Lemma 3.2, we then show that the Masur–Veech volumes arise as the constant term of
the Masur–Veech polynomials, up to normalisation.
Let us denote 𝑐[𝜙]∶ ℂ[𝑡−1] → ℂ the linear operator sending 𝑡−𝑘 to 𝑐𝑘[𝜙] for 𝑘 > 0, and 𝑡0 to

𝜙(0) when it exists. Recall the definition (3.2) of the rescaling operator 𝜌∗
𝛽
.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 281

Theorem 3.5. Let 𝜙 be an admissible test function admitting a Laplace representation

𝜙(𝓁) = ∫ℝ+

Φ(𝑡) 𝑒−𝑡𝓁 d𝑡

for a measurable function Φ such that 𝑡 ↦ |Φ(𝑡)| is integrable on ℝ+. In particular, 𝜙(0) =
lim𝓁→0 𝜙(𝓁) exists. Then, for any g , 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 > 0, we have that

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
g ,𝑛

(
𝜌∗
𝛽
𝜙; 𝐿1, … , 𝐿𝑛

)
= 𝑐6g−6+2𝑛[𝜙]𝑉Ω

MV
g ,𝑛 (0, … , 0),

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
g ,𝑛

(
𝜌∗
𝛽
𝜙; 𝛽𝐿1, … , 𝛽𝐿𝑛

)
= 𝑐[𝜙]

(
𝑡−(6g−6+2𝑛) 𝑉ΩMV

g ,𝑛 (𝑡𝐿1, … , 𝑡𝐿𝑛)
)
,

and the convergence is uniform for 𝐿𝑖 in any compact of ℝ⩾0.

Notice that the contribution of the test function factors out for finite boundary lengths. The
assumption that 𝜙 has a Laplace representation is not essential. It could be waived by an approx-
imation argument, if we had an integrable upper bound for the number of multicurves whose
lengths belong to a segment [𝛽𝐿1, 𝛽𝐿2]. This is not currently available in the literature and we do
not address this question here.
In particular, comparing the last formula of Lemma 3.1 with the second formula in Lemma 3.2,

we obtain the following corollary.

Corollary 3.6. For any g , 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 > 0, 𝑉𝑋g ,𝑛(𝐿1, … , 𝐿𝑛) = 𝑉ΩMV
g ,𝑛 (0, … , 0) is

independent of 𝐿1, … , 𝐿𝑛 ∈ ℝ⩾0, and the Masur–Veech volumes are

𝑀𝑉g ,𝑛 =
24g−2+𝑛(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!
𝑉ΩMV

g ,𝑛 (0, … , 0).

It would be interesting to provide an a priori explanation of why 𝑉𝑋g ,𝑛 is independent of the
boundary lengths 𝐿1, … , 𝐿𝑛; for us it is merely the consequence of a computation.

Proof of Theorem 3.5. We fix once and for all g and 𝑛 such that 2g − 2 + 𝑛 > 0. In the admissibility
assumption, we will only use a weaker form of decay

sup
𝓁>0

(1 + 𝓁)6g−6+2𝑛+𝛿|𝜙(𝓁)| < +∞, (3.7)

with 𝛿 = 1.
The Laplace representation of 𝜙 allows us to convert additive statistics into multiplica-

tive statistics. We are going to apply many times the Fubini–Tonelli and the dominated
convergence theorems.
Admissibility implies convergence of the series

𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜎) =

∑
𝑐∈𝑀Σ

𝜙

(
𝓁𝜎(𝑐)

𝛽

)
=

∑
𝑐∈𝑀Σ

∫ℝ+

Φ(𝑡)
∏

𝛾∈𝜋0(𝑐)

𝑒−𝑡𝓁𝜎(𝑐)∕𝛽d𝑡.
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282 ANDERSEN et al.

By Fubini–Tonelli theorem applied twice, we have

𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜎) = ∫ℝ+

Φ(𝑡)𝑁𝑡∕𝛽
Σ (𝜎) d𝑡, (3.8)

𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝛽𝐿1, … , 𝐿𝑛) = ∫ℝ+

Φ(𝑡) 𝑉𝑁𝑡∕𝛽
g ,𝑛 (𝛽𝐿1, … , 𝛽𝐿𝑛) d𝑡, (3.9)

where

𝑁𝑡
Σ(𝜎) =

∑
𝑐∈𝑀Σ

∏
𝛾∈𝜋0(𝑐)

𝑒−𝑡𝓁𝜎(𝛾) =
∑
𝑐∈𝑀′

Σ

∏
𝛾∈𝜋0(𝑐)

1

𝑒𝑡𝓁𝜎(𝛾) − 1
,

𝑉𝑁𝑡
Σ(𝐿1, … , 𝐿𝑛) = ∫g ,𝑛(𝐿1,…,𝐿𝑛)

𝑁𝑡
g ,𝑛(𝜎) d𝜇WP(𝜎),

are now multiplicative statistics, to which we can apply the theory reviewed in Section 2.
For 𝑡 > 0 and 𝑛 ⩾ 1, by Theorem 2.10 we have

𝑉𝑁𝑡∕𝛽
g ,𝑛 (𝛽𝐿1, … , 𝛽𝐿𝑛)

= ∫g ,𝑛(𝛽𝐿1,…,𝛽𝐿𝑛)
𝑁𝑡∕𝛽

g ,𝑛 (𝜎) d𝜇WP(𝜎)

=
∑

Γ∈𝐆g ,𝑛

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩM
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝛽𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 d𝓁𝑒
𝑒𝑡𝓁𝑒∕𝛽 − 1

=
∑

Γ∈𝐆g ,𝑛

(𝛽∕𝑡)2|𝐸Γ||Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩM
ℎ(𝑣),𝑘(𝑣)

(
(𝛽𝓁𝑒∕𝑡)𝑒∈𝐸(𝑣), (𝑡 ⋅ 𝛽𝐿𝜆∕𝑡)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 d𝓁𝑒
𝑒𝓁𝑒 − 1

.

(3.10)

This formula is also true for 𝑛 = 0, as can be shown by returning to the computations proving
Theorem 2.10.
We remark that 𝛽−(6g−6+2𝑛)𝑉𝑁𝑡∕𝛽

g ,𝑛 (𝛽𝐿1, … , 𝛽𝐿𝑛) is a polynomial in 𝑡−1 and 𝛽−1 of bounded
degree. We observe that

∫ℝ+

Φ(𝑡) d𝑡 = 𝜙(0),

which here is assumed to exist, while for 𝑘 ⩾ 1

∫ℝ+

1

𝑡𝑘
Φ(𝑡) d𝑡 = ∫ℝ+

Φ(𝑡)∫ℝ+

𝓁𝑘−1

(𝑘 − 1)!
𝑒−𝑡𝓁 d𝓁 d𝑡 = 𝑐𝑘[𝜙].

The assumptions on 𝜙 guarantee that 𝑐𝑘[𝜙] are finite for all 𝑘 ⩾ 0. Hence (3.9) is finite for a fixed
𝛽 > 0.
We now study the 𝛽 → ∞ limit. For 𝛽 ⩾ 1, we can bound the aforementioned polynomial by

a 𝛽-independent polynomial in 𝑡−1 and integrating the latter against Φ(𝑡)d𝑡 gives a finite result.
Therefore, by dominated convergence, we have

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝛽𝐿1, … , 𝛽𝐿𝑛) = ∫ℝ+

Φ(𝑡)

(
lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁𝑡∕𝛽
g ,𝑛 (𝛽𝐿1, … , 𝛽𝐿𝑛)

)
d𝑡.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 283

Comparing Theorems 2.7 and 2.8 yields

lim
𝛽→∞

𝛽−2(3ℎ−3+𝑘) 𝑉ΩM
ℎ,𝑘(𝛽𝓁1∕𝑡, … , 𝛽𝓁𝑘∕𝑡) = 𝑡−2(3ℎ−3+𝑘) 𝑉ΩK

ℎ,𝑘(𝓁1, … ,𝓁𝑘),

and the limit is uniform for (𝓁1, … ,𝓁𝑘, 𝑡
−1) in any compact of ℝ𝑘+1

⩾0 . Thus, uniformly for
(𝐿1, … , 𝐿𝑛, 𝑡

−1) in any compact of ℝ𝑛+1
⩾0 , we have that

lim
𝛽→∞

𝛽−(6g−6+2𝑛)𝑉𝑁𝑡∕𝛽
g ,𝑛 (𝛽𝐿1, … , 𝛽𝐿𝑛)

=
1

𝑡6g−6+2𝑛

∑
Γ∈𝐆g ,𝑛

∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩK
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝑡𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 d𝓁𝑒
𝑒𝓁𝑒 − 1

,
(3.11)

where we recognise the Masur–Veech polynomials introduced in Section 3.3. We arrive at

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
; 𝛽𝐿1, … , 𝛽𝐿𝑛) = ∫ℝ+

Φ(𝑡) 𝑡−(6g−6+2𝑛) 𝑉ΩMV(𝑡𝐿1, … , 𝑡𝐿𝑛) d𝑡

= 𝑐[𝜙]
(
𝑡−(6g−6+2𝑛) 𝑉ΩMV(𝑡𝐿1, … , 𝑡𝐿𝑛)

)
.

(3.12)

Using finite boundary lengths 𝐿𝑖 instead of rescaling them by 𝛽 amounts to replacing 𝐿𝑖 by 𝐿𝑖∕𝛽
in (3.10), and by the aforementioned uniformity we then have

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝐿1, … , 𝐿𝑛) = 𝑐[𝜙]

(
𝑡−(6g−6+2𝑛) 𝑉ΩMV

g ,𝑛 (0, … , 0)
)

= 𝑐6g−6+2𝑛[𝜙]𝑉Ω
MV
g ,𝑛 (0, … , 0).

(3.13)

This concludes the proof of the theorem. □

Proof of Theorem 1.1. The expression of the Masur–Veech polynomials in terms of stable graphs
is actually our Definition 3.5. Note that this is not a circular argument: in the beginning of the
paper we stated that Masur–Veech polynomials have four different equivalent formulations, we
then chose the formulation in terms of stable graphs to be their definition, and we show in the
rest of the paper that the same polynomials are expressed in the remaining three formulations.
Therefore, the only non-trivial statement left to prove is the second part of the theorem, that is,
formula (1.5), which follows immediately from Corollary 3.6. □

3.5 Expression via geometric and topological recursion

By comparison with Theorem 2.10, the structure of this formula implies that the Masur–Veech
polynomials satisfy the topological recursion.

Proposition 3.7 (Geometric recursion for Masur–Veech volumes). LetΩMV be the GR amplitudes
produced by the initial data
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284 ANDERSEN et al.

𝐴MV(𝐿1, 𝐿2, 𝐿3) = 1,

𝐵MV(𝐿1, 𝐿2,𝓁) =
1

(𝑒𝓁 − 1)
+

1
2𝐿1

(
[𝐿1 − 𝐿2 − 𝓁]+ − [−𝐿1 + 𝐿2 − 𝓁]+ + [𝐿1 + 𝐿2 − 𝓁]+

)
,

𝐶MV(𝐿1,𝓁,𝓁
′) =

1

(𝑒𝓁 − 1)(𝑒𝓁′ − 1)
+

1
𝐿1

[𝐿1 − 𝓁 − 𝓁′]+

+
1
2𝐿1

(
1

𝑒𝓁 − 1

(
[𝐿1 − 𝓁 − 𝓁′]+ − [−𝐿1 + 𝓁 − 𝓁′]+ + [𝐿1 + 𝓁 − 𝓁′]+

)
+

1

𝑒𝓁′ − 1

(
[𝐿1 − 𝓁 − 𝓁′]+ − [−𝐿1 − 𝓁 + 𝓁′]+ + [𝐿1 − 𝓁 + 𝓁′]+

))
,

𝐷MV
𝑇 (𝜎) = 𝐷K

𝑇 (𝜎) +
∑
𝛾∈𝑆◦𝑇

1

𝑒𝓁𝜎(𝛾) − 1
. (3.14)

Then, for any g ⩾ 0 and 𝑛 ⩾ 1 such that 2g − 2 + 𝑛 > 0, the Masur–Veech polynomials satisfy

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) = ∫g ,𝑛(𝐿1,…,𝐿𝑛)

ΩMV
g ,𝑛 d𝜇WP.

In particular, they are computed by the topological recursion (2.9).

Notice that the notation 𝑉ΩMV is consistent with its use in (1.1). The above initial data are
obtained by twisting the Kontsevich initial data (2.4) by the function 𝑓MV(𝓁) = 1

𝑒𝓁−1
— it is

admissible according to Definition 2.1 with 𝜂 = 1. The function ΩMV
g ,𝑛 is a non-trivial function

on Σ, which is not equal to the function 𝑋g ,𝑛 from Lemma 3.1. For instance, we saw in Corol-
lary 3.6 that𝑉𝑋g ,𝑛(𝐿1, … , 𝐿𝑛) does not depend on 𝐿1, … , 𝐿𝑛, while𝑉ΩMV

g ,𝑛 (𝐿1, … , 𝐿𝑛) are non-trivial
polynomials whose constant term is 𝑉𝑋g ,𝑛.
Recall the decomposition

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) =

∑
𝑑1+⋯+𝑑𝑛⩽3g−3+𝑛

𝐹MV
g ,𝑛 [𝑑1, … , 𝑑𝑛]

𝑛∏
𝑖=1

𝐿
2𝑑𝑖
𝑖

(2𝑑𝑖 + 1)!
.

By Section 2.7 we can give two equivalent forms of Proposition 3.7, in terms of the functions of
𝐹g ,𝑛. The first one is the recursion of Theorem 1.2, of which we give a proof in the following. This
recursion is spelled out explicitly in Section 5.2.

Proof of Theorem 1.2. From the topological recursion in Proposition 3.7, it follows that the
functions of 𝐹g ,𝑛 are computed by the recursion (2.12), by twisting the Kontsevich initial data
(2.13)–(2.14) with 𝑓MV(𝓁) = 1

𝑒𝓁−1
, that is, by

𝑢𝑑1,𝑑2 = ∫ℝ+

𝓁2𝑑1+2𝑑2+1

(2𝑑1 + 1)!(2𝑑2 + 1)!
d𝓁

𝑒𝓁 − 1
=

(2𝑑1 + 2𝑑2 + 1)!

(2𝑑1 + 1)!(2𝑑2 + 1)!
𝜁(2𝑑1 + 2𝑑2 + 2)

according to Lemma 3.3. □
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 285

The second equivalent form is the topological recursion à la Eynard–Orantin. Let us introduce
the even part of the Hurwitz zeta function, for 𝑘 ⩾ 1

𝜁H(2𝑘; 𝑧) =
1

𝑧2𝑘
+

1
2

∑
𝑚∈ℤ∗

1

(𝑧 + 𝑚)2𝑘
,

and define the multidifferentials

𝜔MV
g ,𝑛 (𝑧1, … , 𝑧𝑛) =

∑
𝑑1+⋯+𝑑𝑛⩽3g−3+𝑛

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛]
𝑛⨂
𝑖=1

𝜁H(2𝑑𝑖 + 2; 𝑧𝑖) d𝑧𝑖.

Proposition 3.8. For g , 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 > 0, the 𝜔MV
g ,𝑛 (𝑧1, … , 𝑧𝑛) are computed by

Eynard–Orantin topological recursion (2.18) for the spectral curve

 = ℂ, 𝑥(𝑧) =
𝑧2

2
, 𝑦(𝑧) = −𝑧,

𝜔MV
0,2 (𝑧1, 𝑧2) =

(
1

(𝑧1 − 𝑧2)2
+

𝜋2

sin2 𝜋(𝑧1 − 𝑧2)

)
d𝑧1 ⊗ d𝑧2

2
.

Proof. Recall the spectral curve (2.21) associated with the Kontsevich initial data. The effect of
twisting amounts to shifting 𝜔K

0,2(𝑧1, 𝑧2) =
d𝑧1⊗d𝑧2
(𝑧1−𝑧2)2

according to (2.24). We compute, for Re 𝑧 > 0

∫ℝ+

1

𝑒𝓁 − 1
𝑒−𝓁𝑧 𝓁 d𝓁 =

∑
𝑚⩾1

∫ℝ+

𝑒−𝓁(𝑧+𝑚) 𝓁 d𝓁 =
∑
𝑚⩾1

1
(𝑧 + 𝑚)2

. (3.15)

As the choice of signs in (2.24) is arbitrary, we can also take

𝜔MV
0,2 (𝑧1, 𝑧2) =

(
1

(𝑧1 − 𝑧2)2
+

1
2

∑
𝑚⩾1

1
(𝑧1 − 𝑧2 + 𝑚)2

+
1

(𝑧1 − 𝑧2 − 𝑚)2

)
d𝑧1 ⊗ d𝑧2

=

(
1

(𝑧1 − 𝑧2)2
+

𝜋2

sin2 𝜋(𝑧1 − 𝑧2)

)
d𝑧1 ⊗ d𝑧2

2
.

The sector of convergence for the integral (3.15) is irrelevant, as we only need the (well-defined)
Taylor expansion when 𝑧𝑖 → 0 to compute the 𝜔g ,𝑛. Finally, we compute the differential forms 𝜉𝑑
defined in (2.20) and which are used in Theorem 2.14 to decompose the 𝜔MV

g ,𝑛 :

𝜉𝑑(𝑧0)

d𝑧0
= Res

𝑧=0

d𝑧

𝑧2𝑑+2

(
1

𝑧0 − 𝑧
+

1
2

∑
𝑚⩾1

1
𝑧0 − 𝑧 − 𝑚

+
1

𝑧0 − 𝑧 + 𝑚

)

=
1

𝑧2𝑑+20

+
1
2

∑
𝑚⩾1

1

(𝑧0 + 𝑚)2𝑑+2
+

1

(𝑧0 − 𝑚)2𝑑+2

= 𝜁H(2𝑑 + 2; 𝑧0).
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286 ANDERSEN et al.

For 𝑛 = 0 and g ⩾ 2, Lemma 3.4 gives

𝑉ΩMV
g ,0 =

1
2g − 2

𝐹g ,1[1]

3
.

This agrees with the definition (2.19) of 𝜔MV
g ,0 by the following computation:

𝜔MV
g ,0 =

1
2 − 2g

Res
𝑧=0

(
∫

𝑧

0
𝑦d𝑥

)
𝜔g ,1(𝑧) =

1
2g − 2

Res
𝑧=0

𝑧3

3
𝜔MV

g ,1 (𝑧)

=
1

2g − 2

∑
𝑑⩾0

(
Res
𝑧=0

𝑧3

3
𝜁H(2𝑑 + 2; 𝑧) d𝑧

)
𝐹g ,1[𝑑]

=
1

2g − 2

𝐹g ,1[1]

3
,

where we used that 𝜁H(2𝑑 + 2; 𝑧) = 𝑧−(2𝑑+2)d𝑧 + 𝑂(1) when 𝑧 → 0, which implies that only the
𝑑 = 1 term contributes to the residue. □

3.6 Equivalent expression in intersection theory

We can express Masur–Veech polynomials as a single integral over moduli space of curves of a
certain class, which involves boundary divisors. This is just another way of expressing the sum
over stable graphs (i.e. boundary strata of𝔐g ,𝑛).
We first introduce some notations. Consider the set𝐆g ,𝑛 of stable graphs of type (g , 𝑛). For every

Γ ∈ 𝐆g ,𝑛, we have the moduli space𝔐Γ and the maps 𝜉Γ and 𝑝𝑣:

𝔐Γ =
∏
𝑣∈𝑉Γ

𝔐ℎ(𝑣),𝑘(𝑣), 𝜉Γ ∶ 𝔐Γ → 𝔐g ,𝑛, 𝑝𝑣 ∶ 𝔐Γ → 𝔐ℎ(𝑣),𝑘(𝑣).

The image of 𝜉Γ is the boundary stratum associated to the graph Γ, while 𝑝𝑣 is the projection on
the moduli space attached to the vertex 𝑣. We also define the map

𝚥 =
∑

Γ∈𝐆1
g ,𝑛

𝜉Γ∗|Aut Γ| ,
where 𝐆𝑘

g ,𝑛 is the set of stable graphs of type (g , 𝑛) with 𝑘 edges. In other words, 𝚥 is a sum over
boundary divisors of 𝔐g ,𝑛. Further, denote by 𝜓∙ and 𝜓◦ the cotangent classes at the nodes, so
that it makes sense to consider the push-forward by 𝚥 of any monomial in 𝜓∙ and 𝜓◦.
Recall that the even zeta values are related to Bernoulli numbers by

𝜁(2𝑚 + 2) = (−1)𝑚
𝐵2𝑚+2(2𝜋)

2𝑚+2

2(2𝑚 + 2)!
,

with 𝐵2 =
1
6
, 𝐵4 = − 1

30
, and so on.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 287

Proposition 3.9. For 2g − 2 + 𝑛 > 0, the Masur–Veech polynomials 𝑉ΩMV
g ,𝑛 satisfy

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) = ∫𝔐g ,𝑛

∑
Γ∈𝐆g ,𝑛

1|Aut Γ| 𝜉Γ∗ ∏
𝑒∈𝐸Γ

𝑒=(ℎ,ℎ′)

̃(−𝜓ℎ − 𝜓ℎ′) exp

( ∑
𝜆∈ΛΓ

𝐿2𝑖
2

𝜓𝜆

)
(3.16)

for

̃(𝑢) = ∑
𝐷⩾0

(2𝜋2)𝐷+1
𝐵2𝐷+2

2𝐷 + 2
𝑢𝐷,

or equivalently

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) = ∫𝔐g ,𝑛

exp

(
Ξg ,𝑛 +

𝑛∑
𝑖=1

𝐿2𝑖
2

𝜓𝑖

)
(3.17)

for

Ξg ,𝑛 = 𝚥∗(−𝜓∙ − 𝜓◦) ∈ 𝐻∙(𝔐g ,𝑛), (𝑢) = 𝑢−1 ln

(
1 +

∑
𝑘⩾1

(2𝜋2)𝑘
𝐵2𝑘

2𝑘
𝑢𝑘

)
.

Once the spectral curve for a certain enumerative geometric problem satisfying topological
recursion is known (here Proposition 3.8), one could apply Eynard’s formula [22, Theorem 3.1]
to obtain such a representation for 𝜔MV

g ,𝑛 (𝑧1, … , 𝑧𝑛), and thus theMasur–Veech polynomials. To be
self-contained, we prove the result by direct computation.
It would be interesting to obtain this formula by algebro-geometric methods. A first hint in this

direction would be to express Ξg ,𝑛 in a more intrinsic way, as a characteristic class of a bundle
over𝔐g ,𝑛 maybe obtained by push-forward from the moduli space of quadratic differentials.

Proof. We shall examine the contribution in Equation (3.5) of a given Γ ∈ 𝐆g ,𝑛 before integration
over the product of moduli spaces at the vertices. Given a decoration 𝑑∶ 𝐻Γ → ℕ, an edge 𝑒 =
(ℎ, ℎ′) receives a weight (2𝑑ℎ + 2𝑑ℎ′ + 1)!𝜁(2𝑑ℎ + 2𝑑ℎ′ + 2). We remark that it only depends on
the total degree 𝐷𝑒 = 𝑑ℎ + 𝑑ℎ′ associated to this edge. On the other hand, the contribution of the
𝜓 classes at the ends of the edge is

𝜓𝑑ℎ(𝜓′)𝑑ℎ′

2𝐷𝑒 𝑑ℎ! 𝑑ℎ′ !
.

Therefore, we can replace the sum over decorations of half-edges 𝑑∶ 𝐻Γ → ℕ by the sum over
decorations of edges 𝐷∶ 𝐸Γ → ℕ, and attach to each edge a contribution of

(2𝐷𝑒 + 1)! 𝜁(2𝐷𝑒 + 2)

2𝐷𝑒 𝐷𝑒!
(𝜓ℎ + 𝜓ℎ′)

𝐷𝑒 = (2𝜋2)𝐷𝑒+1
𝐵2𝐷𝑒+2

2𝐷𝑒 + 2
(−𝜓ℎ − 𝜓ℎ′)

𝐷𝑒 .

In other words,

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) = ∫𝔐g ,𝑛

∑
Γ∈𝐆g ,𝑛

1|Aut Γ| 𝜉Γ∗ ∏
𝑒∈𝐸Γ

𝑒=(ℎ,ℎ′)

̃(−𝜓ℎ − 𝜓ℎ′) exp

( ∑
𝜆∈ΛΓ

𝐿2𝑖
2

𝜓𝜆

)
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288 ANDERSEN et al.

for

̃(𝑢) = ∑
𝐷⩾0

(2𝜋2)𝐷+1
𝐵2𝐷+2

2𝐷 + 2
𝑢𝐷.

This proves Equation (3.16). The equivalence between Equation (3.16) and Equation (3.17) is
shown via the following lemma. □

Lemma 3.10. Consider two formal power series  ∈ ℂ�𝑥, 𝑦�𝔖2 and𝑇 ∈ ℂ�𝑢�,𝑇(𝑢) =
∑

𝑚⩾0 𝑡𝑚𝑢
𝑚,

and define the cohomology class

Θg ,𝑛 = exp
(
𝚥∗(𝜓∙, 𝜓◦)

)
exp

(
𝑇(𝜅)

) 𝑛∏
𝑖=1

𝜓
𝑑𝑖
𝑖

(3.18)

on𝔐g ,𝑛, where 𝑇(𝜅) =
∑

𝑚⩾0 𝑡𝑚𝜅𝑚. Then

Θg ,𝑛 =
∑

Γ∈𝐆g ,𝑛

1|Aut Γ| 𝜉Γ∗ ∏
𝑒∈𝐸Γ

𝑒=(ℎ,ℎ′)

̃(𝜓ℎ, 𝜓ℎ′)
∏
𝑣∈𝑉Γ

exp
(
𝑇(𝑝∗

𝑣𝜅)
) ∏
𝜆∈ΛΓ

𝜓
𝑑𝜆
𝜆

(3.19)

for ̃ ∈ ℂ�𝑥, 𝑦�𝔖2 defined by

̃(𝑥, 𝑦) = 1 − 𝑒−(𝑥+𝑦)(𝑥,𝑦)
𝑥 + 𝑦

. (3.20)

Conversely, consider a class Θg ,𝑛 given by Equation (3.19) for certain formal power series ̃ ∈

ℂ�𝑥, 𝑦�𝔖2 and 𝑇 ∈ ℂ�𝑢�. Then Θg ,𝑛 can be expressed by Equation (3.18), for  defined as
(𝑥, 𝑦) = −

1
𝑥 + 𝑦

ln
(
1 − (𝑥 + 𝑦)̃(𝑥, 𝑦)). (3.21)

Proof. Firstly, notice that (3.20) and (3.21) make sense because (𝑥 + 𝑦) formally divide 1 −
𝑒−(𝑥+𝑦)(𝑥,𝑦) and ln

(
1 − (𝑥 + 𝑦)̃(𝑥, 𝑦)), respectively. Further, the contribution at the vertices

follows from the projection formula and the relation

𝜉∗Γ𝜅𝑚 =
∑
𝑣∈𝑉Γ

𝑝∗
𝑣𝜅𝑚,

while the legs contribution follows from the correspondence between legs of Γ and markings.
Computing the edge contribution amounts to understand how to intersect push-forwards of
classes via boundary maps. Let (Γ, Δ) be a stable graph in 𝐆g ,𝑛 together with a decoration of each
edge 𝑒 of the form

Δ(𝑒; 𝜓ℎ, 𝜓ℎ′) ∈ ℂ�𝜓ℎ, 𝜓ℎ′�
𝔖2, 𝑒 = (ℎ, ℎ′).

The associated class on𝔐g ,𝑛 is

𝜉Γ∗
∏
𝑒∈𝐸Γ

𝑒=(ℎ,ℎ′)

Δ(𝑒; 𝜓ℎ, 𝜓ℎ′).
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 289

In general, for two decorated stable graphs (Γ𝐴, Δ𝐴) and (Γ𝐵, Δ𝐵) in 𝐆g ,𝑛, the intersection of
the corresponding classes is determined as follows: enumerate all decorated stable graphs (Γ, Δ)
whose edges are marked by𝐴, 𝐵 or both, in such a way that contracting all edges outside𝐴 yields
(Γ𝐴, Δ𝐴) and contracting all edges outside 𝐵 yields (Γ𝐵, Δ𝐵). Notice that each edge 𝑒 = (ℎ, ℎ′) that
is marked by both 𝐴 and 𝐵 corresponds to a boundary divisor in the Poincaré dual of both Γ𝐴
and Γ𝐵. To such an edge is therefore assigned a factor that is corresponding to its self-intersection,
namely the first Chern class of the normal bundle 𝑁𝑒 (of the gluing morphism) associated to the
edge 𝑒:

𝑐1(𝑁𝑒) = −𝜓ℎ − 𝜓ℎ′ .

Summing up the push-forwards over these decorated graphs of the product over edges of the
associated decorations represents the intersection of the classes associated to (Γ𝐴, Δ𝐴) and
(Γ𝐵, Δ𝐵).
Let us apply this general argument to our case, that is, to the class exp(𝚥∗(𝜓∙, 𝜓◦)). Notice that

𝚥∗(𝜓∙, 𝜓◦) is a sum over stable graphs with a single edge, decorated by a factor of  . In the 𝑘th
term of the exponential expansion, we have to consider the sum over stable graphs whose global
decoration involves exactly 𝑘 factors of  , distributed in all possible ways on 𝑘 edges counted with
multiplicity (𝑚𝑒)𝑒, taking into account the self-intersection of the edges with multiplicity𝑚𝑒 > 1.
This results for each edge 𝑒 = (ℎ, ℎ′) into the factor

∑
𝑚𝑒⩾1

1
𝑚𝑒!

(−𝜓ℎ − 𝜓ℎ′)
𝑚𝑒−1 (𝜓ℎ, 𝜓ℎ′)

𝑚𝑒 =
1 − exp(−(𝜓ℎ + 𝜓ℎ′)(𝜓ℎ, 𝜓ℎ′))

𝜓ℎ + 𝜓ℎ′
= ̃(𝜓ℎ, 𝜓ℎ′). (3.22)

Therefore we obtain

exp
(
𝚥∗(𝜓∙, 𝜓◦)

)
=

∑
Γ∈𝐆g ,𝑛

𝜉Γ∗|Aut Γ| ∏
𝑒∈𝐸Γ

𝑒=(ℎ,ℎ′)

̃(𝜓ℎ, 𝜓ℎ′).

Notice that the relation (3.22) can be inverted as (3.21). This concludes the proof of the lemma. □

4 STATISTICS OF HYPERBOLIC LENGTHS FOR SIEGEL–VEECH
CONSTANTS

4.1 Preliminaries

The area Siegel–Veech constant 𝑆𝑉g ,𝑛 of𝑄𝔐g ,𝑛 is a positive real number related to the asymptotic
number of flat cylinders of a generic quadratic differential. Given a quadratic differential 𝑞 ∈
𝑄𝔐g ,𝑛, we define

𝒩area(𝑞, 𝐿) =
1

Area(𝑞)

∑
𝐜⊂𝑞

𝑤(𝐜)⩽𝐿

Area(𝐜),

where the sum is over flat cylinders 𝐜 of 𝑞 whose width𝑤(𝐜) (or circumference) is less or equal to
𝐿 andArea refers to the total mass of the measure induced by the flat metric of 𝑞. By a theorem of
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290 ANDERSEN et al.

Veech [50] and Vorobets [51], the number

𝑆𝑉g ,𝑛 =
1

𝑀𝑉g ,𝑛

1
𝜋𝐿2 ∫𝑄1𝔐g ,𝑛

𝒩area(𝑞, 𝐿) d𝜇
1
MV(𝑞)

exists and is independent of 𝐿 > 0. It is called the (area) Siegel–Veech constant of 𝑄𝔐g ,𝑛.

4.2 Goujard’s formula

Goujard showed in [29, Section 4.2, Corollary 1] how to compute 𝑆𝑉g ,𝑛 in terms of the Masur–
Veech volumes. Her result is in fact more general, as it deals with all strata of the moduli space of
quadratic differentials, while the present article is only concerned with the principal stratum.

Theorem 4.1 [29]. For g , 𝑛 ⩾ 0 such that 2g + 𝑛 − 2 ⩾ 2, we have

𝑆𝑉g ,𝑛 ⋅𝑀𝑉g ,𝑛 =
1
4

(4g − 4 + 𝑛)(4g − 5 + 𝑛)

(6g − 7 + 2𝑛)(6g − 8 + 2𝑛)
𝑀𝑉g−1,𝑛+2

+
1
8

∑
g1+g2=g
𝑛1+𝑛2=𝑛

𝑛!
𝑛1!𝑛2!

(4g − 4 + 𝑛)!

(4g1 − 3 + 𝑛1)!(4g2 − 3 + 𝑛2)!

×
(6g1 − 5 + 2𝑛1)!(6g2 − 5 + 2𝑛2)!

(6g − 7 + 2𝑛)!
𝑀𝑉g1,1+𝑛1

𝑀𝑉g2,1+𝑛2
. (4.1)

In [29] the contribution of 𝑀𝑉0,3 ⋅𝑀𝑉g ,𝑛−1 was written separately, but this term can be
included in the sum if we remark that𝑀𝑉0,3 = 4 (see Section 5.3) and

(2𝑛 − 5)!

(𝑛 − 3)!
|||𝑛=2 = lim

𝑛→2

Γ(2𝑛 − 4)

Γ(𝑛 − 2)
=

1
2
.

The structure of this formula becomesmore transparent if we rewrite it in terms of the rescaled
Masur–Veech volumes that are sums over stable graphs

𝑀𝑉g ,𝑛 =
24g−2+𝑛(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!
𝑉ΩMV

g ,𝑛 (0, … , 0).

Corollary 4.2. For g , 𝑛 ⩾ 0 such that 2g + 𝑛 − 2 ⩾ 2, we have

𝑆𝑉g ,𝑛 ⋅ 𝑉Ω
MV
g ,𝑛 (0) =

1
4

⎛⎜⎜⎜⎝𝑉Ω
MV
g−1,𝑛+2(0) +

1
2

∑
g1+g2=g
𝑛1+𝑛2=𝑛

𝑛!
𝑛1!𝑛2!

𝑉ΩMV
g1,1+𝑛1

(0) 𝑉ΩMV
g2,1+𝑛2

(0)

⎞⎟⎟⎟⎠. (4.2)

We can give an even more compact form to this relation, in terms of generating series. If we
introduce

𝒵ℏ(𝑥) = exp

⎛⎜⎜⎜⎝
∑
g⩾0

ℏg−1
∑
𝑛⩾1

2g−2+𝑛>0

𝑥𝑛

𝑛!

𝑉ΩMV
g ,𝑛 (0)

𝜋6g−6+2𝑛

⎞⎟⎟⎟⎠, (4.3)

then Corollary (4.2) is equivalent to
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 291

Corollary 4.3. We have that

∑
g⩾0

ℏg
∑
𝑛⩾0

2g−2+𝑛⩾2

𝑥𝑛

𝑛!

𝑆𝑉g ,𝑛 ⋅ 𝑉Ω
MV
g ,𝑛 (0)

𝜋6g−4+2𝑛
=

1
2

ℏ2𝜕2𝑥
√
𝒵ℏ(𝑥)√

𝒵ℏ(𝑥)
. (4.4)

Proof. Let us write𝒵ℏ(𝑥) = exp(
∑

g⩾0 ℏ
g−1ℱg (𝑥)). For 𝛼 ∈ ℂ, we compute

ℏ2𝜕2𝑥𝒵
𝛼
ℏ
(𝑥)

𝒵𝛼
ℏ
(𝑥)

=
∑
g⩾0

ℏg

(
𝛼𝜕2𝑥ℱg−1(𝑥) + 𝛼2

∑
g1+g2=g

𝜕𝑥ℱg1
(𝑥) ⋅ 𝜕𝑥ℱg2

(𝑥)

)

=
∑
g⩾0

ℏg
∑
𝑛⩾0

2g+𝑛>0

𝑥𝑛

𝑛!

⎛⎜⎜⎜⎝𝛼 𝑉ΩMV
g−1,𝑛+2(0) + 𝛼2

∑
g1+g2=g
𝑛1+𝑛2=𝑛

𝑛!
𝑛1!𝑛2!

𝑉ΩMV
g1,1+𝑛1

(0) 𝑉ΩMV
g2,1+𝑛2

(0)

⎞⎟⎟⎟⎠,
(4.5)

where we noticed that the restriction 2g − 2 + 𝑛 > 0 in (4.3) implies that there are no terms for
2g + 𝑛 ⩽ 0 in (4.5). The relative factor of 1

2
between the two types of terms in (4.2) is reproduced by

choosing 𝛼 = 1
2
, andwe need tomultiply (4.5) by an overall factor of a 1

2
to reproduce the prefactor

1
4
in (4.2). The factors of 𝜋 also match since

6(g − 1) − 6 + 2(2 + 𝑛) = 6g1 − 6 + 2(1 + 𝑛1) + 6g2 − 6 + 2(1 + 𝑛2) = 6g − 4 + 2𝑛. (4.6)

They have been included so that the coefficients of ℏg𝑥𝑛 in the generating series are rational
numbers. □

The contributions in (4.2) correspond to the topology of surfaces obtained from Σ of genus g
with 𝑛 boundaries after cutting along a simple closed curve. It is important to note that the (some-
what unusual) feature that separating curves receive an extra factor of a 1

2
, which is reflected

in the square root in the right-hand side of (4.4). Such sums (without this relative factor of a
1
2
) can be obtained by differentiating a sum over stable graphs with respect to the edge weight.

Therefore, they also arise by integrating over the moduli space derivatives of the statistics of
hyperbolic lengths of multicurves with respect to the test function. We make this precise in the
next paragraphs.

4.3 Derivatives of hyperbolic length statistics

Wedefine two natural derivative statistics for whichwe are going to study the scaling limit. Firstly,
if 𝛾0 ∈ 𝑆◦Σ, we denote

𝚥(𝛾0) =

{
1 if 𝛾0 is separating,
0 otherwise .

Let 𝜓, 𝜙 be admissible test functions, and consider
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292 ANDERSEN et al.

𝑁+
Σ (𝜙; 𝜓; 𝜎) =

∑
𝑐∈𝑀Σ

∑
𝛾0∈𝜋0(𝑐)

2−𝚥(𝛾0) 𝜓(𝓁𝜎(𝛾0)) ⋅ 𝜙(𝓁𝜎(𝑐)), (4.7)

𝑁̃+
Σ (𝜙; 𝜓; 𝜎) =

∑
𝑐∈𝑀Σ

∑
𝛾0∈𝜋0(𝑐)

2−𝚥(𝛾0) 𝜓(𝓁𝜎(𝛾0)) ⋅ 𝜙(𝓁𝜎(𝑐 − 𝛾0)). (4.8)

Theorem 4.4. Assume that 𝜓 is bounded, 𝓁 ↦ 𝓁−1𝜓(𝓁) is integrable over ℝ+ and recall that
𝑐0[𝜓] = ∫ℝ+

d𝓁
𝓁
𝜓(𝓁). Assume that 𝜙 has a Laplace representation

𝜙(𝓁) = ∫ℝ+

Φ(𝑡) 𝑒−𝑡𝓁 d𝑡

for some measurable function Φ such that 𝑡 ↦ |Φ(𝑡)| is integrable over ℝ+. For g , 𝑛 ⩾ 0 such that
2g + 𝑛 − 2 ⩾ 2 and fixed 𝐿1, … , 𝐿𝑛 ⩾ 0, we have

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜓; 𝛽𝐿1, … , 𝛽𝐿𝑛)

=
1
2
𝑐0[𝜓] 𝑐[𝜙]

⎡⎢⎢⎢⎣𝑡
−(6g−6+2𝑛) ⋅

⎛⎜⎜⎜⎝𝑉Ω
MV
g−1,2+𝑛(0, 0, 𝐿1, … , 𝐿𝑛) +

1
2

∑
g1+g2=g

𝐽1⊔𝐽2={𝐿1,…,𝐿𝑛}

𝑉ΩMV
g1,1+|𝐽1|(0, 𝐽1) 𝑉ΩMV

g2,1+|𝐽2|(0, 𝐽2)
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦,

and

lim
𝛽→∞

𝛽−(6g−6+2𝑛) 𝑉𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜓; 𝐿1, … , 𝐿𝑛)

=
1
2
𝑐0[𝜓] 𝑐6g−6+2𝑛[𝜙]

⎛⎜⎜⎜⎝𝑉Ω
MV
g−1,2+𝑛(0) +

1
2

∑
g1+g2=g
𝑛1+𝑛2=𝑛

𝑛!
𝑛1!𝑛2!

𝑉ΩMV
g1,1+𝑛1

(0) 𝑉ΩMV
g2,1+𝑛2

(0)

⎞⎟⎟⎟⎠.
In particular, this last expression is independent of 𝐿1, … , 𝐿𝑛. Furthermore, replacing𝑁 with 𝑁̃ gives
the same limits.

By comparison with Goujard’s formula (Corollary 4.2), we deduce the following corollary.

Corollary 4.5. Under the assumptions of Theorem 4.4, for any fixed 𝐿1, … , 𝐿𝑛 ∈ ℝ𝑛
+, we have

2𝑐0[𝜓] 𝑆𝑉g ,𝑛 = lim
𝛽→∞

𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝜓; 𝐿1, … , 𝐿𝑛)

𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝐿1, … , 𝐿𝑛)

.

The same equality holds if𝑁 in the numerator is replaced with 𝑁̃.

The corollary gives a hyperbolic geometric interpretation of the area Siegel–Veech constant.
However, our proof is done by comparison of values fromGoujard’s formula. It would be desirable
to find a direct and geometric proof of this identity, which would give a new proof of Goujard’s
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 293

formula. The derivative statistics of hyperbolic lengths𝑁+
g ,𝑛(𝜙; 𝜓; 𝐿1, … , 𝐿𝑛) is indeed reminiscent

of the Siegel–Veech transform. Via the Hubbard–Masur correspondence [32], the multicurve 𝑐 ∈
𝑀Σ is associated to a holomorphic quadratic differential 𝑞 and the component 𝛾0 is the core curve
of a cylinder of 𝑞. The difficulty, however, lies in comparing hyperbolic and flat lengths.

Proof of Theorem 4.4. The assumption 2g + 𝑛 − 2 ⩾ 2 is made so that 𝑀Σ does not only consist
of the empty multicurve. If we encode multicurves as a pair consisting of a primitive multicurve
and integers 𝑘 remembering the multiplicity for each of its component, we have that

𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜓; 𝜎) =

∑
𝑐∈𝑀′

Σ
𝑚∶ 𝜋0(𝑐)→ℕ∗

∑
𝛾0∈𝜋0(𝑐)

2−𝚥(𝛾0)𝑚(𝛾0) 𝜓(𝓁𝜎(𝛾0)) 𝜙
⎛⎜⎜⎝𝛽−1

∑
𝛾∈𝜋0(𝑐)

𝑚(𝛾)𝓁𝜎(𝛾)
⎞⎟⎟⎠, (4.9)

since 𝛾0 in (4.7) can be any of the𝑚(𝛾0) component of the multicurve.
As in the proof of Theorem 3.5, we rely on the Laplace representation for 𝜙

𝜙(𝓁) = ∫ℝ+

Φ(𝑡) 𝑒−𝑡𝓁 d𝑡 (4.10)

to convert additive statistics into multiplicative statistics. As their application is similar to the
proof of Theorem 3.5, we will silently use the Fubini–Tonelli and dominated convergence theo-
rems at many places — the estimates necessary for their application use that 𝜓 is bounded and
𝑐0[𝜓] exists.
The Laplace representation allows us to convert (4.9) into derivatives (with respect to the test

function) of multiplicative statistics, namely

𝑁+
Σ (𝜌

∗
𝛽
𝜙; 𝜓; 𝜎) = ∫ℝ+

Φ(𝑡)
⎛⎜⎜⎝
∑
𝑐∈𝑀′

Σ

∑
𝛾0∈𝜋0(𝑐)

𝜓(𝓁𝜎(𝛾0))

2𝚥(𝛾0)(1 − 𝑒−𝑡𝓁𝜎(𝛾0)∕𝛽)

∏
𝛾∈𝜋0(𝑐)

𝑒−𝑡𝓁𝜎(𝑐)∕𝛽

1 − 𝑒−𝑡𝓁𝜎(𝛾)∕𝛽

⎞⎟⎟⎠ d𝑡
= ∫ℝ+

Φ(𝑡) 𝜕𝑧=0

(
𝑁𝑡∕𝛽,𝑧

Σ (𝜓; 𝜎)
)
d𝑡,

(4.11)

where

𝑁𝑡,𝑧
Σ (𝜓; 𝜎) =

∑
𝑐∈𝑀′

Σ

∏
𝛾∈𝜋0(𝑐)

1

𝑒𝑡𝓁𝜎(𝛾) − 1

(
1 +

𝑧 𝜓(𝓁𝜎(𝛾))

2𝚥(𝛾)(1 − 𝑒−𝑡𝓁𝜎(𝛾))

)

is a polynomial of degree (3g − 3 + 𝑛) in the variable 𝑧. Integrating over the moduli space, we
obtain a sum over the topological types of primitive multicurves, that is, over stable graphs:

𝑉𝑁𝑡,𝑧
g ,𝑛(𝜓; 𝐿1, … , 𝐿𝑛) =

∑
Γ∈𝐆g ,𝑛

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩM
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

)
×
∏
𝑒∈𝐸Γ

1

𝑒𝑡𝓁𝑒 − 1

(
1 +

𝑧 𝜓(𝓁𝑒)

2𝚥𝑒 (1 − 𝑒−𝑡𝓁𝑒 )

)
𝓁𝑒 d𝓁𝑒, (4.12)
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294 ANDERSEN et al.

where 𝚥𝑒 = 1 if 𝑒 is separating and 𝚥𝑒 = 0 otherwise. The coefficient of 𝑧 in this sum reads

𝜕𝑧=0

(
𝑉𝑁𝑡,𝑧

g ,𝑛(𝜓; 𝐿1, … , 𝐿𝑛)
)

=
∑

Γ∈𝐆g ,𝑛
𝑒0∈𝐸Γ

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩM
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) 𝜓(𝓁𝑒0 ) 𝑒
−𝑡𝓁𝑒0

2𝚥𝑒0 (1 − 𝑒−𝑡𝓁𝑒0 )2
𝓁𝑒0d𝓁𝑒0

∏
𝑒≠𝑒0

𝓁𝑒 d𝓁𝑒
𝑒𝑡𝓁𝑒 − 1

.

(4.13)

Let 𝐆′
g ,𝑛 be the set of ordered pairs (Γ, 𝑒0) where Γ ∈ 𝐆g ,𝑛 and 𝑒0 ∈ 𝐸Γ. We introduce the map

𝐠𝐥𝐮∶

⎛⎜⎜⎜⎜⎜⎝
𝐆g−1,𝑛+2 ⊔

⨆
{(g1,𝐽1),(g2,𝐽2)}

g1+g2=g

𝐽1⊔𝐽2={1,…,𝑛}

𝐆g1,1+𝑛1
× 𝐆g2,1+𝑛2

⎞⎟⎟⎟⎟⎟⎠
⟶ 𝐆′

g ,𝑛,

which consists in adding an edge between the two special leaves — the two first leaves in the
connected situation and the first leaf of each graph in the disconnected situation. This map is
surjective, but not necessarily injective. More precisely, if (Γ, 𝑒0) ∈ 𝐆′

g ,𝑛, let us cut 𝑒0 to create the
stable graph Γ′ with 𝑛 labelled leaves and 2 unlabelled leaves. Let 𝑎Γ′ be equal to 2 if Γ′ is invariant
under the permutation of the two unlabelled leaves, and 𝑎Γ′ = 1 otherwise. If Γ′ is disconnected,
wemust have 𝑎Γ′ = 1 because the two connected components can be distinguished by the subsets
𝐽1 and 𝐽2 of leaves of the initial graph that they contain. Furthermore, the number of automor-
phisms of Γ is the product of the number of automorphism of its connected components. If Γ′ is
connected, it must have genus g − 1. If 𝑎Γ′ = 1, there are two distinct graphs in 𝐆g−1,𝑛+2, which
differ by the labels of the two first leaves, which lead to (Γ, 𝑒0) after application of 𝐠𝐥𝐮. If 𝑎Γ′ = 2,
these two graphs are actually isomorphic. So, when Γ′ is connected, we always have

||𝐠𝐥𝐮−1(Γ, 𝑒0)|| = 2
𝑎Γ′

.

Finally, we notice that for (Γ, 𝑒0) ∈ 𝐆′
g ,𝑛 and Γ̃ ∈ 𝐠𝐥𝐮−1(Γ, 𝑒0), we always have

|Aut Γ| = 𝑎Γ′ |Aut Γ̃|.
Partitioning the sum (4.13) according to the fibres of 𝐠𝐥𝐮 we obtain

𝜕𝑧=0

(
𝑉𝑁𝑡,𝑧

g ,𝑛(𝜓; 𝐿1, … , 𝐿𝑛)
)

= ∫ℝ+

𝜓(𝓁0) 𝑒
−𝑡𝓁0

(1 − 𝑒−𝑡𝓁0 )2
𝓁0 d𝓁0

×

⎧⎪⎪⎨⎪⎪⎩
1
2

∑
Γ∈𝐆g−1,2+𝑛

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩM
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 d𝓁𝑒
𝑒𝑡𝓁𝑒 − 1
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 295

+
1
2

∑
{(g1,𝐽1),(g2,𝐽2)}

g1+g2=g

𝐽1⊔𝐽2={1,…,𝑛}

2∏
𝑖=1

⎛⎜⎜⎜⎜⎝
∑
Γ𝑖

∈𝐆g𝑖 ,1+|𝐽𝑖 |
1|Aut Γ𝑖| ∫ℝ

𝐸Γ𝑖
+

∏
𝑣∈𝑉Γ𝑖

𝑉ΩM
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸𝑖(𝑣), (𝐿𝜆)𝜆∈Λ𝑖(𝑣)

)∏
𝑒∈𝐸Γ𝑖

𝓁𝑒 d𝓁𝑒
𝑒𝑡𝓁𝑒 − 1

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭
,

where 𝐸𝑖(𝑣) andΛ𝑖(𝑣) are the set of edges and leaves of Γ𝑖 , and if 𝜆 is a special leaf, we set 𝐿𝜆 = 𝓁0.
We stress that 1

2
in the last line comes from 𝚥𝑒0 = 1. We recognise the sums over stable graphs

𝑉𝑁𝑡
ℎ,𝑘(𝐿̃1, … , 𝐿̃𝑘) =

∑
Γ∈𝐆g̃ ,𝑛̃

1|Aut Γ| ∫ℝ
𝐸Γ
+

∏
𝑣∈𝑉Γ

𝑉ΩM
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿̃𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 d𝓁𝑒
𝑒𝑡𝓁𝑒 − 1

,

which already appeared in the proof of Theorem 3.5. We can replace the last sum over pairs with
a sum over ordered pairs up to multiplication by an extra factor of 1

2
. All in all,

𝜕𝑧=0

(
𝑉𝑁𝑡,𝑧

g ,𝑛(𝜓; 𝐿1, … , 𝐿𝑛)
)
=

1
2 ∫ℝ+

𝜓(𝓁) 𝑒−𝑡𝓁

(1 − 𝑒−𝑡𝓁)2

⎛⎜⎜⎜⎝𝑉𝑁
𝑡
g−1,𝑛+2(𝓁,𝓁, 𝐿1, … , 𝐿𝑛)

+
1
2

∑
g1+g2=g

𝐽1⊔𝐽2={𝐿1,…,𝐿𝑛}

𝑉𝑁𝑡
g1,1+|𝐽1|(𝓁, 𝐽1)𝑉𝑁𝑡

g2,1+|𝐽2|(𝓁, 𝐽2)
⎞⎟⎟⎟⎠𝓁d𝓁.

(4.14)

We multiply the boundary lengths by 𝛽 and divide 𝑡 by 𝛽 in order to insert this formula in
(4.12). Notice that the quantity in parenthesis in (4.14) now contributes to an even polynomial in
𝓁, such that themonomial 𝓁2𝑚 is a polynomial in (𝛽∕𝑡), of top degree 6g − 6 + 2𝑛 − (2𝑚 + 2). We
recall that the 𝛽 → ∞ leading behaviour of 𝑉𝑁𝑡∕𝛽

ℎ,𝑘
from (3.11) is expressed via the Masur–Veech

polynomials 𝑉ΩMV
ℎ,𝑘

. Since

lim
𝛽→∞

𝛽2 ∫ℝ+

𝜓(𝓁) 𝑒−𝑡𝓁∕𝛽

(1 − 𝑒−𝑡𝓁∕𝛽)2
𝓁2𝑚+1 d𝓁 =

1
𝑡2 ∫ℝ+

𝜓(𝓁)𝓁2𝑚−1d𝓁 (4.15)

is finite for any 𝑚 ⩾ 0, only the 𝑚 = 0 terms will contribute in the leading 𝛽 → ∞ behaviour of
(4.12), in which case (4.15) is equal to 𝑡−2 𝑐0[𝜓] which exist since 𝓁 ↦ 𝓁−1𝜓(𝓁) is integrable. We
arrive at the formula

lim
𝛽→∞

𝛽−(6g−6+2𝑛)𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝜓; 𝛽𝐿1, … , 𝛽𝐿𝑛)

=
1
2
𝑐0[𝜓] 𝑐[𝜙]

×

⎡⎢⎢⎢⎣𝑡
−(6g−6+2𝑛) ⋅

⎛⎜⎜⎜⎝𝑉Ω
MV
g−1,𝑛+2(0, 0, 𝑡𝐿1, … , 𝑡𝐿𝑛) +

1
2

∑
g1+g2=g

𝐽1⊔𝐽2={𝐿1,…,𝐿𝑛}

𝑉ΩMV
g1,1+|𝐽1|(0, 𝐽1)𝑉ΩMV

g2,1+|𝐽2|(0, 𝐽2)
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦,
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296 ANDERSEN et al.

which is the first desired formula. To obtain the second formula, we remark that all 𝛽 → ∞ limits
used in the previous arguments are uniform for 𝐿1, … , 𝐿𝑛 in any compact of ℝ⩾0. Hence

lim
𝛽→∞

𝛽−(6g−6+2𝑛)𝑉𝑁+
g ,𝑛(𝜌

∗
𝛽
𝜙; 𝜓; 𝐿1, … , 𝐿𝑛)

=
1
2
𝑐0[𝜓] 𝑐[𝜙]

⎡⎢⎢⎢⎣𝑡
−(6g−6+2𝑛) ⋅

⎛⎜⎜⎜⎝𝑉Ω
MV
g−1,𝑛+2(0) +

1
2

∑
g1+g2=g

𝐽1⊔𝐽2={𝐿1,…,𝐿𝑛}

𝑉ΩMV
g1,1+|𝐽1|(0)𝑉ΩMV

g2,1+|𝐽2|(0)
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦.

The effect of 𝑐[𝜙] factors out to give 𝑐6g−6+2𝑛[𝜙] and the sum over the partition 𝐽1 ⊔ 𝐽2 =
{𝐿1, … , 𝐿𝑛} yields binomial coefficients, hence the formula we sought for.
The statistics 𝑁̃ are perhaps more natural. Their expression slightly differs from (4.11) by one

factor 𝑒−𝑡𝓁∕𝛽 less in front of 𝜓 — this factor was previously due to the contribution of 𝛾0 to the
total length that was included before evaluating 𝜙. Namely, we have

𝑁̃Σ(𝜌
∗
𝛽
𝜙; 𝜓; 𝜎) = ∫ℝ+

Φ(𝑡) 𝜕𝑧=0

(
𝑁̃𝑡∕𝛽,𝑧

Σ (𝜓; 𝜎)
)
d𝑡,

with

𝑁̃𝑡,𝑧
Σ (𝜓; 𝜎) =

∑
𝑐∈𝑀′

Σ

∏
𝛾∈𝜋0(𝑐)

1

𝑒𝑡𝓁𝜎(𝛾) − 1

(
1 +

𝑧 𝜓(𝓁𝜎(𝛾)) 𝑒
𝑡𝓁𝜎(𝛾)

2𝚥(𝛾)(1 − 𝑒−𝑡𝓁𝜎(𝛾))

)
.

All the previous argument can be carried over, except that we use instead of (4.15) the limit

lim
𝛽→∞

𝛽2 ∫ℝ+

𝜓(𝓁)

(1 − 𝑒−𝑡𝓁∕𝛽)2
𝓁2𝑚+1 d𝓁 =

1
𝑡2 ∫ℝ+

𝜓(𝓁)𝓁2𝑚−1d𝓁,

which yields the same result. □

5 COMPUTINGMASUR–VEECH POLYNOMIALS

The Masur–Veech polynomial 𝑉ΩMV
g ,𝑛 has degree 6g − 6 + 2𝑛. As explained in Section 2.7.1, we

decompose it as follows

𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) =

∑
𝑑1,…,𝑑𝑛⩾0

𝑑1+⋯+𝑑𝑛⩽3g−3+𝑛

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛]
𝑛∏

𝑗=1

𝐿
2𝑑𝑗
𝑗

(2𝑑𝑗 + 1)!
. (5.1)

In this section we drop the superscript MV on the functions of 𝐹g ,𝑛 as it will always refer to the
coefficients of (5.1). By symmetry, 𝐹g ,𝑛 can be considered as a function on the set of partitions of
size less or equal to 3g − 3 + 𝑛. It is convenient to give a name to the value of 𝐹g ,𝑛 on partitions
with a single row

𝐻g ,𝑛[𝑑] = 𝐹g ,𝑛[𝑑, 0, … , 0] and 𝐻𝑛[𝑑] = 𝐻0,𝑛[𝑑].

By convention, if some 𝑑𝑖 is negative or if 2g − 2 + 𝑛 ⩽ 0, we declare 𝐹g ,𝑛[𝑑1, … , 𝑑𝑛] = 0. We are
particularly interested in the Masur–Veech volumes which — up to normalisation — are the
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 297

values of this function on the empty partition:

𝑀𝑉g ,𝑛 =
24g−2+𝑛(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!
𝐻g ,𝑛[0]. (5.2)

In this section, we are going to illustrate some computations of𝐻g ,𝑛 that can be done with stable
graphs (Section 5.1), give explicitly the Virasoro constraints for the 𝐹g ,𝑛 (Theorem 1.2, detailed
in Section 5.2) and the recursion it implies for 𝐻g=0,𝑛 (Section 5.3). We provide in Tables C.3–
C.4 values of 𝐻g ,𝑛[𝑑] = 𝐹g ,𝑛[𝑑, .0, … , 0] for low g , 𝑛, 𝑑 for g = 0, 1, 2, 3 and low 𝑛 that we have
computed using the Virasoro constraints of Section 5.2 (data up to g ⩽ 6 and higher 𝑛 are
available on demand). These computations lead us to conjecture some structural formulae for
Masur–Veech volumes for fixed g but any 𝑛 (Section 5.4). We study their consequence for area
Siegel–Veech constants in light of Goujard’s recursion (Section 5.5) and their behaviour when
𝑛 → ∞ (Section 5.6).

5.1 Leading coefficients via stable graphs

We denote 𝐻∗
g ,𝑛[𝑑] = 𝐻g ,𝑛[3g − 3 + 𝑛 − 𝑑] and consider low values of 𝑑. In other words, these

are the coefficients appearing in front of the terms of high(est) degrees in the Masur–Veech poly-
nomial 𝑉ΩMV

g ,𝑛 (𝐿, 0, … , 0). They can be computed efficiently with the stable graph formula, or
equivalently with Equation (3.16). We give a few examples of such computations, starting from
the expression

𝐻∗
g ,𝑛[𝑑] =

(6g − 5 + 2𝑛 − 2𝑑)!

(3g − 3 + 𝑛 − 𝑑)!
2−(3g−3+𝑛)+𝑑

×
∑
𝑘⩾0

∑
Γ∈𝐆𝑘

g ,𝑛

1|Aut Γ| ∫𝔐Γ

⎡⎢⎢⎢⎣
∏
𝑒∈𝐸Γ𝑒=(ℎ,ℎ′)

(∑
𝐷⩾0

(2𝜋2)𝐷+1
𝐵2𝐷+2

2𝐷 + 2
(−𝜓ℎ − 𝜓ℎ′)

𝐷

)⎤⎥⎥⎥⎦2(𝑑−𝑘)
𝜓3g−3+𝑛−𝑑
1

=
(6g − 5 + 2𝑛 − 2𝑑)!

(3g − 3 + 𝑛 − 𝑑)!
2−(3g−3+𝑛)+2𝑑 𝜋2𝑑

×
∑
𝑘⩾0

∑
Γ∈𝐆𝑘

g ,𝑛

1|Aut Γ| ∫𝔐Γ

⎡⎢⎢⎢⎣
∏
𝑒∈𝐸Γ

𝑒=(ℎ,ℎ′)

(∑
𝐷⩾0

|𝐵2𝐷+2|
2𝐷 + 2

(𝜓ℎ + 𝜓ℎ′)
𝐷

)⎤⎥⎥⎥⎦
2(𝑑−𝑘)

𝜓3g−3+𝑛−𝑑
1 ,

where [ ⋅ ]2𝑘 extracts the component of cohomological degree 2𝑘 and we recall that 𝐆𝑘
g ,𝑛 is the set

of stable graphs with 𝑘 edges.

5.1.1 Genus zero

To compute the vertex weights, we will use the formula [52]

∫𝔐0,𝑛

𝑛∏
𝑖=1

𝜓
𝑚𝑖
𝑖 = 𝛿∑

𝑖 𝑚𝑖 ,𝑛−3
(𝑛 − 3)!

𝑑1!⋯𝑑𝑛!
,

which is a consequence of the string equation for 𝜓 classes.
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298 ANDERSEN et al.

F IGURE 1 Stable graph contributing to 𝐻∗
𝑛[1].

F IGURE 2 Stable graphs contributing to 𝐻∗
𝑛[2].

∙ 𝐝 = 𝟎. The computation of the integral is trivial and we have

𝐻∗
𝑛[0] =

(2𝑛 − 5)!

2𝑛−3(𝑛 − 3)! ∫𝔐0,𝑛

𝜓𝑛−3
1 =

(2𝑛 − 5)!

2𝑛−3(𝑛 − 3)!
.

∙ 𝐝 = 𝟏. The only contribution comes from the stable graphwith one edge joining two genus zero
vertices (Figure 1). As the 𝜓𝑛−4

1 carried by the first leaf saturates the dimension of the moduli
space at its incident vertex 𝑣1, this edge must have degree 0 and receives a weight

𝐵2
2
. Then, the

contribution from each vertex after integration is equal to 1. It remains to distribute the leaves
labelled 2, … , 𝑛 between a first group of 𝑛 − 3 which will be incident to 𝑣1, and a second group
of 2 which will be incident to the second vertex. Hence

𝐻∗
𝑛[1] =

(2𝑛 − 7)!

2𝑛−2(𝑛 − 4)!

(𝑛 − 1)(𝑛 − 2)

3
𝜋2.

∙ 𝐝 = 𝟐. We have to consider stable graphs with vertices of genus zero with 1 or 2 edges (for coho-
mological degree reasons the graph with no edges does not contribute). There are four cases
(Figure 2).
1𝑎– Two vertices are connected by an edge, the extra 𝜓 class lies on the same vertex as 𝜓𝑛−5

1 .
There are

(𝑛−1
2

)
ways to pick two leaves carried by the second vertex. The contribution

of the first vertex is ∫
𝔐0,𝑛−1

𝜓𝑛−5
1 𝜓 = 𝑛 − 4, and the contribution of the second vertex is

∫
𝔐0,3

1 = 1. The edge contribution is |𝐵4|
4
.

1𝑏– Two vertices are connected by an edge, the first vertex carries 𝜓𝑛−5
1 and the extra 𝜓 class

lies on the second vertex. There are
(𝑛−1

3

)
ways to pick three leaves to the second vertex.

Both vertex contributions are equal to 1, and the edge contribution is |𝐵4|
4
.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 299

2𝑎– A central vertex carrying𝜓𝑛−5
1 is connected to two other vertices carrying no𝜓 class. There

are
( 𝑛−1
2,2,𝑛−5

)
ways to pick two leaves for each of the two non-central vertices. The contri-

bution of each vertex is 1, each edge contributes to a factor 𝐵2
2
and we get an extra factor

of a 1
2
from the automorphism of the graph (exchange of the two non-central vertices).

2𝑏– There are three vertices connected by two edges and 𝜓𝑛−5
1 is carried by an extremal ver-

tex. There are 𝑛 − 1 choices for the leaf on the central vertex, and
(𝑛−2

2

)
ways to pick the

two leaves for the second extremal vertex. The contribution of each vertex is 1, each edge
contributes to a factor of 𝐵2

2
, and there are no automorphisms.

Summing up all contributions we obtain:

𝐻∗
𝑛[2] =

(2𝑛 − 9)!

2𝑛−7(𝑛 − 5)!
𝜋4

{|𝐵4|
4

(
(𝑛 − 4)

(
𝑛 − 1
2

)
+

(
𝑛 − 1
3

))

+

(
𝐵2

2

)2(
1
2

(
𝑛 − 1

2, 2, 𝑛 − 5

)
+ (𝑛 − 1)

(
𝑛 − 2
2

))}
=

(2𝑛 − 9)!

2𝑛−7(𝑛 − 5)!

(𝑛 − 1)(𝑛 − 2)(5𝑛2 + 17𝑛 − 120)

5760
𝜋4.

5.1.2 Genus one

Here we will need the classical formula

∫𝔐1,𝑛

𝜓𝑛
1 =

1
24

, (5.3)

which is sufficient to compute𝐻∗
1,𝑛[𝑑] for 𝑑 = 0, 1. More general 𝜓 classes intersections in genus

one would be necessary to push the stable graphs computations further. For instance, we will
compute below𝐻∗

1,𝑛[2] using

∫𝔐1,𝑛

𝜓𝑛−1
1 𝜓2 =

𝑛 − 1
24

. (5.4)

We present inAppendix A a closed formula for arbitrary genus one𝜓 classes intersections (includ-
ing (5.3) and (5.4)), which we prove in an elementary way using well-known facts, but for which
we could not find a reference.

∙ 𝐝 = 𝟎. The only stable graph contributing has a single vertex, and with (5.3) we obtain

𝐻∗
1,𝑛[0] =

1
24

(2𝑛 + 1)!

2𝑛𝑛!
.

∙ 𝐝 = 𝟏. We have to consider the stable graphs with a single edge, which is either separating or
non-separating (Figure 3). This edge cannot carry 𝜓 classes and its contribution is 𝐵2

2
. In the

separating case, there is a vertex of genus one which carries the 𝜓𝑛−1
1 , which is connected to

a second vertex of genus zero. There are
(𝑛−1

2

)
ways to distribute the two leaves on the genus

zero vertex. The contribution of the genus zero vertex is 1 and the contribution of the genus one
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300 ANDERSEN et al.

F IGURE 3 Stable graphs contributing to 𝐻∗
1,𝑛[1]. The black vertices have genus zero and the green ones

have genus one.

vertex is ∫
𝔐1,𝑛−1

𝜓𝑛−1
1 = 1

24
. In the non-separating case, there is a single vertex, which has genus

zero; its contribution is 1, and we have an automorphism factor of 1
2
(exchange of the two ends

of the edge). Hence

𝐻∗
1,𝑛[1] =

(2𝑛 − 2)!

2𝑛−2(𝑛 − 1)!
𝜋2 𝐵2

2

(
1
2
+

1
24

(
𝑛 − 1
2

))
=

(2𝑛 − 2)!

2𝑛−2(𝑛 − 1)!

(𝑛2 − 3𝑛 + 26)

576
𝜋2.

∙ 𝐝 = 𝟐. We have to consider stable graphs with one or two edges (Figure 4). When there is a
single edge, its contribution is |𝐵4|

4
as we have an extra 𝜓 class to distribute at one of its ends.

Four cases appear.
1𝑎– There is one non-separating edge on a single vertex of genus zero. The extra 𝜓 class is car-

ried by one extremity of the edge, forbidding non-trivial automorphisms. The contribution
of the vertex is ∫

𝔐0,𝑛+2
𝜓𝑛−2
1 𝜓 = (𝑛 − 1), and the contribution of the edge is |𝐵4|

4
.

1𝑏– The vertex carrying 𝜓𝑛−2
1 has genus one and also carries the extra 𝜓 class. It is connected

to a genus zero vertex, which has two leaves and there are
(𝑛−1

2

)
ways to choose them. The

contribution of the genus one vertex is ∫
𝔐1,𝑛−1

𝜓𝑛−2
1 𝜓 = 𝑛−2

24
using (5.4), the contribution

of the genus zero vertex is 1.
1𝑐– The vertex carrying 𝜓𝑛−2

1 has genus one and is connected to a genus zero vertex carrying
the extra 𝜓 class. We can pick the 3 leaves incident to the genus zero vertex in

(𝑛−1
3

)
ways.

The contribution of the genus one vertex is ∫
𝔐1,𝑛−2

𝜓𝑛−2
1 = 1

24
while the contribution of

the genus zero vertex is 1.
1𝑑 – The vertex carrying 𝜓𝑛−2

1 has genus zero and is connected to a genus one vertex carrying
the extra 𝜓 class. The contribution of the genus zero vertex is 1 and the contribution of the
genus one vertex is ∫

𝔐1,1
𝜓 = 1

24
.

When there are two edges, each of them contributes by a factor of 𝐵2
2
and there is no extra 𝜓

class.
2𝑎– The vertex carrying 𝜓𝑛−2

1 has genus zero, is incident to a non-separating edge forming a
loop and the second edge connects it to another vertex of genus zero. There are

(𝑛−1
2

)
ways

to choose the two leaves on the second vertex. The loop is responsible for a symmetry factor
of a 1

2
, and the contribution of both vertices is 1.

2𝑏– The vertex carrying 𝜓𝑛−2
1 has genus zero and is connected to another vertex of genus zero

which carries a loop. The latter yields a symmetry factor of a 1
2
and the contribution of

both vertices is 1.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 301

F IGURE 4 Stable graphs contributing to 𝐻∗
1,𝑛[2]. The black vertices have genus zero and the green ones

have genus one.

2𝑐– The vertex carrying 𝜓𝑛−2
1 has genus zero and is connected to another vertex of genus zero

by two edges. To the second vertex should be assigned a leaf and this can be done in (𝑛 −
1) ways. There is a symmetry factor of a 1

2
for the exchange of the two edges, and the

contribution of both vertices is 1.
2𝑑– The vertex carrying 𝜓𝑛−2

1 has genus one, it is connected to a vertex of genus zero with
one leaf, which itself is connected to another vertex of genus zero with 2 leaves. There
are (𝑛 − 1)

(𝑛−2
2

)
ways to assign the leaves. The contribution from the genus one vertex is

∫
𝔐1,𝑛−2

𝜓𝑛−2
1 = 1

24
and the contribution of the genus zero vertices is 1.

2𝑒– There are three vertices, the central one has genus one and carries 𝜓𝑛−2
1 , the extremal

ones have genus zero and carry two leaves each. There are
( 𝑛−1
2,2,𝑛−5

)
ways to assign the

leaves but there is a symmetry factor of a 1
2
for the exchange of the two extremal vertices.

The contribution of the genus one vertex is ∫
𝔐1,𝑛−2

𝜓𝑛−2
1 = 1

24
and the contribution of the

genus zero vertices is 1.

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12686 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [17/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



302 ANDERSEN et al.

Summing all contributions, we obtain

𝐻∗
1,𝑛[2] =

(2𝑛 − 3)!

2𝑛−4(𝑛 − 2)!
𝜋4

{(
𝐵2

2

)2(
1
2

(
𝑛 − 1
2

)
+

1
2
+

𝑛 − 1
2

+
𝑛 − 1
24

(
𝑛 − 2
2

)
+

1
24

1
2

(
𝑛 − 1

2, 2, 𝑛 − 5

))
+

|𝐵4|
4

(
𝑛 − 1 +

𝑛 − 2
24

(
𝑛 − 1
2

)
+

1
24

(
𝑛 − 1
3

)
+

1
24

)}
=

5𝑛4 + 2𝑛3 + 127𝑛2 + 1162𝑛 − 768
138240

𝜋4.

5.2 Virasoro constraints

In this paragraph, we write down explicitly the recursion of Theorem 1.2 for the coefficients of the
Masur–Veech polynomials. It is obtained by inserting the Kontsevich initial data (2.13)–(2.14) and
the twist 𝑢𝑎,𝑏 given by Theorem 1.2 into the general formula (2.16) and recursion (2.12). It is equiv-
alent to Virasoro constraints, obtained (see, e.g. [10]) by conjugation of the Virasoro constraints
for 𝜓 classes intersections, with the operator

 = exp

( ∑
𝑎,𝑏⩾0

ℏ
2
𝑢𝑎,𝑏 𝜕𝑥𝑎𝜕𝑥𝑏

)
, 𝑢𝑎,𝑏 =

(2𝑎 + 2𝑏 + 1)!𝜁(2𝑎 + 2𝑏 + 2)

(2𝑎 + 1)!(2𝑏 + 1)!
.

Base cases —When 2g − 2 + 𝑛 = 1 we have

𝐹0,3[𝑑1, 𝑑2, 𝑑3] = 𝛿𝑑1,𝑑2,𝑑3,0, 𝐹1,1[𝑑] = 𝛿𝑑,0
𝜁(2)

2
+ 𝛿𝑑,1

1
8
.

We assume 2g + 𝑛 − 2 ⩾ 2 in what follows.
String equation—

𝐹g ,𝑛[0, 𝑑2, … , 𝑑𝑛] =
𝑛∑
𝑖=2

(
𝐹g ,𝑛−1[𝑑2, … , 𝑑𝑖 − 1, … , 𝑑𝑛]

+𝛿𝑑𝑖,0
∑
𝑎⩾0

𝜁(2𝑎 + 2)𝐹g ,𝑛−1(𝑎, 𝑑2, … , 𝑑𝑖, … , 𝑑𝑛)

)

+
1
2

∑
𝑎,𝑏⩾0

(
(2𝑎 + 2𝑏 + 4)!

(2𝑎 + 2)!(2𝑏 + 2)!
𝜁(2𝑎 + 2𝑏 + 4) + 𝜁(2𝑎 + 2)𝜁(2𝑏 + 2)

)

×

⎛⎜⎜⎜⎜⎝
𝐹g−1,𝑛+1[𝑎, 𝑏, 𝑑2, … , 𝑑𝑛] +

∑
ℎ+ℎ′=g

𝐽⊔𝐽′={𝑑2,…,𝑑𝑛}

𝐹ℎ,1+|𝐽|[𝑎, 𝐽]𝐹ℎ′,1+|𝐽′|[𝑏, 𝐽′]
⎞⎟⎟⎟⎟⎠
.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 303

Dilaton equation—

𝐹g ,𝑛[1, 𝑑2, … , 𝑑𝑛] =

(
𝑛∑
𝑖=2

(2𝑑𝑖 + 1)

)
𝐹g ,𝑛−1[𝑑2, … , 𝑑𝑛] +

1
2

∑
𝑎,𝑏⩾0

(2𝑎 + 2𝑏 + 2)!𝜁(2𝑎 + 2𝑏 + 2)

(2𝑎 + 1)!(2𝑏 + 1)!

×

⎛⎜⎜⎜⎜⎝
𝐹g−1,𝑛+1[𝑎, 𝑏, 𝑑2, … , 𝑑𝑛] +

∑
ℎ+ℎ′=g

𝐽⊔𝐽′={𝑑2,…,𝑑𝑛}

𝐹ℎ,1+|𝐽|[𝑎, 𝐽]𝐹ℎ′,1+|𝐽′|[𝑏, 𝐽′]
⎞⎟⎟⎟⎟⎠
.

For 𝑑1 ⩾ 2

𝐹g ,𝑛[𝑑1, … , 𝑑𝑛] =
𝑛∑
𝑖=2

(2𝑑𝑖 + 1)𝐹g ,𝑛−1[𝑑1 + 𝑑𝑖 − 1, 𝑑2, … , 𝑑𝑖, … , 𝑑𝑛]

+
∑
𝑎,𝑏⩾0

(
1
2
𝛿𝑎+𝑏,𝑑1−2 + 𝛿𝑎⩾𝑑1−1

(2𝑎 + 2𝑏 + 3 − 2𝑑1)!𝜁(2𝑎 + 2𝑏 + 4 − 2𝑑1)

(2𝑏 + 1)!(2𝑎 + 2 − 2𝑑1)!

)

×

⎛⎜⎜⎜⎜⎝
𝐹g−1,𝑛+1[𝑎, 𝑏, 𝑑2, … , 𝑑𝑛] +

∑
ℎ+ℎ′=g

𝐽⊔𝐽′={𝑑2,…,𝑑𝑛}

𝐹ℎ,1+|𝐽|[𝑎, 𝐽]𝐹ℎ′,1+|𝐽′|[𝑏, 𝐽′]
⎞⎟⎟⎟⎟⎠
.

In genus zero, the string equation (i.e. the first member of the Virasoro constraints) gives a
recursion which uniquely determines all 𝐹0,𝑛[𝑑1, … , 𝑑𝑛]. Indeed, this number could be non-zero
only when 𝑑1 +⋯ + 𝑑𝑛 ⩽ 𝑛 − 3, which implies that at least 3 of the functions of 𝑑𝑖 are zero. By
symmetry we can take one of these zeroes to be 𝑑1, and apply the string equation.

5.3 Recursion for genus zero, one row

If we specialise the Virasoro constraints to g = 0 and 𝑑2 = ⋯ = 𝑑𝑛 = 0, we obtain a recursion for
the𝐻𝑛[𝑑] = 𝐹0,𝑛[𝑑, 0, … , 0].

Corollary 5.1. We have that

𝐻𝑛[0] = 𝛿𝑛,3 + (𝑛 − 1)
∑
𝑎⩾0

𝜁(2𝑎 + 2)𝐻𝑛−1[𝑎] +
1
2

∑
2⩽𝑗⩽𝑛−3
𝑎,𝑏⩾0

(𝑛 − 1)!

𝑗!(𝑛 − 1 − 𝑗)!

×

(
(2𝑎 + 2𝑏 + 4)!𝜁(2𝑎 + 2𝑏 + 4)

(2𝑎 + 2)!(2𝑏 + 2)!
+ 𝜁(2𝑎 + 2)𝜁(2𝑏 + 2)

)
𝐻1+𝑗[𝑎]𝐻𝑛−𝑗[𝑏],

𝐻𝑛[1] = (𝑛 − 1)𝐻𝑛−1[0] +
1
2

∑
2⩽𝑗⩽𝑛−3
𝑎,𝑏⩾0

(𝑛 − 1)!

𝑗!(𝑛 − 1 − 𝑗)!

(2𝑎 + 2𝑏 + 2)!𝜁(2𝑎 + 2𝑏 + 2)

(2𝑎 + 1)!(2𝑏 + 1)!
𝐻1+𝑗[𝑎]𝐻𝑛−𝑗[𝑏]
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304 ANDERSEN et al.

and for 𝑑 ⩾ 2

𝐻𝑛[𝑑] = (𝑛 − 1)𝐻𝑛−1[𝑑 − 1] +
∑

2⩽𝑗⩽𝑛−3
𝑎,𝑏⩾0

(𝑛 − 1)!

𝑗!(𝑛 − 1 − 𝑗)!

×

(
1
2
𝛿𝑎+𝑏,𝑑−2 + 𝛿𝑎⩾𝑑−1

(2𝑎 + 2𝑏 + 3 − 2𝑑)!𝜁(2𝑎 + 2𝑏 + 4 − 2𝑑)

(2𝑏 + 1)!(2𝑎 + 2 − 2𝑑)!

)
𝐻1+𝑗[𝑎]𝐻𝑛−𝑗[𝑏].

The last equation could also be written so as to give symmetric roles to 𝑎 and 𝑏 in the last term,
and it is then easy to see that it is also valid for 𝑑 = 1. This recursion determines uniquely the
𝐻𝑛[𝑑], and a fortiori the genus zero Masur–Veech volumes

𝑀𝑉0,𝑛 =
2𝑛−2(𝑛 − 4)!

(2𝑛 − 7)!
𝐻𝑛[0].

We have not been able — even using generating series — to solve this recursion. It can, however,
be used to generate efficiently the numbers𝐻𝑛[𝑑].
From intersection theory on the moduli space of quadratic differentials, a closed formula is

known for area Siegel–Veech constants in genus zero [19] and then the Masur–Veech volumes in
genus zero [5].

Theorem 5.2. We have that

𝑀𝑉0,𝑛 = 𝜋2(𝑛−3) 25−𝑛, 𝑆𝑉0,𝑛 =
𝑛 + 5
6𝜋2

.

In fact, using Goujard’s formula† (Theorem 4.1), it is easy to see that the formula for 𝑆𝑉0,𝑛 and
the formula for𝑀𝑉0,𝑛 are equivalent. If one could guess a closed formula for the𝐻𝑛[𝑑], it should
be possible to check that it satisfies the recursion of Corollary 5.1, and by uniqueness deduce a
new proof of Theorem 5.2.
Based on numerical data, we can guess the shape of a formula for fixed 𝑑 but all 𝑛.

Conjecture 5.3. For each 𝑑 ⩾ 0, there exists a polynomial 𝑃𝑑 of degree 𝑑 with rational coefficients
such that

𝐻𝑛[𝑑] =
(2𝑑 + 1)

(2𝑑 − 1)!!

𝑃𝑑(𝑛)

2(𝑛−3−𝑑)
(2(𝑛 − 3 − 𝑑))!

(𝑛 − 3 − 𝑑)!
𝜋2(𝑛−3−𝑑). (5.5)

The formula for 𝑑 = 0 uses the convention (−1)!! = 1. Equivalently, there exists 𝑃̃𝑑 ∈ ℚ[𝑥] such that

ℋ(𝑥; 𝑑) =
∑

𝑛⩾𝑑+3

𝐻𝑛[𝑑]

𝜋2(𝑛−3−𝑑)

𝑥𝑛−1

(𝑛 − 1)!
=
[
𝑃̃𝑑(𝑥)(1 − 𝑥)3∕2

]
⩾𝑑+2

,

where [ ⋅ ]⩾𝑑+2 means that we only keep monomials of degree greater than 𝑑 + 2.

† The reader looking at Theorem 4.1 may think that to derive a formula for𝑀𝑉0,𝑛 from the knowledge of 𝑆𝑉0,𝑛 one also
needs the data of𝑀𝑉0,3. Actually, in the literature𝑀𝑉0,3 is ill-defined, while for us, in the context of statistics of length
of multicurves, it makes perfect sense and is equal to 4. In the formulation of her result [29], Goujard wrote separately the
terms that we included as contributions of (0, 3) in Theorem 4.1. Therefore the extra value of𝑀𝑉0,3 = 4 can be seen as a
convention and the two formulae for 𝑆𝑉0,𝑛 and𝑀𝑉0,𝑛 are indeed equivalent.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 305

The formula is true for 𝑑 = 0 with 𝑃0(𝑛) = 1 according to Theorem 5.2.

5.4 Conjectures for Masur–Veech volumes with fixed g

For fixed g , the number of a priori non-zero coefficients 𝐹g ,𝑛[𝑑1, … , 𝑑𝑛] grows faster than any
polynomial in 𝑛, and the Virasoro constraint determines them by induction on 2g − 2 + 𝑛. If
one is interested primarily in obtaining 𝐹g ,𝑛[0, … , 0], there is a more efficient way to use the
Virasoro constraints.
In genus zero, we already saw that it implies recursion for the values of 𝐹0,𝑛 on partitions with

one row. More generally, if 𝑘 > 0 and we specialise 𝑑𝑘+1 = ⋯ = 𝑑𝑛 = 0, we also get a recursion
expressing the values of 𝐹0,𝑛 on partitions with at most 𝑘 rows, in terms of the values of 𝐹0,𝑛′ for
𝑛′ < 𝑛 on partitions with at most 𝑘 rows. The same specialisation in genus g > 0 expresses the
values of 𝐹g ,𝑛 on partitions with at most 𝑘 rows in terms of the values of 𝐹g′,𝑛′ on partitions with
at most 𝑘 rows for 2g ′ − 2 + 𝑛′ < 2g − 2 + 𝑛, and the values of 𝐹g−1,𝑛+1 on partitions with at most
𝑘 + 1 rows. In this way, reaching𝐹g ,𝑛[0, … , 0] only requires the computation of a number of values
of the functions of 𝐹g ,𝑛 which grows polynomially with 𝑛.
Based on numerical data, we could guess general formulae for 𝑀𝑉g ,𝑛 for low values of g but

all 𝑛. We start by defining the generating series

ℋg (𝑥) =
∑
𝑛⩾1

𝐻g ,𝑛[0]

𝜋6g−6+2𝑛

𝑥𝑛

𝑛!
+ 𝛿g ,0𝒜(𝑥), (5.6)

where we allow for a conventional choice of a quadratic polynomial 𝒜(𝑥). Theorem 5.2 implies
that we can take

ℋ0(𝑥) = −
8
15

(1 − 𝑥)5∕2, 𝒜(𝑥) =
8
15

−
4
3
𝑥 + 𝑥2,

where the role of 𝒜(𝑥) is to cancel the coefficients of 𝑥0, 𝑥1, 𝑥2 in the expansion ofℋ0(𝑥), since
they do not correspond to Masur–Veech volumes. The maple command guessgf recognises that
the values of𝐻1,𝑛[0] that we have computed for 𝑛 = 1,… , 20match with the expansion of

ℋ1(𝑥) = −
ln

√
1 − 𝑥

12
−

√
1 − 𝑥

12
+

1
12

.

It suggests that, for g ⩾ 2, ℋg (𝑥) could be a polynomial of degree 5(g − 1) in the variable (1 −
𝑥)−1∕2 with rational coefficients. Although the command guessgf fails for g ⩾ 2, we are on good
tracks. If we attempt tomatch this ansatz for g = 2 and 3with the data computed from theVirasoro
constraints, we discover that this polynomial has valuation 4(g − 1). This leads us to guess that
the generating series we look for may have the form

ℋg (𝑥) = −
ln 𝑦

12
𝛿g ,1 + 𝑦5(1−g) 𝑄g (𝑦) with 𝑦 =

√
1 − 𝑥, (5.7)

where𝑄g is a polynomial of degree g with rational coefficients. We then determine the polynomi-
als 𝑄g such that (5.7) reproduces correctly the values𝐻g ,𝑛[0] for 𝑛 ⩽ g + 1, and checked that they
predict the correct values𝐻g ,𝑛[0] for higher 𝑛 that we computed from the Virasoro constraints of
Section 5.2.
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306 ANDERSEN et al.

Returning to the coefficients of the generating series and then to the Masur–Veech volumes
(5.2), Equation (5.7) is equivalent to the following structure for the Masur–Veech volumes. Let us
first define

𝛾𝑘 =
1

4𝑘

(
2𝑘
𝑘

)
.

Conjecture 5.4. For any g ⩾ 0, there exist polynomials 𝑝g , 𝑞g ∈ ℚ[𝑛] of degrees

deg 𝑝g =

{⌊(g − 1)∕2⌋ if g > 0

−∞ if g = 0
and deg 𝑞g = ⌊g∕2⌋

such that, for any 𝑛 ⩾ 0,

𝑀𝑉g ,𝑛

𝜋6g−6+2𝑛
= 2𝑛

(2g − 3 + 𝑛)!(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!

(
𝑝g (𝑛) + 𝛾2g−3+𝑛 𝑞g (𝑛)

)
. (5.8)

For g = 0, formula (5.8) agrees with Theorem 5.2 if we choose 𝑝0(𝑛) = 0 and 𝑞0(𝑛) =
1
4
. Up to

genus 5, the conjecture is numerically true in the range of Table C.1 for the choice of polynomials
given in Table C.2.

5.5 Conjectures for area Siegel–Veech with fixed g

Area Siegel–Veech constants 𝑆𝑉g ,𝑛 can be computed from Masur–Veech volumes thanks to
Goujard’s formula, see Section 4.2. The correspondence between the notations of Section 4.2
and the present one is ℱg (𝑥) = ℋg (𝑥) − 𝛿g ,0𝒜(𝑥). If we insert the conjectural formulae for the
Masur–Veech volumes, we can obtain conjectural formulae for the area Siegel–Veech constants
(Table C.2).

Corollary 5.5. Assuming Conjecture 5.4, for any g ⩾ 0, there exist polynomials 𝑝∗
g , 𝑞

∗
g ∈ ℚ[𝑛] with

degrees

deg 𝑝∗
g =

{⌊(g + 3)∕2⌋ if g > 0

−∞ if g = 0
and deg 𝑞∗g = 1 + ⌊g∕2⌋

such that, for any 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 ⩾ 2

𝑆𝑉g ,𝑛 ⋅𝑀𝑉g ,𝑛

𝜋6g−8+2𝑛
= 2𝑛

(2g − 3 + 𝑛)!(4g − 4 + 𝑛)!

(6g − 7 + 2𝑛)!

(
𝑝∗

g (𝑛)

2g − 3 + 𝑛
+ 𝛾2g−3+𝑛 𝑞

∗
g
(𝑛)

)
,

or equivalently

𝑆𝑉g ,𝑛 =
1
𝜋2

𝑝∗g (𝑛)

2g−3+𝑛
+ 𝛾2g−3+𝑛 𝑞

∗
g
(𝑛)

𝑝g (𝑛) + 𝛾2g−3+𝑛 𝑞g (𝑛)
.

The expression of the polynomials is displayed in Table 2: it is deduced, after computation of
the sums (4.1), from Table 1. For g = 0 the conjecture matches with Theorem 5.2 with 𝑝∗

0 = 0 and
𝑞∗1 = 𝑛+5

24
.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 307

TABLE 1 Polynomials conjecturally appearing in the Masur–Veech volumes

g 𝒑g (𝒏) 𝒒g (𝒏)

0 0 1

4

1 1

6

1

6

2 5

36

28

135
𝑛 + 7

18

3 245

3888
𝑛 + 643

1944

1784

8505
𝑛 + 6523

8505

4 1757

23328
𝑛 + 95413

194400

1186528

23455575
𝑛2 + 40882696

54729675
𝑛 + 5951381

2296350

5 38213

3359232
𝑛2 + 4218671

16796160
𝑛 + 63657059

48988800

83632064

1196234325
𝑛2 + 50144427856

41868201375
𝑛 + 63849553

12629925

6 59406613

3325639680
𝑛2 + 11411443987

27713664000
𝑛 + 61888029881

26453952000

2562397434368

352859220016875
𝑛3 + 185272285982144

640374140030625
𝑛2 + 9008283258227896

2470014540118125
𝑛 + 1636294928657

110827591875

TABLE 2 Polynomials conjecturally appearing in the numerator of 𝑆𝑉g ,𝑛

g 𝒑∗
g (𝒏) 𝒒∗g (𝒏)

0 0 𝑛+5

24

1 1

36
𝑛2 − 1

36
𝑛 1

36
𝑛 + 1

2 5

216
𝑛2 + 20

27
𝑛 + 811

1080

14

405
𝑛2 − 35

324
𝑛 + 329

540

3 245

23328
𝑛3 − 143

7776
𝑛2 + 355

1458
𝑛 + 11861

9720

892

25515
𝑛2 + 52907

51030
𝑛 + 69617

18255

4 1757

139968
𝑛3 + 1428289

3499200
𝑛2 + 514241

129600
𝑛 + 4368611

388800

593264

70366725
𝑛3 − 322892

164189025
𝑛2 + 480686827

1970268300
𝑛 + 14820167

4592700

5 38213

20155392
𝑛4 + 867413

50388480
𝑛3 + 353997223

3527193600
𝑛2

+ 124054303

55112400
𝑛 + 128194553

10497600

41816032

3588702975
𝑛3 + 48489191848

125604604125
𝑛2 + 1269997838947

251209208250
𝑛 + 957632944

44778825

6 59406613

19953838080
𝑛4 + 63937638461

498845952000
𝑛3 + 8797861897271

3491921664000
𝑛2

7511464839971

317447424000
𝑛 + 10221213098113

123451776000

1281198717184

1058577660050625
𝑛4 + 931707432208544

51870305342480625
𝑛3 + 6702081021375716

51870305342480625
𝑛2

+ 302389725584289713

103740610684961250
𝑛 + 1719710639461433

79130900598750

Proof. We already mentioned that an equivalent form of Conjecture 5.4 is

ℋg (𝑥) =
∑
𝑛⩾0

𝑥𝑛

𝑛!

𝐻g ,𝑛[0]

𝜋6g−6+2𝑛
= −

ln 𝑦

12
𝛿g ,1 + 𝑦5(1−g) 𝑄g (𝑦), 𝑦 =

√
1 − 𝑥.

The first polynomials are given by 𝑄0(𝑦) = − 8
15
and 𝑄1(𝑦) =

1−𝑦
12
. Therefore

𝜕𝑥ℋg (𝑥) = 𝑦3−5g 𝑄g ;1(𝑦), 𝜕2𝑥ℋg (𝑥) = 𝑦1−5g 𝑄g ;2(𝑦), 𝜕𝑥𝒜(𝑥)𝜕𝑥ℋg (𝑥) = 𝑦3−5g 𝑄g+2;3(𝑦),

(5.9)

where 𝑄g ;𝑖 are polynomials of degree g with rational coefficients:

𝑄g ;1(𝑦) =

⎧⎪⎨⎪⎩
16
15

if g = 0
1+𝑦
24

if g = 1
5
2
(g − 1)𝑄g (𝑦) −

1
2
𝑄′

g (𝑦) if g ⩾ 2
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308 ANDERSEN et al.

𝑄g ;2(𝑦) =

⎧⎪⎨⎪⎩
−16

10
if g = 0

1+2𝑦
48

if g = 1
5
4
(g − 1)(5g − 3)𝑄g (𝑦) +

1
4
(9 − 10g)𝑄′

g
(𝑦) + 1

4
𝑦2𝑄′′

g
(𝑦) if g ⩾ 2

𝑄g+2;3(𝑦) = 2
(
1
3
− 𝑦2

)
𝑄g ;1(𝑦).

Withℱg (𝑥) = ℋg (𝑥) − 𝛿g ,0𝒜(𝑥), we recall from the proof of Corollary 4.3 that

𝒮g (𝑥) =
∑
𝑛⩾1

2g+𝑛>0

𝑆𝑉g ,𝑛 ⋅𝐻g ,𝑛[0]

𝜋6g−4+2𝑛

𝑥𝑛

𝑛!

=
1
4

(
𝜕2𝑥ℱg−1(𝑥) +

1
2

∑
g1+g2=g

𝜕𝑥ℱg1
(𝑥) ⋅ 𝜕𝑥ℱg2

(𝑥)

)
.

From (5.9) we deduce for any g ⩾ 0 the existence of 𝑅g+3 ∈ ℚg [𝑦] such that 𝒮g (𝑥) =
𝑦3−5g 𝑅g+3(𝑦), that is,

𝑆g (𝑥) =
g+3∑
𝑘=0

𝑟g ,𝑘

(1 − 𝑥)2g−3+𝑘∕2
(5.10)

for some rational numbers 𝑟g ,𝑘 ∈ ℚ. For g ⩾ 2, (5.10) contains only negative powers of 𝑦 =√
1 − 𝑥. From the expansions

1

(1 − 𝑥)𝑏+1
=
∑
𝑛⩾0

(𝑏 + 𝑛)!

𝑏!
𝑥𝑛

𝑛!
,

1

(1 − 𝑥)𝑏+1∕2
=
∑
𝑛⩾0

𝑏!
2𝑏!

(2𝑏 + 2𝑛)!

(𝑏 + 𝑛)!

(𝑥∕4)𝑛

𝑛!
,

it easily follows that

𝑆𝑉g ,𝑛 𝐻g ,𝑛[0] = (2g − 4 + 𝑛)! 𝑝̃∗
g (𝑛) +

(4g − 6 + 2𝑛)!

42g−3+𝑛(2g − 3 + 𝑛)!
𝑞∗g (𝑛)

for some polynomials 𝑝̃∗
g and 𝑞

∗
g with rational coefficients and degrees as announced. Multiplying

by the prefactor of Equation (5.2) yields the claim, with polynomials 𝑝∗
g and 𝑞

∗
g differing from 𝑝̃∗

g

and 𝑞∗g by prefactors that only depend on g . The cases g = 0 and g = 1 can be treated separately,
with the same conclusion. □

5.6 Conjectural asymptotics for fixed g and large 𝒏

Let us examine the asymptoticswhen𝑛 → ∞ assuming the conjectural formulae forMasur–Veech
volumes and area Siegel–Veech constants. Since 𝛾𝑘 ∼ (𝜋𝑘)−1∕2 when 𝑘 → ∞, we obtain when
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 309

TABLE 3 Constants in the conjectural asymptotics of𝑀𝑉g ,𝑛

and 𝑆𝑉g ,𝑛

g 𝒎g 𝒔g

0 32 0

1 1

3
6

2 7

1080

225

56

3 245

7962624

171264

8575

4 37079

96074035200

24227775

2712064

5 38213

28179280429056

85639233536

2322395075

6 5004682489

369999709488414720000

19363429564990875

1311947486396416

𝑛 → ∞

𝑀𝑉g ,𝑛 ∼ 2−𝑛 𝜋6g−6+2𝑛+𝜖(g)∕2 𝑛g∕2 𝑚g , 𝜖(g) =

{
0 if g is even

1 if g is odd
, (5.11)

where 26g−7𝑚g ∈ ℚ is the top coefficient of 𝑞g if g is even and the top coefficient of 𝑝g if g is odd,
see Table 3. For the area Siegel–Veech constants, we find when 𝑛 → ∞

𝑆𝑉g ,𝑛 =
𝑛 + 5 − 5g

6𝜋2
+

𝑠g

𝜋3∕2+𝜖(g)𝑛1∕2
+ 𝑂(𝑛−1), (5.12)

where 𝑠g ∈ ℚ are given in Table 3 for g ⩽ 5.
By [19, Theorem 2] we have that

𝜋2

3
𝑆𝑉g ,𝑛 =

𝑛 + 5 − 5g
18

+ Λ+
g ,𝑛, (5.13)

where Λ+
g ,𝑛 are the sum of the g Lyapunov exponents of the Hodge bundle along the Teichmüller

flow on the moduli space of area one quadratic differentials 𝑄1𝔐g ,𝑛. In particular Λ+
g ,𝑛 ∈ [0, g]

and we can observe the coincidence of the main term in (5.12) and (5.13). Based on extensive
numerical experiments, Fougeron [27] conjectured that for each g we have Λ+

g ,𝑛 = 𝑂(𝑛−1∕2) as
𝑛 → ∞. The conjectural asymptotics (5.12) provides a refined version of Fougeron’s conjecture.
We notice that the power of 𝜋 appearing in the asymptotics depends on the parity of g . Both

for𝑀𝑉g ,𝑛 and 𝑆𝑉g ,𝑛, we have an all-order asymptotic expansion in powers of 𝑛−1∕2 beyond the
leading terms (5.11)–(5.12).

6 TOPOLOGICAL RECURSION FOR COUNTING OF
SQUARE-TILED SURFACES

In [15], Formula (1.5) in Theorem 1.1 for Masur–Veech volumes was derived using the asymp-
totics of the count of square-tiled surfaces. In this section, we introduce square-tiled surfaces with
boundary and their associated generating series. We firstly show that Masur–Veech polynomi-
als can be seen as certain asymptotics of square-tiled surface counting. Next, we show that the
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310 ANDERSEN et al.

generating series of square-tiled surfaces satisfy a topological recursion, and that the topological
recursion for the Masur–Veech polynomials derives from it by taking limits.

6.1 Reminder on the number of ribbon graphs

For g , 𝑛 ⩾ 0 such that 2g − 2 + 𝑛 > 0 and 𝐿1, … , 𝐿𝑛 ∈ ℤ+, let 𝑃g ,𝑛(𝐿1, … , 𝐿𝑛) be the number of
integral points in the combinatorial moduli spacecomb

g ,𝑛 (𝐿1, … , 𝐿𝑛). The numbers 𝑃g ,𝑛(𝐿1, … , 𝐿𝑛)
have been extensively studied [11–13, 45] and admits several equivalent definitions: it is the num-
ber of ribbon graphs of genus g with 𝑛 labelled faces of perimeter 𝐿1, … , 𝐿𝑛; it is the number of
maps without internal faces and 𝑛 labelled (unrooted) boundaries; it is the coefficient of𝑁2−2g−𝑛

in the cumulant ⟨Tr𝑀𝐿1 ⋯Tr𝑀𝐿𝑛⟩𝑐 where 𝑀 is drawn from the Gaussian Unitary Ensemble
of Hermitian matrices of size 𝑁. The function 𝑃g ,𝑛(𝐿1, … , 𝐿𝑛) is a quasi-polynomial of 𝐿1, … , 𝐿𝑛.
More precisely, it vanishes if the sum of the 𝐿𝑖 is odd and for each fixed even integer 𝑘 the function
𝑃g ,𝑛(𝐿1, … , 𝐿𝑛) restricted to the set of integral (𝐿1, … , 𝐿𝑛)with exactly 𝑘 odd terms coincide with a
polynomial. It can be obtained by topological recursion in the following way, either directly with
respect to the lengths in the style of (2.9), or via generating series in the style of Eynard–Orantin.
For a function 𝑓∶ ℝ𝑘

+ → ℝ, we denote

𝑓ℤ(𝑥1, … , 𝑥𝑘) =

{
𝑓(𝑥) if 𝑥1, … , 𝑥𝑘 ∈ ℤ+ and 𝑥1 +⋯ + 𝑥𝑘 ∈ 2ℤ,

0 otherwise.
(6.1)

Theorem6.1 [44]. For𝑋 ∈ {𝐴, 𝐵, 𝐶}we set𝑋P = 𝑋K
ℤ
in terms of the Kontsevich initial data of (2.4),

and

𝑉𝐷P(𝐿1) =
𝐿21 − 4

48
.

The topological recursion formula (2.9), with initial data (𝐴P, 𝐵P, 𝐶P, 𝑉𝐷P) and integrals replaced
by sums over positive integers, computes 𝑉ΩP(𝐿1, … , 𝐿𝑛) = 𝑃g ,𝑛(𝐿1, … , 𝐿𝑛).

In other words, we can use the functions (𝐴K, 𝐵K, 𝐶K) in the recursion, but replace the integrals
over ℝ+ by summations over integers satisfying the parity condition coming from (6.1).

Theorem 6.2 [45]. Let 𝜔P
g ,𝑛 be the output of Eynard–Orantin topological recursion for the spectral

curve

 = ℙ1, 𝑥(𝑧) = 𝑧 +
1
𝑧
, 𝑦(𝑧) = −𝑧, 𝜔P

0,2(𝑧1, 𝑧2) =
d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

. (6.2)

For 2g − 2 + 𝑛 > 0, we have 𝜔g ,𝑛 ∈ 𝒱⊗𝑛 and for any 𝐿1, … , 𝐿𝑛 > 0

𝑃g ,𝑛(𝐿1, … , 𝐿𝑛) = (−1)𝑛 Res
𝑧1=∞

⋯ Res
𝑧𝑛=∞

𝜔P
g ,𝑛(𝑧1, … , 𝑧𝑛)

𝑛∏
𝑖=1

𝑧
𝐿𝑖
𝑖

𝐿𝑖
. (6.3)

If 𝑃g ,𝑛(𝐿1, … , 𝐿𝑛) are interpreted in terms of coefficient of expansion of cumulants in the GUE,
this result dates back to [21].
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 311

The asymptotics of 𝑃g ,𝑛(𝐿) for large boundary lengths can be identified with the Kontsevich
polynomial appearing in Theorem 2.8, up to a normalisation constant. To be precise, if 𝑘 ∈
{0, … , 𝑛} is even, we let 𝑃(𝑘)

g ,𝑛(𝐿1, … , 𝐿𝑛) be the polynomial function coinciding with 𝑃g ,𝑛(𝐿1, … , 𝐿𝑛)
when 𝐿1, … , 𝐿𝑘 are odd and 𝐿𝑘+1, … , 𝐿𝑛 are even.

Theorem 6.3 [44]. For 2g − 2 + 𝑛 > 0 and 𝑘 ∈ {0, … , 𝑛} an even integer, we have for 𝑇 a positive
even integer

𝑃(𝑘)
g ,𝑛(𝑇𝐿1, … , 𝑇𝐿𝑛)

𝑇6g−6+2𝑛
= 2−(2g−3+𝑛)𝑉ΩK

g ,𝑛(𝐿1, … , 𝐿𝑛) + 𝑂(1∕𝑇),

where the 𝑂(1∕𝑇) is a polynomial in the 𝐿𝑖s.

6.2 Square-tiled surfaces with boundaries andMasur–Veech
polynomials

Let us fix g and 𝑛 so that 2g − 2 + 𝑛 > 0 and a tuple (𝐿1, … , 𝐿𝑛) of positive real numbers. We
consider the moduli space g ,𝑛(𝐿1, … , 𝐿𝑛) of tuples (𝑋, 𝑝1, … , 𝑝𝑛, 𝑞) where

∙ 𝑋 is a compact Riemann surface of genus g ,
∙ 𝑝1, . . . , 𝑝𝑛 are distinct points on 𝑋,
∙ 𝑞 is ameromorphic quadratic differential on𝑋, holomorphic on𝑋 ⧵ {𝑝1, … , 𝑝𝑛} andwith double
poles at 𝑝𝑗 with residues

1
2i𝜋 ∫𝛾𝑗

√
𝑞 = ±

𝐿𝑗
2i𝜋

,

where 𝛾𝑗 is a loop around 𝑝𝑗 . The residue is only defined up to sign corresponding to the choice
of a square root of 𝑞.

The quadratic differential 𝑞 induces a flat metric on 𝑋 ⧵ {𝑝1, … , 𝑝𝑛} with conical singularities
at the zeros of 𝑞. The geometry of the flat metric in a neighbourhood of each pole is a semi-
infinite cylinder with periodic horizontal trajectories (the point 𝑝𝑖 itself is at infinite distance
from the rest of the surface). For each pole, there is a maximal such semi-infinite cylinder that
avoids the zeros of 𝑞. We call the convex-core of (𝑋, 𝑝1, … , 𝑝𝑛, 𝑞) the surface obtained by remov-
ing the union of the maximal open semi-infinite cylinders around each pole. The convex core
with the metric induced from 𝑞 is still a flat metric and has 𝑛 horizontal boundaries of lengths,
respectively, 𝐿1, . . . , 𝐿𝑛 which is the union of saddle connections (i.e. straight line segments join-
ing zeros of 𝑞) bounding the maximal half-infinite cylinder around, respectively, 𝑝1, . . . , 𝑝𝑛. The
core area of (𝑋, 𝑝1, … , 𝑝𝑛, 𝑞) denoted as CoreArea(𝑋, 𝑝1, … , 𝑝𝑛, 𝑞) is the area of the convex core
of (𝑋, 𝑝1, … , 𝑝𝑛, 𝑞). It is a non-negative real number, which is in particular finite contrarily to the
area of 𝑋 ⧵ {𝑝1, … , 𝑝𝑛}.
The spaceg ,𝑛(𝐿1, … , 𝐿𝑛) admits a stratificationwith respect to the degree of the zeros. On each

stratum, the relative periods of 𝑞 with respect to its zeros provide coordinates. When all the 𝐿𝑖 are
integral and all periods are Gauss integers, that is, in ℤ⊕ iℤ, we say that the surface is square-
tiled. Indeed, such surface can be obtained by gluing side by side as many squares as the core
area (which is integral) and leaving open some of the horizontal sides forming 𝑛 circles of lengths
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312 ANDERSEN et al.

𝐿1, . . . , 𝐿𝑛. For integral 𝐿1, . . . , 𝐿𝑛 we define the generating function of square-tiled surfaces with
boundary lengths 𝐿1, . . . , 𝐿𝑛 as follows:

𝑃□,𝑞
g ,𝑛 (𝐿1, … , 𝐿𝑛) ∶=

∑
𝑆

1|Aut 𝑆| 𝗊CoreArea(𝑆), (6.4)

where the sum is taken over square-tiled surfaces 𝑆 in g ,𝑛(𝐿1, … , 𝐿𝑛).

Proposition 6.4. Let g , 𝑛 be non-negative integers such that 2g − 2 + 𝑛 > 0 and let (𝐿1, … , 𝐿𝑛) be
a tuple of positive integers. We have

𝑃□,𝗊
g ,𝑛 (𝐿1, 𝐿2, … , 𝐿𝑛) =

∑
Γ∈𝐆g ,𝑛

1|Aut Γ| ∑
𝓁∶ 𝐸Γ→ℤ+

∏
𝑣∈𝑉Γ

𝑃ℎ(𝑣),𝑘(𝑣)
(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒𝗊
𝓁𝑒

1 − 𝗊𝓁𝑒
,

(6.5)
where 𝑃ℎ,𝑘(𝓁1, … ,𝓁𝑘) is the Norbury quasi-polynomial as in Section 6.1.

Remark 6.5. The terms in the right-hand side of (6.5) are similar to [15, Equation 1.12] describing
polynomials associated to a stable graph Γ.

Remark 6.6. Surfaces with vanishing core area are exactly the Strebel differentials [46], that is, dif-
ferentials all of whose relative periods are purely real. Hence, one can already identify the constant
coefficient of 𝑃□,𝗊

g ,𝑛 (𝐿1, … , 𝐿𝑛) (seen as a 𝗊-series) as the Norbury quasi-polynomials of Section 6.1.
This constant coefficient is also equal to the term associated to the stable graphwith a single vertex
of genus g and no edge in Formula 6.5.

Proof. Each square-tiled surface admits a decomposition into horizontal cylinders and saddle con-
nections between the zeros of the differential 𝑞. The union of all saddle connections forms a union
of ribbon graphs that we call the singular layer of the square-tiled surface. To such decomposition,
we associate a stable graph Γ by the following rule.

∙ A vertex in Γ corresponds to a connected component of the singular layer, where the genus
and number of half edges are, respectively, the genus and the number of faces of the associated
ribbon graph.

∙ An edge of Γ between two vertices corresponds to a cylinder, whose extremities belong to the
components of the singular layer corresponding to the two vertices. Note that each of these
extremities is a face of the corresponding ribbon graph.

Let us now fix a stable graph Γ in 𝐆g ,𝑛. We claim that the term

1|Aut Γ| ∑
𝓁∶ 𝐸Γ→ℤ+

∏
𝑣∈𝑉Γ

𝑃ℎ(𝑣),𝑘(𝑣)
(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒𝗊
𝓁𝑒

1 − 𝗊𝓁𝑒
.

appearing in the right-hand side of (6.5) is the generating series of square-tiled surfaces, whose
associated stable graph is Γ. Indeed, to reconstruct the singular layer one needs to choose a ribbon
graph for each vertex 𝑣 of 𝑉Γ and fix the lengths of each edge. This count corresponds to the term
𝑃ℎ(𝑣),𝑘(𝑣)((𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)). Next, one needs to reconstruct the cylinders. The cylinders are
glued on faces of ribbon graphs and have a height parameter𝐻 (which is a positive integer) and a
twist parameter 𝑡 (an non-negative integer strictly smaller than 𝓁𝑖). The generating series for this
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 313

cylinder is just

∑
𝐻⩾1

∑
0⩽𝑡<𝓁𝑒

𝗊𝓁𝑒𝐻 =
𝓁𝑒𝗊

𝓁𝑒

1 − 𝗊𝓁𝑒
.

This concludes the proof. □

We now show how to retrieve the Masur–Veech polynomials 𝑉ΩMV
g ,𝑛 (𝐿1, … , 𝐿𝑛) by consid-

ering certain limits of square-tiled surface counting that are encoded in the generating series
𝑃□,𝗊
g ,𝑛 (𝐿1, … , 𝐿𝑛).

Proposition 6.7. Let 𝐿1, … , 𝐿𝑛 be positive integers with even sum. We have

lim
𝑇→∞
𝑇∈2ℤ+

𝑃□,𝗊=𝑒−1∕𝑇

g ,𝑛 (𝑇𝐿1, … , 𝑇𝐿𝑛)

𝑇6g−6+2𝑛
= 2−(2g−3+𝑛) 𝑉ΩMV

g ,𝑛 (𝐿1, … , 𝐿𝑛). (6.6)

Remark 6.8. In absence of boundaries, the asymptotics of the number of square-tiled surfaces is
related to the Masur–Veech volume in [15, Theorem 1.6]. The proof there is slightly different as it
considers the 𝑇 → ∞ asymptotics of the number of square-tiled surface of core area ⩽ 𝑇, when
𝑇 → ∞, while here we analyse directly the 𝗊-series when 𝗊 → 1. It is possible to adapt the proof
of [15, Theorem 1.6] in presence of boundaries, that is, study the asymptotics of the number of
square-tiled surfaces of core area ⩽ 𝑇 with boundaries of length 𝑇𝐿1, … , 𝑇𝐿𝑛. The result is then
similar to the right-hand side of (6.6) except that 𝑉ΩMV

g ,𝑛 is replaced with 𝐼g ,𝑛[𝑉Ω
MV], where 𝐼g ,𝑛

is the linear map multiplying the monomial 𝐿2𝑑11 ⋯𝐿
2𝑑𝑛
𝑛 by the factor 1∕(6g − 6 + 2𝑛 −

∑
𝑖 2𝑑𝑖)!.

The latter factor is essentially the volume of a simplex and comes from the core area truncation.

Remark 6.9. The scaling 𝑇𝐿𝑖 of the boundary term 𝐿𝑖 is of strange nature. As 𝗊𝑇 is of order 1, sug-
gesting that the typical contribution in 𝑃□,𝗊

g ,𝑛 comes from surfaces with core area 𝑂(𝑇), but scaling
the area with 𝑇 usually rescaled the boundary by

√
𝑇. So the limit in Proposition 6.7 somehow

reflects a blowup of the contribution coming from the boundaries of the square-tiled surface, that
is necessary in order to obtain the Masur–Veech polynomials.

Proof. Let 𝑇 be an even integer and set 𝗊 = 𝑒−1∕𝑇 . Fix a stable graph Γ of type (g , 𝑛). We want to
compute the large 𝑇 behaviour of

∑
𝓁∶ 𝐸Γ→ℤ+

∏
𝑣∈𝑉Γ

𝑃ℎ(𝑣),𝑘(𝑣)
(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝑇𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝓁𝑒 𝗊
𝓁𝑒

1 − 𝗊𝓁𝑒

=
∑

𝓁∶ 𝐸Γ→𝑇−1ℤ+

∏
𝑣∈𝑉Γ

𝑃ℎ(𝑣),𝑘(𝑣)
(
(𝑇𝓁𝑒)𝑒∈𝐸(𝑣), (𝑇𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝑇 𝓁𝑒

𝑒𝓁𝑒 − 1
.

(6.7)

Recall that 𝑃ℎ,𝑘(𝑥1, … , 𝑥𝑘) vanishes when 𝑥1 +⋯ + 𝑥𝑘 is odd. Let 𝕃 ⊆ ℤ𝐸Γ be the sublattice
defined by the congruences

∀𝑣 ∈ 𝑉Γ,

( ∑
𝑒∈𝐸(𝑣)

𝓁𝑒

)
∈ 2ℤ.
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314 ANDERSEN et al.

By [15, Corollary 2.2], 𝕃 has index 2|𝑉Γ|−1 in ℤ𝐸Γ . In the first line of (6.7) we are summing over
𝓁 ∈ 𝕃+ = ℤ

𝐸Γ
+ ∩ 𝕃. For 𝓁 ∈ 𝑇−1𝕃+, we use Theorem 6.3 to make the substitution at each vertex

𝑣 ∈ 𝑉Γ

𝑃ℎ(𝑣),𝑘(𝑣)
(
(𝑇𝓁𝑒)𝑒∈𝐸(𝑣), (𝑇𝐿𝜆)𝜆∈Λ(𝑣)

)
⟶ 𝑇6ℎ(𝑣)−6+2𝑘(𝑣) 2−(2ℎ(𝑣)−3+𝑘(𝑣)) 𝑉ΩK

ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

)
,

up to an error that will produce subleading terms when 𝑇 → ∞. We are left with analysing for
large 𝑇

∑
𝓁∈𝑇−1𝕃+

∏
𝑣∈𝑉Γ

𝑇6ℎ(𝑣)−6+2𝑘(𝑣) 2−(2ℎ(𝑣)−3+𝑘(𝑣)) 𝑉ΩK
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒)𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) ∏
𝑒∈𝐸Γ

𝑇 𝓁𝑒

𝑒𝓁𝑒 − 1
. (6.8)

Now, since 𝑉ΩK
ℎ,𝑘

(𝑥1, … , 𝑥𝑘) are polynomial in 𝑥1, … , 𝑥𝑘, the function of 𝓁 appearing in the sum-

mands is a continuous function of 𝓁 ∈ ℝ
𝐸Γ
+ , which is Riemann-integrable due to the exponential

decay in the edge weights. Taking into account the fact that 𝕃 has index 2|𝑉Γ|−1, (6.8) is therefore
asymptotically equivalent to

21−|𝑉Γ| ∫ℝ
𝐸Γ
+

∏
𝑒∈𝐸Γ

∏
𝑣∈𝑉Γ

2−(2ℎ(𝑣)−3+𝑘(𝑣)) 𝑇(6ℎ(𝑣)−6+2𝑘(𝑣)) 𝑉ΩK
ℎ(𝑣),𝑘(𝑣)

(
(𝓁𝑒∈𝐸(𝑣), (𝐿𝜆)𝜆∈Λ(𝑣)

) 𝑇2 𝓁𝑒 d𝓁𝑒

𝑒𝓁𝑒 − 1

when 𝑇 is large. The overall powers of 2 and 𝑇 can be computed with Lemma 2.11, and we,
respectively, find

1 − |𝑉Γ| − ∑
𝑣∈𝑉Γ

(2ℎ(𝑣) − 3 + 𝑘(𝑣)) = −(2g − 3 + 𝑛),

2|𝐸Γ| + ∑
𝑣∈𝑉Γ

(6ℎ(𝑣) − 6 + 2𝑘(𝑣)) = 6g − 6 + 2𝑛,
(6.9)

which are independent of Γ. Performing the (finite) sum over all stable graphs of type (g , 𝑛)
weighted by automorphisms, and dividing the result by 𝑇−(6g−6+2𝑛), one finds exactly the sum
over stable graphs defining the Masur–Veech polynomials in (3.5). □

6.3 Topological recursion for 𝑷□,𝗾
g ,𝒏 (𝑳𝟏, … , 𝑳𝒏)

The expression for the 𝑞-enumeration of square-tiled surfaces in Proposition 6.4 is another
example of the twisting procedure presented in Section 2.6, with the function

𝑓𝗊(𝓁) =
𝗊𝓁

1 − 𝗊𝓁
, (6.10)

except that we allow only integer lengths. In fact, the discrete analogue of Theorem 2.10 continues
to hold, that is, knowing that the weight of the vertices satisfies the topological recursion (The-
orem 6.1) automatically implies that the sum over stable graphs in (6.5) is also computed by the
topological recursion with twisted initial data — see formula (2.8) for the twisting of 𝐴, 𝐵, 𝐶 and
formula (2.10) for the twisting of 𝑉𝐷. This is summarised in the following corollary.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 315

Corollary 6.10. The topological recursion formula (2.9), for the initial data of Theorem 6.1 twisted
by 𝑓𝗊 from (6.10), computes

𝑉ΩP
g ,𝑛[𝑓𝗊](𝐿1, … , 𝐿𝑛) = 𝑃□,𝗊

g ,𝑛 (𝐿1, … , 𝐿𝑛).

This result can also be brought in the form of Eynard–Orantin topological recursion. Twist-
ing is implemented by a shift of 𝜔0,2, but as the lengths are not continuous variables, we cannot
use (2.24). Instead we will resort to Theorem 2.13.

Proposition 6.11. Let 𝜔P,𝗊
g ,𝑛 be the output of Eynard–Orantin topological recursion for the spectral

curve differing from (6.2) only by the choice of

𝜔P,𝗊
0,2 (𝑧1, 𝑧2) =

1
2

d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

+
1
2

(
℘(𝑢1 − 𝑢2; 𝗊) +

𝜋2𝐸2(𝗊)

3

)
d𝑢1 ⊗ d𝑢2,

where 𝑧𝑗 = exp(2i𝜋 𝑢𝑗), ℘(𝑢; 𝗊) is the Weierstraß function for the elliptic curve ℂ∕(ℤ ⊕ 𝜏ℤ) where
𝗊 = 𝑒2i𝜋𝜏, and 𝐸2(𝗊) is the second Eisenstein series

𝐸2(𝗊) = 1 − 24
∑
𝓁>0

𝓁 𝗊𝓁

1 − 𝗊𝓁
.

Then, we have for 𝐿1, … , 𝐿𝑛 > 0

𝑃□,𝗊
g ,𝑛 (𝐿1, … , 𝐿𝑛) = (−1)𝑛 Res

𝑧1=∞
⋯ Res

𝑧𝑛=∞
𝜔P,𝗊

g ,𝑛(𝑧1, … , 𝑧𝑛)
𝑛∏
𝑖=1

(
1 +

𝗊𝐿𝑖

2(1 − 𝗊𝐿𝑖 )

)−1 𝑧
𝐿𝑖
𝑖

𝐿𝑖
.

Proof. We first make some preliminary computations. Let us introduce the vector space 𝒱 of
meromorphic 1-forms 𝜙 on ℙ1 whose poles are located at±1 and such that 𝜙(𝑧) + 𝜙(1∕𝑧) = 0. Let
us consider the linear map𝒱⊗2 → ℂ�𝗊� defined by

𝒪[𝜛] =
∑
𝓁>0

𝓁 𝗊𝓁

1 − 𝗊𝓁
Res
𝑧1=∞

Res
𝑧2=∞

𝑧𝓁1 𝑧
𝓁
2

𝓁2
𝜛(𝑧1, 𝑧2). (6.11)

Since elements of𝒱 are odd under the involution 𝑧 ↦ 1∕𝑧, we can write

𝒪[𝜛] = −
1
2

(
Res
𝑧1=∞

Res
𝑧2=0

𝑂𝗊

(
𝑧1
𝑧2

)
𝜛(𝑧1, 𝑧2) + Res

𝑧1=0
Res
𝑧2=∞

𝑂𝗊

(
𝑧2
𝑧1

)
𝜛(𝑧1, 𝑧2)

)
,

where 𝑂𝗊(𝑧) =
∑

𝓁>0
𝗊𝓁 𝑧𝓁

𝓁 (1−𝑞𝓁)
∈ ℂ[𝑧]�𝗊�. Recall the expansion of the Weierstraß function when

𝑢 → 0

℘(𝑢; 𝗊) =
1
𝑢2

+
∑
𝑘>0

2(2𝑘 + 1)𝐺2𝑘+2(𝗊)𝑢
2𝑘, (6.12)

where for𝑚 > 0, 𝐺2𝑚(𝗊) is the (2𝑚)th Eisenstein series

𝐺2𝑚(𝗊) ∶= 𝜁(2𝑚) +
(2i𝜋)2𝑚

(2𝑚 − 1)!

∑
𝓁>0

𝓁2𝑚−1𝗊𝓁

1 − 𝗊𝓁
.
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316 ANDERSEN et al.

From the identity ∑
𝑘⩾0

𝜁(2𝑘)𝑢2𝑘 = −
𝜋𝑢
2

cotan(𝜋𝑢),

we deduce that ∑
𝑘⩾0

2(2𝑘 + 1)𝜁(2𝑘 + 2) 𝑢2𝑘 =
𝜋2

sin2 𝜋𝑢
−

1
𝑢2

.

Adding/subtracting the 𝑘 = 0 term in (6.12), and computing separately the contribution of the
Riemann zeta values, yields

℘(𝑢; 𝗊) =
𝜋2

sin2 𝜋𝑢
− 2𝐺2(𝗊) +

∑
𝓁>0

𝗊𝓁

1 − 𝗊𝓁

∑
𝑘⩾0

2(2i𝜋)2𝑘+2𝓁2𝑘+1

(2𝑘)!
𝑢2𝑘

=
𝜋2

sin2 𝜋𝑢
− 2𝐺2(𝗊) + (2i𝜋)2

∑
𝓁>0

𝓁 𝗊𝓁(𝑧𝓁 + 𝑧−𝓁)

1 − 𝗊𝓁
,

(6.13)

where we have set 𝑧 = 𝑒2i𝜋𝑢. Since 𝐸2(𝗊) =
6
𝜋2 𝐺2(𝗊), setting 𝑧𝑗 = 𝑒2i𝜋𝑢𝑗 yields(

℘(𝑢1 − 𝑢2; 𝗊) +
𝜋2

3
𝐸2(𝗊)

)
d𝑢1 ⊗ d𝑢2

=

(
1

(𝑧1 − 𝑧2)2
+

1
𝑧1𝑧2

∑
𝓁>0

𝓁 𝗊𝓁
(
(𝑧1∕𝑧2)

𝓁 + (𝑧2∕𝑧1)
𝓁
)

1 − 𝗊𝓁

)
d𝑧1 ⊗ d𝑧2

=

(
1

(𝑧1 − 𝑧2)2
− Res

𝑧′1=∞
Res
𝑧′2=0

𝑂𝗊(𝑧
′
1∕𝑧

′
2) d𝑧

′
1 ⊗ d𝑧′2

(𝑧1 − 𝑧′1)
2(𝑧2 − 𝑧′2)

2
− Res

𝑧1=0
Res
𝑧′2=∞

𝑂𝗊(𝑧
′
2∕𝑧

′
1) d𝑧

′
1 ⊗ d𝑧′2

(𝑧1 − 𝑧′1)
2(𝑧2 − 𝑧′2)

2

)
d𝑧1 ⊗ d𝑧2.

Hence

𝜔P
0,2(𝑧1, 𝑧2) −

1
2

(
Res
𝑧1=∞

Res
𝑧2=0

𝑂𝗊

(
𝑧′1
𝑧′2

)
𝜔P
0,2(𝑧1, 𝑧

′
1) ⊗ 𝜔P

0,2(𝑧2, 𝑧
′
2)

+ Res
𝑧1=0

Res
𝑧2=∞

𝑂𝗊

(
𝑧′2
𝑧′1

)
𝜔P
0,2(𝑧1, 𝑧

′
1) ⊗ 𝜔P

0,2(𝑧2, 𝑧
′
2)

)

=
1
2

d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

+
1
2

(
℘(𝑢1 − 𝑢2; 𝗊) +

𝜋2𝐸2(𝗊)

3

)
d𝑢1 ⊗ d𝑢2,

which we took as definition for 𝜔P,𝗊
0,2 . We then apply Theorem 2.13, which expresses 𝜔P,𝗊

g ,𝑛 as a sum
over stable graphs, with vertex weights given by 𝜔P

ℎ,𝑘
, the operator 𝒪 acting on each edge, and the

operator

𝒫[𝜙](𝑧0) =
∑

𝛼∈{−1,1}

Res
𝑧=𝛼

(
∫

𝑧

𝜔0,2(⋅, 𝑧0)
)
𝜙(𝑧), 𝜙 ∈ 𝒱

acting on each leaf. This expression should be considered an equality of 𝗊-series. By construction
of the operator𝒪 in (6.11), its action on the (products of) 𝜔Ps realises the summation over integral
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 317

lengths in the (products of) 𝑃 in (6.5). It remains to compute the expansion of 𝜔P,𝗊
g ,𝑛 near 𝑧𝑖 → ∞

—more precisely, one should expand as a 𝗊-series, and then expand each termwhen 𝑧𝑖 → ∞. For
𝜙 ∈ 𝒱, we find

− Res
𝑧0=∞

𝑧𝐿0 𝒫[𝜙](𝑧0)

= −
∑

𝛼∈{−1,1}

Res
𝑧=𝛼

Res
𝑧0=∞

𝑧𝐿0

(
∫

𝑧

𝜔P,𝗊
0,2 (⋅, 𝑧0)

)
𝜙(𝑧)

= −
∑

𝛼∈{−1,1}

Res
𝑧=𝛼

𝜙(𝑧) Res
𝑧0=∞

𝑧𝐿0

(
1

𝑧0 − 𝑧
+

1
2

∑
𝓁>0

𝗊𝓁

1 − 𝗊𝓁

(
−𝑧𝓁−10 𝑧−𝓁 + 𝑧𝓁𝑧−(𝓁+1)0

))

=
∑

𝛼∈{−1,1}

Res
𝑧=𝛼

𝜙(𝑧)𝑧𝐿
(
1 +

𝗊𝐿

2(1 − 𝗊𝐿)

)

= −Res
𝑧=∞

𝜙(𝑧)𝑧𝐿
(
1 +

𝗊𝐿

2(1 − 𝗊𝐿)

)
.

In the second line we chose a certain primitive of 𝜔P,𝗊
0,2 (⋅, 𝑧0). The final result does not depend on

this choice, since it is not changing the residue. Recalling (6.3), we deduce that

(−1)𝑛 Res
𝑧1=∞

⋯ Res
𝑧𝑛=∞

𝜔P,𝗊
g ,𝑛(𝑧1, … , 𝑧𝑛)

𝑛∏
𝑖=1

(
1 +

𝗊𝐿𝑖

2(1 − 𝗊𝐿𝑖 )

)−1
𝑧𝐿𝑖

𝐿𝑖

coincides with the right-hand side of (6.5) and this concludes the proof. □

6.4 Second proof of topological recursion for Masur–Veech
polynomials

We observe that

ℬ(𝑢1, 𝑢2) =

(
℘(𝑢1 − 𝑢2; 𝗊) +

𝜋2𝐸2(𝗊)

3

)
d𝑢1 ⊗ d𝑢2

is the unique fundamental bidifferential of the second kind on the elliptic curve ℂ∕(ℤ ⊕ 𝜏ℤ)with
biresidue 1 on the diagonal and such that it has zero period on the cycle 𝑢 ∈ [0, 1]. In a sense, 𝜔P,𝗊

0,2

is the elliptic analogue of 𝜔MV
0,2 from Proposition 3.8.

Yet, it is not so easy to derive the Eynard–Orantin form of the topological recursion for the
Masur–Veech polynomials (Proposition 3.8) by taking the 𝗊 → 1 limit in Proposition 6.11, due to
the complicated (𝗊-dependent) way the functions of 𝑃□,𝗊

g ,𝑛 are defined. Instead, we can take limit
𝗊 → 1 in Corollary 6.10 to give a second proof of the topological recursion with respect to lengths
for Masur–Veech polynomials (the last statement in Proposition 3.7), namely the topological
recursion for Masur–Veech polynomials with respect to lengths.

Proposition 6.12. Corollary 6.10 and Proposition 6.7 imply topological recursion for the Masur–
Veech polynomials (see Proposition 3.7).
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318 ANDERSEN et al.

Proof. The only stable graph of type (g , 𝑛) = (0, 3) has one vertex with three leaves and no edge

𝑃□,𝗊
0,3 (𝐿1, 𝐿2, 𝐿3) = 𝑃0,3(𝐿1, 𝐿2, 𝐿3) = 𝐴P(𝐿1, 𝐿2, 𝐿3) = 1.

Rescaling 𝐿𝑖 by a positive even integer 𝑇 and sending 𝑇 to infinity is transparent here, and
2−(2g−3+𝑛) = 1. Comparing with Proposition 6.7, we get the claim for (0,3).
In type (1,1), (6.5) yields for any positive even integer 𝐿1

𝑃□,𝗊
1,1 (𝐿1) = 𝑃1,1(𝐿1) +

1
2

∑
𝓁>0

𝓁 𝗊𝓁

1 − 𝗊𝓁
=

𝐿21 − 4

48
+

1
2

∑
𝓁>0

𝓁 𝗊𝓁

1 − 𝗊𝓁
, (6.14)

where the 1∕2 comes from the automorphisms of the stable graph with a single vertex and one
loop. Setting 𝗊 = 𝑒−1∕𝑇 , replacing 𝐿1 with 𝑇𝐿1 and dividing by 𝑇2, we get

𝑇−2 𝑃□,𝗊
1,1 (𝐿1) =

𝐿21
48

+ 𝑂(1∕𝑇2) +
1
2𝑇

∑
𝓁∈𝑇−1ℤ+

𝓁

𝑒𝓁 − 1
=

𝐿21
48

+
1
2 ∫ℝ+

d𝓁 𝓁

𝑒𝓁 − 1
+ 𝑜(1)

by construction of the Riemann integral. The first term is indeed 𝑉ΩK
1,1(𝐿1), and the second term

exactly matches the contribution of the stable graph with one vertex and one loop in (3.5) for
𝑉ΩMV

1,1 (𝐿1). This in fact is a check of Proposition 6.7 for (g , 𝑛) = (1, 1) as again 2−(2g−3+𝑛) = 1, but
also coincides with 𝑉𝐷MV(𝐿1) obtained by integrating 𝐷MV from (3.14) on 1,1(𝐿1), so proves
the claim.
For 2g − 2 + 𝑛 > 0, we reach 𝑃□,𝗊

g ,𝑛 by applying 2g − 3 + 𝑛 times the recursion formula from
Corollary 6.10. One step of this formula is, for 𝐿1, … , 𝐿𝑛 positive integers such that 𝐿1 +⋯ + 𝐿𝑛 is
even,

𝑃□,𝗊
g ,𝑛 (𝐿1, 𝐿2, … , 𝐿𝑛)

=
𝑛∑

𝑚=2

∑
𝓁>0

𝐿1+𝐿𝑚+𝓁=0 mod 2

𝓁 𝐵K[𝑓𝗊](𝐿1, 𝐿𝑚,𝓁) 𝑃
□,𝗊
g ,𝑛−1(𝓁, 𝐿2, … , 𝐿𝑚,… , 𝐿𝑛)

+
1
2

∑
𝓁,𝓁′>0

𝐿1+𝓁+𝓁
′=0 mod 2

𝓁 𝓁′ 𝐶K[𝑓𝗊](𝐿1,𝓁,𝓁
′)

⎛⎜⎜⎜⎜⎝
𝑃□,𝗊
g−1,𝑛+1(𝓁,𝓁

′, 𝐿2, … , 𝐿𝑛)

+
∑

ℎ+ℎ′=g

𝐽⊔𝐽′={𝐿2,…,𝐿𝑛}

𝑃□,𝗊
ℎ,1+|𝐽|(𝓁, 𝐽) ⋅ 𝑃□,𝗊

ℎ′,1+|𝐽′|(𝓁′, 𝐽′)

⎞⎟⎟⎟⎟⎠
.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 319

If 𝑇 is a positive even integer, this implies

𝑃□,𝗊
g ,𝑛 (𝑇𝐿1, 𝑇𝐿2, … , 𝑇𝐿𝑛)

𝑇6g−6+2𝑛

=
𝑛∑

𝑚=2

1
𝑇

∑
𝓁∈2𝑇−1ℤ+

𝓁 𝐵K[𝑓𝗊](𝑇𝐿1, 𝑇𝐿𝑚, 𝑇𝓁)
𝑃□,𝗊
g ,𝑛−1(𝑇𝓁, 𝑇𝐿2, … , 𝑇𝐿𝑚,… , 𝑇𝐿𝑛)

𝑇6g−6+2(𝑛−1)

+
1

2𝑇2

∑
𝓁,𝓁′∈𝑇−1ℤ+

𝓁+𝓁′∈2𝑇−1ℤ+

𝓁 𝓁′ 𝐶K[𝑓𝗊](𝑇𝐿1, 𝑇𝓁, 𝑇𝓁
′)

⎛⎜⎜⎜⎜⎝
𝑃□,𝗊
g−1,𝑛+1(𝑇𝓁, 𝑇𝓁

′, 𝑇𝐿2, … , 𝑇𝐿𝑛)

𝑇6(g−1)−6+2(𝑛+1)

+
∑

ℎ+ℎ′=g

𝐽⊔𝐽′={𝐿2,…,𝐿𝑛}

𝑃□,𝗊
ℎ,1+|𝐽|(𝑇𝓁, 𝑇𝐽)
𝑇6ℎ−6+2(1+|𝐽|) ⋅

𝑃□,𝗊
ℎ′,1+|𝐽′|(𝑇𝓁′, 𝑇𝐽′)

𝑇6ℎ′−6+2(1+|𝐽′|)
⎞⎟⎟⎟⎟⎠
.

(6.15)

We observe that for 𝑋 ∈ {𝐵, 𝐶} and since 𝗊 = 𝑒−1∕𝑇 , we have the exact relation

𝑋K[𝑓𝗊](𝑇𝐿1, 𝑇𝐿2, 𝑇𝐿3) = 𝑋K[𝑓MV](𝐿1, 𝐿2, 𝐿3), with 𝑓MV(𝓁) =
1

𝑒𝓁 − 1
. (6.16)

Weobserve that𝓁 in the first line (respectively, (𝓁,𝓁′) in the second line) is restricted to a sublattice
of ℤ (respectively, ℤ2) of index 2. If we could replace the 𝑃□,𝗊

ℎ,𝑘
directly by their limit provided by

Proposition 6.7 for 2ℎ − 2 + 𝑘 < 2g − 2 + 𝑛, the approximation of Riemann integrals by Riemann
sums would imply Proposition 3.7 for (g , 𝑛), and we could conclude by induction.
Instead of justifying that such a replacement is allowed, we can proceed in a simpler way. Let us

unfold all the 𝑖 = 1, … , 2g − 3 + 𝑛 steps of the recursion. The result is a formula expressing the left-
hand side of (6.15) as a finite sum of terms of different topological origin and countable sums over
discretised variables 𝓁𝑖 (or 𝓁𝑖 ,𝓁′

𝑖
) each belonging to a sublattice of index 2. Taking into account

(6.16), the summands are finite products, 𝐵K[𝑓MV], 𝐶K[𝑓MV], 𝑃
□,𝗊
0,3 ≡ 1 and 𝑃□,𝗊

1,1 . The latter can
be replaced by its expression (6.14). The outcome of this unfolding is a big sum over a finite set of
discretised variables of specialisations of continuous functions and Riemann integrable functions
on some ℝ𝑘

+ at those discretised variables. To this, we can apply the principle of approximation of
Riemann integrals by Riemann sums, and there will be exactly 2g − 3 + 𝑛 factors of (1∕2) coming
from the index 2 sublattices over which the discretised sums range. The factors of 𝑇, as already
exhibited for the one step recursion, disappear in the 𝑇 → ∞ limit. We therefore obtain that

22g−3+𝑛 lim
𝑇→∞

𝑃□,𝗊=𝑒−1∕𝑇

g ,𝑛 (𝑇𝐿1, … , 𝑇𝐿𝑛)

𝑇6g−6+2𝑛
(6.17)

exists and is computed by the unfolded topological recursion, with initial data already identified
with

(𝐴MV, 𝐵MV, 𝐶MV, 𝑉𝐷MV) (6.18)
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320 ANDERSEN et al.

thanks to (6.16) and the cases of (0,3) and (1,1) treated at the beginning of the proof. By recom-
bination, this automatically implies the one-step recursion formula (2.9) with this initial data for
(6.18). As Proposition 6.7 equates (6.17) with 𝑉ΩMV

g ,𝑛 (𝐿1, … , 𝐿𝑛), this implies Proposition 3.7. □

APPENDIX A: CLOSED FORMULAE FOR THE INTERSECTION OF 𝝍 CLASSES IN
GENUS ONE

The following lemmahas been discovered several years ago (see [35, Proposition 4.6.11]).We prefer
nevertheless to derive again it here.
Lemma A.1. For a fixed integer 𝑛 ⩾ 1, we have

∫𝔐1,𝑛

𝜓
𝑎1
1 ⋯𝜓

𝑎𝑛
𝑛 =

1
24

⎛⎜⎜⎜⎜⎝
(

𝑛
𝑎1, … , 𝑎𝑛

)
−

∑
𝑏1,…,𝑏𝑛
𝑏𝑖∈{0,1}

(
𝑛 − (𝑏1 +⋯ + 𝑏𝑛)

𝑎1 − 𝑏1, … , 𝑎𝑛 − 𝑏𝑛

)
(𝑏1 +⋯ + 𝑏𝑛 − 2)!

⎞⎟⎟⎟⎟⎠
, (A.1)

and the sum of all such integrals is

∫𝔐1,𝑛

1∏𝑛
𝑖=1(1 − 𝜓𝑖)

=
1
24

(
𝑛𝑛 −

𝑛−1∑
𝑘=1

𝑛𝑛−𝑘

𝑘(𝑘 + 1)

(𝑛 − 1)!

(𝑛 − 𝑘 − 1)!

)
. (A.2)

We use the convention that summands involving negative factorials are excluded from the
summation. In particular we retrieve (5.3) and (5.4) used in the text.

Proof. Let us recall the following result.

Theorem A.2 (Conjecture of Goulden–Jackson–Vainshtein [31], theorem of Vakil [48]). Let 𝜇 be
a partition of 𝑑 of length 𝑛 = 𝓁(𝜇). The simple connected Hurwitz numbers ℎg=1,𝜇 of genus one and
ramification profile 𝜇 over zero are given by

ℎg=1,𝜇

(𝑛 + 𝑑)!
=

1
24

𝑛∏
𝑖=1

𝜇
𝜇𝑖
𝑖

𝜇𝑖!

(
𝑑𝑛 − 𝑑𝑛−1 −

𝑛∑
𝑘=2

(𝑘 − 2)!𝑑𝑛−𝑘𝑠𝑘(𝜇1, … , 𝜇𝑛)

)
, (A.3)

where 𝑠𝑘 is the 𝑘th elementary symmetric polynomial.

On the other hand, the ELSV formula [18] in genus one gives

ℎg=1,𝜇

(𝑛 + 𝑑)!
=

𝑛∏
𝑖=1

𝜇
𝜇𝑖
𝑖

𝜇𝑖! ∫𝔐1,𝑛

1 − 𝜆1∏𝑛
𝑖=1(1 − 𝜇𝑖𝜓𝑖)

. (A.4)

Combining the two we obtain

∫𝔐1,𝑛

1 − 𝜆1∏𝑛
𝑖=1(1 − 𝜇𝑖𝜓𝑖)

=
1
24

(
𝑑𝑛 − 𝑑𝑛−1 −

𝑛∑
𝑘=2

(𝑘 − 2)!𝑑𝑛−𝑘𝑠𝑘(𝜇1, … , 𝜇𝑛)

)
. (A.5)

The left-hand side is a polynomial in (𝜇𝑖)𝑛𝑖=1. Indeed, we write
1

1−𝜇𝑖𝜓𝑖
=
∑

𝑎⩾0 𝜇
𝑎
𝑖 𝜓

𝑎
𝑖 and observing

that 𝜓𝑎
𝑖 ∈ 𝐻2𝑎(𝔐1,𝑛) only finitely many terms contribute to the integral for degree reasons. As

dim1,𝑛 = 𝑛 and 𝜆1 ∈ 𝐻2(𝔐1,𝑛), this polynomial only has terms of homogeneous degree 𝑛 and
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 321

𝑛 − 1. The right-hand side is also a polynomial, as 𝑑 = 𝜇1 +⋯ + 𝜇𝑛 = 𝑠1(𝜇1, … , 𝜇𝑛). Selecting on
both sides the terms of degree 𝑛 leads to the following expression:

∫𝔐1,𝑛

1∏𝑛
𝑖=1(1 − 𝜇𝑖𝜓𝑖)

=
1
24

(
𝑑𝑛 −

𝑛∑
𝑘=2

(𝑘 − 2)!𝑑𝑛−𝑘𝑠𝑘(𝜇1, … , 𝜇𝑛)

)
. (A.6)

To prove (A.2) substitute 𝜇𝑖 = 1 for each 𝑖 and observe that 𝑠𝑘(1, … , 1) =
(𝑛
𝑘

)
. To prove (A.1),

collect the coefficient of 𝜇𝑎1
1 ⋯𝜇

𝑎𝑛
𝑛 in the right-hand side after the substitution 𝑑 = 𝜇1 +⋯ + 𝜇𝑛.

This concludes the proof of the lemma. □

A longer but more detailed way to remove the contribution of 𝜆1 to prove (A.2) can be obtained
from the 𝜆g -theorem.

Theorem A.3 (𝜆g -theorem [25]).

∫𝔐g ,𝑛

𝜓
𝑎1
1 ⋯𝜓

𝑎𝑛
𝑛 𝜆g =

(
2g − 3 + 𝑛
𝑎1, … , 𝑎𝑛

)
∫𝔐g ,1

𝜓2g−2
1 𝜆g . (A.7)

Its specialisation in genus one reads

∫𝔐1,𝑛

𝜓
𝑎1
1 ⋯𝜓

𝑎𝑛
𝑑
𝜆1 =

(
𝑛 − 1

𝑎1, … , 𝑎𝑛

)
∫𝔐1,1

𝜆1 =

(
𝑛 − 1

𝑎1, … , 𝑎𝑛

)
1
24

. (A.8)

This can also be seen, for instance, using that 𝜆1 is represented by the Poincaré dual of the divisor of
curveswith at least one non-separating node times 1

24
, then pulling-back the class via the attaching

map and integrating over𝔐0,𝑛+2 gives the same result. In any case, summing over all 𝑛-tuples of
non-negative integers 𝑎𝑖 such that 𝑎1 +⋯ + 𝑎𝑛 = 𝑑 − 1 gives, using the multinomial theorem,

∫𝔐1,𝑛

𝜆1∏𝑛
𝑖=1(1 − 𝜓𝑖)

=
∑

𝑎1,…,𝑎𝑛⩾0
𝑎1+⋯+𝑎𝑛=𝑛−1

∫𝔐1,𝑑

𝜓
𝑎1
1 ⋯𝜓

𝑎𝑛
𝑛 𝜆1 (A.9)

=
1
24

∑
𝑎1,…,𝑎𝑛⩾0

𝑎1+⋯+𝑎𝑛=𝑛−1

(
𝑛 − 1

𝑎1, … , 𝑎𝑛

)
=

1
24

𝑛𝑛−1, (A.10)

which equals the second summand in Equation (A.5) after the substitution 𝜇𝑖 = 1 for all 𝑖, and
therefore 𝑛 = 𝑑. Removing it from (A.5) and simplifying the expression proves again (A.2).

APPENDIX B: COMPUTINGMASUR–VEECH POLYNOMIALS AND SQUARE-TILED
SURFACESWITH EYNARD–ORANTIN TOPOLOGICAL RECURSION

For readers who are unfamiliar with the topological recursion à la Eynard–Orantin, we compute
a few Masur–Veech polynomials and square-tiled surfaces generating series via 𝜔MV

g ,𝑛 and 𝜔P,𝗊
g ,𝑛

(respectively, Propositions 3.8 and 6.11).
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322 ANDERSEN et al.

B.1 Masur–Veech polynomials via Eynard–Orantin topological recursion
Let us apply the residue formula (2.18) to the spectral curve given by  = ℂ and

𝑥(𝑧) =
𝑧2

2
, 𝑦(𝑧) = −𝑧, 𝜔MV

0,2 (𝑧1, 𝑧2) =
d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

+
1
2

∑
𝑚∈ℤ∗

d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2 + 𝑚)2

. (B.1)

In this section we drop the superscript MV on the functions of 𝜔g ,𝑛 as it will always refer to the
Masur–Veech topological recursion amplitudes. Let us first compute the recursion kernel

𝐾(𝑧1, 𝑧) =
1
2

∫ 𝑧
−𝑧 𝜔0,2(⋅, 𝑧1)

(𝑦(𝑧) − 𝑦(−𝑧)) d𝑥(𝑧)

= −
d𝑧1

4𝑧2d𝑧 ∫
𝑧

−𝑧

(
d𝑧′

(𝑧1 − 𝑧′)2
+

1
2

∑
𝑚∈ℤ∗

d𝑧′

(𝑧1 − 𝑧′ + 𝑚)2

)

= −
d𝑧1
2𝑧d𝑧

(
1

𝑧21 − 𝑧2
+

1
2

∑
𝑚∈ℤ∗

1
(𝑧1 + 𝑚)2 − 𝑧2

)
.

It is handy, in order to compute residues at 𝑧 = 0, to write down the expansion in power series
near 𝑧 = 0 of the recursion kernel:

1

𝑧21 − 𝑧2
+

1
2

∑
𝑚∈ℤ∗

1
(𝑧1 + 𝑚)2 − 𝑧2

=
∑
𝑑⩾0

(
1

𝑧2𝑑+21

+
1
2

∑
𝑚∈ℤ∗

1

(𝑧1 + 𝑚)2𝑑+2

)
𝑧2𝑑

=
∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1)𝑧
2𝑑.

In the same way we have that

𝜁H(2; 𝑧 − 𝑧𝑖) =
∑
𝑑⩾0

(2𝑑 + 1) 𝜁(2𝑑 + 2; 𝑧𝑖) 𝑧
2𝑑 + odd part in 𝑧,

𝜁H(2𝑘; 𝑧) =
1

𝑧2𝑘
+
∑
𝑑⩾0

(
2𝑘 − 1 + 2𝑑

2𝑑

)
𝜁(2𝑘 + 2𝑑) 𝑧2𝑑.

The topological recursion formula, specialised to our case and expressed in terms of

𝑊g ,𝑛(𝑧1, … , 𝑧𝑛) =
𝜔g ,𝑛(𝑧1, … , 𝑧𝑛)

d𝑧1 ⊗⋯⊗ d𝑧𝑛
,

reads

𝑊g ,𝑛(𝑧1, 𝑧2, … , 𝑧𝑛) =
1
2
[𝑧0]

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑

⎧⎪⎪⎨⎪⎪⎩
𝑊g−1,𝑛+1(𝑧, −𝑧, 𝑧2, … , 𝑧𝑛)

+
no (0,1)∑
ℎ+ℎ′=g

𝐽⊔𝐽′={𝑧2,…,𝑧𝑛}

𝑊ℎ,1+|𝐽|(𝑧, 𝐽)𝑊ℎ′,1+|𝐽′|(−𝑧, 𝐽′)
⎫⎪⎪⎬⎪⎪⎭
.
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∙ (𝐠, 𝐧) = (𝟎, 𝟑)

𝑊0,3(𝑧1, 𝑧2, 𝑧3)

=
1
2
[𝑧0]

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1)𝑧
2𝑑 ⋅

(
𝑊0,2(𝑧, 𝑧2)𝑊0,2(−𝑧, 𝑧3) +𝑊0,2(𝑧, 𝑧3)𝑊0,2(−𝑧, 𝑧2)

)
= [𝑧0]

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑 ⋅𝑊0,2(𝑧, 𝑧2)𝑊0,2(𝑧, 𝑧3)

= 𝜁H(2; 𝑧1)𝜁H(2; 𝑧2)𝜁H(2; 𝑧3).

The inverse Laplace transform of the principal part near 𝑧1 = 𝑧2 = 𝑧3 = 0 then reads

𝑉ΩMV
0,3 (𝐿1, 𝐿2, 𝐿3) = 1.

Multiplying by the combinatorial factor 24g−2+𝑛 (4g−4+𝑛)!
(6g−7+2𝑛)!

whose value for g = 0 and 𝑛 → 3 is
4, we get𝑀𝑉0,3 = 4.

∙ (𝐠, 𝐧) = (𝟎, 𝟒)

𝑊0,4(𝑧1, 𝑧2, 𝑧3, 𝑧4)

= [𝑧0]
∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑 ⋅

(
𝑊0,2(𝑧, 𝑧2)𝑊0,3(𝑧, 𝑧3, 𝑧4)

+𝑊0,2(𝑧, 𝑧3)𝑊0,3(𝑧, 𝑧2, 𝑧4) +𝑊0,2(𝑧, 𝑧4)𝑊0,3(𝑧, 𝑧2, 𝑧3)
)

= [𝑧0]
∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑 ⋅ (𝜁H(2; 𝑧 − 𝑧2)𝜁H(2; 𝑧)𝜁H(2; 𝑧3)𝜁H(2; 𝑧4)

+ 𝜁H(2; 𝑧 − 𝑧3)𝜁H(2; 𝑧)𝜁H(2; 𝑧2)𝜁H(2; 𝑧4) + 𝜁H(2; 𝑧 − 𝑧4)𝜁H(2; 𝑧)𝜁H(2; 𝑧2)𝜁H(2; 𝑧3))

= 3
3∑

𝑖=0

𝜁H(4; 𝑧𝑖)
∏

𝑗∈{1,2,3,4}⧵{𝑖}

𝜁H(2; 𝑧𝑗) + 3𝜁(2)𝜁H(2; 𝑧1)𝜁H(2; 𝑧2)𝜁H(2; 𝑧3)𝜁H(2; 𝑧4).

The inverse Laplace transform of the principal part near 𝑧1 = 𝑧2 = 𝑧3 = 𝑧4 = 0 then reads

𝑉ΩMV
0,4 (𝐿1, 𝐿2, 𝐿3, 𝐿4) =

1
2

(
𝜋2 +

4∑
𝑖=1

𝐿2𝑖

)

from which we deduce𝑀𝑉0,4 = 2𝜋2.
∙ (𝐠, 𝐧) = (𝟏, 𝟏)

𝑊1,1(𝑧1) =
1
2
[𝑧0]

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑 𝑊0,2(𝑧, −𝑧)

=
1
2

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑

(
1
4𝑧2

+
∑
𝑚⩾1

∑
𝑑′⩾0

(2𝑑′ + 1)
(2𝑧)2𝑑

′

𝑚2𝑑′+2

)
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324 ANDERSEN et al.

=
1
8
𝜁H(4; 𝑧1) +

𝜋2

12
𝜁H(2; 𝑧1).

The inverse Laplace transform of the principal part near 𝑧1 = 0 then reads

𝑉ΩMV
1,1 (𝐿1) =

𝜋2

12
+

𝐿21
48

.

Multiplying the constant term by the combinatorial factor 24g−2+𝑛(4g−4+𝑛)!
(6g−7+2𝑛)!

= 8 we deduce

𝑀𝑉1,1 =
2𝜋2

3
.

∙ (𝐠, 𝐧) = (𝟏, 𝟐)

𝑊1,2(𝑧1, 𝑧2)

= [𝑧0]
∞∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑
(1
2
𝑊0,3(𝑧, 𝑧, 𝑧2) +𝑊0,2(𝑧, 𝑧2)𝑊1,1(𝑧)

)
=

1
2
[𝑧0]

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑 ⋅ 𝜁H(2; 𝑧)

2𝜁H(2; 𝑧2)

+
1
8
[𝑧0]

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑 ⋅ 𝜁H(2; 𝑧 − 𝑧1)𝜁H(4; 𝑧)

+
1
2
[𝑧0]

∑
𝑑⩾0

𝜁H(2𝑑 + 2; 𝑧1) 𝑧
2𝑑 ⋅ 𝜁H(2; 𝑧 − 𝑧2)𝜁H(2; 𝑧)𝜁(2)

=
𝜁H(2; 𝑧2)

2

(
𝜁H(6; 𝑧1) + 2𝜁H(4; 𝑧1)𝜁(2) + 6𝜁H(2; 𝑧1)𝜁(4) + 𝜁H(2; 𝑧0)𝜁(2)

2
)

+
1
8

(
𝜁H(2; 𝑧1)𝜁H(2; 𝑧2)𝜁(4) + 𝜁H(6; 𝑧1)𝜁H(2; 𝑧2) + 3𝜁H(4; 𝑧1)𝜁H(4; 𝑧2) + 5𝜁H(2; 𝑧1)𝜁H(6; 𝑧2)

)
+

1
2

(
𝜁H(2; 𝑧1)𝜁H(2; 𝑧2) 𝜁(2)

2 + 𝜁H(4; 𝑧1)𝜁H(2; 𝑧2) 𝜁(2) + 3𝜁H(2; 𝑧1)𝜁H(4; 𝑧2) 𝜁(2)

)
.

Re-arranging the terms, we obtain

𝑊1,2(𝑧1, 𝑧2) =
5
8

(
𝜁H(6; 𝑧1)𝜁H(2; 𝑧2) + 𝜁|H(2; 𝑧1)𝜁H(6; 𝑧2)) + 3

8
𝜁H(4; 𝑧1)𝜁H(4; 𝑧2)

+
𝜋2

4
(𝜁H(4; 𝑧1)𝜁H(2; 𝑧2) + 𝜁H(2; 𝑧1)𝜁H(4; 𝑧2)) +

𝜋4

16
𝜁H(2; 𝑧1)𝜁H(2; 𝑧2).

The inverse Laplace transform of the principal part near 𝑧1 = 𝑧2 = 0 then reads

𝑉ΩMV
1,2 (𝐿1, 𝐿2) =

1
192

(𝐿41 + 𝐿42) +
1
96

𝐿21𝐿
2
2 +

𝜋2

24
(𝐿21 + 𝐿22) +

𝜋4

16
.

Multiplying the constant term by the combinatorial factor 24g−2+𝑛(4g−4+𝑛)!
(6g−7+2𝑛)!

= 16
3
we obtain

𝑀𝑉1,2 =
𝜋4

3
.

 14697750, 2023, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12686 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [17/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 325

B.2 Square-tiled surfaces via Eynard–Orantin topological recursion
Let us apply the residue formula (2.18) to the spectral curve given by  = ℂ and

𝑥(𝑧) = 𝑧 +
1
𝑧
, 𝑦(𝑧) = −𝑧,

𝜔P,𝗊
0,2 (𝑧1, 𝑧2) =

1
2

d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

+
1
2

(
℘(𝑢1 − 𝑢2; 𝗊) +

𝜋2𝐸2(𝗊)

3

)
d𝑢1 ⊗ d𝑢2, (B.2)

where 𝑧𝑗 = exp(2i𝜋 𝑢𝑗). In this section, we drop the superscript P,𝗊 on the functions of 𝜔g ,𝑛 as it
will always refer to the square-tiled surfaces topological recursion amplitudes.We can rewrite𝜔0,2

as

𝜔0,2(𝑧1, 𝑧2) =
d𝑧1 ⊗ d𝑧2
(𝑧1 − 𝑧2)2

+
d𝑧1 ⊗ d𝑧2
2𝑧1𝑧2

∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁

((𝑧1
𝑧2

)𝓁
+
(𝑧1
𝑧2

)−𝓁
)
.

Let us first compute the recursion kernel

𝐾(𝑧1, 𝑧) =
1
2

∫ 𝑧
1∕𝑧 𝜔0,2(⋅, 𝑧1)

(𝑦(𝑧) − 𝑦(1∕𝑧)) d𝑥(𝑧)

= −
𝑧 d𝑧1

2(𝑧 − 𝑧−1)2 d𝑧 ∫
𝑧

1∕𝑧

(
d𝑧′

(𝑧1 − 𝑧′)2
+

d𝑧′

2𝑧1𝑧′
∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁

(( 𝑧′
𝑧1

)𝓁
+
( 𝑧′
𝑧1

)−𝓁
))

= −
𝑧2 d𝑧1

2(𝑧2 − 1)d𝑧

(
1

(𝑧1 − 𝑧)(𝑧1 − 𝑧−1)
+

1
2𝑧1

∑
𝓁>0

𝗊𝓁

1 − 𝗊𝓁
(𝑧𝓁1 + 𝑧−𝓁1 )

𝓁−1∑
𝑖=0

𝑧2𝑖−𝓁+1
)
,

and define 𝐾̂(𝑧1, 𝑧) via the formula 𝐾(𝑧1, 𝑧) = − 𝑧2 d𝑧1
2(𝑧2−1)d𝑧

𝐾̂(𝑧1, 𝑧). Moreover, let us set

𝑊g ,𝑛(𝑧1, … , 𝑧𝑛) =
𝜔g ,𝑛(𝑧1, … , 𝑧𝑛)

d𝑧1 ⊗⋯⊗ d𝑧𝑛
.

∙ (𝐠, 𝐧) = (𝟎, 𝟑)

𝑊0,3(𝑧1, 𝑧2, 𝑧3)

=
∑

𝛼∈{−1,1}

Res
𝑧=𝛼

𝐾̂(𝑧1, 𝑧)

2(𝑧2 − 1)
𝑊0,2(𝑧, 𝑧2)𝑊0,2(𝑧

−1, 𝑧3)d𝑧 + (2 ↔ 3)

=
∑

𝛼∈{−1,1}

𝐾̂(𝑧1, 𝑧)

2(𝑧 + 𝛼)
𝑊0,2(𝑧, 𝑧2)𝑊0,2(𝑧

−1, 𝑧3)
|||𝑧=𝛼 + (2 ↔ 3)

=
∑

𝛼∈{−1,1}

1
2(𝑧 + 𝛼)

[(
1

(𝑧1 − 𝑧)(𝑧1 − 𝑧−1)
+

1
2𝑧1

∑
𝓁>0

𝗊𝓁

1 − 𝗊𝓁
(𝑧𝓁1 + 𝑧−𝓁1 )

𝓁−1∑
𝑖=0

𝑧2𝑖−𝓁+1
)

×

(
1

(𝑧 − 𝑧2)2
+

1
2𝑧𝑧2

∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁

(( 𝑧
𝑧2

)𝓁
+
( 𝑧
𝑧2

)−𝓁
)
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326 ANDERSEN et al.

×

(
1

(𝑧−1 − 𝑧3)2
+

𝑧
2𝑧3

∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁

((𝑧−1
𝑧3

)𝓁
+
(𝑧−1
𝑧3

)−𝓁
)]||||||𝑧=𝛼 + (2 ↔ 3)

=
1
2

(
𝑋𝗊(𝑧1)𝑋𝗊(𝑧2)𝑋𝗊(𝑧3) − 𝑋𝗊(−𝑧1)𝑋𝗊(−𝑧2)𝑋𝗊(−𝑧3)

)
,

where we have set

𝑋𝗊(𝑧) =
1

(1 − 𝑧)2
+

1
2𝑧

∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁
(
𝑧𝓁 + 𝑧−𝓁

)
.

It can be rewritten in terms of theWeierstraß function, as𝑋𝗊(𝑧)d𝑧 =
(
℘(𝑢; 𝗊) + 𝜋2𝐸2(𝗊)

3

)
d𝑢. We

can then compute the generating series of square-tiled surfaces of type (0, 3) with boundaries
as

𝑃□,𝗊
0,3 (𝐿1, 𝐿2, 𝐿3) = − Res

𝑧1=∞
Res
𝑧2=∞

Res
𝑧3=∞

𝑊P,𝗊
0,3 (𝑧1, 𝑧2, 𝑧3)

3∏
𝑖=1

(
1 +

𝗊𝐿𝑖

2(1 − 𝗊𝐿𝑖 )

)−1 𝑧
𝐿𝑖
𝑖

𝐿𝑖
d𝑧𝑖

=
1 + (−1)𝐿1+𝐿2+𝐿3

2
.

This coincides with 𝑃0,3(𝐿1, 𝐿2, 𝐿3).
∙ (𝐠, 𝐧) = (𝟏, 𝟏)

𝑊1,1(𝑧1) =
∑

𝛼∈{−1,1}

Res
𝑧=𝛼

𝐾̂(𝑧1, 𝑧)

2(𝑧2 − 1)
𝑊0,2(𝑧, 𝑧

−1)d𝑧

=
∑

𝛼∈{−1,1}

[
𝐾̂(𝑧1, 𝑧)

2(𝑧 + 𝛼)
1
2

∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁
(
𝑧2𝓁 + 𝑧−2𝓁

)]||||||𝑧=𝛼 +
∑

𝛼∈{−1,1}

1
2
𝑑2

𝑑𝑧2

[
𝑧2 𝐾̂(𝑧1, 𝑧)

2(𝑧 + 𝛼)3

]||||||𝑧=𝛼
=

𝑋𝗊(𝑧) − 𝑋𝗊(−𝑧)

2
1
2

∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁
+

1
32

(
𝑌𝗊(𝑧) − 𝑌𝗊(−𝑧) − 𝑋𝗊(𝑧) + 𝑋𝗊(−𝑧)

)
,

where 𝑋𝗊 is defined as before, and

𝑌𝗊(𝑧) =
2𝑧

(1 − 𝑧)4
+

1
2𝑧

∑
𝓁⩾0

𝓁2 − 1
3

𝓁𝗊𝓁

1 − 𝗊𝓁
(
𝑧𝓁 + 𝑧−𝓁

)
=

1
3

(
𝑧
d
d𝑧

𝑧
d
d𝑧

− 1

)
𝑋𝗊(𝑧).

We can then compute the generating series of square-tiled surfaces of type (1,1) with boundaries
as

𝑃□,𝗊
1,1 (𝐿1) = − Res

𝑧1=∞
𝑊P,𝗊

1,1 (𝑧1)

(
1 +

𝗊𝐿1

2(1 − 𝗊𝐿1)

)−1 𝑧
𝐿1
1

𝐿1
d𝑧1

=
1 + (−1)𝐿1

2

(
1
2

∑
𝓁⩾0

𝓁𝗊𝓁

1 − 𝗊𝓁
+

𝐿21 − 4

48

)
.
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TOPOLOGICAL RECURSION FOR MASUR–VEECH VOLUMES 327

Since 𝑃1,1(𝐿1) =
1+(−1)𝐿1

2

𝐿21−4

48
, we can write it as

𝑃□,𝗊
1,1 (𝐿1) = 𝑃1,1(𝐿1) +

1
2

∑
𝓁>0

𝑃0,3(𝐿1,𝓁,𝓁)
𝓁𝗊𝓁

1 − 𝗊𝓁
,

which coincides with the sum over stable graphs of type (1,1) of Proposition 6.4.

APPENDIX C: NUMERICAL DATA

TABLE C . 1 Masur–Veech volumes 𝜋−(6g−6+2𝑛)𝑀𝑉g ,𝑛. We display in black the values that were honestly
computed from the recursion, in bold the values used to determine the polynomials appearing in Conjecture 5.4,
and in grey the values that the conjecture predicts. The first column reproduces Theorem 5.2. The first row is
computed by the relation𝑀𝑉g ,0 =

24g−2(4g−4)!

(6g−g)!
𝐻g ,1[1] proved in Lemma 3.4.

𝒏 \ g 0 1 2 3 4 5 6

0 – – 1
15

115
33264

2106241
11548293120

7607231
790778419200

51582017261473
101735601235107840000

1 – 𝟐
𝟑

𝟐𝟗
𝟖𝟒𝟎

𝟒𝟏𝟏𝟏
𝟐𝟐𝟐𝟑𝟗𝟑𝟔

𝟓𝟖𝟎𝟗𝟏
𝟓𝟗𝟐𝟐𝟐𝟎𝟏𝟔𝟎

𝟑𝟓𝟏𝟔𝟏𝟑𝟐𝟖𝟕𝟎𝟕
𝟔𝟕𝟖𝟐𝟎𝟖𝟕𝟖𝟓𝟒𝟎𝟖𝟎𝟎𝟎𝟎

𝟏𝟕𝟐𝟓𝟏𝟗𝟐𝟓𝟕𝟖𝟏𝟑𝟖𝟏𝟓𝟑
𝟔𝟑𝟎𝟕𝟔𝟎𝟕𝟐𝟕𝟔𝟓𝟕𝟔𝟔𝟖𝟔𝟎𝟖𝟎𝟎𝟎𝟎

2 – 𝟏
𝟑

𝟑𝟑𝟕
𝟏𝟖𝟏𝟒𝟒

𝟕𝟕𝟔𝟑𝟑
𝟕𝟕𝟖𝟑𝟕𝟕𝟔𝟎

𝟏𝟔𝟎𝟗𝟎𝟗𝟏𝟎𝟗
𝟑𝟎𝟑𝟖𝟎𝟖𝟗𝟒𝟐𝟎𝟖𝟎𝟎

𝟐𝟕𝟒𝟑𝟏𝟖𝟒𝟕𝟎𝟗𝟕
𝟗𝟕𝟗𝟔𝟑𝟒𝟗𝟏𝟐𝟐𝟓𝟔𝟎𝟎𝟎𝟎

𝟐𝟑𝟔𝟔𝟖𝟕𝟐𝟗𝟑𝟐𝟏𝟒𝟒𝟒𝟏
𝟏𝟔𝟎𝟏𝟗𝟑𝟐𝟎𝟎𝟔𝟕𝟒𝟗𝟔𝟑𝟒𝟓𝟔𝟎𝟎𝟎𝟎

3 𝟒 11
60

𝟐𝟗
𝟐𝟖𝟖𝟎

𝟐𝟎𝟕𝟕𝟏𝟗
𝟑𝟖𝟒𝟗𝟒𝟑𝟏𝟎𝟒

𝟏𝟒𝟔𝟕𝟒𝟖𝟒𝟏𝟑𝟗𝟗
𝟓𝟏𝟐𝟒𝟐𝟒𝟒𝟏𝟓𝟔𝟒𝟏𝟔𝟎𝟎

𝟓𝟕𝟎𝟑𝟕𝟎𝟗𝟖𝟗𝟓𝟒𝟓𝟗
𝟑𝟕𝟔𝟕𝟗𝟖𝟓𝟐𝟑𝟎𝟗𝟐𝟗𝟗𝟐𝟎𝟎𝟎𝟎

𝟑𝟕𝟔𝟕𝟗𝟖𝟓𝟕𝟖𝟒𝟐𝟎𝟒𝟑
𝟒𝟕𝟏𝟖𝟏𝟕𝟐𝟖𝟏𝟎𝟗𝟎𝟑𝟓𝟓𝟐𝟎𝟎𝟎𝟎𝟎

4 𝟐 1
10

919
168480

𝟏𝟔𝟎𝟏𝟏𝟑𝟗𝟏
𝟓𝟒𝟖𝟓𝟒𝟑𝟗𝟐𝟑𝟐𝟎

𝟗𝟎𝟏𝟔𝟏𝟕𝟏𝟔𝟑𝟗
𝟓𝟖𝟐𝟑𝟎𝟎𝟒𝟕𝟐𝟑𝟐𝟎𝟎𝟎𝟎

𝟏𝟒𝟑𝟑𝟔𝟖𝟏𝟎𝟏𝟓𝟏𝟗𝟒𝟎𝟕
𝟏𝟕𝟓𝟐𝟏𝟏𝟑𝟏𝟑𝟐𝟑𝟖𝟐𝟒𝟏𝟐𝟖𝟎𝟎𝟎𝟎

𝟏𝟑𝟐𝟑𝟕𝟐𝟎𝟗𝟏𝟓𝟐𝟓𝟖𝟎𝟏𝟔𝟗
𝟑𝟎𝟔𝟔𝟔𝟓𝟓𝟎𝟓𝟒𝟔𝟔𝟎𝟐𝟕𝟖𝟔𝟖𝟏𝟔𝟎𝟎𝟎𝟎

5 𝟏 163
3024

653
221760

6208093
39382640640

𝟒𝟒𝟐𝟒𝟒𝟐𝟒𝟕𝟓𝟏𝟕𝟗
𝟓𝟐𝟗𝟎𝟎𝟐𝟖𝟓𝟐𝟔𝟏𝟖𝟐𝟒𝟎𝟎𝟎

𝟐𝟓𝟗𝟔𝟒𝟓𝟖𝟔𝟎𝟓𝟖𝟎𝟐𝟑𝟏
𝟓𝟖𝟕𝟑𝟕𝟓𝟎𝟔𝟗𝟏𝟒𝟏𝟓𝟑𝟐𝟔𝟕𝟐𝟎𝟎𝟎

𝟔𝟑𝟓𝟗𝟐𝟏𝟗𝟕𝟐𝟐𝟒𝟑𝟑𝟔𝟎𝟕𝟑𝟗𝟕
𝟐𝟕𝟐𝟔𝟖𝟔𝟗𝟔𝟕𝟒𝟔𝟎𝟑𝟗𝟏𝟗𝟖𝟎𝟑𝟔𝟕𝟖𝟕𝟐𝟎𝟎𝟎

6 𝟏
𝟐

29
1008

88663
56010240

5757089
67781007360

1537940628689
340912949465088000

𝟐𝟐𝟗𝟔𝟖𝟔𝟗𝟏𝟔𝟎𝟒𝟕𝟎𝟎𝟕
𝟗𝟔𝟐𝟕𝟕𝟕𝟑𝟏𝟕𝟏𝟖𝟕𝟗𝟏𝟏𝟔𝟖𝟎𝟎𝟎𝟎

𝟒𝟑𝟑𝟏𝟎𝟗𝟒𝟏𝟏𝟕𝟗𝟗𝟒𝟖𝟐𝟖𝟒𝟎𝟔𝟗
𝟑𝟒𝟒𝟎𝟎𝟓𝟎𝟗𝟕𝟒𝟏𝟏𝟓𝟕𝟏𝟒𝟐𝟏𝟑𝟖𝟕𝟏𝟔𝟏𝟔𝟎𝟎𝟎

7 𝟏
𝟒

1255
82368

295133
348281856

2598992519
56936046182400

643391778377
264869710110720000

11267167909498433
87618715847436533760000

𝟕𝟒𝟒𝟎𝟖𝟒𝟖𝟕𝟗𝟑𝟎𝟓𝟎𝟒𝟖𝟑𝟖𝟕𝟐𝟕
𝟏𝟎𝟗𝟓𝟕𝟏𝟗𝟗𝟑𝟗𝟗𝟎𝟑𝟓𝟐𝟑𝟕𝟖𝟔𝟔𝟒𝟎𝟓𝟖𝟖𝟖𝟎𝟎𝟎

8 𝟏
𝟖

2477
308880

1835863
4063288320

1769539
720943441920

127802659622551
97895844856922112000

2762333771707
39907473380632166400

76034947449385560773
20780895411963382160424960000

9 𝟏
𝟏𝟔

39203
9335040

12653167
52718561280

6756335603
516534771916800

76170641989903
108773160952135680000

46331482996262911
1245354014578231266508800

7583038108310022233611
3850996789771271334071894016000

10 𝟏
𝟑𝟐

1363
622336

5219989
41079398400

2863703603
410578921267200

364975959330977
973541287193739264000

110488317513510709
5533939090421837306265600

1597788327762805352162251
1509590741590338362956182454272000

11 𝟏
𝟔𝟒

308333
270885888

644710519
9612579225600

28221517763
7606514751897600

26274127922961227
131162562511011053568000

39074093749702556551
3652399799678412622135296000

32893791972666409219189
57890914971883041214200545280000

TABLE C . 2 Area Siegel–Veech constants 𝜋2𝑆𝑉g ,𝑛. They are computed from Table C.1 thanks to
Theorem 4.1. Theorem 5.2 gives the first column.

𝒏 \ g 0 1 2 3 4 5 6
0 – – 19

6

24199

8625

283794163

105312050

180693680

68465079

806379495590975

309492103568838

1 – – 230

87

529239

205550

14053063

5518645

533759417507

210967972242

4346055982466800

1725192578138153

2 – 7

3

8131

3370

2843354

1164495

11842209371

4827273270

606925117339

246886623873

122318875814791931

49704331575032610

3 – 47

22

11041

4785

73870699

31157850

35221419482

14674841399

82681229028041

34222259372754

5057811587495459887

2085014933689449405

4 3

2

44

21

688823

303270

187549387

80056955

1414826039249

595067328174

1031120131654286

430104304558221

1339844245835171101

555962784408367098

5 5

3

2075

978

96716

42445

87365995

37248558

15788133716389

6636637127685

1245335246460801

519291721160462

321899861240823487478

133543614171105755337

(Continues)
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TABLE C . 2 (Continued)

𝒏 \ g 0 1 2 3 4 5 6
6 11

6

697

319

8622217

3723846

1433623484

604494345

7380284015613

3075881257378

18305424406953487

7579668229551231

3150765025310943712637

1299328235398448522070

7 2 17101

7530

10506949

4426995

12557689333

5197985038

32906433038620

13511227345917

165332043184123111

67603007456990598

1276869600669686371105

520859415513533871089

8 13

6

17630

7431

44927707

18358630

3273823127

1322965425

1905176709014543

766815957735306

931701551880070892

374503401099176525

32923598627691820002839

13230080856193087574502

9 7

3

194829

78406

480821458

189797505

515867741141

202690068090

3294839869674121

1294900913828351

13416096198217292533

5281789061573971854

403660475951758341605956

159243800274510466905831

10 5

2

202415

77691

905804827

344519274

488680850166

186140734195

658216299971112017

251833411938374130

2586449275763662283

994394857621596381

57921215793035879725637191

22369036588679274930271514

11 8

3

5054467

1849998

1761936475

644710519

2297552653219

846645532890

212103557000574050

78822383768883681

208627514502680586639

78148187499405113102

9156519282251402538004459

3453848157129972968014845

TABLE C . 3 Values of 𝜋−2(3g−3+𝑛)+2𝑑1+⋯+2𝑑𝑘 𝐹g ,𝑛[𝑑1, … , 𝑑𝑘, 0, … , 0] for 𝑘 ⩾ 1, computed from the Virasoro
constraints.

(g , 𝒏) (𝒅𝟏, … , 𝒅𝒌) ∗ (g , 𝒏) (𝒅𝟏, … , 𝒅𝒌) ∗ (g , 𝒏) (𝒅𝟏, … , 𝒅𝒌) ∗

(0, 4) (1) 3 (1, 1) (1) 1

8
(1, 5) (1) 63

16

(0, 5) (1) 3 (1, 2) (1) 1

4
(2) 745

64

(2) 15 (2) 5

8
(3) 1127

32

(1, 1) 18 (1, 1) 3

8
(4) 945

8

(0, 6) (1) 27

4
(1, 3) (1) 3

8
(5) 3465

8

(2) 25 (2) 65

48
(1, 1) 99

8

(3) 105 (3) 35

8
(2, 1) 305

8

(1, 1) 27 (1, 1) 3

2
(3, 1) 525

4

(2, 1) 135 (2, 1) 15

4
(4, 1) 945

2

(1, 1, 1) 162 (1, 1, 1) 9

4
(2, 2) 1075

8

(0, 7) (1) 45

2
(1, 4) (1) 33

32
(3, 2) 3675

8

(2) 305

4
(2) 305

96
(1, 1, 1) 81

2

(3) 525

2
(3) 175

16
(2, 1, 1) 585

4

(4) 945 (4) 315

8
(3, 1, 1) 945

2

(1, 1) 81 (1, 1) 27

8
(2, 2, 1) 450

(2, 1) 300 (2, 1) 195

16
(1, 1, 1, 1) 162

(3, 1) 1260 (3, 1) 315

8
(2, 1, 1, 1) 405

(2, 2) 1350 (2, 2) 75

2
(1, 1, 1, 1, 1) 243

(1, 1, 1) 324 (1, 1, 1) 27

2

(2, 1, 1) 1620 (2, 1, 1) 135

4

(1, 1, 1, 1) 1944 (1, 1, 1, 1) 81

4
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TABLE C . 4 Values of 𝜋−2(3g−3+𝑛)+2𝑑1+⋯+2𝑑𝑘 𝐹g ,𝑛[𝑑1, … , 𝑑𝑘, 0, … , 0] for 𝑘 ⩾ 1 (continued).

(g , 𝒏) (𝒅𝟏, … , 𝒅𝒌) ∗ (g , 𝒏) (𝒅𝟏, … , 𝒅𝒌) ∗ (g , 𝒏) (𝒅𝟏, … , 𝒅𝒌) ∗

(2, 1) (1) 1

32
(2, 3) (1, 1, 1) 27

8
(2, 4) (1, 1, 1) 2349

128

(2) 119

1152
(2, 1, 1) 357

32
(2, 1, 1) 3375

64

(3) 35

96
(3, 1, 1) 315

8
(3, 1, 1) 5355

32

(4) 105

128
(4, 1, 1) 2835

32
(4, 1, 1) 4725

8

(2, 2) (1) 261

2560
(2, 2, 1) 1225

32
(5, 1, 1) 51975

32

(2) 75

256
(3, 2, 1) 3045

32
(2, 2, 1) 127925

768

(3) 119

128
(2, 2, 2) 1575

16
(3, 2, 1) 74375

128

(4) 105

32
(2, 4) (1) 4785

2048
(3, 3, 1) 106575

64

(5) 1155

128
(2) 19583

3072
(2, 2, 2) 18375

32

(1, 1) 9

32
(3) 567

32
(3, 2, 2) 13125

8

(2, 1) 119

128
(4) 26161

512
(1, 1, 1, 1) 405

8

(3, 1) 105

32
(5) 79695

512
(2, 1, 1, 1) 5355

32

(4, 1) 945

128
(6) 135135

256
(3, 1, 1, 1) 4725

8

(2, 2) 1225

384
(7) 225225

128
(4, 1, 1, 1) 42525

32

(3, 2) 1015

128
(1, 1) 1685

256
(2, 2, 1, 1) 18375

32

(2, 3) (1) 337

768
(2, 1) 6995

384
(3, 2, 1, 1) 45675

32

(2) 1399

1152
(3, 1) 13475

256
(2, 2, 2, 1) 23625

16

(3) 2695

768
(4, 1) 41685

256
(3, 1) (1) 575

14336

(4) 2779

256
(5, 1) 144375

256
(2) 8099

73728

(5) 9625

256
(6, 1) 225225

128
(3) 56749

184320

(6) 15015

128
(2, 2) 241825

4608
(4) 8203

9218

(1, 1) 783

640
(3, 2) 125167

768
(5) 17479

6144

(2, 1) 225

64
(4, 2) 72135

128
(6) 5005

512

(3, 1) 357

32
(5, 2) 3465

2
(7) 25025

1024

(4, 1) 315

8
(3, 3) 71785

128

(5, 1) 3465

32
(4, 3) 112455

64

(2, 2) 25585

2304

(3, 2) 14875

384

(4, 2) 3465

32

(3, 3) 7105

64
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