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TOPOLOGICAL RECURSION FOR MASUR-VEECH VOLUMES
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Abstract

We study the Masur—Veech volumes MV ;, of the principal stratum of the moduli space
of quadratic differentials of unit area on curves of genus g with n punctures. We show that
the volumes MV, , are the constant terms of a family of polynomials MVy(Ly,..., L)
governed by the topological recursion/Virasoro constraints. This is equivalent to a formula
giving these polynomials as a sum over stable graphs, and retrieves a result of [11] proved by
combinatorial arguments. Our method is different: it relies on the geometric recursion and
its application to statistics of hyperbolic lengths of simple multicurves developed in [3]. We
also obtain an expression of the area Siegel-Veech constants in terms of hyperbolic geometry.
The topological recursion allows numerical computations of Masur-Veech volumes, and
thus of area Siegel-Veech constants for low g and n, which leads us to propose conjectural
formulas for low g but all n.

*Center for Quantum Geometry of Moduli Spaces, Department of Mathematics, Ny Munkegade 118, 8000 Aarhus C, Denmark.
TMax Planck Institut fiir Mathematik, Vivatsgasse 7, 53111 Bonn, Germany.
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1 Introduction

We consider two facets of the geometry of surfaces. On the one hand, hyperbolic geometry with associ-
ated Teichmiiller space and Weil-Petersson metric, and on the other hand, flat geometry associated with
quadratic differentials and the Masur—Veech measure. We will show that invariants of the flat geometry
of surfaces, namely the Masur—Veech volumes and the area Siegel-Veech constants, can be expressed as
asymptotics of certain statistics of multicurves on hyperbolic surfaces. Using the geometric recursion
developed in [3] for these statistics, we prove that the Masur—Veech volumes satisfy some form of the
topological recursion a la Eynard—Orantin [18].

1.1 Notations and facts

We will let £ denote a smooth, compact, oriented, not necessarily connected surface, which can be
closed, punctured or bordered. We consider those cases to be mutually exclusive and we shall indi-
cate which situation is considered when necessary. When I is not closed, the punctures or boundary
components are labelled 0:%,...,9,Z. We assume that I is stable, i.e. the Euler characteristic of each
connected component is negative. We say that X has type (g, n) if it is connected of genus g with n
boundary components. We use P (respectively T) to refer to surfaces with the topology of a pair of
pants (resp. of a torus with one boundary component).

The Teichmiiller space Ty of a bordered X is the set of hyperbolic metrics on X such that the boundary
components are geodesic, modulo diffeomorphisms of X that restrict to the identity on 9Z and which
are isotopic to Ids among such. The Teichmiiller space T fibers over R and we denote the fiber
over L = (Lyi,...,Ly) € RY} by Ts(L). For a surface of type (g,n), Tz(L) is a smooth manifold of
dimension 6g — 6 + 2n. Here R, is the positive real axis, excluding 0. In several places, we will also
consider L; = 0, which means that the i-th boundary corresponds to a cusp for the hyperbolic metric.
The slice T5(0,...,0) = Ty is the Teichmiiller space of complete hyperbolic metric of finite area on
L — 0%, which is then considered as a punctured surface. Ts can also be seen as the space of Riemann
structures on the punctured surface. The cotangent bundle to Ts is isomorphic to the bundle Q%5 of
holomorphic integrable quadratic differentials on the punctured surface. For any (q,0) € Q%s, the
quadratic differential q has either a removable singularity or a simple pole at each puncture of X. These
spaces also exist for closed surfaces.

The mapping class group Mody is the group of isotopy classes of orientation-preserving diffeomor-
phisms of Z. It admits as subgroup the pure mapping class group Mod2, consisting of the isotopy
classes of diffeomorphisms that restrict to the identity on 9Z. The mapping class group acts on the
Teichmiiller spaces 75 (L) and on Ts and on the space of quadratic differentials Q¥s. This action is
properly discontinuous and the quotient spaces Ms (L), Mz and QMz are smooth orbifolds, called
respectively the moduli space of bordered surfaces, the moduli space of punctured surfaces, and the
moduli space of quadratic differentials. The moduli spaces for all surfaces of given type (g,n) are all
canonically isomorphic and simply denoted by Mg (L), My and QNig .

The spaces Tz (L) for L € R%} and T5 are endowed with the Weil-Petersson measures uwp. These mea-
sures are invariant under the action of the mapping class group and descend to the quotients Mgy (L)
and My ,,. If Yrisa Modg—invariant function on T5, we denote by Y , the function it induces on Mg,
and we introduce

VWnl(L) = /M  Yon(©)dunr(o) @)

if this integral makes sense.

Likewise, if L is a closed or punctured surface, Q95 is endowed with the Masur—Veech measure pyy
coming from its piecewise linear integral structure. The function which associates to a quadratic differ-
ential g on I its area [; |q| provides a natural way to define an induced measure on the space Q'
of quadratic differentials of unit area (see Section 3.1). By a theorem of Masur and Veech [28, 38] the
total mass of this measure is finite. Its value is, by definition, the Masur—Veech volume and it is denoted



by MV . Its computation is relevant in the study of the geometry of moduli spaces and the dynamics
of measured foliations and has been the object of numerous investigations [5, 11, 16, 23, 33].

1.2 Overview

In Section 2, we review the definition and main properties of the geometric and topological recursion,
mainly taken from [3].

In Section 3, for each connected bordered surface ~ of genus g with n > 0 boundaries, we construct
a Mod2- invariant continuous function QMV: Ty — R. It is such that the integral VQ%’{X(LL R
is a polynomial function in the variables Ly, ...,L,, and the Masur—Veech volume MV ., of lemg,n
consisting of unit area quadratic differentials satisfies

B 24924 (4g — 4 4+ n)!

MV
Mvg,n - (69 —7+2T1)' VQg,n(Ol'--/0)~ (12)

The family of functions QMY can be defined via the geometric recursion, with initial data found in
Proposition 3.7. The polynomials VOMV, which we call Masur-Veech polynomials, have four different
descriptions:

(1) they are sums over stable graphs (Section 3.3), which we reproduce in (1.3) below;

(2) they encode the asymptotic growth of the integral (against uwp) of additive statistics of the hy-
perbolic lengths of simple multicurves on a surface of type (g, n) with large boundaries, see Sec-
tion 3.2 for the precise statement;

(3) they are obtained by integration of OMV in coherence with the notation (1.1);

(4) they satisfy the topological recursion, which is equivalent to the Virasoro constraints stated in
Theorem 1.2 below;

The identity between (1) and (2) is proved in Theorem 3.5, which is the crux of our argument. The
identity between (1), (3) and (4) is proved in Proposition 3.7 and follows from the general properties of
the geometric and the topological recursion. In Corollary 3.6, we prove the relation (1.2) between the
constant term of these polynomials and the Masur—Veech volume. Lemma 3.4 implies that the value of
the Masur-Veech volumes for closed surfaces of genus g > 2 can be retrieved from VQZ{Y.

In Section 4, we extend these arguments to show in Corollary 4.5 that the area Siegel-Veech constants
can be expressed in terms of asymptotics of certain derivative statistics of hyperbolic lengths of simple
multicurves. Our current proof of Corollary 4.5 uses Goujard’s recursion [22] (here quoted in Theo-
rem 4.1) for the area Siegel-Veech constants of the principal stratum in Q!9 ., in terms of Masur-
Veech volumes. It would be more satisfactory if one could obtain an independent proof of the identity
of Corollary 4.5, as our Section 4 would then give a new proof of Goujard’s recursion for the principal
stratum.

Main results for the computation of Masur-Veech volumes and polynomials

Concretely, our results lead to two ways of computing the Masur—Veech volumes. Firstly, the Masur—
Veech polynomials are expressed as a sum over the set Gy, of stable graphs (see Definition 2.9). Stable
graphs encode topological types of simple multicurves without multiplicities, which naturally appear
via (2). Let us introduce the polynomials

VO, (Lo Ln) = [ exp (Zzlwi),
Mgn i—1

which from Kontsevich’s work [26] compute the volume of the combinatorial moduli spaces. The ap-
plication of Theorem 3.5 to the computation of Masur—Veech volumes can be summarised as follows.



Theorem 1.1. For g,n > 0 such that 2g — 2 + n > 0, the Masur—Veech polynomials can be expressed as

€edl
MV K etile
VO = ¥ g [ [T VO (Celecein (new) TT o275 09)

TeGgn ve e€Er

where Vr is the set of vertices of ' and E(v) (respectively, A(v)) is the set of edges (respectively, leaves)
incident to v. In particular the Masur—Veech volumes can be computed as

2497241 (4g — 4 4 n)!
(69 -7 + 2n)!

K
|AutF| /Er H VQg v ((e)ece), (0)renw)) H ezee _el~

re Gg " ve ecEr

MVgn =

The formula (1.4) was obtained prior to our work in [11] by combinatorial methods. It was presented by
V.D. in a reading group organised by A.G. and D.L. The discussions which followed led to the present
work where, in particular, we give a new proof of the formula (1.4).

Secondly, the coefficients of the Masur—Veech polynomials satisfy Virasoro constraints, expressed in
terms of values of the Riemann zeta function at even integers. This is summarized by the following
theorem, which combines the results of Corollary 3.6, Theorem 3.7, Lemma 3.4 and Section 5.2 of this

paper.

Theorem 1.2. For any g > 0 and n > 0 such that 2g —2 +n > 0, we have a decomposition

VoMY (Ly,..., L) = > Fgnldi,..., dn] f[li

di,..,dn >0 j=1
di+-+dn<3g—3+n

Let us set Fo1[d1] = Fo2[d1, d2] =0 for all dq, d; > 0. The base cases

(2 1
Fosldi, dz, ds] = 84,,d,,ds,0, Fiild] =04y % + 841 3

determine uniquely all other coefficients via the following recursionon2g—2+n > 2,fordy,...,dn > 0

Fg,n[dll"'/ ZZBdn gn— 1ad2/ -~/&T\n/---/dn]+
m=2a>0
1
+5 Z Cﬁfb (Fgl,n+1 la,b,dy, ..., dn] + Z Frityila,J] Fh/,1+]/[b,m>,
a,b>0 h+h’=g

JuJ'={dz,..,dn}
where

B},k =(2j+1) ditjk+1 1 04,0 (2k +2),

Chie = 8tjricpn + HERGENEIHAOD 5, ren + VOO0 B aga1 + (2 + 2)8(2Kk +2)840

For surfaces of genus g with n > 0 boundaries, the Masur—Veech volumes are identified as

249—44 M (4g — 4 4 n)!
(6g—7+2n)!

MVg,n == Fg,‘I’L[O/"’IO]/

while for closed surfaces of genus g > 2 they are obtained through

249-2(4g — 4)!

MVgo = (6g—6)!

Fg,l [1]



We use Theorems 1.2 to compute many Masur—Veech volumes and Masur—Veech polynomials for low
g and n (Section 5). Based on numerical evidence, we propose conjectural formulas for MV ,, for alln
and fixed g < 6 (Conjecture 5.4). Conditionally on this conjecture, we discuss the consequences for area
Siegel-Veech constants in Corollary 5.5 and for the n — co asymptotics in Section 5.6.

The paper is supplemented with three appendices. In Appendix A, we establish a closed formula for
all \ classes intersections in genus one, which we have not found in the literature and which we use
for computations of VO via stable graphs. In Appendix B, we illustrate the computation of Masur-—
Veech polynomials using the original formulation of the topological recursion a la Eynard—Orantin, via
residues on a spectral curve. Appendix C contains tables of coefficients for the Masur—Veech polynomi-
als and area Siegel-Veech constants.

Throughout the paper we make use of the symbol W at the end of those statements whose proof is not
part of the paper, whereas the symbol * is used if the proof is included, but not immediately after the
statement. No symbol is used if the proof follows the statement.
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2 Review of geometric and topological recursion

We review the aspects of the formalism of geometric recursion developed in [3] and its relation to the
topological recursion which are directly relevant for the analysis carried out in the present paper, in
Section 3 and onwards.

2.1 Preliminaries

For a given point in Ty, the systole is the length of the shortest closed geodesic on Z (it could possibly

be a boundary component). The e-thick part of the Teichmiiller space is denoted by ‘J')(:e): it consists of
those classes of hyperbolic metrics for which the systole is bounded below by €.

Let Sy be the set of isotopy classes of simple closed curves in the interior of £, My the set of simple
multicurves possibly with multiplicities (i.e. isotopy classes of finite disjoint unions of simple closed
curves which are not homotopic to boundary components of X) and M{ the subset of simple multic-
urves without multiplicities (the components of the multicurve must be pairwise non-homotopic). By
convention My and M§ contain the empty multicurve, but Sy does not contain the empty closed curve.
In particular

My = { (y, m) ‘ye Mg, mEZT’(Y) },

where Z . is the set of positive integers (it does not include 0).

2.2 Geometric recursion

In the present context, the geometric recursion (in brief, GR) is a recipe to construct Mod3-invariant
functions Qs on T5 for bordered surfaces X of all topologies, by induction on the Euler characteristic
of . The initial data for GR is a quadruple (A, B, C, D) where A, B, C are functions on the Teichmdiller
space of a pair of pants, and D is a function on the Teichmdiller space of a torus with one boundary
component. Since Jp = Ri, the functions A, B and C are just functions of three positive variables. We



further require that A and C are invariant under exchange of their two last variables. In the construction
we need that initial data satisfy some decay conditions. Let [x]; = max(x,0).

Definition 2.1. We say that an initial data (A, B, C, D) is admissible if

e A isbounded on Tp and D is bounded on J7.
e Forany s > 0 and somen € [0,2),

sup (1 + [e —L;— LzLL)S |B(L1, Lz,e)‘ M < +00,
Li,Ls €30

sup (1+[€+¢ —L1]4)7IC(Ly, ¢, ¢")| (&) < +oo.
L1,£,'>0

Let us now briefly recall the recursion introduced in [3], which relies on successive excisions of pairs of
pants. Assume that X has genus g and n boundary components such that 2g —2 + n > 2. We consider
the set of homotopy classes of embedded pairs of pants ¢: P — L such that

e 01P is mapped to 01,
e 0,P is either mapped to a boundary component of ¥, or mapped to a curve that is not null-
homotopic neither homotopic to a boundary component of .

Let Py the set of homotopy class of such embeddings. It is partitioned into the subsets P% and PP for
m € {2,...,n}, consisting respectively of those classes of embeddings such that 0,P is mapped to the
interior of X, resp. mapped to 0., Z. Given a hyperbolic metric o with geodesic boundaries on X, each
element of Py has a representative P such that ¢(P) has geodesic boundaries. We denote by 7, (dP)
the ordered triple of lengths of ¢(P) for the metric 0. Removing this embedded pair of pants from X
gives a bordered surface Z — P. Our assumptions imply that £ — P is stable. It is also equipped with
a hyperbolic metric o]z _p with geodesic boundaries. We decide to label the boundary components of
L —P by putting first the boundary components that came from those of P (respecting the order in which
they appeared in 0P) and then the boundary components that came from those of L (with the order in
which they appeared in X).

The GR amplitudes Q5 are now defined as follows. For surfaces with Euler characteristic —1, we declare
Qp =A, Qr =D.
For disconnected surfaces, we use the identification Tx,y5, = Tx, x Tx, to set
Qr us,(01,020) = Qx, (01)Qz(02),
and for connected surfaces with Euler characteristic < —2, we set

Z Z )) Qs _p(ols—p) Z C(t, )) Qs _p(olz—p). (2.1)

m=2 [PlePpy [ PleP?

The latter is a countable sum and its absolute convergence was addressed' in [3]. We recall the main
construction theorem of that paper here. Let F(Tx,C) denote the set of complex valued functions on
Ts.

Theorem 2.2. If (A,B,C,D) is an admissible initial data, then £ — Qs € F(Ty,C) is a well-defined
assignment. More precisely

e the series (2.1) is absolutely convergent for the supremum norm over any compact subset of Ts;
e forany € > 0, Q5 is bounded on any e-thick part of T5;
e ()5 is invariant under all mapping classes in Mods which preserve 9,%;

e if the initial data is continuous (or measurable), Qy is also continuous (or measurable).
|

IThe notion of admissibility adopted in the present paper is more restrictive than the notion of (strong) admissibility in [3],
but is sufficient for our purposes.




2.3 Two examples

We describe two examples of initial data which play a special role for us. The first one appears in [30]
in Mirzakhani’s generalisation of McShane identity [29], which is a prototype of GR and which we can
formulate in GR terms as follows.

Theorem 2.3 (Mirzakhani & McShane). The initial data

AM(Ly, 1, 15) =1,

cosh(%) —|—Cosh(L12+e)>
cosh (%) + cosh (L12_e) ’
Ly e’

e? +e 2
)= g (+)

! o) = Z CM s(0T), G(C),KG(C)),

CEST

BM(L,1,,0) = 1
( 1, Zle) Ll (

2.2)

are admissible, and for any bordered I the corresponding GR amplitude Q! is the constant function 1
on Jy. |

The second example is obtained by rescaling all length variables in Mirzakhani initial data as follows

XK(Ly, Ly, Ly) = ma XM(BLy, BLy, BLs), X €{A,B,ChL (2.3)
— 00

More explicitly

ALy, Ly, L) =1,

1
BY (Lo ) = 5 (L =L =y = L+ L=ty + L+ L= 0y,
1

2.4
CX(Ly, 6, ¢) = Lll L — -0, 24)

Blo) = ) CN(Ly, Le(c), Lolc)).

cEST

It is easy to check that these initial data are admissible, and we call them the Kontsevich initial data.
Unlike the previous situation, the resulting GR amplitudes Q¥ are non-trivial functions on Ts. Their
geometric interpretation and basic properties are studied in [1].

2.4 Hyperbolic length statistics and twisting of initial data

Let D C C be the open unit disk. Let f: Ry — C and f: R — D be two functions related by

) =Y (flo))k=—=—. 25
(0) g(()) T (2.5)

Definition 2.4. We call f: R, — C an admissible test function if f is Riemann-integrable on R, and for
any s >0

sup (1+0)° [f(8)] < +oo. (2.6)
>0

This condition is stronger than what is needed in [3], but is sufficient here.
Following [3], we consider multiplicative statistics of hyperbolic lengths of simple multicurves

=y II f(e = > ]I fw (2.7)

ceEM{ yem(c ceEMsx yem(c)



It can be written either as a sum over simple multicurves without multiplicities, or as a sum over sim-
ple multicurves with multiplicities, the two expressions being related via the geometric series (2.5).
According to our conventions, the empty multicurve gives a term equal to 1 in this sum.

In fact, these statistics satisfy the geometric recursion. If (A, B, C, D) are some initial data, we define its

twisting

Alfl(Ly, Ly, L3) = A(Ly, Ly, Ls),

)=
B ﬂ(I—lfLZI ) B(Lll LZ/ 2) + A(LlrLZ/ e) f(e)/
CIf] (L1,€ ) = C(Ly, ¢, e’) + B(Ll,f UVE(0) + B(Ly, €, OF(L) + A(L, L O)F(OF(L),  (28)
Tlo)= ) A(t lo(c), Lo(c)) f(Ls(c)).
ceST

Theorem 2.5. [3] If we choose (A, B, C,D) to be Mirzakhani initial data (2.2) and f is an admissible
test function, the twisted initial data (2.8) are admissible and the resulting GR amplitudes equal the
assignment ~ — Nz (f; -). [ |

The idea of the proof is, for each ¢ € Mg, to multiply the product in (2.7) by 1, seen as a function on
the Teichmiiller space of £ — c. Then, one decomposes 1 using Mirzakhani’s identity on J5_., and
interchanges the summation over simple multicurves with the summation over embedded pairs of
pants. As the curves do not intersect the pair of pants, the structure of the geometric recursion (2.1)
appears again, but the initial data are modified as in (2.8). It is important to consider only simple closed
curves, as otherwise ~ — ¢ would not be anymore a bordered surface and the recursive procedure could
not be carried out in this way.

The result of [3] is in fact more general. It says that for any choice of admissible initial data (A, B, C, D),
the GR amplitudes resulting from their twist are statistics of hyperbolic lengths of simple multicurves
biased by the GR amplitudes associated to (A, B, C, D).

2.5 Relation to the topological recursion

Being invariant under the pure mapping class group, the GR amplitudes Qs descend to functions on
the moduli space My ,,, and we denote them by Qg . The structure of the geometric recursion is
compatible with factorisations of the Weil-Petersson volume form pwp when excising pairs of pants.
This means that, if we integrate GR amplitude against pwp, the outcome will again be governed by
a recursion with respect to the Euler characteristic, which is called the topological recursion (TR for
short). The (countable) sum over homotopy classes of pairs of pants is replaced with a sum over the
(finitely many) diffeomorphism class of embeddings of pair of pants.

Recall the notation

VQyn(Lieeo L) = [ g n(0) duwr (o),
Mg n (Ll ~~~~~ Ln )
whenever the integral on the right-hand side makes sense; by convention, we set VQ 4, = 0 whenever

2g—24n<0.

Theorem 2.6 (From GR to TR, [3]). If (A, B, C, D) are admissible, VQ 4  is well-defined as the integrand
is Riemann-integrable, and it satisfies the topological recursion, that is for any g > 0 and n > 1 such
that2g—2+n >2

VQg,n(I—ll I—2/ ceey Ln)

n
- Z/ B(L1, L, OVQqn 1(4La,..., Lon,..., Ln)ede
R

1
+ E /2 C(Ly, f,el) (Vle,nJrl(e,e/, Ly,...,La) + Z VQhJH”(f, I)VQh/,1+|]’|(f/,]’))€€/ dede’
R} h+h’:g
JuJ'={L,,...Ln}

(2.9)



The base cases are

VQo3(Li, Ly, L3) = A(Ly, Ly, Ls), VQi,1(L1) =VD(Ly) ;:/ ( ]D(G) dpwp(0o).
M1,1 L

We call any sequence of functions VQ g , satisfying a recursion of the form (2.9) TR amplitudes. Let us
come back to the two examples of Section 2.3.

According to Theorem 2.3, VOM are the Weil-Petersson volumes of Mgn(Ly,..., L), and the topolog-

ical recursion (2.9) in this case is Mirzakhani’s recursion for these volumes [30]. To be complete, we

should record the Weil-Petersson volume for tori with one boundary

w12

VvDM(L) = — + 2,
L) =% s

which is also mentioned in [30]. Mirzakhani also expressed the Weil-Petersson volumes via intersection

theory on Deligne-Mumford compactified moduli space of punctured surfaces Mg .

Theorem 2.7. [31] The Weil-Petersson volumes satisfy

n Lz
M i
VOM (L., Ly) = / exp <2n2.<1 + ;:1 zwi).

gm

Actually, the topological recursion for VQX is equivalent to the set of Virasoro constraints for the inter-
section of \ classes on Mg .

Theorem 2.8 (Conjecture [41], theorem of [26] and [12]).

n L%
VOX (L., Ly) :/7 exp(Zzlbi)

gmn i=1

. K L2
In particular, VD®(L;) = £. |

This is also a corollary of Theorem 2.7, as can be seen if we multiply all length variables by 3 in Mirza-
khani initial data, let B — oo and recall the definition (2.3). The main analysis carried out in this paper
consists in rescaling length variables by 3 — oo in the twisted GR amplitudes to understand properties
of the asymptotic number of simple multicurves.

There are several other ways to see that Theorem 2.7 implies or is implied by Theorem 2.8, see [7, 13, 35].
They will also be discussed in the broader context of the geometric recursion in [1].

Symmetry issues

The GR amplitudes Q5 are a priori invariant under mapping classes that preserve the first labelled
boundary (see Theorem 2.2). Therefore, after integration, the TR amplitudes VQg4  (Ly, ..., L) are sym-
metric functions of Ly, ..., L;,. In fact the topological recursion gives a special role to the length L; of the
first boundary.

The framework of quantum Airy structures [27] provides sufficient conditions for the invariance of the
TR amplitudes under all permutations of (L;,...,Ly). These conditions are quadratic constraints on
(A,B,C, VD) which are explicitly written down in [2, Section 2.2]. They are satisfied by the Mirza-
khani and Kontsevich initial data obtained from spectral curves in the Eynard-Orantin description
(Section 2.7.3), and they are stable under the twisting operation [2]. All TR amplitudes that will be
considered in this article have the full &, -symmetry.
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The situation is different at the level of GR amplitudes. One can formulate a natural refinement of these
conditions which implies invariance of the GR amplitudes under all mapping classes, including the
ones exchanging 0;X with another boundary component [3, Section 5]. However, these refined condi-
tions are not satisfied by Kontsevich initial data, as one can prove [1] that Q¥ is not always invariant
under mapping classes that do not respect 9;Z. We do not know if the refined condition are satisfied
by Mirzakhani initial data. Since Ql}_’[ is the constant function 1, it is obviously Mody invariant, but if
we decide to ignore this fact it remains mysterious why the recursion (2.1) for Mirzakhani’s initial data
produces functions that are fully Mod s -invariant.

2.6 Twisting and stable graphs

If (A,B,C,D) are admissible initial data, the upper bound on the number of simple multicurves of
bounded length directly implies that the twisted initial data (A[f], B[f], C[f], D[f]) remain admissible
when f is an admissible test function (2.6). Therefore, the integrals

VO (fiLy... L) = / Qg n(f; o) duwp(0)
Mg,n (Li,.., L)

of the twisted GR amplitudes Qg (f; - ) satisfy TR (2.9) for the initial data (A[f], B[f], C[f]) completed
by

VD(f;L1) = VD(L) + %/ f(€) A(Ly, £, £) €de.
Ry

The VQgn(f; -) can also be evaluated by direct integration, exploiting the factorisation of the Weil-
Petersson volume form when cutting along simple closed curves — which is clear from its expression
in Fenchel-Nielsen coordinates. The result is that, while Qg (f; -) is a (countable) sum over simple
multicurves without multiplicities, its integral VQ g . (f; - ) is a sum over the (finitely many) topological
types of such multicurves. The latter is described by stable graphs.

Definition 2.9. A stable graph I' of type (g, n) consists of the data
(Vr, Hr, Ar, h,v,1)
satisfying the following properties.
1. Vr is the set of vertices, equipped with a function h: Vi — N, called the genus.

2. Hr is the set of half-edges, v: Hr — Vr associate to each half-edge the vertex it is incident to, and
i: Hr — Hr is the involution

3. Er is the set of edges, consisting of the 2-cycles of i in Hr (loops at vertices are permitted).

4. Ar is the set of leaves, consisting of the fixed points of i, which are equipped with a labelling from
1ton.

5. The pair (Vr, Er) defines a connected graph.

6. If v is a vertex, E(v) (resp. E(v)) is the set of edges incident to v including (resp. excluding) the
leaves and k(v) = [E(v)| is the valency of v. We require that for each vertex v, the stability condition
holds:

2h(v) — 2+ k(v) > 0.

7. The genus condition

g= ) h+bi(l

vEVP

holds. Here by (T") is the first Betti number of the graph T".
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An automorphism of I consists of bijections of the sets Vi and Hr which leave invariant the structures
h, v, and i (and hence respect Er and Ar). We denote AutI" the automorphism group of I'.

We denote by G, the set of stable graphs of type (g, n). It parametrises the topological types of simple
multicurves without multiplicities on a bordered surface X of genus g with n labelled boundaries

Ggn = M§ / Mod?.

The stable graph with a single vertex of genus g corresponds to the empty multicurve. The other
stable graphs are in bijective correspondence with the boundary strata of 94 .,; more precisely I' €
Gy n refers to a boundary stratum of complex codimension |Er| that contains the union over v € Vr of
smooth complex curves of genus h(v) with k(v) punctures, glued in a nodal way along punctures that
correspond to the two ends of the same edge.

By direct integration, we have that

Theorem 2.10. [3] Assume VQg is Sp-invariant for any g > 0 and n > 1 such that 2g —2 4+ n > 0.
Then,

VOt ) = 3 g [ TT vonomaen (e (tahen) TT tert
re Gg n ecEr
If Qg4 is defined, this formula is also valid for n = 0. |
We record two useful combinatorial identities, valid for any I' € G ..

Lemma 2.11.

Xr = Z (2—2h(v) —k(v)) =2—2g—n,
veEVr

dr= ) (3h(v)—3+k(v)) =3g—3+n—[Erl.

vEVP

Proof. The claim follows by combining edge counting with the definition of the first Betti number b1 ("),
namely

> k(v)=2Erl+n,  1—|Vp[+[Efl+ ) h(v)=g.
veVr veVr

2.7 Equivalent forms of the topological recursion

In this section, we describe equivalent form of the topological recursion (2.9), which can be convenient
for either carrying out calculations or for exploiting properties proved in the context of Eynard—Orantin
topological recursion.

2.7.1 Polynomial cases

Let ¢; be a measurable function on RY,. The operators
BiowiLy L) = [ BLuLuO0¢i0ed,  Cloalil) = [ Ol L) gt )t dtdt (210)
R L

play an essential role in the topological recursion (2.9). It turns out that for Mirzakhani or Kontsevich
initial data, these operators preserve the space of polynomials in one (for B) or two (for C) variables
that are even with respect of each variable (we call them even polynomials). Since in both examples the
base cases (g,n) = (0,3) and (1,1) are even polynomials in the length variables, it implies that VQg/{n
and VQY | are even polynomials.

12



Definition 2.12. We say that an initial data (A, B, C, D) is polynomial if (B, C) are such that (2.10) pre-
serve spaces of even polynomials and A and VD are themselves even polynomials.

For polynomial initial data, it is sometimes more efficient for computations to decompose VQg,, on a
basis of monomials and write the effect of B and C on these monomials. For instance, let us decompose

eZd

VQg,n(Llr"'lI—n) = Z an dl’ Tt Hed ed(ﬂ) B m,

dl/-n/dn 20

and

Bleq,] (L1, L2) = Z By 4, €a,(L1)eq,(L2), Cleq, ®eq,)(L1) = Z CY 4, eq (L),
d1,d;>0 di>0

The topological recursion (2.9) then takes the form, if 2g + n —2 > 2

Fg,ﬂ[dlr cc7 dn]

—

ng 1a,d2, ~-/dm/--~/dn]

Z
= .11)

Z

,b>0

< g— 1n+1[0,b dy, ..., dn]l+ Z Fh,1+|]\[a/ﬂ Fh’,1+]’|[b/]/])-
h+h'=
JuJ’={da,....dn}

I\JM—\ ﬁl\/];

For the sake of uniformity, we introduce a similar notation for the base cases of the recursion
Fosld, do, ds] =Ag ,,  Fraldi] =D

For the Kontsevich initial data, we have in the chosen basis

Fg,n[d1/~~-/d } 2d —|—1 H/ Hlbl ,

Mgn i=1
which vanishes unless d; + --- + dn = 3g — 3 4+ n. Translating the Virasoro constraints of [41] — or
computing directly with (2.4) — we find

o
Fosldi, dp, dal = b4,,d,,d5,0, Fiald] = %- (2.12)
and
Bﬁ; 4, = (2d2 +1)84;+dy,d5/ Cﬁ;dS = Ody,dp+ds+2- (2.13)

A similar computation for Mirzakhani initial data can be found in [30] and is reviewed in [10] with
notations closer to ours.

Other bases of the space of even polynomials are sometimes useful to consider. For instance, the linear
isomorphism given by the Laplace transform

C[L?] — Clp—2ldp

“o — (fe, et edt)dp

makes the bridge towards the Eynard-Orantin form of the topological recursion (see Section 2.7.3).

2.7.2 Twisting

The operation of twisting (2.8) preserves the polynomiality of initial data. Indeed, the condition (2.6)
guarantees that all moments of the test function f exist and if we set

€2d1+2d2+1 d
- 0 de 214
tdyd, /ﬂh 4, 1 24, T Vdb (2.19)
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we obtain
d d
Alf] dy,d; = Ay dyr

dy _ pd; dq
BIf] dz,ds T de d; + Z Adz,a Ua,ds,

a=>0
d d d
CHIJ ¢, =Cq 4, + Z O Yady + BYG Uaa,) + Z AL U U, ds, (2.15)
az0 a,b>0

DIfl% = D% + Z Al Ugp.
ab>0

Let us denote by Fg . [f; -] the coefficients of decomposition of the twisted TR amplitudes. According to
Theorem 2.10, it can be expressed as a sum over decorated stable graphs

1
Fonlfidy,...,dnl = ) Autr| IT wiewie TT Fronxm [(de)ecen ], (2.16)
reGgyn eckEr veVr
d: Hr N

where Hr = |_|v6Vr E(v) is the set of half-edges and {v(e),Vv’(e)} are the endpoints of an edge e. In
this sum we impose that the decoration of the i-th leaf is d;. Similar twisting operations appear in the
context of Givental group action on cohomological field theories, see [3] for the comparison.

2.7.3 Eynard-Orantin form

Originally, the topological recursion was formulated by Eynard and Orantin as a residue computation
on spectral curves [18]. We present it in a restricted setting adapted to our needs. A local spectral curve
is a triple (x,y, wg) where

e x and y are holomorphic functions on a smooth complex curve C;
e dx has a unique zero at a point @ € €, which is simple, and dy(«) # 0;

e wy, is a meromorphic symmetric bidifferential on €? with a double pole on the diagonal with
biresidue 1. The latter means that for any choice of local coordinate p on C, the bidifferential

wop(z1,22) — % is holomorphic near the diagonal in 2.

We consider x: ¢ — C as a double branched cover in a neighbourhood of «; it admits a non-trivial
holomorphic automorphism T exchanging the two sheets, i.e. x o T = x but T # id and T(t) = x. We
introduce the recursion kernel

K(21’ ) ];( )wOZ( Zl)

1
2 [y(z) —y(t(z)ldx(z)’

and proceed to define multidifferentials wgn(z1,...,zn) for g > 0 and n > 1 as follows. We set wq1 =
ydx, further wy, is part of the data of the local spectral curve, and for 2g —2 + n > 0 we define
inductively

wg,n(zlr ZZ/ .. /ZTI) = Res K(lez’) {wgl,nJrl(Z/ T(Z’)/ Z’Z/ e /Zn)

Z—
no (0,1) (217)
+ Z wh,1+|II(Z/U ® wh’,1+]’|(T(Z)rJ/)}r
h+h'=g

Juy'={za,... zn}

no (0,1)
where ) means that the sum excludes the cases where (h,1+[]|) = (0,1) or (h/,1+]]’|) = (0,1). For

n = 0and g > 2, we also define the numbers

1 z
Wg0 = m B_?i </O‘ ydx>w9,1 (Z) (218)
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2.7.4 Equivalences

The correspondence with Section 2.7.1 appears if we decompose the w ;, on a suitable basis of 1-forms.
Let us choose a coordinate p near o such that x = p?/2+x(a). We introduce the 1-form globally defined

on € i .
eazo) = Res L ([ wnale o)) 219)

z—a p(z
We also introduce

Ealz) = (2d+1p(2)*4*,

—2 p(z)*
0(z) = ~ Ll B

&) = I e 2, dpia)

Upo = lim ( wop(z1,22) _ 1 )

T ziozn \dp(z)dp(z2)  (plz1) — plz2))?
Theorem 2.13. [2] For 2g —2 4+ n > 0, we have
Wgn(zi,..., zn) = ) Fonldi, ..., dn] Q) &a,(zi),
i dp 20 im1

di+--+dn<3g—3+n

where the Ty ,,’s are given by the recursion (2.11) with
G, = Res £3,(2)dEs, (2)dE5, (2) 0(2),
BYLa, = Res &3, (2)d&s, (2)€4,(2) 0(2),

Cg;ds = Res &4, (2)&q,(2)&a,(2) 0(2),

0 0_ 0_
_ Yot oot o o Ot

D4 —_
v 8 P04

5(1,1.
|

The Fy ’s associated with Kontsevich or Mirzakhani initial data are described by Theorem 2.13 for the

spectral curve € = C, x(z) = z%/2 and wf,(z1,2,) = ?jllfgfzz)% for which t(z) = —z, and
sin(2mz
o=z M =0 (2.20)
0
In other words . 5
K(\ _ M) _ T
O%lz) = z2dz’ 07 (z) zsin(2nz)dz’ 221)

More generally, if we assume that a polynomial GR initial data (A, B, C,D) leads to TR amplitudes
described by Theorem 2.13 for a certain spectral curve, then wgn(zi,...,2zn) and VQgn(Ly,..., L)
are two equivalent ways of collecting the numbers F ,,’s, which are related by the Laplace transform.
Indeed, we notice that £4 = p~(24+2)dp+0O(dp) and p~(24+2dp = Lleq]. Let us introduce the projection
operator

¢(z)
P = Res ————,
[b](po) = Res Y p—

which takes as input a meromorphic 1-form on € and outputs the element of C[p,, Ndp such that ¢(zp)—
Pld](po) is holomorphic when zg — «. Hence P[E4] = L[eq] and

L®H[VQg,n] (pl/ cee /pn) = T®n[wg,n] (PL ce ,'Pn)~ (222)
Furthermore, twisting the GR initial data amounts to shifting [3]
wo2(z1,22) — wop(z1,22) + LIf](£p(z1) £ p(z2)) dp(z1)dp(z2), (2.23)

where the two choice of signs + are independent and arbitrary — they do not affect the right-hand side
of (2.22).
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3 Asymptotic growth of multicurves

3.1 Preliminaries

We review some aspects of the space of measured foliations which play a key role in this article. For a
more complete description we refer to [20].

Let X be a closed or punctured surface. A measured foliation is an ordered pair A = (F,v) where: F
is a foliation of X whose leaves are 1-dimensional submanifolds except for the possible existence of
isolated singular points, of valency p > 3 away from the punctures and univalent at the punctures; v is
a transverse measure invariant along J. Two measured foliations are Whitehead equivalent if they are
related by a sequence of isotopies (relatively to the punctures), and contraction or expansion of edges
between two singularities (that should not be both punctures). We denote MFs the set of Whitehead
equivalence classes of measured foliations. For each o € T5, MFsx is equipped with a hyperbolic length
function which we denote by {;: MFz — R,.

The space MFz is endowed with an integral piecewise linear structure, and the set of simple multic-
urves My is in (length-preserving) bijection with the set of integral points of MFs. One can then define
a measure pt, by lattice point counting, which is called the Thurston measure in this context; we nor-
malise pr, such that My has covolume one in MFs. Let us emphasise that our normalisation differs
from the Thurston symplectic volume form by a constant factor, see [4, 34].

The space Q%5 is intimately linked to MF; by considering the horizontal and vertical foliations associ-

ated to a quadratic differential. More precisely we have a homeomorphism

Q(EZ — MFZ X MFZ \Az

q — ([VIIm(q)]], [vIRe(q)]]) 3.1)

where
As ={ (M, M) EMF; | In€MFs, A1) +1tn,A) =0},

and t: MFs x MFs — R is the geometric intersection pairing, which extends continuously the topolog-
ical intersection of (formal Q-linear combinations of) simple multicurves, see e.g. [8].

The space Q%5 has an integral piecewise linear structure defined in terms of holonomy coordinates.
The Masur—Veech measure pyy is defined from this structure by lattice point counting [28, 38]. We
define the Masur—Veech measure on the bundle Q!Ty of quadratic differentials of unit area as follows.
IfY C Q'Ts, we put

p(Y) = (12g — 12 +4n)uvv(Y),  Y={tq|te(0,}) and qeY}

when Y is measurable. This normalisation follows the one chosen in [5, 11, 22]. Then the Masur—Veech
volume is by definition the total mass MV, = pl (Q'Mg 1) < co.

Finally, we need to discuss Teichmdiller spaces with zero boundary lengths. We introduce the space

= U T Lo,
Li,...Ln 20

which is a stratified manifold. Its top-dimensional stratum is Ts and lower-dimensional strata corre-
spond to some of the boundary length L; are equal to zero. The lowest-dimensional stratum Ts =
T5(0,...,0) is identified with the Teichmiiller space of punctured Riemann surfaces on £. The quo-
tient of the action of Mod? on Ts obviously respects the stratification, and is denoted by J\A{g,n. Inside
this moduli space, the lowest-dimensional stratum Mg = Mg (0,...,0) is identified with the usual
moduli space of complex curves with punctures.

Following Thurston [36], we consider an asymmetric pseudo-distance on ‘}z defined for 0,0’ € /‘fz as

/ eo”(Y))
d = 1 .
th(0, o) ys:si n ( oY)
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The fact that this quantity is finite follows from the compactness of the space of measured foliations.
We emphasize that Sz does not include boundary curves and hence dr, is constant equal to zero on
the Teichmdiller space Tp of the pair of pants P. It is expected that, on any other stable surface, dr, is
actually an asymmetric distance, but this is irrelevant for our purposes. We will simply use the facts
that dy, is non-negative, continuous and vanishes on the diagonal, i.e. dy(0, o) = 0.

3.2 Masur-Veech volumes

In this paragraph, g, n are non-negative integers and 2g —2 4+ n > 0. Let ¢: R, — C be an admissible
test function and X a surface of type (g,n). We introduce the additive statistics for o € Tx

Ni(dio)= D  d(le(c)).

cEMsx

We are interested in some scaling limit of the additive statistics Ny (¢; o). Namely, we define for f > 0
the scaling operator

PpP(x) = d(x/B).

and we want to understand the behaviour of N{ (p?5 ¢; 0) and its integrals over the moduli spaces with
fixed boundary lengths.

The result (Lemma 3.2 below) will be governed by two ingredients. First, the dependence on the test
function will involve the following linear forms, for k > 0

k—1
crldl = /R ¢ b0 (3.2)

Note that co[d] is not always well-defined; we will assume it is only when necessary. Second, the
dependence on the metric will be governed by the function

Xs:
Yo = (6g—6+2n)! pum({A € MFs | 6(A) <11)

The function X is an important ingredient in [30] where most of its properties are proven. In particular,
its integral over moduli space is proportional to the Masur—Veech volumes.

Lemma 3.1. The function X5 descends to a function Xy on the moduli space ﬁg,n and
e The logarithm In(Xy) is Lipschitz with respect to dr,, namely
Xs(0)

< e(6976+2n)dTh(o,o").
Xs(0’)

e The average VXgn(Ly,...,Ln) exists and is a continuous function of (Ly,...,Ly) € (Rxo)™.

e We have that
B 249-241(4g — 4 4 n)!

MV, = VXgn(0,...,0).
o (6g —7 +2n)! on )
*
Lemma 3.2. Let o € ‘?z and ¢: R, — C be an admissible test function. Then
lim B9 N{ (pp d; 0) = cog—642nld] Xz (0),
B—o00
and further, the following limit exist and it equals
hm 67(6976+2n) VN +,n(p* d)/ Ll/ cery LT’L) - C6976+2T1. [Cb] VXg,'n.(Llr ceey LTL)
B—o0 9 B
forall (Ly,...,L,) € RY,. *
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Proof of Lemma 3.1. The first property follows from the inclusion of the unit {5-ball in a {4/-ball:
{AeMFs [ {:(A) <1} C{A e MFx | {o/(A) < exp(dm(o,0')) }.
The integrability of X5 is proven in Theorem 3.3 of [33, p. 106]. Namely, the function X5 is bounded by

the function ,
Ks(o) =«
=0 11 ls(v)

YES:
to(v)<e

for appropriate constants k, e > 0 that depend only on g and n. The function Ky is invariant under
the action of the mapping class group and we denote K, the function it induces on moduli space.
Mirzakhani showed that K , is integrable with respect to pwp over My (L) for any L € RY 3y (see her
proof of Theorem 3.3 in [33, pp. 111-112]).

We now prove that the integral VXg (L) is a continuous function of L. Let us choose a pair of pants
decomposition of £ and consider the corresponding Fenchel-Nielsen coordinates (£, ;)39 2T realis-
ing T5 (L) ~ (Ry x R)?973 ™ By continuity of Xs (o), for any compact set Z C (R, x R)39*3+“ the
following function is continuous

L—s Xz (0)dpwe(0).
{L}xZ

In order to show the continuity of VXg , it remains to show that the contribution coming from the set
M;;’ (L) € Mg n(L) of surfaces with a non-peripheral curve of length smaller than e’ is uniformly small
in e’. We use again the function Ky , for which

/ Xg,n(o—)dHWP < / Kg,n(o-)dllWP-
MR (D) Mg (L)

gm

The set M;i’ (L) is covered by the (3g — 3 +n)23974"™ gets

o= n({L} X { (€, )39+

<€ G <e Wl ti<bgnll) ¥, 0< T < b }),

where ] isa subset of {1,2,...,3g—3+mn}, ig an integer in the complement of ], 7t: Tx — My is the projec-
tion map, and by (L) is the Bers constant of T (L). It is shown in [6] that bg ., (L) is uniformly bounded
for L in compact subsets of RY;. Now, given a point in Mg<$1 , one can always choose a hyperbolic
structure in its 7-preimage so that all curves shorter than € are contained in the pants decomposition.

Hence

[ Kenloldmm@<x X[ TTi T deas

<e’

gm io,] toJ je]J ] i=1
<k Ze’em bg,n(I—)) 2(3g—4+n—IJ)
1o,J

< K(3g—3+mn) 2294 (b, (1))*F9H Ve,

This concludes the proof of the continuity.

The proportionality with the Masur—Veech volume is derived in [32] for closed surfaces and extended
to punctured surfaces in [11]. We only sketch the idea. Associated to any maximal measured foliation
A, Thurston [36] and Bonahon [9] constructed an analytic embedding

G)\I iz — Hz()\)

where Hs (A) are the transverse Holder distributions on (the support of) A. The transverse Holder
distributions form a vector space of dimension 6g — 6 + 2n which plays the role of the tangent space at
A in MFs, see [9]. Mirzakhani then proved that G, factors through the space of measured laminations
as G, = I, o F) where

FA: %y — MFzO\) Ix: MF}:U\) — Hz(?\)
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are respectively the horocyclic foliation and shearing coordinates and where
MFr(A) ={neMFz | ¥y €Sz, ((Ay)+in,v)>0}.

It is shown in [9, 32] that these maps are symplectomorphisms with respect to the Weil-Petersson sym-
plectic form on T5 and the Thurston symplectic forms on Hy (A) and MF;z. As a consequence, on the
subset MF7** of maximal foliations — which has full measure in MF5y — we obtain a map

Ts XMFIgaX — MFs x MFs
(6, A —  (AFRa(0)

which is again a symplectomorphism.

On the other hand, the homeomorphism (3.1) Q¥sz — MFs x MFs \ As maps umy to gty ® Wrh, up
to a constant factor. In order to match our normalisation of pyy one has to include the factor that
corresponds to the ratio between the Thurston symplectic volume form and the measure obtained via
integral points in MFs, see [4, 34]. O

Proof of Lemma 3.2. Since ¢ is Riemann integrable, we have

lim B %9 "2"N{ (pgd; 0) = $ o ls(N) dprn(A). (3.3)
B—ro0 MFsz

Now, we can desintegrate the Thurston measure with respect to the function {;. We denote by [t the
projectivised measure on PMF; defined by

H(A) = pm({A € MFs | A € A and (;(A) <1}),
where [A] denotes the projective class of A. Then we have the “polar form” of the Thurston measure
wrp = (69 — 6 +2n) t9 72" dt diL.

The right hand side in (3.3) hence can be rewritten

(6g —6+2n)</ t0977H2n () dt) wrn({A € MFs | (:(A) =1}).
Ry

The above is equivalent to the first part of the Lemma.

To complete the proof, we should justify that the limit  — oo and the integral over the moduli spaces
can be exchanged. We will do so by dominated convergence. Let us denote

Az (R;0) ={c e Ms | ls(c) <RJ.
By [33, Proposition 3.6 p. 110 and Theorem 3.3 p. 106] we have
Az (R; 0)] < Kz (o) RO9O+2,

Now we have

67(6976+2n) N;(DE &; O') _ 67(6976+2n) Z Z ¢ (ecréc)>
ceM

k>0

Bk<ly(c)<B(k+1)

< Kz(G)(Z(k+1)69_6+Z“ sup d)(€)|>
>0 k<t<k+1

< K):(G)(Z(k‘H)Z) sup (€ +2)°9 27 ().
k>0 20

The right hand side is bounded by the decay assumption (2.6). By Lemma 3.1, for any L € RY, the
right-hand side is integrable against the Weil-Petersson measure over Mg (L). It is independent of 3,
so the conclusion follows by dominated convergence. O
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3.3 Definition of the Masur—Veech polynomials
We introduce the Masur—Veech polynomials, for any g,n > 0 such that2g —2+n >0

€.de
VoMY (Ly,..., L) = ) B | | VOE ) o) (Ce)ece vy (Laeam) [T s B4)
|AutF| Er ete —1
FreGgn veVr eckr

These are polynomials in the variable (L2)T*_; of total degree 3g—3+mn. Its terms of maximal total degree
come from the stable graph with a single vertex of genus g with n leaves; therefore coincide with the
Kontsevich volumes of the combinatorial moduli space VQI;TL (Ly,...,Ly). In order to evaluate the sum
over stable graphs, we need the following integral.

Lemma 3.3. The function fMV(0) = _/-

j
/ MY de = (2k + D12k + 2).
Ry
Proof. We compute

(2k + 1)1¢(2k + 2)

1 —t 4 2k+1 / —nt p2k+1
— t dt = negktlqg
Z n2k+2 /R Z R,

n>1 n>1

_ / - eiezilZ €2k+1 de :/ eg £2k+1 de.
Ry +— Ry -

O

Forn=0and g > 2, VQMB’ is a number, which can also be extracted from VQMV(Ll) as a particular
case n = 0 of the followmg formula.

Lemma 3.4. For any g,n > 0 such that 2g —2 +n > 0, we have the dilaton equation
L2
(S5 VOET Ly, Lnsa) = (29 = 24+ 0) VO (L, .. L),

where [%2} extracts the coefficient of e in the polynomial to its right. In particular, for g > 2 we have
that
2
(5] VagT (L) = 29 —2)vOyy

Proof. We introduce
G, ={(Tv)ITeGyn and ve Vr}

and the surjective map m: Ggni1 — Gy, which erase the (n + 1)-th leaf from the stable graph but
records the information of the vertex v to which this leaf was incident. In general 7 is not injective, but
one can check that forany I' € G4, v € Vr and e w1(TI',v), we have

|JAutT| = |7 YT, v)||Aut . (3.5)
The dilaton equation for the 1 classes intersections yields, for 2h —2 + (k+1) >0
[ kH] VOR (0, 1) = (2h =24+ k) VOR (4, ..., &),
and this expression vanishes when 2h — 2 + k = 0. Therefore
(5] VO (L, o L)
=y B T VOl (@eettn ahean) T 5655

(I",v)eGé';,n Ry weVr ecEr
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where [ is any element of w1 (T",v), E(w) and A(w) are the sets of edges and leaves incident to w in the
graph I' (and not in ). Using (3.5) we deduce that

[%] VQI;/I,YL+1(L1/--~/I—11+1) = Z ( Z 2h(v) —2+k(v))

reGgn “VveVr
1 K L. de
X Autr| /]REr H VOR ()i (w) (Le)ecEw)r (Ta)aeaw)) H egee _21-
+ WEeVr eckrp
By Lemma 2.11 the sum of Euler characteristics at the vertices is 2g — 2 + 1, hence the claim. O

3.4 Main result

In [11], the fourth author and his collaborators obtained by combinatorial methods a formula for the
Masur—Veech volumes as a sum over stable graphs, exploiting the relation between Masur—Veech vol-
umes and lattice point counting in the moduli space of quadratic differentials. Our proof is different and
relies on ideas of the geometric recursion developed in [3]. Our method gives access to more general
quantities, which we introduced under the name of Masur—Veech polynomials. We now prove that they
record the asymptotic growth of the number of multicurves on surfaces with large boundaries, after in-
tegration against the Weil-Petersson measure. As a consequence of Lemma 3.2, we then show that the
Masur—Veech volumes arise as the constant term of the Masur—Veech polynomials, up to normalisation.

Let us denote ¢[¢p]: C[t™1] — C the linear operator sending t* to ck[¢] for k > 0, and t° to ¢(0) when
it exists.

Theorem 3.5. Let ¢ be an admissible test function admitting a Laplace representation
d(0) = / O(t) e tdt
R,

for a measurable function @ such that t — |®(t)| is integrable on R . In particular, $(0) = lime_,o ()
exists. Then, for any g,n > 0 such that 2g —2 +n > 0, we have that

hm B*(69*6+2n) VN;r,n (p?;d:)l Ll, ey I—TL) - C6976+2n [d)] VQZ/I,X(Ll, ey I—TL)/

p—o0
Jim BTOOTEEIVNG L (0f &5 BLy, -, BLn) = ELOI(t7 072 VOIT (L, ),
and the convergence is uniform for L; in any compact of Rx. *

Notice that the contribution of the test function factors out for finite boundary lengths. The assumption
that ¢ has a Laplace representation is not essential. It could be waived by an approximation argument,
if we had an integrable upper bound for the number of simple closed multicurves of lengths between
BL; and BL,. This is not currently available in the literature and we do not address this question here.

In particular, comparing with the second formula in Lemma 3.2 and the last formula of Lemma 3.1, we
obtain

Corollary 3.6. For any g,n > 0 such that 2g —2 +n > 0, VXgn(Ly,...,Ly) = VQg’{X(O,...,O) is
independent of Ly, ..., L, € Ry, and the Masur-Veech volumes are
24924 (4g 44!

MV
MV = = oy Vom0, 0.

It would be interesting to provide an a priori explanation why VXg ., is independent of the boundary
lengths Ly, ..., Ly; for us it is merely the consequence of a computation.
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Proof of Theorem 3.5. We fix once and for all g and n such that 2g —2 + n > 0. In the admissibility
assumption, we will only use a weaker form of decay

sup (1 +€)%9752" 2 h(0)] < +oo, (3.6)
£>0

with 6 = 1.

The Laplace representation of ¢ allows us to convert additive statistics into multiplicative statistics. We
are going to apply many times Fubini-Tonelli and dominated convergence theorem.

Admissibility implies convergence of the series

£(phi0) = Zcb( ) Z/ H et e1/B

ceEMsx ceEMs YEM(c

By Fubini-Tonelli theorem applied twice, we have
N (phd;0) :/R () NYP (o) dt, (3.7)
VN (0503 BL - L) = | OO VNYE(BLL ..., BL) dt, (38)
R

where

=2 I e ZHete

ceEMs yem(c) ceM{ yem(c)

VNE(Ly, ..., La) :/ Ngn(0) duwp(o),
Mg n (Ll Ln )
are now multiplicative statistics, to which we can apply the theory reviewed in Section 2.
For t > 0, by Theorem 2.10
Nt/ﬁ (BLlr sy BLTI)

= / NY/8 (o) dytr (o)
qn(ﬁLl BL )

,,,,,

L. de
— M e Ule .
_FEG |AutF| /Er H VoM ((€e)ece(v), (BLAAeA)) IE_E[ otle/B _1 39)
gmn ve eckr
(B/t 2Er/ M ee dee
QF . .
re% At e L H v ((Ble/tecew, (t BLA/t)AgAM)eerE[ g

We remark that [5*(69*6+2“)VN;{1§ (BLy,...,BLy) is a polynomial in t~! and B! of bounded degree.
We observe that

/ (1) dt = $(0),
R,

which here is assumed to exist, while for k > 1

1 B ;< _
/R+ﬂ®(t)dt_4+®(t)4+we “dedt = cil¢].

The assumptions on ¢ guarantee that cy [¢] are finite for all k > 0. Hence (3.8) is finite for a fixed § > 0.

We now study the 3 — oo limit. For 3 > 1, we can bound the aforementioned polynomial by a f3-
independent polynomial in t ! and integrating the latter against ®(t)dt gives a finite result. Therefore,
by dominated convergence, we have

B—oo B—o0

fim 16972 VNG (05 BL ., L) = [ (1) ( Jim B0 672 VNYE(BL, .., BL) ) .
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Comparing Theorems 2.7 and 2.8 yields

lim 23+ vOM (Bl /t,..., Blc/t) = t 2B 3R VoK (4., 00,

B—o0

and the limit is uniform for ({3, ..., &, t™!) in any compact of Rgl. Thus, uniformly for (Ly,..., Ly, t™1)

in any compact of R;gl, we have that

lim (69 02 YNLB(BLy, ..., BLy)

B—oo

1 le de, (3.10)
:m Z /REr H VQE(V),k(V)((Ee)eeE(v)r(ﬂ—A))\e/\(v)) H ele 1’

reGgyn + veVr ecEr

where we recognise the Masur—Veech polynomials introduced in Section 3.3. We arrive at

lim B~ 69762 VNY | (p%;BLy, ..., BLn) :/ O(t) t~ 09762 vOMV (L, ... tL,)dt
B—roo R (3.11)

= el] (P96 vOMY(tLy, .., tLy)).

Using finite boundary lengths L; instead of rescaling them by 3 amounts to replacing L; by L;/f in
(3.9), and by the aforementioned uniformity we then have

lim p—(69—6+2n) VN{ (o d; Ly, ..., Ln) = €[] (t—(69—6+2n) VQMYL(O,...,O))
o . ; (3.12)
= Cog—6+2n [(b] VQI;/{X(O, . ,O)

This concludes the proof of the theorem. O

Proof of Theorem 1.1. The expression of the Masur-Veech polynomials in terms of stable graphs is ac-
tually our Definition 3.4. Note that this is not a circular argument: in the beginning of the paper we
stated that Masur—Veech polynomials have four different equivalent formulations, we then chose the
formulation in terms of stable graphs to be their definition, and we show in the rest of the paper that
the same polynomials are expressed in the remaining three formulations. Therefore, the only non-trivial
statement left to prove is the second part of the theorem, i.e. formula (1.4), which follows immediately
from Corollary 3.6. O

3.5 Expression via geometric and topological recursion

By comparison with Theorem 2.10, the structure of this formula implies that the Masur—Veech polyno-
mials satisfy the topological recursion.

Proposition 3.7 (Geometric recursion for Masur-Veech volumes). Let QMY be the GR amplitudes pro-
duced by the initial data

AMV(1,1,,15) =1,

BMV(Ly, 1,,0) = (eﬁli_l) + ziLl([L1 —L—0y L+ L -0+ L +L—10,),
(L, 0 ) = CEnE Lll L —¢— 0]y
+ zlh{eel_l (I ==y — L+ 0=+ L+ -2, (3-13)
by (L=l — L - VLt L= )
DYV(o)= ) e o0

YEST
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Then, for any g > 0 and n > 1 such that 2g —2 +n > 0, the Masur—Veech polynomials satisfy
VoYY (Ly,..., L) :/ QY duwp.
Mg n (Ll Ln )

In particular, they are computed by the topological recursion (2.9). n

Notice that the notation VOMV is consistent with its use in (1.1). The above initial data is obtained by
twisting the Kontsevich initial data (2.4) by the function fMV(¢) = 15 — it is admissible according to
Definition 2.1 with 1 = 1. The function Q}'Y is a non-trivial function on Ty, which is not equal to
the function Xy, from Lemma 3.1. For instance, we saw in Corollary 3.6 that VXg(Ly,..., L) does
not depend on Ly, ..., L, while VQMV (Li,...,Ln) are non-trivial polynomials whose constant term is

VXgn. The relation between Xg », and QMV will be discussed in a broader context in [1].

Recall the decomposition
n LZ d;

oYY (Ly, ... = P ldy, ...
\% (Lll rL) Z dl/ r 2d +1

di+-+dn<3g—3+n i=

By Section 2.7 we can give two equivalent forms of Proposition 3.7, in terms of the Fy .. The first one is
the recursion of Theorem 1.2, of which we give a proof in the following. This recursion is spelled out
explicitly in Section 5.2.

Proof of Theorem 1.2. From the topological recursion in Proposition 3.7, it follows that the F4 ,’s are com-
puted by the recursion (2.11), by twisting the Kontsevich initial data (2.12)-(2.13) with fMV(0) = 1,
that is, by

(2d1+2dz+1 de 2d; +2d, +1)!
Ud,,d, = / ( __Ld 2 1) ((2dy +2dy +2)
R,

2d; + D)2+ 1)l et —1  (2dy +1)!(2d2 + 1)!
according to Lemma 3.3. O

The second equivalent form is the topological recursion a la Eynard-Orantin. Let us introduce the
Hurwitz zeta function, fork > 1

1 1 1
2Kz) = —— + = S
Ghi(2k;z) 2% 72 Z (z+m)2’
mez*

and define the multidifferentials

n
Wi (z1, ..., zn) = > Fomldi, ..., dn] Q) Cu(2di +2;2;) dzi.

di+-+dn<3g—3+n i=1

Proposition 3.8. For g,n > 0 such that 2g —2 +n > 0, the w (Zl, ..,Zn) are computed by Eynard-
Orantin topological recursion (2.17) for the spectral curve

1 s ) dz; ® dzp

e=C,  xa=3, yE--z ol -(; .

21 —22)%  sin®m(z) — 20)

Proof. Recall the spectral curve (2.20) associated with the Kontsevich initial data. The effect of twisting

amounts to shifting wf, (z1,2,) = ?ZZ; ®dz)2 according to (2.23). We compute, for Rez > 0

1 et +
/R ¢ sze—Z/R termlgde =
-+

m21

> m (3.14)

m21
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As the choice of signs in (2.23) is arbitrary, we can also take

1 1 1
MV _ - d d
Wy (z1,22) <(Z1 oY +5 mZ>1 PR + T m)2> 21 ® dzy

- < 1 s ) dz; ® dzp

+
(z1 —22)%  sin®7i(z1 — 20) 2

The sector of convergence for the integral (3.14) is irrelevant as we only need the (well-defined) Taylor
expansion when z; — 0 to compute the wg . Finally, we compute the differential forms &4 defined in
(2.19) and which are used in Theorem 2.13 to decompose the wMV

E,d(Zo) dz 1 1 1 1
:R —_— — -
dzg zsgzzd” zofz+2mz>lzofzfm+zo—z+m

_ 1l iy 1
Z%d+2 2 = (ZO + m)2d+2 (ZO _ m)2d+2

= (u(2d +2;z9).

Forn =0and g > 2, Lemma 3.4 gives

1 Fgall]
oMV _ gl
Vg0 2g—2 3

This agrees with the definition (2.18) of wg/{g by the following computation

MY ! Res /Z dx |wg1(z) = LResZ—wMV()
o0 = 5T 29 20 Y 9117 g1 \%

Z3
- 297_2 ;} (533 3 (u(2d +2;z) dz) Fg1ld]

1 Fyilll
2g—2 3 7

where we used that (g(2d + 2;z) = z~(24+2)dz + O(1) when z — 0, which implies that only the d = 1
term contributes to the residue. O

3.6 Equivalent expression in intersection theory

We can express Masur—Veech polynomials as a single integral over moduli space of curves of a certain
class, which involves boundary divisors. This is just another way to express the sum over stable graphs
(i.e. boundary strata of 94 ) by pushing-forward systematically the class to Mg, that will be useful
in section 5.1. We first recall that the even zeta values are related to Bernoulli numbers by

B2m+2 (2ﬂ)2m+2

2m+2) = (—1)mmr

(3.15)

with B, = £, By = —35;, etc.

Corollary 3.9. For 2g —2 +n > 0, let us define the cohomology class in H* (M4 )
Bomal (bs +Pg)™
=gn = Xp <Zzn Z mi2) m °)T

where the sum runs over boundary divisors 6 of ﬁg,m Vs and 1] are the psi-classes on the nodes of 3,

_J1 ifdisirreducible,
Jo = 0 otherwise,
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Js is the operator pinching the loop corresponding to the divisor & (whose application is performed
after the formal expansion of the exponential), and 1 is the class represented by a smooth curve. Note
in particular that the operators J5 commute and that ]2 = 0. The Masur-Veech polynomials can be
expressed as follows

n
L
MV (3g—3+n) -
VQg,n(Ll,...,L ) = (271) g—ormn /7 _glnexp(E_1 47;2

2
11’1)-

Once the spectral curve for a certain enumerative geometric problem satisfying topological recursion
is known (here Proposition 3.8), one could apply Eynard’s formula [17, Theorem 3.1] to obtain such a
representation for wg’{yl(zl, ...,zn), and thus the Masur—Veech polynomials. To be self-contained, we

prove the result by direct computation.

It would be interesting to obtain this formula by algebro-geometric methods. A first hint in this direction
would be to express =4 in a more intrinsic way, as a characteristic class of a bundle over Mg ,,, maybe
obtained by pushforward from the moduli space of quadratic differentials.

Proof. We shall examine the contribution in Theorem 3.5 of a given " € G4, before integration over the
product of moduli spaces at the vertices. Given a decoration d: Hr — N, an edge e receives a weight
(2dy(ey+2dy/ (o) +1)1C(2dy () +2dy/ (e)+2) Where {v(e), ’( )} are the vertices connected by e. We remark
that 1t only depends on the total degree D¢ == d,(e) + dy(e) associated to this edge. On the other hand,
the contribution of the 1 classes at the ends of the edge 1s

-L])dv(e) (1p’)dv(e)
2D€ dv(e)! dv’(e) ’

Therefore, we can replace the sum over decorations of half-edges d: Hr — N by the sum over decora-
tions of edges D: Er — N, and attach to each edge a contribution of

(2D. + 1)1 {(2D +2)
2D: D!

B \ .
(ll)v(e) +1bv'(e)) (27[2)13 et ZSD _:22 (lbv (e) +1l)v (e) )D .

If we are interested in the coefficient of [ [i-; Lzm‘+2 in VQMV (Ly,...,Lyn), the integration over the prod-
uct of moduli spaces at each vertex will select the terms of cohomological degree 2dr = Y i, 2m; +
2 ety 2De. According to Lemma 2.11 this implies

D> (De+1)=3g-3+n—> mi
eckEr i=1

Therefore, factoring out (27)>973"" while replacing L?/2 with L?/(4n?) in the sum over (T, D) leaves
the sum invariant, and brings it in the desired form. O

4 Statistics of hyperbolic lengths for Siegel-Veech constants

4.1 Preliminaries

The area Siegel-Veech constant SV ;, of Q9 is a positive real number related to the asymptotic
number of flat cylinders of a generic quadratic differential. Given a quadratic differential ¢ € QMg n,
we define

JVarea ( q, I— Area Z Area

( )<L
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where the sum is over flat cylinders ¢ of g whose width w(c) (or circumference) is less or equal to L and
Area refers to the total mass of the measure induced by the flat metric of q. By a theorem of Veech [39]
and Vorobets [40], the number

1 1 1
SVg,n = Wgn@ /.Qlimg,n =/Varea(q/ L) dFLMV(q)

exists and is independent of L > 0. It is called the (area) Siegel-Veech constant of QMg .

4.2 Goujard’s formula

Goujard showed in [22, Section 4.2, Corollary 1] how to compute SVy , in terms of the Masur—Veech
volumes. Her result is in fact more general as it deals with all strata of the moduli space of quadratic
differentials, while the present article is only concerned with the principal stratum.

Theorem 4.1. [22] For g,n > 0 such that2g +n — 2 > 2, we have

SVgn - MVgn
_ (4g—4+m)(4g—5+n)
— (6g—7+2n)(6g—8+2n) Mvgfl,n+2 4.1
n! (4g—4+n)! (6g1—542n1)!(6g2—5+2n1)! ’
+ Z nimy! (491—3+11)!(4g2—3+m,)! (6g—7+2n)! MV, 14n MV, 14m,.-

g1+92=9g
ni+ny=n

|

In [22] the contribution of MV 3 - MV, ., _1 was written separately, but this term can be included in the
sum if we remark that MVj3 = 4 (see Section 5.3) and

2n—5)1! . T2n—-4) 1

M—=3) lne2 ™ 5 Tn—2) 2

The structure of this formula becomes more transparent if we rewrite it in terms of the rescaled Masur—
Veech volumes that are sums over stable graphs

249724 (4g 44 n)!

MV,
om (6g —7 +2n)!

voyy(o,...,0).

Corollary 4.2. For g,n > 0 such that2g +n —2 > 2, we have

1 1 n!
SVgn - VO (0) = i (VQgA"mn(O) +5 Z ] VOYY ,, (0) VQg@YHnZ(O)). 4.2)
sl

We can give an even more compact form to this relation, in terms of generating series. If we introduce

ho—1x™ VOYY(0)
Zn(x) = exp (Z Z oy 7-[6926+2n )’ (4.3)
g=0 n>l1
2g—2+n>0

then Corollary (4.2) is equivalent to
Corollary 4.3. We have that

Z Z 119 SVgn 'VQIS\;{YL(O) _ 1 hzais/fé”h(x) (4.4)
g=0 n>0 n! o9—dran 2 vV Zn(x) . .
T ag+n—2z2
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Proof. Let us write 24, (x) = exp (Zg>o h971 Z4(x)). For e € C we compute

hzaxﬁph“(x)
23 (x)
_Zh9<aa2J9 n 2Y 0T, (%) 0Ty, (x )) 45
920 g1+92=g (4.5)
= Z Z <“VQ9 12"‘“(0) + o Z 1’11'712 vQ 91 1+T11 (0) VQQz 1+ﬂ2(0))’
g=>0 n>0 gi1+9ga=g
29+n>0 ni+n;=n

where we noticed that the restriction 2g—2+n > 0 in (4.3) implies that there are no terms for 2g+n < 0
in (4.5). The relative factor of  between the two types of terms in (4.2) is reproduced by choosing o = 3,
and we need to multiply (4.5) by an overall factor of a } to reproduce the prefactor j in (4.2). The factors
of 7 also match since

6(g—1)—6+2(2+n) =691 —6+2(1+n1)+6gs —6+2(1+n,) =6g—4+2n. (4.6)

They have been included so that the coefficients of h9x™ in the generating series are rational numbers.
O

The contributions in (4.2) correspond to the topology of surfaces obtained from X of genus g with n
boundaries after cutting along a simple closed curve. It is important to note that the (somewhat un-
usual) feature that separating curves receive an extra factor of a 1, which is reflected in the squareroot
in the right-hand side of (4.4). Such sums (without this relative factor of a %) can be obtained by dif-
ferentiating a sum over stable graphs with respect to the edge weight. Therefore, they also arise by
integrating over the moduli space derivatives of the statistics of hyperbolic lengths of simple multic-
urves with respect to the test function. We make this precise in the next paragraphs.

4.3 Derivatives of hyperbolic length statistics

We define two natural derivative statistics for which we are going to study the scaling limit. First, if
Yo € Sy, we denote

1 if yg is separating,
)(vo) = .
0 otherwise.

Let ¥, ¢ be admissible test functions, and consider

Ni(bw;o)= D> > 27207 (ts(v0)) - dLs(c)), 4.7)
CEMs yo€m(c)
Shwo) =) > 270%(L(vo) - d(Lelc —0)). (4.8)

ceEMsx yo€mo(c)

Theorem 4.4. Assume that { is bounded, ¢ — £ !4 (¢) is integrable over R, and recall that co[p] =
Jr ‘ d—f P(£). Assume that ¢ has a Laplace representation

(0) :/R O(t) e tdt

for some measurable function @ such that t — |®(t)| is integrable over R,. For g,n > 0 such that
2g+n—2>2and fixed Ly,...,L, > 0, we have

lim B~ 0982 VN (pf s ; BLy, ..., BLy)

B—o0
= % colb] el¢) {t—“g—é“‘”
1
(vgg 12+n(o,o,Ll,...,Ln)JrE > VoMY (0,70 VAR (0, ]2))]

gi1+9g2=g
JiuJo={Ly,...,.Ln}
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and

lim B~ (9620 VN (s ;5 L, -, L)

B—o0
1 1 n
:ECON)] Cog—6+an ]| VO 12+n(0)+§ Z WVle,Hnl( ) VO 1, (0) ).
e ]

In particular, this last expression is independent of Ly, ..., L,,. Furthermore, replacing N with N gives
the same limits. *

By comparison with Goujard’s formula (Corollary 4.2), we deduce that

Corollary 4.5. Under the assumptions of Theorem 4.4, for any fixed L;,...,L,, € R}, we have

2colt] SV — lim ~oamPBH WLy L)
9 B—o0 VNg,n(pEd)/Llr/Lﬂ)

The same equality holds if N in the numerator is replaced with N. |

The corollary gives a hyperbolic geometric interpretation of the area Siegel-Veech constant. However,
our proof is done by comparison of values from Goujard’s formula. It would be desirable to find a di-
rect and geometric proof of this identity, which would give a new proof of Goujard’s formula. The
derivative statistics of hyperbolic lengths N;n(cb;lb; Li,...,Ly) is indeed reminiscent of the Siegel-
Veech transform. Via the Hubbard-Masur correspondence [25], the multicurve ¢ € My is associated
to a holomorphic quadratic differential q and the component vy is the core curve of a cylinder of q. The
difficulty, however, lies in comparing hyperbolic and flat lengths.

Proof of Theorem 4.4. The assumption 2g +n — 2 > 2 is made so that Mz does not only consist of the
empty multicurve. If we encode multicurves with multiplicities as a pair consisting of a multicurve
without multiplicity and integers k remembering the multiplicity for each of its component, we have
that

NE(ppdb;0) = ) > 270 m(yo) ¥(ls(vo <[3 ! Z m(y ) (4.9)

ceMy Yo€mo(c) YEMO(C
m: 7o (c)—>N*

since vy in (4.7) can be any of the m(y,) component of the multicurve with multiplicity.

As in the proof of Theorem 3.5, we rely on the Laplace representation for ¢
d(L) = / O(t) et dt (4.10)
R

to convert additive statistics into multiplicative statistics. As their application is similar to the proof
of Theorem 3.5, we will silently use the Fubini-Tonelli and dominated convergence theorems at many
places — the estimates necessary for their application use that 1 is bounded and cq[\p] exists.

The Laplace representation allows us to convert (4.9) into derivatives (with respect to the test function)
of multiplicative statistics, namely

. e tlo(c)/p
Nz(pﬁdxtb;cr):/ <Z > s 1_64 w/rs 1T e >dt

cEME yo€mMm(c Yem(c (4.11)

:/R (1) 0o (N ”‘“(w o)dt,

where

L zP(Ls(y))
NgEWo)= 3 ] ettt <1+2m>(1_etzgm))

ceM§ yem(c
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is a polynomial of degree 3g — 3 4 n in z. Integrating over the moduli space, we obtain a sum over the
topological types of simple multicurves, that is, over stable graphs

VNG (WL, L)
1 z (L)
B |AutF|/ErH VO (edeeer), (Trear) 1 et€61(1+21e(1 e tle )>IZ At

TeGgn Ri'vevr ecEr

(4.12)
where ). = 1if e is separating and j. = 0 otherwise. The coefficient of z in this sum reads

0. (VN”(M, L))

_ M P(Le,) e oo le de.
_re% |AUt I /Rir vle_v[ VO (e (Brenc) eo(1— e teo)2 fadte, [ ] ette —1°
gmn r

, e#eg
eg€Er

(4.13)

Let G é,n be the set of ordered pairs (T, eg) where I' € G4 and ey € Er. We introduce the map

/
|_| Gg1,1+n1 X G92,1+nz> Gg ns

{(g1.J1),(g2,]2)}
g1t92=9g
JiuJo={1,..n}

glu: <G91,2+n [

which consists in adding an edge between the two special leaves — the two first leaves in the connected
situation and the first leaf of each graph in the disconnected situation. This map is surjective but not
necessarily injective. More precisely, if (I',e9) € G é n let us cut eg to create the stable graph I'" with n
labelled leaves and 2 unlabelled leaves. Let ar: be equal to 2 if '’ is invariant under the permutation of
the two unlabelled leaves, and ar: = 1 otherwise. If I'’ is disconnected, we must have ar, = 1 because
the two connected components can be distinguished by the subsets J; and ], of leaves of the initial
graph that they contain. Furthermore, the number of automorphisms of I' is the product of the number
of automorphism of its connected components. If I'" is connected, it must have genus g — 1. If ar» =1,
there are two distinct graphs in G4_124n, that differ by the labels of the two first leaves, which lead
to (T, eo) after application of glu. If ar/ = 2, these two graphs are actually isomorphic. So, when I’ is
connected, we always have

lu (I ==

|g u ( ’ eo)‘ ar

Finally, we notice that for (I, eg) € Gé,n and I e gluf1 (T', e0), we always have
|[AutT| = ar/ |Aut ).

Partitioning the sum (4.13) according to the fibers of glu we obtain

2o (VNYZ (B Ly, .., L))
_ / Bllo)e ™ e,
Ry

(1 _ e*tzg)z
1 v L de,
X {2 \Autl‘\ /Er H VO ko) (Le)ecev), (T )aeaw)) H T
FEGQ —12+n eckr
1 M {o di,
+§ Z H Z |AutF| H vay 1 (€ ek, v)r (TA)aen, (v ))H ot 1) (
{(g1, 11 ,(g2,J2)}i=1 eckr,
g1+92=9 Gngﬂm
JiUJ2={1,..m}
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where E;(v) and A;(v) are the set of edges and leaves of I}, and if A is a special leaf we set L) = €. We
stress that 1 in the last line comes from j., = 1. We recognise the sums over stable graphs

~ ~ £, de
M e e
VN (L, .o L) = |AutF| /Er H VOy ((Le)ect(v), (MA)aen)) 11 St _ 1

re ng ve e€Er

which already appeared in the proof of Theorem 3.5. We can replace the last sum over pairs with a sum
over ordered pairs up to multiplication by an extra factor of 3. All in all,

2 1 Yo e
az:O(VNg,nN’}le--~,Ln)) = E/R m VNg 120 (&G L, L)
1
+5 > VNG ]1)VN;2,1+|J2|(€,]2))€d€.
gi1+go=
]1'—']2 {Ll,u?Ln}

(4.14)

We multiply the boundary lengths by  and divide t by 3 in order to insert this formula in (4.12).
Notice that the quantity in parenthesis in (4.14) now contributes to an even polynomial in ¢, such that
the monomial (™ is a polynomial in (B/t), of top degree 6g — 6 + 2n — (2m + 2). We recall that the
f — oo leading behaviour of VNt/ P from (3.10) is expressed via the Masur—Veech polynomials VO
Since
: 2m+-1 - 2m—1

(51220 p? / 1 — e—tf/B € dl = e 11)(13)@ d¢ (4.15)
is finite for any m > 0, only the m = 0 terms will contribute in the leading 3 — oo behaviour of (4.12),
in which case (4.15) is equal to t 2 co[\p] which exist since ¢ — £~ !(¢) is integrable. We arrive at the
formula

lim B9 6TMYNE (pg b BLy, ..., BLn)

B—o0
1
=5 colW] Eld] {t“g(’““’
1
(vag 126n(0,0,thy, . thy) + 5 > vng{Yth(o,h)vagﬂz‘,’lﬂzl(o,]z)ﬂ,

g1+92=9g
JilJa={L1,...Ln}

which is the first desired formula. To obtain the second formula, we remark that all  — oo limits used
in the previous arguments are uniform for Ly, ..., L, in any compact of R>(. Hence

lim B~ 97 CMYNE (ppdi Ly, ..., L)

B—o0
1
— 2 colt] el {t“gé*zm
1
' <VQ1;AXL2+n(O) +ty ) vay 1+|11(O)VQ242\,]1+|12(0)>}

g1+9>=g
JilJa={L1,..,Ln}

The effect of ¢[¢] factors out to give ceg—s+2n[Pp] and the sum over the partition J; U Jo = {Ly,..., Ly}
yields binomial coefficients, hence the formula we sought for.

The statistics N are perhaps more natural. Their expression slightly differs from (4.11) by one factor
e /P less in front of  — this factor was previously due to the contribution of yy to the total length that
was included before evaluating ¢. Namely, we have

N (01055 0) = /R (1) 9. (NYP* (; 0)) dt
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with

bz 2 (Cs(y )) Lo
NyFWo)= > ] e <1+ V= m)>'

CEM;: YETT C)
All the previous argument can be carried over, except that we use instead of (4.15) the limit

lim B2 / Lﬁemﬂdez% P()ePm1de,
( Lal):

oo Jr, (1—e t/B)2

which yields the same result. O

5 Computing Masur-Veech polynomials

The Masur-Veech polynomial VO}'\ has degree 6g — 6 + 2n. As explained in Section 2.7.1, we decom-
pose it as follows

n 24

VO (Ly, ..., Ly) = > Fonldy, ..., dn] [[ 55— 3d, 711 (5.1)
di,...,dn >0 j=1 +

di+--+dn<3g—3+n
In this section we drop the superscript MV on the Fy,,’s as it will always refer to the coefficients of
(5.1). By symmetry, Fg , can be considered as a function on the set of partitions of size less or equal to
3g — 3 +n. It is convenient to give a name to the value of Fy  on partitions with a single row

Hgnldl = Fgnld,0,...,00 and  Hy[d] = Ho,[d].

By convention, if some d; is negative or if 2g —2 +n < 0, we declare Fy[dy,...,dn] = 0. We are
particularly interested in the Masur—Veech volumes which — up to normalisation — are the values of this
function on the empty partition

2497241 (4g — 4 + n)!
(6g—7+2n)!

MV = Hgn 0], (52)

5.1 Leading coefficients via stable graphs

We denote Hz,n [d] = Hgn[3g —3 4+ n — d] and consider low values of d. In other words, these are
the coefficients appearing in front of the terms of high(est) degrees in the Masur—Veech polynomial
VOMY(L,0,...,0). They can be computed efficiently with the stable graph formula, or equivalently
with Proposition 3.9, since for degree reasons only stable graphs with less than d edges will contribute.
We give a few examples of such computations, starting from the expression

—

(69*5‘}’2“72(1), —(3g—3 3g—3 —d
H* — g +n)+2d7,[2d/ Zan g—3+n
=g s rn_ay m,n[ orlath

where [- - - ]4 extracts the component of cohomological degree 2d.

5.1.1 Genus zero.

To compute the vertex weights, we will use the formula [41]

(n—3)!
my o __
/mz Hlb Zlmln 3d' d !/

on {=1

which is a consequence of the string equation for the 1 classes.
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o d = 0. The computation of the integral is trivial and we have

<o) = 2 =) na_ _(2n=5)
Halol= 2n-3(n —3)! /Smo,n b= 23 (n—3)!

e d =1. The only contribution comes from the stable graph with one edge joining two genus zero
vertices (Figure 1). As the Y™ * carried by the first leaf saturates the dimension of the moduli space
at its incident vertex v;, this edge must have degree 0 and receives a weight @ = 71‘—; Then, the
contribution from each vertex after integration is equal to 1. It remains to distribute the leaves labelled
2,...,n between a first group of n — 3 which will be incident to v, and a second group of 2 which will
be incident to the second vertex. Hence

(2n —7)! (nfl)(n—Z)T[2

Halll = 2n2(n —4)! 3

n—3
=~

lI)11174 BZTT[Q (ngl)

Figure 1 — Stable graph contributing to H} [1].

o d = 2. We have to consider stable graphs with vertices of genus zero with 1 or 2 edges (for cohomo-
logical degree reasons the graph with no edges does not contribute). There are four cases (Figure 2).

la- Two vertices are connected by an edge, the extra 1 class lies on the same vertex as }]* . There

are (“2_1) ways to pick two leaves carried by the second vertex. The contribution of the first vertex
is fo,. Y2’ = n — 4, and the contribution of the second vertex is Jor,, 1 = 1. The edge
| Byl '

contribution is =

1b— Two vertices are connected by an edge, the first vertex carries {]' > and the extra \ class lies on
the second vertex. There are (“;1) ways to pick three leaves to the second vertex. Both vertex

contributions are equal to 1, and the edge contribution is %.

2a- A central vertex carrying \}' > is connected to two other vertices carrying no 1 class. There are
(5 ;;iS) ways to pick two leaves for each of the two non-central vertices. The contribution of
each vertex is 1, each edge contributes to a factor @ and we get an extra factor of a § from the
automorphism of the graph (exchange of the two non-central vertices).

2b- There are three vertices connected by two edges and ] is carried by an extremal vertex. There
are n — 1 choices for the leaf on the central vertex, and (“;2) ways to pick the two leaves for the
second extremal vertex. The contribution of each vertex is 1, each edge contributes to a factor of

2 .
T sz , and there are no automorphisms.

Summing up all contributions we obtain:
. - (2n—9)! [ |Bylm* n—1 n—1
bl = 2n7(n5)!{ 4 ((“_4)( 2 )*( 3 ))
By?\?*/1/ n—1 n—2
5) Glaants) im0 (7))
2n—-9)! (m—1)(n—2)(5n*+17n—120) ,

= 2 Tm—5) 5760 T
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Figure 2 — Stable graphs contributing to H;, [2].

5.1.2 Genus one

Here we will need the classical formula

1
P = — (5.3)
. 24

which is sufficient to compute Hj | [d] for d = 0,1. More general } classes intersections in genus one
would be necessary to push the stable graphs computations further. For instance, we will compute
below Hj | [2] using

_ n—1
Yy = ——

4
- Y (5-4)

We present in Appendix A a closed formula for arbitrary genus one 1 classes intersections (including
(5.3) and (5.4)), which we prove in an elementary way using well-known facts, but for which we could
not find a reference.

o d = 0. The only stable graph contributing has a single vertex, and with (5.3) we obtain

L1 (@2nt1)!
1’“[0]7ﬁ 2nn!

o d =1. We have to consider the stable graphs with a single edge, which is either separating or non-
separating (Figure 3). This edge cannot carry 1 classes and its contribution is BZTWZ. In the separating
case, there is a vertex of genus one which carries the 11){"1, which is connected to a second vertex of
genus zero. There are (", ') ways to distribute the two leaves on the genus zero vertex. The contribution
of the genus zero vertex is 1 and the contribution of the genus one vertex is fﬁl,n—l =4 Inthe
non-separating case, there is a single vertex, which has genus zero; its contribution is 1, and we have an

automorphism factor of % (exchange of the two ends of the edge). Hence

c . (2n=2)1 By (1 1 (n-1
le“[l]_2“—2(n—1)! 2 <2+24< 2 ))
(2n—2)! (n?-3n+26)

T n2(m 1) 576 .

e d =2. We have to consider stable graphs with one or two edges (Figure 4). When there is a single

4
edge, its contribution is % as we have an extra \ class to distribute at one of its ends. Four cases

appear.

la- There is one non-separating edge on a single vertex of genus zero. The extra 1 class is carried by

one extremity of the edge, forbidding non-trivial automorphisms. The contribution of the vertex
7Byl

is fﬁo,n o 11){"211)2 = (n—1), and the contribution of the edge is —*
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Figure 3 — Stable graphs contributing to Hf_, , [1]. The black vertices have genus zero and the green
ones have genus one.

1b-

lc—

1d -

The vertex carrying }}'? has genus one and also carries the extra \ class. It is connected to a
genus zero vertex, which has two leaves and there are (", ') ways to choose them. The contribu-
tion of the genus one vertex is fﬁl,nfl YA, = 22 using (5.4), the contribution of the genus
zero vertex is 1.

The vertex carrying ' ~* has genus one and is connected to a genus zero vertex carrying the extra

P class. We can pick the 3 leaves incident to the genus zero vertex in (“;1) ways. The contribution

of the genus one vertex is fﬁ LB > = L while the contribution of the genus zero vertex is 1.

e vertex carryin ~“ has genus zero and is connected to a genus one vertex carryin e extra
The vert y 2h d ted t t ying the ext

1 class. The contribution of the genus zero vertex is 1 and the contribution of the genus one vertex

: _ 1
is fﬁm P =5

When there are two edges, each of them contributes by a factor of BZT”Z and there is no extra 1 class.

2a-

2b-

2c—

2e—

The vertex carrying Y2 has genus zero, is incident to a non-separating edge forming a loop,
and the second edge connects it to another vertex of genus zero. There are (™ 1) ways to choose
the two leaves on the second vertex. The loop is responsible for a symmetry factor of a 3, and the
contribution of both vertices is 1.

The vertex carrying "2 has genus zero and is connected to another vertex of genus zero which
carries a loop. The latter yields a symmetry factor of a } and the contribution of both vertices is 1.

The vertex carrying "2 has genus zero and is connected to another vertex of genus zero by two
edges. To the second vertex should be assigned a leaf and this can be done in (n — 1) ways. There
is a symmetry factor of a 3 for the exchange of the two edges, and the contribution of both vertices
is 1.

The vertex carrying }}* 2 has genus one, it is connected to a vertex of genus zero with one leaf,
which itself is connected to another vertex of genus zero with 2 leaves. There are (n — 1) (“;2)
ways to assign the leaves. The contribution from the genus one vertex is fzm ~Py =L and
the contribution of the genus zero vertices is 1.

There are three vertices, the central one has genus one and carries ]2, the extremal ones have
genus zero and carry two leaves each. There are (Zan 5) ways to assign the leaves but there is
a symmetry factor of a 1 for the exchange of the two extremal vertices. The contribution of the

genus one vertex is fﬁl ll)“ 2= 24 and the contribution of the genus zero vertices is 1.

Summing all contributions, we obtain

. o (2n—3)! B2\’ /1 /mn—1) 1 n-1 11/ n-1
Hlf“[2]2n—4(n—2)!{< 2 ) (2( 2 )+2+ 2 + oo < >+22<2,2,n—5>>
1
24

|B4|rc n—-2/m-1 1
+ B (o1 222 (M >+24( H
5n +2n% +127n% + 1162n — 768 -y
138240

|
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Figure 4 — Stable graphs contributing to Hf_, , [2]. The black vertices have genus zero and the green
ones have genus one.

5.2 Virasoro constraints

In this paragraph, we write down explicitly the recursion of Theorem 1.2 for the coefficients of the
Masur—Veech polynomials. It is obtained by inserting the Kontsevich initial data (2.12)-(2.13) and the
twist uq,p given by Theorem 1.2 into the general formula (2.15) and recursion (2.11). It is equivalent
to Virasoro constraints, obtained (see e.g. [10]) by conjugation of the Virasoro constraints for 1 classes
intersections, with the operator

iy (2a+2b+1)!¢(2a +2b +2)
u_exp< Z Eua,b axaaxb>/ ua,b = (2a+1)!(2b+1)! .
a,b>0

BASE CASES — When 2g — 2 +n = 1 we have

(2 1
Fosldi, d2, ds] = 84,,d,,d5,0, Fi1ld] =840 % + 041 3

We assume 2g + n — 2 > 2 in what follows.

STRING EQUATION —

n
Fonl0,dy,...,dn] =) (Fg,nl[dz,...,di — 1., dn] 4840 ) ((2a+2)Fgn (g, dz,...,di,...,dn)>

i=2 a>0

1 (2a 4 2b + 4)!

X <Fgl,n+1 la,b,dy, ..., dn] + Z Froiiyila, JIFRs 14457 [b, ]'])
h+h’=g
JuJ'={dz,..,dn}

36



DILATON EQUATION —

(2a +2b +2)1(2a + 2b + 2)

n
1
Fg,n[lleI"-/dn] - <;(2di+l)>F9,n—l[d2/“- +Eab>0 2a—|—1)(2b+1)

X (Fgl,n+l[a/ b,dy,...,dn] + Z Froasla, JIFn 1457 [b, m)
h+h'=g
JuJ'={ds,...,dn}

FOorR d; > 2

n

Fg,n[dlr" -/dn] - Z(zdl + 1)Fg,n71[dl + di - 1/ d2/" .,(i\i,.. -/dn]

i=2
(2a +2b +3 —2d;)!¢(2a +2b + 4 —2d;)
5
+abZ>O< b2 Sazd i (2b+1)!(2a +2—2d)!

X (Fg—l,n+l[a/ b,dy,...,dn] + Z Froitipila, JIFns 14457, I’])
h+h'=
]UI':{dz ----- dn}

In genus zero, the string equation (i.e. the first member of the Virasoro constraints) gives a recursion
which uniquely determines all Fon(di,...,dn). Indeed, this number could be non-zero only when
dy + - - - + dn < n—3, which implies that at least 3 of the d;’s are zero. By symmetry we can take one of
these zeroes to be d;, and apply the string equation.

5.3 Recursion for genus zero, one row

If we specialise the Virasoro constraints to g = 0 and d, = --- = d,, = 0, we obtain a recursion for the
H,[d] = Fonld,O,...,0l.

Corollary 5.1. We have that

Hnl0] =8n3+ (n—1) ) (2a+2)Hn 1[a]
a=0

1 (m—1)! /[(2a+2b+4)1{(2a+2b+4)
+22<;_3mnlj)!( B2 1) +C(2a+2)C(2b+2)>Hm[a}Hnj[b],
b0
o 1 (n—1)! (2a+2b+2)1G2a+2b+2) '
Ha[l] = (n 1)Hn71[0]+22<;_3jl(n_1_j)! a6 =11 HilaHy—; [b]
b0
and ford > 2
Hold) = (n—DHo qd -1+ Y Dt
2<j<n— 3]( n—1-j)
a,b>0
1 (2a+2b +3—2d)!{(2a + 2b + 4 — 2d)
X (25“‘”"1”5“?‘“ (20 + 1)!(2a + 2 —2d)! )H”J[ alHy[bl.

The last equation could also be written so as to give symmetric roles to a and b in the last term, and it
is then easy to see that it is also valid for d = 1. This recursion determines uniquely the H,,[d], and a
fortiori the genus zero Masur—Veech volumes

2" 2(n —4)!

MVor = = =71

H,, [0].
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We have not been able — even using generating series — to solve this recursion. It can however be used
to generate efficiently the numbers H,, [d].

From intersection theory on the moduli space of quadratic differentials, a closed formula is known for
area Siegel-Veech constants in genus zero [15] and then the Masur—Veech volumes in genus zero [5].

Theorem 5.2. We have that

SVon = MV =325 m,

6m2
|

In fact, using Goujard’s formula® (Theorem 4.1), it is easy to see that the formula for SVj,, and the
formula for MV;,, are equivalent. If one could guess a closed formula for the H,[d], it should be
possible to check that it satisfies the recursion of Corollary 5.1, and by uniqueness deduce a new proof
of Theorem 5.2.

Based on numerical data, we can guess the shape of a formula for fixed d but all n.

Conjecture 5.3. For each d > 0, there exists a polynomial P4 of degree d with rational coefficients such

that
(2d+1) Pyn) (2(n—3-—d))! 2(n-3-d)

Hnldl = (2d — 1)1 2n=8=d) (-3 —qd)! (5-5)
The formula for d = 0 uses the convention (—1)!! = 1. Equivalently, there exists P4 € Q[x] such that
H, [d] xn1 -
%(X; d) = Z An—3-d) (n — 1)| = |:Pd(X)(1 — x)3/2:|
n>d+3 : =>d+2
where [- - -]> 442 means that we only keep monomials of degree greater than d + 2.

The formula is true for d = 0 with Pg(n) = 1 according to Theorem 5.2. For low values of d, we can
find polynomials P4(n) interpolating the values Hq3([dl, ..., Hoq+3[d] (see Table 5). Formula (5.5) then
gives the correct values H,, [d] for the n > 2d + 3 that appear in Table 11.

5.4 Conjectures for Masur-Veech volumes with fixed g

For fixed g, the number of a priori non-zero coefficients Fg,[d1, ..., dn] grows faster than any polyno-
mial in n, and the Virasoro constraint determines them by induction on 2g — 2 + n. If one is interested
primarily in obtaining F4 [0, ..., 0], there is a more efficient way to use the Virasoro constraints.

In genus zero, we already saw that it implies recursion for the values of Fy, on partitions with one row.
More generally, if k > 0 and we specialise di41 = -+ = dn, = 0, we also get a recursion expressing
the values of Fg, on partitions with at most k rows, in terms of the values of Fy,/ for n’ < n on
partitions with at most k rows. The same specialisation in genus g > 0 expresses the values of Fg
on partitions with at most k rows in terms of the values of F4/ / on partitions with at most k rows for
29’ —24n’ <2g—2+mn, and the values of Fy_; 1 on partitions with at most k + 1 rows. In this way,
reaching Fg [0,...,0] only requires the computation of a number of values of the F,,,’s which grows
polynomially with n.

Based on numerical data, we could guess general formulas for MV ,, for low values of g but all n. We
start by defining the generating series

Hg,n[0]
Hy() = ) e

n>1

XTL
; + 59/0 M(X) (56)

2The reader looking at Theorem 4.1 may think that to derive a formula for M Vj ,, from the knowledge of SVy,, one also
needs the data of M V(3. Actually, in the literature M V{3 is ill-defined, while for us, in the context of statistics of length of
multicurves, it makes perfect sense and is equal to 4. In the formulation of her result [22], Goujard wrote separately the terms
that we included as contributions of (0,3) in Theorem 4.1. Therefore the extra value of M V(3 = 4 can be seen as a convention
and the two formulas for SV, and MV, are indeed equivalent.

38



d Pd(n)

0|1

1 | n—3

512 — 34n + 52

2(32n3 — 367n% + 1307n — 1392)

%(4138714 — 70496n> 4 41996912 — 1002721n + 751506)

N G| =] W[ N

L(1766m° — 41536n* + 365383n° — 1459754n> + 2493951n — 1221210)
35(6377776m° — 197270496n° + 2385358645n* — 14079371820n° + 40768140229n>
—48501218874n + 9190581840)

7 % (52783968n7 — 2073237920n° + 32861488488n° — 2667675481251 + 1152274787382n3
—2422330473875n2 + 1627352271762n + 713960984880)

8 55—6 (3504015400n® — 170178415232n7 + 3416784683368n° — 36378043869776n° + 217683482202865n*

—701967732545618n3 + 976060154881647n? + 86564417888466n — 937368548035920)

Table 5 — Polynomials appearing in Conjecture 5.3 for Hy, [d].

where we allow for a conventional choice of a quadratic polynomial &7 (x). Theorem 5.2 implies that we

can take g 4
O . \5/2 _9° = 2
15(1 x)°/7, o (x) 15 3x+x

where the role of &7 (x) is to cancel the coefficients of x°,x!,x? in the expansion of ./%(x), since they do
not correspond to Masur-Veech volumes. The MAPLE command guessgf recognises that the values of
Hi,1[0] that we have computed for n =1, ...,20 match with the expansion of

In(1—x) ~ Vi-—x N 1
24 12 12°

Hy(x) =—

HA(x) = —
It suggests that, for g > 2, J7;(x) could be a polynomial of degree 5(g — 1) in the variable (1 — x)~1/2
with rational coefficients. Although the command guessgf fails for g > 2, we are on good tracks. If we
attempt to match this ansatz for g = 2 and 3 with the data of Table 13, we discover that this polynomial
has valuation 4(g — 1). This leads us to guess that the generating series we look for may have the form

_Iny
12
where Q4 is a polynomial of degree g with rational coefficients. We then determine the polynomials P

such that (5.7) reproduces correctly the values Hgy ,[0] for n < g + 1, and checked that they predict the
correct values Hg ,,[0] for higher n that we computed in Table 11 with the recursion of Section 5.2.

Hy(x) = 81 +Y° 179 Qqly)  with  y=v1-x (5.7)

Empirically, we recognise the top coefficients of these polynomials
coeff of y9 in Qq4(y) =22729 (4g —7)!!by (5.8)
where by = (21729 —1)(—1)9 Bﬂ} are the coefficients of expansion in

29
z/2 2
sin(z/2) PELTERS

g=0
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g | Qgly)
0 | -
1| —5y+5
2 | %Y+ maY + o
3 | siameY’ ey T s T+ e
4 52411%8094 + 8824572316093 + 1726%25;2092 + 26857482508y + 73232320
5 301696;9388895 + 311485974298094 + 5%2%%1093 + 1%%?3;4142 + 535%?357369 + 81439331465556
6 67232%18?2096 + 1818373423563830095 + 1592522022()9%73953512094 + 8246993240:586101‘}3
+ 11653801%5?36975827092 + 122027390253915145?414 + 128225289;5%19966010

Table 6 — Conjectural generating series for Masur—Veech polynomials.

Equation (5.8) is also valid for g = 0 and g = 1, if we use the values (—7)!! = —1—75 and (—3)!! = —1 given
by the analytic continuation of the double factorial via the Gamma function, and if g > 2 we discard
the coefficients of x°, x! and x2.

Returning to the coefficients of the generating series and then to the Masur—Veech volumes (5.2), Equa-
tion (5.7) is equivalent to the following structure for the Masur—Veech volumes. Let us first define

1
Vk—4k s

Conjecture 5.4. For any g > 0, there exist polynomials py, q4 € Q[n] of degrees

[(g—1)/2] ifg>0

degpg = { — 00 if g= 0 and deg qg = LQ/ZJ

such that, for any n > 0,

MVgn _on (2g—3+n)!(4g—4+n)!
meg—6+2n (6g—7 +2n)!

(Pg() +Y2g-3:n gg(n)). (5.9)

For g = 0, the formula (5.9) agrees with Theorem 5.2 if we choose po(n) = 0and qo(n) = %. Up to genus
5, the conjecture is numerically true in the range of Table 11 for the following choice of polynomials
(which can be deduced from Table 6).

5.5 Conjectures for area Siegel-Veech with fixed g

Area Siegel-Veech constants SV ,, can be computed from Masur—Veech volumes thanks to Goujard’s
formula, see Section 4.2. The correspondence between the notations of Section 4.2 and the present one
is Fg(x) = Hy(x) — bg,047 (x). If we insert the conjectural formulas for the Masur—Veech volumes, we
can obtain conjectural formulas for the area Siegel-Veech constants.

Corollary 5.5. Assuming Conjecture 5.4, for any g > 0, there exist polynomials pg, q; € Qn] with
degrees
(g +3)/2] ifg>0

T if g =0 and degqy =1+ g/2]

degpy = {
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g | pg(n) qg(n)

010 i

15 §

2 % 123?65TL + 18

3 | Fmsnt o s0s 1+ 20

4 | 25N+ i s+ S + 39630

5 | g™ + iemeren™ T Gesass0 Togsss ™t Gseszorsre ™ + Saeaomas

6 50406613 112 | 11411443987, | 61888029881 2562397434368 |13 | 185272085982144 1.2 | 900828325820789%, | 1636294928657
3325639680 27713664000 26453952000 | 352859220016875 640374140030625 'Y T 2470014540118125 110827591875

Table 7 — Polynomials conjecturally appearing in the Masur—Veech volumes.

such that, for any n > O such that2g —2+n > 2

Svg,n : Mvg,n _ (29 3+ Tl.) (49 4+ n) pz (Tl) i " (Tl)
megstm (69— 7+ 2n)! 293 +n ' Y2o¥mdglt )
or equivalently
Py(n) *
1 7g53n T Y2g-3+n qg(n)

SVgn = .
o us Pg (n) + Y2g—-3+n dg (n)

The expression of the polynomials is displayed in Table 8: it is deduced, after computation of the sums

(4.1), from Table 7. For g = 0 the conjecture matches with Theorem 5.2 with p; = 0 and q; = %2
* *
g | pgn) q3(n)
n+5
010 S
1,2 1 1
1 T Tl N+ 1
5 811 14 2 329
2 | g + n + 7080 5™ — 324“ + 50
245 3 143 355 11861 892 50007\ 69617
3 | ™ — 7™+ it o 5T + e + S35
1757 13 | 1428289 0 | 514241 4368611 503264 3 320892 _2 | 480686827 14820167
4 | T35068™ T 3299200 ™ T T20600 ™ T 388800 70366725 T64189025 ¥ T 1970268300 '* T 4592700
38213 .4, 867413 |13 353097203
5 | 201559 50383450 3557193600 41816032 3 | 48489191848 2 | 1269997838947 | 957632044
3588702975 125604604125 251209208250 44778825
| 124054303 ) | 128194553
55112400 10497600
50406613 |14 | 6397638461 113 | 8797861897271 2 1281198717184 4 | 931707432208544 1.3 | 6702081021375716 1.2
6 | 19953838080 198845952000 3491921664000 1058577660050625 51870305342480625 51870305342480625
7511464839971 1\ | 1022121309813 | 302389725584280713 1| | 1719710639461433
317447424000 123451776000 103740610684961250 79130900598750

Table 8 — Polynomials conjecturally appearing in the numerator of SV .

Proof. We already mentioned that an equivalent form of Conjecture 5.4 is

Hy(x) =)

n>0

Hgn[0]

H g9—6+2n

_Iny 5

12 a1 T Qely),  y=vi-x
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We recall from Table 6 that Qy(y) = —% and Qq(y) = %H Therefore

WHy(x) =y° 9 Qgaly),  RAG(X) =y Qqaly), 0 (X)0xHG(x) =y> 9 Qquaaly)

5.10
where Qg;; are polynomials of degree g with rational coefficients o1
% ifg=0
Qga(y) = %ﬂ ifg=1
30-1)Qq(y) —3Q4(y)  ifg>2
—1 ifg=0
Qgaly) = ¥ ifg=1

2(g—1)(59 —3)Qq(y) + 1(9—109)Q4(y) + 1Y*QY(y)  ifg>2
Qg+2;3(y) = 2(% _y2) Qg;l(y)

With 74 (x) = J;(x) — 84,04 (x), we recall from the proof of Corollary 4.3 that

SVyn - Hynl0] X™
Fg(x) = Z 7?[6974+92n Tl
n>1

2g+m>0

1 1
= (aig\gl(X) + E
9

=1 0xFg,(x) - 6,(992(7()).

1+92=9g

From (5.10) we deduce for any g > 0 the existence of Ry, 3 € Qg[y] such that .7 (x) = Y9I Rg15(y),
that is

Tgk
Se() =) _ e 5vvnn (5.11)
k=0

for some rational numbers 14 € Q. For g > 2, (5.11) contains only negative powers of y = v/1 —x.
From the expansions

1 _Z(b—i—n)! x™

b1 T nr’

(1—x)b+ 4 b
1 B Z bl (2b+2n)! (x/4)"
(1—x)b+1/2 _n>0 2b! (b4+n)! n!

it easily follows that

(49 — 6 +2n)! * (n)

— (0g— 15*
SVgn Hgnl0] = (2g 4—|—n).pg(n)+42973“1(29_3_’_“)! g

for some polynomials p and g with rational coefficients and degrees as announced. Multiplying by
the prefactor of Equation (5.2) yields the claim, with polynomials py and qj differing from pj and §j
by prefactors that only depend on g. The cases g = 0 and g = 1 can be treated separately, with the same
conclusion. O

5.6 Conjectural asymptotics for fixed g and large n

Let us examine the asymptotics when n — oo assuming the conjectural formulas for Masur-Veech
volumes and area Siegel-Veech constants. Since vy ~ (1tk)~1/2 when k — 0o, we obtain when n — oo

Mvg,n ~ 7.[6976+2n+€(g)/2 n9/2 mg, 6(9) —

{ 0 if g is even (5.12)

1 if gisodd ’
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g Mg Sg
0 32 0
1
1 1 6
7 225
2 080 3
3 245 171264
7962624 8575
4 37079 24227775
96074035200 2712064
5 38213 85639233536
28179280429056 2322395075
6 5004682489 19363429564990875
369999709488414720000 1311947486396416

Table 9 — Constants in the conjectural asymptotics of MV, and SV .

where 2°977my € Q is the top coefficient of 4 if g is even and the top coefficient of pg if g is odd,
see Table 9. We observe that the coefficients which we could recognise in (5.8) are not relevant in this
leading asymptotics, as they rather appear proportional to the constant term in pg or q4. For the area
Siegel-Veech constants we find whenn — oo

_n+5-—5¢g Sg

—1
SVgn = 612 Bl O™, (5.13)
where sy € Q are given in Table 9 for g < 5.
By [15, Theorem 2] we have that
o n+5—>5g
?SVQ’“ =— 15 + Agns (5.14)

where A are the sum of the g Lyapunov exponents of the Hodge bundle along the Teichmiiller flow
on the moduli space of area one quadratic differentials Q'9Mg .. In particular A§n € [0, gl and we can
observe the coincidence of the main term in (5.13) and (5.14). Based on extensive numerical experi-
ments, Fougeron [21] conjectured that for each g we have /\;TL =0(Mm %) asn — oo. The conjectural
asymptotics (5.13) provides a refined version of Fougeron’s conjecture.

We notice that the power of 7t appearing in the asymptotics depends on the parity of g. Both for MV
and SV .., we have an all-order asymptotic expansion in powers of n~1/2 beyond the leading terms
(5.12)-(5.13).

5.7 Conjectures for H; ,,[d]

We can generate the numbers Hj ,[d] in the following way (see Tables 15-16).

(i) We record the Hy[d] = Fon(d,0,...,0] computed in Section 5.3.

(ii) The specialisation of the Virasoro constraints to genus zero and d; = --- = d, = 0 gives a recur-
sion (on the variable n) for Fo[d1, d»,0, ..., 0] using (i) as input.

(ii1) The specialisation of the Virasoro constraints to genus oneand d, = - - - = d, = 0 gives a recursion
(on the variable n) for Hy [d] = F1,[d,0,...,0] using (i) and (ii) as input.

Notice that obtaining H1  [d] requires from (ii) the knowledge of Fom[d1, d2,0, ..., 0] for arbitrary di, do
(they can be non-zero only for d; + d; < m —3) and m < n + 1, and from (i) the knowledge of H,,/[d]
for arbitrary d < m—3and n’ < n.
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d | pa | Ra(n)

0| & |5

1 Il in-1

2| B | A0 -Fnt+

3 | EZnd—2n24 Bn 4 18

4| 5% | Bont S+ G+ S — B0

5 | B | B T A — T — T

Table 10 — Parameters of the conjectural formula (5.15) for Hy  [d] with d < 5.

The data we have generated leads us to propose the ansatz, forn > d +1
Hinldl =292 (m—1—d)!(pa(n—1)--- (n—d) +yn_1-aTa(n)) (5.15)

for some rational constant pq and some polynomial r4(n) of degree d with rational coefficients. This
formula makes sense even though the arguments of the factorials can be negative. Indeed, the first term
yields (n — 1)!p4, while for the second term, if k is a negative integer, we use

lim Nive — lim FM2N+1) 1 (k+1)!

Nok N T BTN D) T 2 2k 1)
We wrote (5.15) in this form to stress the analogy with (5.9). Equation (5.15) for d = 0 indeed matches
(5.9) with the values 19 = q = ¢ and py = p1 = ¢ already found in Table 7.

For a fixed value of d € {0,1,2,3,4,5}, we have determined R4 and pq4 (Table 10) by matching the
values of Hj q41[d], Hi,a42[d], ..., Haa42[d] and we checked that (5.15) predicts the correct values for
2d +2 < n < 14. We observed that the formula (5.15) does not give the correct value for n = d.

However, for this particular case we prove in Section 5.1.2 that H; n[n] = i (2;:11!)! using stable graphs.

A Closed formulae for the intersection of 1\ classes in genus one

Lemma A.1. For a fixed integer n > 1, we have
1 n n—> .b;
I = - i b+ +by—2)1%, (Al
R 24{(%_._,%) x (albl,...,anbn)(ﬁ b )} (A1)

and the sum of all such integrals is

1 B 1 n_nfl nn—j (Tl—l)'
9371,nl_[in—1(1_1bi)_24<n ZJ(J+1) (n_j_l)!>' (A.2)

j=1

We use the convention that summands involving negative factorials are excluded from the summation.
In particular we retrieve (5.3) and (5.4) used in the text.

Proof. Let us recall the following result.

Theorem A.2 (The conjecture of Goulden—Jackson—Vainshtein conjecture [24], the theorem of Vakil [37]).
Let u be a partition of d of length n = {(u). The simple connected Hurwitz numbers hg—; , of genus
one and ramification profile p over zero are given by

]'1'9:14L — i ﬁ ch
mraf 2411

(ar=am = =21 s, un) ), (A3)
j=2
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where s; is the j-th elementary symmetric polynomial. |

On the other hand the ELSV formula [14] in genus one gives

9 =Lu Hl 1-N
b R A.4
n + d)! H ! Min Hi:l(l — i) ( )
Combining the two we obtain
1— M\ 1 IR i
= = (d"—d" =) (G—=2)1d"s;(m,. .., Hn) ). A5
ﬁlln Hi:1(1 _ Mill)i) 24( Z ] ) Hl I'L ) ( )

j=2

The contribution corresponding to the intersections of A is easily removed by erasing the second sum-
mand d"': indeed, considering d as 11+. ..+, the right hand side is a polynomial in the p; involving
only two degrees, which are n and n — 1. On the other hand, the summands of degree n — 1 must corre-
spond to all and only the monomials in 1 classes intersecting A;. Now, to prove (A.2) substitute p; =1
for each i and observe that s;(1,...,1) = (’]‘) To prove (A.1), collect the coefficient of i - - - pu&» in the
right hand side after the substitution d = p; + ... + pyn. This concludes the proof of the lemma. O

Remark. A longer but more detailed way to remove the contribution of A; to prove (A.2) is by using A4
theorem.

Theorem A.3 (The A4-theorem [19]).

/7 lbill "'1-')?1“}\9 _ <29 3+T1>/ 11)29 2}\ (A6)
Mg n a,...,a

Its specialisation in genus one reads

n—1 n—1 1
e (s w
Min ! a M ai, ..., Qn My, ! ai,...,an /24 ( )

This can also be seen for instance using that A; is represented by the Poincaré dual of the divisor of
curves with at least one non-separating node times 5;, then pulling back the class via the attaching map
and integrating over My 4> gives the same result. In any case, summing over all tuples of non-negative
integers a; such that ) ; a; = d — 1 gives, using the multinomial theorem

M 1 n—1 1 .
_ P Ppinp = — ( ) =—n""", (A8
o, [ (=) Zan . e " 24 Za o \at...,an/ 24
Z ;11,:1111 Z ,(11,:T111

which equals the second summand in equation (A.5) after the substitution p; =1 for all i, and therefore
n = d. Removing it from (A.5) and simplifying the expression proves again (A.2).

B Computing Masur—Veech polynomials with Eynard—Orantin topo-
logical recursion

For readers who are unfamiliar with the topological recursion a la Eynard-Orantin, we compute a few
Masur-Veech polynomials via w}'y (Proposition 3.8), i.e. applying the residue formula (2.9) to the
spectral curve given by € =C and

z? dz; ®dz, 1 dz; ® dzp
2

X(Z) = = y(Z) = —Z, wyzv(ll,lz) = m E 7 —12 T m)z. (Bl)

mezZ*
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Let us first compute the recursion kernel

1 1 * Y
K(z,zp) = — (y( T z))zdz/ wyy (2, 20)
_dzo dz’ 1
4z2dz < 2 % (zo—z —|—m) )
_dzo 1 1
© 2zdz \ 2 —zz 2 (zo +m)2 — 22

mez*

It is handy, in order to compute residues at z = 0, to write down the expansion in power series near
z = 0 of the recursion kernel.

1 1 B 11 1 o
2 2275 Z (zo + m)2 _Zz_Z<sz+2+2 > (Zo+m)2d+2>z

mezZ* a0 0 mez*
= Z Cu(2d + 2; z9)2%<.
d>0

In the same way we have that

H(2,z—2zi) = Z(ZdJr 1) ¢(2d + 2; z;) 224 4 odd partin z,
a0

1 2k—1+2d va
Cu(2k;z) = ¢ + é( ” ) {(2k 4 2d) z

The topological recursion formula, specialised to our case and expressed in terms of

WiV (z1,...,2n)

WMV(ZL e Zn) = m/
mn

reads

Wg{X(lelz,---,Zn): 21) u(2d+2,z1) Zd{Wg iz =222, 20)
a>0

) Wil WIT\{[’\,/HI/(_Z’]I)}‘

° (g,n) =(0,3).

1
W (z0,21,22) = E[ZO} Z Cn(2d +2;z9)2%¢ - (W%?Q’(z,zl)wgg(—z,m) + nglzv(lrlz)wgg(—l,ll))

d>0
> n(2d +2;20) 224 - Wi (2,2 )WY (2, 22)
d>0

= Cu(220) Cu(2;21) Cu (2, 22).
The inverse Laplace transform of the principal part near zy = z; = z, = 0 then reads
VO (L, L, 13) = 1.

Multiplying by the combinatorial factor 249-2+n % whose value for g = 0 and n — 3 is 4, we

get MVO,3 =4,
*(gn)=(0,4)
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Wil (z0,21,22,23) = [2°] ) Cu(2d + 2;29) 22 (ng[zv(llll)wl(}flsv(lllzrl3)
d>0

+ WY (2, 22) WY (2,21, 25) + WhY (2,2)WhY (2,21, 2) )

=) Gu(2d+220) 2 (Gua(22— 21)Cn(22) (2 22) (25 25)
d=0

+ Cu(2;2 — 22) Cu(2;2) (25 21) Cu (25 23) + Cu(2;z — Z3)CH(2;Z)CH(2;Z1)CH(2;Zz))
3

=3) w4z) ] wl@z)+302)wn(220)n(221) (2 22) (2 23).

i=0 j€{0,1,2,3)\{i}

The inverse Laplace transform of the principal part near zy = z; = z; = z3 = 0 then reads
VOW(Ly,..., L (7172 n Z L2)

from which we deduce MV 4 = 272.

*(gn)=(1,1)

WY (z0) = E[ZO] > n(2d +2;29) 2 WYY (2,—2)
d=0
*ZCH (2d +2;20) z 2d< +) > (2d'+1) g,ﬂ)
d=>0 m2>1d’'>0

1 2
= gCH(‘I;Zo) + %CH(Z}ZO)-

The inverse Laplace transform of the principal part near zy = 0 then reads

volW = — + L
" 48’

Multiplying the constant term by the combinatorial factor 29 Mg i)l _ g we deduce MV, = 22,

(6g—7+2n)! 3
L4 (g/ n) = (1/ 2)

WY (21, 22)

- 1
=" Z Cu(2d+2;21) 2 (5 WY (2,2,22) + WY (2, ) WY (2))

a>0
Z (a(2d +2;21) 224 - Gu(2;2)* (2 20) + 8 Z (2d +2;21) 224 - (252 — 21) Cu (45 2)
a>0 a>0

1
S2%) wm(2d+2521) 2 - Gul(2;2 — 22)Gua(2;2)(2)
d>0

_ CH%”‘Z){CH(@zl) 20 (4 20)0(2) + 602 21)C(4) + cH(z;zO)dz)Z}

+ é{CH(Z;Zl)CH(Z;Zz)C(‘U + Cu(6; 21) Cr(2; z2) + 3Cu(4; 1) Cu(4; z2) + 5CH(2;7~1)CH(6}7~2)}

+ ;{CH(Z} 21)(n(2;22) C(2)% + Cul421) C (25 22) C(2) + 38 (25 21) G (45 22) C(Z)}~
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Rearranging the terms, we obtain

5 3
WYY (z1,22) = 3 (CH(6; 21)Cu(2;22) + Qu(2;21) Cu(6;22)) + gCH(4;Zl)CH(4;ZZ)
2

16

The inverse Laplace transform of the principal part near zy = z; = 0 then reads

1 1 e
MV _ 4 14 212 2 12
VQl,Z (L],Lz) — 192(]_1 + Lz) + 96L1L2 + 24(L1 + Lz) + 16
Multiplying the constant term by the combinatorial factor % = 18 we obtain MV, =

48

+ 7TZ(CH(‘l;Zl)CH(Z;—Zz) + CH(Z;Zl)CH(4;Zz)> + ﬁCH(z} 21)Cu(2; 22).
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n\g 0 1 2 3 4 5 6
0 _ _ 19 24199 283794163 180693680 806379495590975
6 8625 105312050 68465079 309492103568838
1 _ _ 230 529239 14053063 533759417507 4346055982466800
87 205550 5518645 210967972242 1725192578138153
) _ 7 8131 2843354 11842209371 606925117339 122318875814791931
3 3370 1164495 4827273270 246886623873 49704331575032610
3 _ 47 11041 73870699 35221419482 82681229028041 5057811587495459887
22 4785 31157850 14674841399 3422259372754 2085014933689449405
4 3 44 688823 187549387 1414826039249 1031120131654286 1339844245835171101
2 21 303270 80056955 595067328174 430104304558221 555062784408367098
5 5 2075 96716 87365995 15788133716389 1245335246460801 321899861240823487478
3 978 445 37248558 6636637127685 519291721160462 133543614171105755337
6 11 697 8622217 1433623484 7380284015613 18305424406953487 3150765025310943712637
6 319 3723846 604494345 3075881257378 7579668229551231 1299328235398448522070
7 9 17101 10506949 12557689333 32906433038620 165332043184123111
7530 4426995 5197985038 1351227345917 67603007456990598
8 13 17630 44927707 3273823127 1905176709014543
6 7431 18358630 1322965425 766815957735306
9 7 194829 480821458 515867741141
3 78406 189797505 202690068090
10 5 202415 905804827
2 77691 344519274
8 5054467
11 3 1849998

Table 12 — Area Siegel-Veech constants 7SV . They are computed from Table 11 thanks to Theo-
rem 4.1. Theorem 5.2 gives the first column.
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Table 24 — Values of r—239-3+n)+2dit-42di £ [dy, ..., dy,0,...,0] for k > 2, computed from the Vira-

soro constraints.

58

(g,m) | (dy,...,dx) * (g,m) | (dy,...,dk) * (g,m) (dy,...,dy) *
(0,5) (1,1) 18 (1,2) (1,1) : R 5

(1,1) 27 (1,1) % (2,1) %

10:6) 2,1) 135 (1,3) 2,1) 5 3.1) s

(1,1,1) 162 (1,1,1) 2 (4,1) 14175

(1) 81 1Ly | Z (51) | 2

(2,1) 300 (2,1) 15 (2,2) 6475

(0,7) (3,1) 1260 (1,4) (3,1) % (3,2) %

(2,2) 1350 (2,2) s (1,6) (4,2) 51975

(1,1,1) | 324 1,11 | 2 (3,3) 25725

(2,1,1) 1620 (2,1,1) 135 (1,1,1) 1485

(1,1,1,1) | 1944 (1,111 | & (2,1,1) 4575

(1,1) 675 1) » (3,1,1) 7878

(2,1) 4575 2,1) s (4,1,1) layrs

(3,1) L (3,1) 525 (2,2,1) 16125

(4,1) 14175 (4,1) 945 (3,2,1) %

08 (2,2) a125 | | (1) 2 |wm (22,2) | 6750

(3,2) 15750 (3,2) % (1,1,1,1) 125

(1,1,1) 1215 (1,1,1) 81 (2,1,1,1) 8772

(2,1,1) | 4500 (2,1,1) | ¥ (31,11 | #P

(3,1,1) | 18900 (3,1,1) | 4 (2,2,1,1) | 6750

(2,2,1) | 20250 2,2,1) | 450 (1,1,1,1,1) | 2430

(1,1,1,1) | 4860 (1L,1,1,1) | 162 (21,1,1,1) | 6075

(2,1,1,1) | 24300 (2,1,1,1) | 405 (1,1,1,1,1,1) | 3645

(1,1,1,1,1) | 29160 (1,1,1,1,1) | 243




Table 25
— Values of 2
(3g—
7T g—3+mn)+2d;+--+2dx F [d
gm 1""’dk 0
7 /-..,0] fOl‘k>
= 2 (COntin
ued).

(gmn) | (di,...,dw)
*
(g,m)
’ d
Ly | 3 (ddd |« ]
2 9, Tl)
(2,2) 21 119 (1,1) 1685 (di,oon di) |
’ 128 256
(3,1) 105 (2,1) 6995 (1,1) 5605
32 384 14336
(4,1) 915 (3,1) 13475 (2,1) 40495
128 256 24576
(2/ 2) @ (4/ 1) % (3, 1) 56749
384 256 12288
(3,2) 1015 (5,1) 144375 (4,1) 41015
128 (6 256 ( 3072
(1,1 /1) 2252 5/1) 8
B s | | 32 s
cn | = 22| A cn | R
64 2
(3,1) 357 (32 |z (7,1) |
32 (4,2) 768 2.2) 1024
4,1 , 72135 , 56
) 3%5 (2,4) 5 1285 ( %
(5/ ]- 4 2 3 3; 2
(2,3) ) a4s5 ) e ) e
02 |z (3,3 | 1 (42) | 2
2304 128 2048
(3, 2) 14875 (4'3) 112455 (5'2) 297605
384 1 64 2048
(42) | ue L1,1) | 2 (6,2) | 38
32 ’ 128 1024
(3,3) 7105 (2,1,1) 3375 (3,3) 131467
64 64 3072
L,y | % 611 | (43 | o
z > 256
(2,1,1) 357 (4,1,1) 4725 (5.3) 193655
32 5 8 512
(3,1,1) 25 (5,1,1) s1o7s (4,4) t0s
) 12
(4,1,1) 2835 (2,2,1) 127925
32 3 768
221 | 125 (3,21 | %5
32 3 128
(3,2,1) 3045 /3,1) 106575
32 (2 64
(2,2,2) 1575 ,2,2) 183%
16
(3/ 2/ 2) 13125
8
(1,1,1,1) 05
(2,1,1,1) | 2%
32
(3,1,1,1) 5
8
(4,1,1,1) | 22
32
(2,2,1,1) | 187
32
(3/ 2,1, 1) 45675
3
(2,2,2,1) | 265
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