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Abstract

Soil water availability is a critical requirement for vegetation growth in a water-limited regime.

Since rooting depth differs along vegetation types and climatic regimes, the soil moisture at

varying depths might be important for the study of plant functioning. However, the influence of

vertical variability of soil moisture on vegetation is not well understood. Here, we analyze the

role of surface and deep soil moisture on vegetation photosynthesis during the growing season

months and the dry months across varying vegetation types. For this, we correlate vegetation

photosynthesis, represented by the sun-induced fluorescence and surface and deep soil mois-

ture. We find that vegetation photosynthesis is stronger correlated with surface soil moisture

compared to deep soil moisture. Within vegetation types, grasses, shrubs, and savannas are

strongly correlated with surface soil moisture compared to the forest of all types. Furthermore,

in dry months, photosynthesis in vegetation becomes more sensitive to the surface and sub-

surface soil moisture variations compared to growing season months for all vegetation types.

This study highlights the potential to study the role of surface and sub-surface soil moisture in

vegetation functioning using a truly observational datasets on a global scale.
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1 Introduction

Vegetation regulates the biogeophysical and biogeochemical processes between the land sur-

face and the atmosphere (Bonan, 2015). The biogeophysical process links the biosphere with

the atmosphere through the transfer of heat, moisture, and momentum, while the biogeochem-

ical process circulates carbon, nitrogen, and methane between these spheres. Vegetation

also controls numerous other processes and feedbacks in the land-atmosphere continuum,

like the direct regulation of terrestrial transpiration (Zeng et al., 2018) and indirect regulation

of the water cycle through its impact on precipitation and runoff (Hoek van Dijke et al., 2022).

Vegetation further provides vital ecosystem services such as food production and is crucial for

offsetting anthropogenic carbon dioxide emissions to mitigate climate change as the terrestrial

ecosystem absorbs, on average, 30 percent of anthropogenic carbon emissions (Keenan and

Williams, 2018).

Vegetation growth depends, among others, upon water, energy, and nutrient availability. In

an energy-limited regime, radiation and temperature control vegetation functioning, as these

regions typically have ample soil moisture supply. In contrast, soil moisture becomes critical

for vegetation growth in a water-limited regime. On leaf scale, plants open stomata to absorb

carbon dioxide during photosynthesis and, in the process, lose water through transpiration.

However, in water-limited conditions, plants reduce stomata opening to prevent water loss,

thereby lowering photosynthesis. Hence, any fluctuations in soil moisture likely explain varia-

tion in photosynthesis in water-limited conditions. Climate change has further increased the

global extent of water limitation on vegetation (Denissen et al., 2022) and enhanced vegeta-

tion sensitivity to soil moisture (Li et al., 2022) . Hence, it becomes imperative to understand

how plants’ functioning depends upon soil moisture and how vegetation copes with drought to

comprehend the future of global water, energy and carbon cycles.

Plants take up water from varying soil depths depending on their rooting location and soil

moisture availability. The uptake depth varies spatially across climates and vegetation types

and temporally between seasons. Vegetation in arid regions is more sensitive to surface soil

moisture fluctuations than vegetation in humid areas (Xie et al., 2019). Similarly, grasses,

generally having shorter roots than trees and shrubs, are more dependent upon surface mois-

ture than deeper moisture (Schenk and Jackson, 2002). Within single plant types, root water

uptake profiles vary with above-ground biomass and age, as larger and older trees tend to

have deeper roots enabling them to tap deep moisture (Schenk and Jackson, 2002; Tao et al.,
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2021). Furthermore, across similar climates, plant water uptake differs along topographic

positions. Roots are shallower in uplands and lowlands, making vegetation more reliant on

surface soil moisture, while roots go deeper in between these landscapes to benefit from the

surface and deep moisture during seasonal wetting and drying (Fan et al., 2017).

Yet, the scientific consensus on the global relevance of surface and deep soil moisture for

vegetation functioning is still lacking. Past studies,analyzing the role of soil moisture for veg-

etations show contrasting results, which might be because of disparities in data and methods

employed. Feldman et al. (2022), with site-based isotope tracer studies, have emphasized the

relevance of shallow soil moisture for most vegetation compared to deeper soil moisture, as

water uptake preferentially takes place from the roots concentrated in the top few centimeters.

Vegetation prefers shallow moisture to deep moisture owing to less energy expenditure in wa-

ter uptake, higher nutrient concentration, and less oxygen deficiency on the surface (Schenk

and Jackson, 2002). Similarly, gross primary productivity (GPP) is most related to 0-20 cm

soil moisture in water-limited grassland ecosystems (Fang et al., 2018). In contrast, Miguez-

Macho and Fan (2021) highlight vegetation’s widespread dependence upon past precipitation

stored in the deep soil globally, with the degree of dependence following climatic regimes and

associated typical levels of water stress. The vegetation in semi-arid and seasonally arid cli-

matic regions depends most on the deep water compared to other climatic zones. Moreover,

the inter-annual carbon dioxide growth rate in the atmosphere correlates well with the total

water storage anomalies on a global scale, implying the role of the overall water column in

vegetation functioning (Humphrey et al., 2018).

The water uptake can further change during droughts. Studies show that the vegetation water

uptake shifts to a deeper moisture layer during dry years to alleviate plant water stress and

maintain transpiration (Migliavacca et al., 2009; Tao et al., 2021). ). Also, it has been found

that the typical water uptake depth differs along vegetation types during drought. For instance,

grasses and herbaceous plants show increased sensitivity to surface soil moisture during the

dry period (Geruo et al., 2017), making them highly susceptible to drought. Following surface

moisture replenishment after drought due to a large precipitation event, grasses show greater

resilience than trees as they recover faster (Yang et al., 2014), while the trees take time to

shift water uptake between layers (Tao et al., 2021).

These past studies analyzing the relevance of surface and deep soil moisture are primarily

focused on point or regional scale (Migliavacca et al., 2009; Tao et al., 2021; Yang et al., 2014;

Fang et al., 2018; Geruo et al., 2017), lacking a comprehensive view of vegetation’s reliance

on soil moisture globally. Also, some studies, which focus on the role of surface and deep
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soil moisture on vegetation, used reanalysis-based soil moisture estimates (Li et al., 2021;

Miguez-Macho and Fan, 2021), whose results are likely to be impacted by the underlying

model assumptions affecting estimated soil moisture dynamics, particularly for deeper layers

where less observational constraints are available. Our study analyses the role of surface and

deep soil moisture for vegetation functioning globally with satellite-based observational soil

moisture datasets to overcome these shortcomings.

This thesis focuses on understanding the role of surface and deep soil moisture in vegetation

functioning. Precisely, we study how the role of surface and deep soil moisture changes spa-

tially across varying vegetation types and climatic regimes, and temporally during dry months.

We calculate a correlation between Sun-induced fluorescence (SIF), a proxy for photosynthe-

sis, with surface and deep soil moisture, to understand the role of soil moisture in vegetation

functioning respectively. We utilize the European Space Agency Climate Change Initiative

(ESA CCI) soil moisture dataset for surface soil moisture (SSM) and GRACE total water stor-

age anomalies (TWSA) as an estimate for the deeper soil moisture. The correlation results

are then presented for different vegetation and climate types. Furthermore, by calculating the

correlation for the driest months, we study if plants shift to using deeper soil moisture layers

during dry periods.

3



2 Objective of the study

This study focuses on understanding the roles of surface and deep soil moisture for global veg-

etation productivity. In this context, we correlate the monthly anomalies of surface and deep

soil moisture, respectively, with vegetation photosynthesis activity in water-limited regimes. I

explicitly focus on water limited regions because vegetation productivity does not follow wa-

ter availability dynamics in energy-controlled regimes. In computing correlation globally, we

aim to understand how this correlation varies with the surface and deep soil moisture in such

water-limited conditions. The general objectives of this study are:

1. To determine the spatial and temporal occurrence of water limitation on vegetation func-

tioning.

2. To understand the role of surface and deep soil moisture in vegetation photosynthesis.

3. To analyze how the relationship of vegetation photosynthesis with surface and deep soil

moisture varies spatially across different vegetation types and climatic regimes.

4. To determine if plants shift to using deeper soil moisture during dry months. If yes, how

does the root water uptake from deeper soil moisture vary with vegetation types and

aridity?

4



3 Datasets

Table 3.1 Overview of datasets used in this study.

Datasets Variables Source Time-

period

References

Vegetation func-

tioning

Sun-Induced Fluo-

roscence (SIF)

GOME-2 2007-

2018

Köhler et al.

(2015)

Soil Moisture

Surface Soil Mois-

ture

ESA-CCI 1978-

2021

Dorigo et al.

(2017)

Total Water Stor-

age Anomalies

(TWSA)

GRACE 2002-

2018

(Landerer and

Swenson, 2012)

Multi-layered Soil

Moisture (SoMo)

SoMo.ml 2002-

2019

O and Orth (2021)

Climate Temperature (T),

Precipitation (P)

and Radiation (R)

ERA-5 2000-

2020

Hersbach et al.

(2020)

Vegetation Class
Land Cover Data IGBP 1982-

2021

M.A. et al. (2010)

Tree Cover Frac-

tion

VCF5KYR 1982-

2016

Hansen, M., Song,

X. (2018)

3.1 Vegetation Functioning

The energy from sunlight triggers a light reaction in vegetation. The excess energy from

photosynthetically active radiation (PAR), the spectral band of solar radiation (380-710 nm)

that plants can use for photosynthesis, is dissipated by leaf either as chlorophyll fluorescence

(CF) emission or lost through heat (Non-Photochemical Quenching (NPQ)) (Mohammed et al.,

2019). Hence, the CF emission is directly related to the plant’s photosynthetic machinery. The

satellite-based hyperspectral resolution spectroradiometers receive these CF emissions, and

retrieval methods further disentangle vegetation fluorescence signals from other sources such
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as surface reflectance (Guanter et al., 2012). Since the reflected radiance by the vegetation

is strongly retained within oxygen absorption zones or Fraunhofer lines due to the strong

absorption of the incoming sunlight, it becomes possible to retrieve fluorescence emission

from the signals captured by the satellite. Thus, the entire Sun-Induced Fluorescence (SIF)

spectrum (650-800 nm) is then reconstructed from these fluorescence emissions exploiting

the distinct absorption features in the red (R) and Near Infrared (NIR) spectral window (Berger

et al., 2022). This SIF spectrum has two maxima under ambient temperature, one in R (685-

690nm) (F685) and the other in the far-red spectral region (730-740nm) (F740) (Figure 3.1)

(Mohammed et al., 2019).

Figure 3.1: Conceptual figure of leaf fluorscence emission with maxima in the red and far-red

spectral regions. Adopted from Mohammed et al. (2019)

The absorption, scattering, and re-absorption of the emitted SIF signal occur, depending upon

canopy structural properties. The SIF retrieval methods correct this by determining the escape

probability of the SIF signal to estimate canopy level SIF (Guanter et al., 2014). Additionally,

the multiple environmental and atmospheric drivers affect the SIF signal before reaching the

satellite sensor. Nevertheless, SIF is less affected by these drivers than vegetation indices like

the Normalized Difference Vegetation Index (Guanter et al., 2015), making it a reliable proxy

for vegetation functioning.

SIF data are increasingly used to track the photosynthetic dynamics in different ecosystems

(Köhler et al., 2018; Walther et al., 2016, 2018; Ma et al., 2016). Moreover, SIF is used in

studies related to the coupling of carbon and water fluxes at the regional scale, considering

its close link with gross primary production (GPP) (Zhang et al., 2018; Koffi et al., 2015).SIF

has been utilized to indicate drought and temperature stress at ecosystem scales (Zarco-
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Tejada et al., 2009; Wang et al., 2018; Wu et al., 2018) and to identify hydrometeorological

drivers of the global vegetation (Li et al., 2021). Among available observation-based global

SIF products (Bandopadhyay et al., 2020),we considered the Global Ozone Monitoring Ex-

periment’s (GOME-2) SIF data in our study because it provides relatively reliable data over a

long period (2007-2018). The revisiting time of the satellite carrying the GOME-2 instrument

is eight days, while SIF estimates are derived for 16-day periods. The global raw SIF observa-

tions are processed to obtain monthly data at 0.5-degree spatial resolution as in Köhler et al.

(2018) and can be accessed from https://www.gfz-potsdam.de/sektion/fernerkundung-

und-geoinformatik/projekte/global-monitoring-of-vegetation-fluorescence-globfluo/

daten.

3.2 Soil moisture

Soil moisture is the crucial variable controlling numerous processes and feedbacks in climate

systems. It is generally defined as water contained in an unsaturated soil zone. It constrains

plant transpiration and photosynthesis in water-limited regimes, thereby impacting global wa-

ter, energy, and biogeochemical cycles (Seneviratne et al., 2010)

Global soil moisture datasets are obtained through different techniques that have their strengths

and limitations. Though in situ measurements provide precise soil moisture information, they

are difficult to set up and maintain globally. Consequently, they are limited in numbers and dis-

tributed non-uniformly throughout the globe, inhibiting the usage of ground-based soil moisture

datasets in global-scale studies.

Satellite-based microwave remote sensing provided global observation of surface soil mois-

ture using different passive and active remote sensing techniques. The recent advancements

in remote sensing methods, retrieval algorithms, calibration, and validation techniques make

satellite-based surface soil moisture suitable for the global study of soil moisture vegetation

relationships. We use soil moisture data from the European Space Agency (ESA) Climate

Change Initiative Program (CCI), which combines active and passive microwave measurement

products to provide reliable estimates of surface soil moisture (SSM) (Dorigo et al., 2017). The

ESA CCI soil moisture data is available from 1978 to 2021 at 0.25 degrees spatial and daily

temporal resolution and be accessed through https://esa-soilmoisture-cci.org/.Since mi-

crowave remote sensing fails to give reliable estimates in areas with dense vegetation (tropical

and boreal forests), mountains (Himalayas), ice cover (Greenland, Antarctica), and deserts,

these areas have been masked out in the original ESA CCI soil moisture dataset.
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The surface soil moisture estimate from microwave remote sensing may not fully represent the

root zone soil moisture available for the vegetation as it represents only the top centimeters of

soil into which the microwave radiation can propagate. Furthermore, the surface and deep soil

moisture get decoupled during the dry period, making microwave observations less represen-

tative of the root zone soil moisture during such periods (Capehart and Carlson, 1997). Soil

moisture data simulated by land surface models (LSMs) is an alternative, providing global soil

moisture at different depths. However, LSM outputs are prone to uncertainties in (i) the mete-

orological forcing data, (ii) inaccurate knowledge of soil and vegetation characteristics, and (iii)

uncertainties in the representation of complex processes such as photosynthesis, infiltration,

or evaporation (Koster et al., 2009; Seneviratne et al., 2010).

The Gravity Recovery and Climate Experiment (GRACE) satellite, launched in 2002, offers the

possibility of studying the relationship between vegetation and the total water column. GRACE

provides monthly terrestrial water storage anomalies (TWSA) by measuring Earth’s gravity

field changes (Landerer and Swenson, 2012). The TWSA includes water storage anomalies

of snow, canopy water, surface water, soil water, and groundwater. Though available only at

a relatively coarse resolution of 300 km, GRACE TWSA has been used successfully to study

vegetation moisture relationships (Yang et al., 2014; Geruo et al., 2017; Chen et al., 2022). We

use the JPL-Mascons product from https://podaac.jpl.nasa.gov/dataset/TELLUS_GRAC-

GRFO_MASCON_CRI_GRID_RL06_V2 , which is available at a monthly temporal resolution from

April 2002 to the present and a spatial resolution of 0.5° × 0.5° degrees. TWSA has been suc-

cessfully utilized as an indicator of water availability to study vegetation moisture relationships

on a regional (Chen et al., 2022; Andrew et al., 2017) and global scale (Xie et al., 2019).

The two datasets, ESA CCI SSM and GRACE TWSA hint at the relevance of surface and

deep moisture layers for vegetation but do not allow a fair comparison of relevance between

layers because of the different noise levels in these datasets. Besides observational esti-

mates of soil moisture to study how vegetation functioning relates to the surface and deep soil

moisture, we employ machine learning-based soil moisture estimates SoMo.ml (O and Orth,

2021). A Long Short-Term Memory (LSTM) model has been trained using in-situ soil moisture

to obtain the multilayer SoMo dataset (0-10 cm, 10-30 cm, and 30-50 cm) at 0.25 degrees

spatial and daily temporal resolution from 2000 to 2019. Since the three SoMo layers have

similar noise levels, the results obtained using the SoMo dataset facilitates the intercompari-

son of correlation between layers and help us to validate the results from the SSM and TWSA

datasets independent of the way soil moisture data is obtained.
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3.3 Climate and Vegetation Data

Employed climate variables include daily air temperature (T), precipitation (P), and net radi-

ation (R) from the ERA5 renanalysis products, which can be accessed from https://www.

ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 . T and R are used as the

control variable for computing the partial correlation of SIF with soil moisture as these energy

variables likely confound the SIF-soil moisture correlation. The correlation results are com-

pared for different aridity types for which I compute the aridity index as the ratio between the

long-term mean of R (mm) (1 MJ/sq.m/day = 0.408 mm/day) and P (mm) for each grid cell

(Budyko1974).

To study the variation of correlation between SIF and soil moisture across vegetation types,

we incorporate land cover classifications from the International Geosphere-Biosphere Pro-

gramme (IGBP) dataset, accessed through https://climatedataguide.ucar.edu/climate-

data/ceres-igbp-land-classification and tree cover fraction data from the Vegetation Con-

tinuous Fields (VCF5KYR) Version 1 data product , accessed from https://lpdaac.usgs.

gov/products/vcf5kyrv001/ . These two datasets are obtained independently and facilitate

the intercomparison and validation of the correlation pattern obtained across vegetation types.
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4 Methodology

Timeseries of TWSA,SSM,SIF,T,R

Deseasonalize and detrend time se-

ries. (only if linear trends are present.)

• Filter for growing season/sparse vege-

tation (SIF > 0.5)

• Filter for months, where observation of

SSM, TWSA and SIF are not available.

• Filter for removing effect of frozen soil

moisture. (T < 5◦C)

If no of observations for a grid

cell are greater than 40, then

• Compute partial correlation between

SIF and SSM, r(SIF ∼ SSM), after

controlling effects of T and R.

• Compute partial correlation between

SIF and TWSA, r(SIF ∼ TWSA), after

controlling effects of SSM, T and R.

Figure 4.1: Flowchart showing data processing and analyzing steps.

The flow chart of overall data processing and analysis is presented in Figure 4.1. All datasets

are available at a common 0.5 x 0.5-degree spatial resolution and monthly temporal resolution.
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The time period of analysis is from 2007 to 2018 constrained by the concurrent availability of

all involved datasets. The monthly anomalies are calculated by subtracting the longterm mean

monthly cycle and removing the linear trend if any significant (p < 0.05). SIF and T thresholds

are applied in each grid cell to filter out non-growing season data. This allow our analysis to

focus on vegetation-soil moisture relationships in growing months. For this purpose, we filter

out months when the absolute SIF value is less than the threshold of 0.5 mW/m2/sr/nm

to focus on months with significant vegetation activity. We apply an additional temperature

threshold (T > 5◦C) to remove the months with frozen soil, similar to (Li et al., 2021). We do

not consider months during which either soil moisture or vegetation functioning records are

unavailable or filtered out.

Then, the correlation between SIF and soil moisture is calculated for a grid cell when obser-

vations for at least 40 months are present after filtering. T and R might also be affecting SIF

in addition to soil moisture. To focus exclusively on the effects of water availability on SIF,

we correct the confounding effects of T and R by calculating partial correlations between SIF

and SSM, r(SIF ∼ SSM), while accounting for T and R. The partial correlation calculates the

degree of association between two variables, removing the effect of a set of confounding vari-

ables. The same is done in the case of TWSA where we further remove the impact of SSM on

TWSA to better isolate the deep soil moisture dynamics by computing the partial correlation

of SIF with deep soil moisture, r(SIF ∼ TWSA), while accounting for T, R and SSM. Since we

focus on understanding the role of soil moisture on vegetation photosynthesis, which is pri-

marily critical in water-limited conditions, we remove the grids cells with negative correlation,

r(SIF ∼ SSM) or r(SIF ∼ TWSA), from our analysis. Such negative correlation indicate that

soil moisture is not a limiting factor for the vegetation and may hint at vegetation’s converse

effect on soil moisture (increasing vegetation activity causing depletion of soil moisture). Addi-

tionally, a negative correlation occurs in the grid cells where water limits vegetation productivity

through oxygen limitation.

We also calculate the partial correlations separately with only considering dry months in each

grid cell. We determine the dry months as the months with the fifteen lowest absolute values

of TWSA for which SIF and soil moisture data are available. In the analyses for dry months, we

exclude grid cells with less than 60 observations, so that the dry months represent the driest

25 percent of the data or less. Precisely, these are the driest months in which vegetation is still

photosynthesizing since we remove the months with no vegetation activity with a threshold of

SIF < 0.5. Furthermore, to determine dry months, we use TWSA values as it is the overall

indicator of the total water column rather than surface soil moisture, which only represents

the top few centimeters of the soil. Besides, TWSA has been widely used to identify extreme
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droughts in different parts of the world (Chen et al., 2010; Houborg et al., 2012; Ma and CCI

SM in Yunnan Province, 2017; Yirdaw et al., 2008). Nevertheless, the driest 15 months may

not represent similar extremeness globally. For instance, the degree of dryness for a grid

cell with 144 observations (15/144) and the grid cell with only 60 observations (15/60) after

filtering would be different, the latter likely to be less extreme than the former.

In order to analyse the global correlation results, we group the grid cells with respect to aridity

and tree cover/ land cover classes. Each grid cell is assigned the dominant vegetation types

on analyzing correlation results. Afterward, the mean correlation of SIF with soil moisture

estimates is calculated for each group if more than 20 grid cells are available. Then we

anlayse the evolution of r(SIF ∼ SSM) and r(SIF ∼ TWSA) across aridity and vegetation

classes.
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5 Results and Discussion

5.1 Global Patterns of water limitation on vegetation

The partial correlation between SIF and soil moisture allows for determining the extent of

water-limited areas globally. In the growing season, SIF correlates positively with soil moisture

(both r(SIF ∼ SSM) and r(SIF ∼ TWSA)) in approximately forty percent of our global study

area, indicating water limitation on vegetation (Figure 5.1a). The actual extent of water limita-

tion on vegetation globally is greater than forty percent because our filter criteria remove arid

regions (Sahara, Australia, and Central Asia), which are typically water limited, from the anal-

ysis. This estimate, excluding arid regions, aligns with previous estimates that approximately

half of the global land area is water-limited (Heimann and Reichstein, 2008; Dirmeyer et al.,

2006). Vice versa, a negative correlation between vegetation and soil moisture is present in

boreal forest regions in high latitudes, the eastern United States, and Northern Europe. The

negative correlation, r(SIF ∼ SSM) or r(SIF ∼ TWSA), arises if excess vegetation activity

causes soil moisture depletion or excess water impacts vegetation activity, possibly through

water logging by oxygen limitation.

The continental pattern of water limitation on vegetation, calculated with the correlation of

SIF and soil moisture anomalies, agrees well with spatial patterns of the evapotranspiration

regimes (water or energy limitations) identified using the FLUXNET measurements in Europe

and North America (Teuling et al., 2009). The FLUXNET provides direct and continuous eddy

covariance flux measurements of evapotranspiration (ET) and global radiation (Rg) from dif-

ferent sites across varying climate and vegetation zones (Baldocchi et al., 2001). The global

patterns also align with the yearly correlation of evapotranspiration with global radiation (en-

ergy) and precipitation (water) calculated using LSM data from the Global Soil Wetness Project

where models were driven with observation-based meteorological forcing (GSWP) (Dirmeyer

et al., 2006).These past studies incorporate different data sources in their study compared

to ours, yet the global patterns of water limitation on vegetation obtained here are similar to

them, ensuring the validation of derived global patterns. For further results, I focus on water-

limited regions (with positive r(SIF ∼ SSM) and r(SIF ∼ TWSA)) only, because the role of soil

moisture in vegetation photosynthesis is only critical in water-limited conditions.
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Figure 5.1: Partial correlation of SIF with (a) surface and (b) deep soil moisture for growing

season months. Positive value (blue) indicates that the vegetation functioning is water limited

while negative value (red) indicates that water availability does not impact the vegetation func-

tioning. The grids present in the land-mass, which are filtered out, do not have any color.
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5.2 Correlation of vegetation photosynthesis with surface and

deep soil moisture in water-limited regions during growing

months

The partial correlation of SIF with surface soil moisture varies globally (Figure 5.2a). SIF cor-

relates strongly with surface soil moisture in semi-arid climates, which include shrublands in

Central North America (NA), Savannahs in South America (SA) and Africa, and grasslands

in South Africa and Australia in growing season months. The r(SIF ∼ SSM) correlation is

stronger in Southern Europe (SE) and the Mediterranean region compared to central and

Northern Europe (NE). The gradient of correlation (r(SIF ∼ SSM)) from the hot and dry

Mediterranean region to wet and cold NE is similar to the gradient of drivers of evapotran-

spiration regimes (water limitation in the SE to energy limitation in the NE) obtained in other

studies (Denissen et al., 2022; Teuling et al., 2009). Stronger correlations between SIF and

surface soil moisture are also found in the croplands: the area around the Black Sea, part

of Eurasia, and South India. Studies show that the crops typically draw water from the soil

in the upper layer, and water uptake decreases with increasing soil depth (Feldman et al.,

2022). Though these croplands are not heavily irrigated areas, obtained from Global Map of

Irrigation Areas Version 4 (https://www.fao.org/land-water/resources/graphs-and-

maps/details/en/c/237286/) , the correlation value is likely to be affected by any crop

water management practice.

The r(SIF ∼ TWSA) correlation roughly follows a similar pattern of r(SIF ∼ SSM) globally

(Figure 5.2b). The partial correlation of SIF with deep soil moisture is higher in drier cen-

tral NA and SE compared to other regions. The deeper soil moisture is coupled to surface

soil moisture through infiltration and capillary rise. During precipitation-rich periods, infiltration

dominates and leads to strong coupling, while during drier periods evapotranspiration tends

to remove moisture preferentially from the upper soil leading to a decoupling of the shallow

and deeper soil moisture if this cannot be compensated by capillary rise. Hence, the similarity

in the global pattern of correlations of vegetation functioning with surface and sub-surface soil

moisture during the growing season months, which includes both dry and wet months, is ex-

pected. The global correlation pattern of SIF with deep soil moisture,r(SIF ∼ TWSA), is similar

to the correlation between TWSA and the normalized difference vegetation index (NDVI), ob-

tained in the study by (Yang et al., 2014). Yet, we obtain smaller correlation strength between

SIF and TWSA compared to the correlation of NDVI with TWSA in Yang et al. (2014), which

could stem from the difference in methodology between these studies. We filter out the effect
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of surface soil moisture in the correlation of SIF with TWSA using partial correlations, while

(Yang et al., 2014) calculated the correlation of NDVI with the whole water column present in

TWSA, which includes surface soil moisture. Furthermore, (Yang et al., 2014) did not control

for the confounding effects of temperature and radiation on soil moisture availability, affecting

the correlation r(NDVI ∼ TWSA), particularly in energy-controlled areas.

For two-thirds of water-limited regions (positive correlation of SIF with both SSM and TWSA),

the correlation r(SIF ∼ SSM) is greater than r(SIF ∼ TWSA) (Figure 5.2c). This stronger

correlation with surface soil moisture is in line with the findings of several studies that plants

usually extract water from the surface soil moisture (Feldman et al., 2022; Fang et al., 2018;

Geruo et al., 2017) owing to less energy expenditure in plant water uptake, nutrient availabil-

ity, and ample supply of oxygen. Nevertheless, the difference between r(SIF ∼ SSM) and

r(SIF ∼ TWSA) is not uniform globally. Greater differences are found in semi-arid climates in

central NA, Australia, African grasslands, and Eurasian croplands, with r(SIF ∼ SSM) being

relatively higher than r(SIF ∼ TWSA). In contrast, in the temperate dry SE and moist NE

and some regions of western NA, the correlation of SIF with deep moisture is almost similar

or even greater than the correlation with SSM, implying comparable or greater influences of

sub-surface soil moisture on vegetation functioning in growing season months.
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Figure 5.2: The partial correlation of SIF with (a) surface soil moisture and (b) deep soil

moisture and (c) the difference between the surface and deep soil moisture [a-b].
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5.3 The correlation of vegetation functioning and soil moisture

for the vegetation types.
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Figure 5.3: Partial correlation of SIF(a) r(SIF ∼ SSM), (b) r(SIF ∼ TWSA), and (c) difference

(A-B) in growing months for varying tree cover fraction and aridity index. The gray regions

denote the classes where sufficient grid cells (no of grid cells ≥ 20) are not available. To com-

pute this, each grid cell is assigned an aridity index and tree cover fractions. Then, the partial

correlations are averaged across grid cells with similar climate and vegetation characteris-

tics. The number in each box denotes the number of grid-cells available within the respective

climate-vegetation regime.

The partial correlation between SIF and surface soil moisture varies along tree cover frac-

tions with stronger correlations for low tree cover fractions (Figure 5.3a). Regions with low

tree cover fraction could be dominated by e.g. grasses, crops, or shrubs which typically have

the majority of their roots in the upper soil. This negative gradient along tree cover fractions

is more pronounced in semi-arid to arid regions (AI in the range 1-4) than in humid regions

(AI < 1). We compare the partial correlation across different land cover types from the IGBP
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dataset, which is independent of the tree cover fraction dataset.Yet, the comparison of correla-

tion across different land cover types (Table 5.1a) also confirms that the grasslands (r= 0.34),

savannas (r= 0.33), and shrublands (r = 0.34), which have low tree cover fractions, are strongly

correlated with surface soil moisture compared to the forest of all types (r = 0.15, range of 0.09

– 0.22) during growing months. Despite varying tree cover fractions, we could not observe a

difference in the correlation of SIF with SSM in very wet regions in growing months in Fig-

ure 5.3a. This is because wet regions typically have ample moisture supply for vegetation,

decreasing the sensitivity of vegetation functioning to surface soil moisture fluctuations.

The partial correlation between SIF and TWSA is similar for all land cover types (Table 5.1b)

and tree cover fractions (Figure 5.3b) for the growing months.We do not find a gradient in the

correlation along the land cover types, in contrast to several other studies analyzing vegeta-

tion TWSA relationships. The TWSA ∼ NDVI interaction is found to be stronger in grasslands,

followed by shrublands, savannahs, and forests in Australia (Yang et al., 2014; Geruo et al.,

2017; Chen et al., 2022) and globally (Xie et al., 2019). However, all these studies focused

on the overall water column (including surface soil moisture) for estimating TWSA ∼ NDVI

interaction, while in this study, we control for the effect of surface soil moisture in analyzing the

SIF ∼ TWSA relationship. Since, in the non-dry period, the TWSA and SSM are highly corre-

lated (Figure C.6) , a high correlation between vegetation functioning and TWSA might occur

because of the high correlation between vegetation functioning and SSM, which is included in

TWSA.
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Table 5.1 Partial correlation of SIF with (a) surface and (b) deep soil moisture along varying

land cover class and aridity index in growing season months. For calculating this, each grid

cell was assigned to the dominant vegetation type and aridity index. Then, mean correlations

are calculated if each vegetation-climate class contains more than 20 grid cells.

(a)

Aridity Index

Land Cover Types 0-0.5 0.5-1 1-2 2-4 4-8

Evergreen Needleleaf Forest - 0.09 0.13 - -

Evergreen Broadleaf Forest 0.13 0.15 0.22 - -

Deciduous Broadleaf Forest - - 0.20 - -

Mixed Forest 0.13 0.15 0.16 - -

Open Shrublands - - 0.27 0.36 0.38

Woody Savannas - 0.21 0.24 0.38 -

Savannas - 0.22 0.25 0.37 0.44

Grasslands - 0.18 0.33 0.42 0.44

Croplands - 0.17 0.29 0.38 0.30

(b)

Aridity Index

Land Cover Types 0-0.5 0.5-1 1-2 2-4 4-8

Evergreen Needleleaf Forest - 0.16 0.18 - -

Evergreen Broadleaf Forest 0.10 0.11 0.12 - -

Deciduous Broadleaf Forest - - 0.14 - -

Mixed Forest 0.12 0.14 0.18 - -

Open Shrublands - - 0.19 0.17 0.20

Woody Savannas - 0.13 0.12 0.15 -

Savannas - 0.10 0.11 0.12 0.18

Grasslands - 0.10 0.16 0.18 0.14

Croplands - 0.14 0.12 0.13 0.16

The surface soil moisture is relatively more important than deep soil moisture in regions with

low tree cover (Figure 5.3c). Grasslands and shrublands with low tree cover fractions rely

highly on surface soil moisture, while forests with high tree cover fractions rely almost equally

on the surface and sub-surface soil moisture. Forests generally have roots distributed across
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larger depths, making them less vulnerable to surface soil moisture variations compared to

grasslands typically with shallow roots, which are highly vulnerable to surface soil moisture

fluctuations. Additionally, within the forest types, we find that needleleaf forests tend to use

more water from deeper rather than shallow layers, while the opposite is found for broadleaf

forests.

Grasslands’ high sensitivity to surface soil moisture fluctuations is noted in multiple studies

(Schenk and Jackson, 2002; Geruo et al., 2017; Fang et al., 2018). Fang et al. (2018) found

that Gross Primary Productivity (GPP) is more responsive to surface soil moisture fluctuations

in the surface layer (0-20 cm depth) than deeper layers (>20 cm) in grasslands in Inner Mon-

golia. Similarly, SIF’s correlation with SSM is higher for grasslands compared to forests in

Texas during both dry and wet months (Geruo et al., 2017). A particular exception, Li et al.

(2021), identified that the soil moisture layer (7-28cm), not the layer (0-7) cm, primarily con-

trols vegetation with low tree covers (grasslands and shrublands). Though our study does

not disintegrate the soil moisture vertically in different depths comparable to Li et al. (2021),

the discrepancies might stem from using different soil moisture datasets. Here, we use an

observational soil moisture dataset, while Li et al. (2021) used a reanalysis-based ERA5 soil

moisture dataset to train random forest models to identify the relative importance of different

soil moisture layers on vegetation. The model-based soil moisture dataset inherently incor-

porates potentially inaccurate vegetation information used in the model simulations, thus im-

pacting the resulting vegetation-soil moisture relationship determined from such soil moisture

data (Koster et al., 2009).
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5.4 The correlation of vegetation functioning and soil moisture

for different aridity classes.

The partial correlation of SIF with SSM increases with an increase in the aridity index for

all tree cover fraction classes (Figure 5.3a). This means vegetation photosynthesis in drier

regions is more sensitive to surface soil moisture fluctuations than in wet regions. Also for a

given land cover class, the partial correlation (SIF ∼ SSM) increases with increasing aridity

(Table 5.1a). For instance, SIF’s correlation with SSM are higher in drier grasslands (r(SIF ∼

SSM = 0.43)) than in wetter grasslands (r(SIF ∼ SSM = 0.18)) . Apart from grasslands, such

an increasing correlation with the increase in aridity is distinct in shrublands, savannahs, and

croplands. In drier regions, a lack of soil moisture limits vegetation photosynthesis and related

transpiration. This is not the case for forests, typically found in humid regions, where the

correlation between productivity and soil moisture does not vary with aridity.

By contrast, the correlation of SIF with deep soil moisture does not systematically change

along aridity gradients for varying tree cover fractions and land cover types during the growing

season (Figure 5.3b)(Table 5.1b). This similarity in r(SIF ∼ TWSA) with increasing aridity

differs from the finding of Miguez-Macho and Fan (2021), who find that the vegetation de-

pendence on past precipitation, stored in sub-surface soil moisture, is higher in semi-arid and

seasonal-arid climates compared to humid. This difference in the relevance of deep mois-

ture in semi-arid regions might stem from using different data sources. Miguez-Macho and

Fan (2021) fused soil moisture and groundwater from the atmospheric reanalysis products,

which are based on models with potentially inaccurate representations of land-atmosphere in-

teractions as mentioned above. Here, we use an observational product to estimate deep soil

moisture, which includes the water column beneath the surface layer and extending beyond

the root zone. The TWSA considered here also includes the water in the deep aquifer, which is

generally unavailable for vegetation. This large extent of deep soil moisture in our study com-

pared to Miguez-Macho and Fan (2021) might also obscure the gradient of r(SIF ∼ TWSA)

along aridity classes.

Vegetation photosynthesis correlates more stronger with surface soil moisture than deep soil

moisture for all aridity classes (Figure 5.3c). Other studies also show that abundant nutrients,

efficiency in water uptake, and fewer chances of root water logging aid plants to rely upon sur-

face soil moisture whenever available (Schenk and Jackson, 2002; Feldman et al., 2022; Tao

et al., 2021; Geruo et al., 2017). However, the difference in the correlation strength between

surface and deep soil moisture (r(SIF ∼ SSM) - r(SIF ∼ TWSA)) is not uniform globally, with
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drier regions having a greater difference in correlation compared to wetter. Increasing water

limitation with increasing aridity makes photosynthesis more sensitive to surface soil moisture

fluctuations, thereby increasing (r(SIF ∼ SSM)). In contrast, increasing aridity does not seem

to increase the correlation with deep soil r(SIF ∼ TWSA). Thus, the difference in correlation,

(r(SIF ∼ SSM) - r(SIF ∼ TWSA)) mostly follows patterns of correlations of SIF with SSM,

which is prominent in arid regions compared to humid.
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5.5 Sensitivity of vegetation to the surface and deep soil mois-

ture during dry months

The partial correlation between SIF and soil moisture is calculated separately for the driest

15 months. Since we focus on water-limited conditions only, the grid cells where the partial

correlation between SIF and soil moisture is positive during both all growing-season months

and the driest 15 months are included in this analysis.

The partial correlation between SIF and both surface and deep soil moisture increases dur-

ing dry months (Figure 5.4)(Figure 5.5). Two-thirds of the vegetation area, water-limited in

both growing and dry months (Figure 5.4c), shows an increase in correlation with surface soil

moisture, while three-fourths of the such area shows an increase in correlation of SIF with

deep soil moisture in dry months (Figure 5.5c). With the decrease in soil moisture, the wa-

ter limitation on vegetation strengthens. Hence, photosynthesis in vegetation becomes more

sensitive to the surface and sub-surface soil moisture variations in dry months compared to all

growing season months. However, the partial correlation r(SIF ∼ SSM) decreases in some

parts of central North America, Southern Europe, the Mediterranean, and Australia during

drier months compared to all growing months. At the same time, these semi-arid regions

experience a slight increase in the correlation of SIF with TWSA.

The correlation of SIF with surface soil moisture increases during drier months for all tree

cover fractions and aridity classes (Figure 5.6a)(Table 5.2a). Water limitation on vegetation

increases in dry months; hence, the surface soil moisture becomes critical for photosynthesis,

irrespective of vegetation type. During the hydrological drought in Texas in 2011, the correla-

tion of SIF with surface soil moisture varied, depending upon the vegetation types. The partial

correlation r(SIF ∼ SSM) increased in grassland and forests, but decreased in shrublands

(Geruo et al., 2017), while in this study I do not find varying responses across vegetation

types in dry months. This discrepancy might have occurred from the dry month’s definition,

as the fifteen driest months represent different strengths of dryness in different regions. Thus,

results obtained from local scale drought analysis (Geruo et al., 2017) might differ from this

global scale analysis. Moreover, the increment in correlation r(SIF ∼ SSM) in dry months is

higher in magnitude for humid regions compared to arid. Vegetation in arid areas is already

exposed to water limitations in non-dry months; hence a comparatively minor increase in the

correlation r(SIF ∼ SSM) occurs in dry months in arid regions compared to humid, which

typically do not suffer water limitations.

24



Vegetation functioning correlates more strongly with deep soil moisture in dry months com-

pared to all growing season months. This increase in correlation in dry months is consistent

across tree cover fractions, land cover types, and aridity classes (Figure 5.5c)(Table 5.2b).A

similar increase in correlation with TWSA during dry months was noted in grasslands and

forests in Texas drought in 2011 (Geruo et al., 2017).Also, Miguez-Macho and Fan (2021)

find that vegetation dependence on deep soil layers during dry months is higher in arid re-

gions compared to humid regions. However, we do not find such an increase in correlation of

r(SIF ∼ TWSA) with an increase in aridity in dry months. This difference might have stemmed

from the incorporation of different datasets involved in analysis and the difference in analysis

technique. Miguez-Macho and Fan (2021) ) incorporated reanalysis-based datasets to get

soil water profiles at different depths and used inverse modeling to predict root water uptake

from different layers, while we incorporate observational-based soil moisture data and corre-

late it with SIF during the driest months to check if the vegetation dependence on the deep

soil moisture increases along with an increase in aridity.
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Figure 5.4: Partial correlation of SIF with surface soil moisture in (a) driest and (b) growing

season months and (c) difference between driest and growing season months [a-b].
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Figure 5.5: Partial correlation of SIF with deep soil moisture in (a) driest and (b) all growing

season months and (c) difference between driest and growing season months [a-b].
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Figure 5.6: Partial correlation of SIF with surface soil moisture in (a) all growing season

months, (b) driest months and (c) the difference between driest and growing season months

for varying tree cover fractions and aridity index.
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Figure 5.7: Partial correlation of SIF with deep soil moisture in (a) all growing season months,

(b) driest months and (c) the difference between driest and growing season months for varying

tree cover fractions and aridity index.
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Table 5.2 Partial correlation of SIF with (a) surface and (b) deep soil moisture along varying

land cover class and aridity index in driest months. For calculating this, each grid cell was

assigned to the dominant vegetation type and aridity index. Then, mean correlations are

calculated if each vegetation-climate class contains more than 20 grid cells.

(a)

Aridity Index

Land Cover Types 0-0.5 0.5-1 1-2 2-4 4-8

Evergreen Needleleaf Forest - 0.38 0.38 - -

Evergreen Broadleaf Forest 0.30 0.33 0.36 - -

Deciduous Broadleaf Forest - - 0.26 - -

Mixed Forest 0.30 0.31 0.27 - -

Open Shrublands - - 0.33 0.45 0.38

Woody Savannas - 0.37 0.38 0.48 -

Savannas - 0.37 0.42 0.52 0.54

Grasslands - 0.37 0.39 0.45 0.48

Croplands - 0.32 0.38 0.42 0.26

(b)

Aridity Index

Land Cover Types 0-0.5 0.5-1 1-2 2-4 4-8

Evergreen Needleleaf Forest - 0.19 0.43 - -

Evergreen Broadleaf Forest 0.11 0.15 0.10 - -

Deciduous Broadleaf Forest - - 0.08 - -

Mixed Forest 0.09 0.12 0.06 - -

Open Shrublands - - 0.19 0.16 0.14

Woody Savannas - 0.13 0.09 0.15 -

Savannas - 0.19 0.07 0.09 0.13

Grasslands - 0.17 0.23 0.16 0.19

Croplands - 0.15 0.18 0.17 0.24
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6 Limitations of the study

We observed an increase in the correlation of SIF with deep moisture in dry months compared

to all growing months. However, the partial correlation of SIF with deep soil moisture is still

weaker than the partial correlation of SIF with surface soil moisture. This does not align with

several site-based isotope tracer studies, which show that the plants rely more on deep soil

moisture than surface soil moisture during dry months(Tao et al., 2021; Miguez-Macho and

Fan, 2021; Nepstad, 1994).Also, we do not observe significant differences in the correlation

between SIF and deep soil moisture between varying vegetation types in both growing season

months and dry months. Grasses, in general, have short roots and cannot tap water from the

deep layer, but forests and shrubs have deeper roots to take up water in dry months. Hence,

the magnitude of correlation increment of r(SIF ∼ TWSA), between dry months and growing

season months , might vary with differing land cover or tree fraction types. This discrepancy

in the our results compared to similar studies might have stemmed from limitations within our

study. The disregard of the landscape factor in root water uptake, different signal-to-noise

ratios of surface and deep soil moisture products, and the coarser spatial resolution which

obfuscates tree cover signals, are major limitations of this study.

The landscape position is a crucial factor in determining vegetation’s rooting depth and extent

of root water uptake (Fan et al., 2017; Miguez-Macho and Fan, 2021), which is not considered

in our analysis. The rooting depth in upland vegetation is shallow because they cannot tap

the groundwater due to the large “dry gap” between the surface moisture layer and ground-

water. Similarly, the plants on the lowland have shallower roots because of ample moisture

availability due to topography-driven drainage. In contrast, plants lying in between upland

and lowland, have deeper roots to benefit from seasonal wetting and drying. Hence, the cor-

relation of vegetation with surface and deep soil moisture is likely to differ with landscape

positions. Miguez-Macho and Fan (2021) considered the landscape position in finer spatial

resolution of 30 arc seconds in their inversion-based modeling of root water uptake globally.

Since we study the vegetation-moisture relationship, with only observation-based estimates

of vegetation functioning and soil moisture, which are not available at a finer resolution like 30

arc seconds, it is difficult to consider landscape position in our study.

Similarly, potentially different signal-to-noise levels of the surface and deep soil moisture prod-

ucts might affect the comparison of the correlation of SIF with surface and deep soil moisture.

The surface soil moisture and deep soil moisture are obtained from different satellites and
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have varying processing algorithms, SSM from ESA-CCI and TWSA from GRACE, which

lead to different levels of noise associated with each datasets. To overcome this limitation,

we additionally incorporate machine learning-based SoMo datasets in the analysis, which has

soil moisture in three different layers (0-10 cm, 10-30 cm, 30-50 cm) with a similar noise level

between layers. Though the SoMo data facilitate the intercomparison of partial correlation of

SIF between three different layers, the correlation results are quite similar between the first

and third layers during both growing season months and driest months (See Appendix sec-

tion A) . This might be because the SoMo datasets are only available up to 50 cm depth, which

may not adequately cover deep soil moisture as roots tend to go deeper than 50 cm.

Moreover, the coarse spatial resolution of 0.5-degree further confuscates the vegetation sig-

nals. Here, we assign a dominant vegetation type to each grid cell, while such a coarse grid

might be composed of different vegetation types. The tree cover fraction also varies largely

within such a large grid size, thereby impacting the partial correlation results. This might be

one of the important reasons why we do not find differences in the correlation of SIF with deep

soil moisture along varying vegetation types and tree cover fractions. This limitation of coarse

spatial resolution can be overcome using different datasets for vegetation functioning, which

is described in detail in the outlook section (See chapter 8).

In addition, there are several other factors affecting the root water uptake profiles which are

not considered in this study but are likely to impact the correlation results. For example,

the above-ground biomass and age of vegetation also impact root water uptake, as larger

and older trees tend to have deeper roots enabling them to tap deep moisture (Schenk and

Jackson, 2002; Tao et al., 2021). The age and above-ground biomass are particularly difficult

to consider in global studies due to coarser resolution and the non-availability of adequate

observation. Though not so relevant at a monthly time scale, we also do not consider the

lagged correlation between SIF and soil moisture.
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7 Conclusion

This study illustrates that vegetation photosynthesis is stronger correlated with surface soil

moisture compared to deep soil moisture in growing season months. These findings suggest

that the vegetation preferentially takes up water from the shallow soil whenever available to

meet its transpiration demand. The less energy expenditure in root water uptake, the high

concentration of root mass, the less probability of oxygen deficiency, and the ample nutrient

availability in the surface layer facilitates the water uptake from the surface soil moisture.

Moreover, the partial correlation between vegetation photosynthesis and deep soil moisture

follows a similar spatial pattern as that of vegetation photosynthesis with surface soil moisture,

indicating that the surface soil moisture observation carries reliable representative information

of root zone soil available for vegetation in growing season months.

Moreover, the relationship between vegetation photosynthesis and surface soil moisture dif-

fers with varying vegetation and climatic regime. The vegetation photosynthesis strongly cor-

relates with surface soil moisture in regions with low tree cover fractions, such as grasslands,

shrublands, and savannas. Besides, for the same vegetation type, the correlation strength be-

tween photosynthesis and surface soil moisture increases with an increase in aridity. Hence,

grasslands in arid regions, compared to humid regions, are highly correlated with surface soil

moisture.

Furthermore, in dry months, vegetation photosynthesis becomes more sensitive to both sur-

face and deep soil moisture compared to growing-season months. The increment in the partial

correlation of SIF with surface soil moisture, from growing season months to dry months, is

higher in humid regions compared to arid regions. Similarly, we find an increase in correla-

tion between SIF and deep soil moisture during dry months in comparison to growing-season

months for all vegetation types. This indicates that the vegetation’s dependence on the deep

soil moisture increases in dry months, regardless of the vegetation or climatic regimes.

Though there are some limitations in our study (See chapter 6), we could still draw useful

scientific conclusions about the role of surface and deep soil moisture in vegetation photo-

synthesis globally . Besides, some of the limitations like coarser spatial resolution could be

overcome in future studies using different datasets and methodologies (See chapter 8)for a

better understanding of the role of surface and sub-surface soil moisture in vegetation func-

tioning.
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8 Outlook

The limitation of coarser spatial resolution of 0.5 degrees, which confiscates the vegetation

signals, could be potentially overcome using observational data in finer spatial resolution.

The tree cover fractions and land cover data are available at the spatial resolution of 0.05

degrees, which helps to better disentangle vegetation types, which are presently mixed within

grid cells. However, SIF data, from GOME-2, surface, and deep soil moisture observations

are not available at such finer spatial resolution. Though efforts have been made to downscale

the SIF (Duveiller and Cescatti, 2016), and soil moisture dataset to the finer spatial resolution

the uncertainties associated with the downscaling likely impact the correlation results.

As a roundabout, I propose to use NRIvP, which is the product of Near-Infrared Reflectance

of Vegetation (NRIv) multiplied by sunlight (P), as an indicator for vegetation functioning. The

NRIvP is strongly correlated to far-red SIF across different spatio-temporal scales (Dechant

et al., 2022). The NRIv is calculated by multiplying the normalized difference vegetation in-

dices (NDVI) with near infrared reflectance (NIR). The NDVI and NIR can be obtained from

the MOD13C1 v006 product (https://lpdaac.usgs.gov/products/mod13c1v006/) in an

original 16-day and 0.05° resolution.

Similarly, assuming that the soil moisture anomalies are representative across larger areas,

we overcome the limitation of unavailability of the soil moisture datasets at a high resolution of

0.05 degrees. This means, for every grid cell of finer resolution of 0.05 degrees that lies within

a coarser grid cell of 0.5 degrees, we assume monthly soil moisture anomalies are uniform

and then compute the partial correlation between NRIvP and soil moisture datasets.
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R. G. Grainger. Retrieval and global assessment of terrestrial chlorophyll fluorescence

from gosat space measurements. Remote Sensing of Environment, 121:236–251, Jun

2012. ISSN 0034-4257. URL https://www.sciencedirect.com/science/article/

pii/S0034425712000909.

L. Guanter, Y. Zhang, M. Jung, J. Joiner, M. Voigt, J. A. Berry, C. Frankenberg, A. R. Huete,

P. Zarco-Tejada, J.-E. Lee, M. S. Moran, G. Ponce-Campos, C. Beer, G. Camps-Valls,

N. Buchmann, D. Gianelle, K. Klumpp, A. Cescatti, J. M. Baker, and T. J. Griffis. Global

and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. Pro-

ceedings of the National Academy of Sciences, 111(14):E1327–E1333, Apr 2014. doi:

10.1073/pnas.1320008111. URL https://doi.org/10.1073/pnas.1320008111.

L. Guanter, H. Kaufmann, K. Segl, S. Foerster, C. Rogass, S. Chabrillat, T. Kuester, A. Holl-

stein, G. Rossner, C. Chlebek, C. Straif, S. Fischer, S. Schrader, T. Storch, U. Heiden,

A. Mueller, M. Bachmann, H. Mühle, R. Müller, M. Habermeyer, A. Ohndorf, J. Hill, H. Bud-

denbaum, P. Hostert, S. Van der Linden, P. J. Leitão, A. Rabe, R. Doerffer, H. Krasemann,

H. Xi, W. Mauser, T. Hank, M. Locherer, M. Rast, K. Staenz, and B. Sang. The enmap

spaceborne imaging spectroscopy mission for earth observation, 2015. ISSN 2072-4292.

URL https://doi.org/10.3390/rs70708830.

37

https://doi.org/10.1073/pnas.1712381114
https://www.sciencedirect.com/science/article/pii/S0048969718314025
https://www.sciencedirect.com/science/article/pii/S0048969718314025
https://doi.org/10.1002/essoar.10511280.1 DA - 2022
https://doi.org/10.1002/essoar.10511280.1 DA - 2022
https://www.sciencedirect.com/science/article/pii/S0034425712000909
https://www.sciencedirect.com/science/article/pii/S0034425712000909
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.3390/rs70708830


M. Heimann and M. Reichstein. Terrestrial ecosystem carbon dynamics and climate feed-

backs. Nature, 451(7176):289–292, Jan 2008. ISSN 1476-4687. doi: 10.1038/

nature06591. URL https://doi.org/10.1038/nature06591.

H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nico-
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Appendices

A Independent Analysis with SoMo dataset

In the growing season months, the partial correlation of SIF with SoMo soil moisture layers,

layer 1 (0-10 cm) (Figure A.1a) and layer 3 (30-50 cm) (Figure A.1b) follow similar global

patterns of SIF with surface soil moisture, obtained using ESA CCI soil moisture product. In

comparison, the partial correlation of SIF with the SoMo surface layer is slightly higher than the

SoMo deep layer globally (Figure A.1c) . Nevertheless, the global patterns of the correlation

results of SIF with both the first and third layers look almost similar. This might be because on

SoMo layer 3, by model design, contains soil moisture information from SoMo layer 1. This

is also plausible physically because, during the overall growing season months, the infiltration

connects the upper and lower soil moisture layers hydraulically. Similarly, in dry months, we

find the increase in correlation of SIF with SoMo layer 1 (Figure A.2c) and layer 3 (Figure A.3c)

compared to overall growing season months. Furtheremore, SIF correlates strongly with layer

1 compared to layer 3 even in dry months.

The analysis involving the SoMo dataset further strengthens the claim that vegetation photo-

synthesis depends more on shallow soil moisture compared to deep soil moisture in growing-

season months. Furthermore, vegetation photosynthesis becomes more sensitive to the over-

all moisture column (0-50 cm), during dry months compared to growing season months.In

contrast to the ESA-CCI SSM and GRACE TWSA datasets which have different noise levels,

SoMo layers have similar noise levels. Hence, the conclusion that the vegetation dependence

is higher on surface soil moisture compared to deep soil moisture during growing season

months holds, regardless of the different noise levels and datasets involved in the analysis.

The major issue with SoMo layers is that they might not well represent soil moisture dynamics

as the root tends to go beyond 50 cm, which is different from the deep soil moisture obtained

from the GRACE as it represents the overall water column even deeper than 50 cm. This

limitation of SoMo might affect the understanding of the relevance of deep soil moisture in

vegetation functioning.
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Figure A.1: Partial correlation of SIF with (a) SoMo layer 1 (0-10 cm) and (b) SoMo layer 3

(30-50 cm) and (c) the difference between the SoMo Layer 1 and Layer 3 [a-b].
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Figure A.2: Partial correlation of SIF with SoMo layer 1 (0-10 cm) in (a) driest and (b) all

growing season months and (c) difference between driest and growing season months [a-b].
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Figure A.3: Partial correlation of SIF with SoMo layer 3 (30-50 cm) in (a) driest and (b) all

growing season months and (c) difference between driest and growing season months [a-b].
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B Partial correlation for the driest months defined by lowest ab-

solute value of surface soil moisture
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Figure B.4: Partial correlation of SIF with surface soil moisture in (a) all growing season

months, (b) driest months and (c) the difference between driest and growing season months

for varying tree cover fractions and aridity index. The driest months is defined by the 15 lowest

absolute values of SSM, in contrast to the (Figure 5.6), where driest months are defined by

the 15 lowest absolute values of TWSA. This helps to conclude that the method of selection

of dry months do not impact our overall results.
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Figure B.5: Partial correlation of SIF with deep soil moisture in (a) all growing season months,

(b) driest months and (c) the difference between driest and growing season months for varying

tree cover fractions and aridity index. The driest months is defined by the 15 lowest absolute

values of SSM, in contrast to the (Figure 5.7), where driest months are defined by the 15

lowest absolute values of TWSA. This helps to conclude that the method of selection of dry

months do not impact our overall results.
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C Correlation between SSM and TWSA in growing season months
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Figure C.6: Correlation of SSM with TWSA in the growing season months. This shows that the

SSM and TWSA are highly correlated in most regions globally in the growing season months.
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