
SciPost Physics Submission

Exact Gravity Duals for Simple Quantum Circuits

Johanna Erdmenger1, Mario Flory2, Marius Gerbershagen1?, Michal P. Heller3,4

and Anna-Lena Weigel1

1 Institute for Theoretical Physics and Astrophysics and Würzburg-Dresden Cluster of Excellence
ct.qmat, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
2 Instituto de Física Teórica UAM-CSIC, c/ Nicolás Cabrera 13-15, 28049, Madrid, Spain
3 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), 14476 Potsdam-Golm,
Germany
4 Department of Physics and Astronomy, Ghent University, 9000 Ghent, Belgium

? marius.gerbershagen@physik.uni-wuerzburg.de

Abstract

Holographic complexity proposals have sparked interest in quantifying the cost of state
preparation in quantum field theories and its possible dual gravitational manifestations.
The most basic ingredient in defining complexity is the notion of a class of circuits that,
when acting on a given reference state, all produce a desired target state. In the present
work we build on studies of circuits performing local conformal transformations in general
two-dimensional conformal field theories and construct the exact gravity dual to such cir-
cuits. In our approach to holographic complexity, the gravity dual to the optimal circuit
is the one that minimizes an externally chosen cost assigned to each circuit. Our results
provide a basis for studying exact gravity duals to circuit costs from first principles.
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1 Introduction

The last couple of years have witnessed a substantial progress in the study of complexity measures
of quantum circuits both in quantum field theory and in holographic bulk prescriptions (see [1] for
a review). However, these two approaches have largely remained separate, with only conjectural
or qualitative connections between the two sides established.

Our paper aims to identify a scenario where such a connection can be made in a robust manner,
by constructing an explicit gravity dual to a simple quantum circuit in holographic quantum field
theories. We will achieve this by focusing on local conformal transformations in the setting of the
AdS3/CFT2 correspondence [2–4]. This has already proven to be a fruitful ground for complexity
research on the gravity [5–8] and the field theory [9–13] sides of the correspondence. Our goal
is to bridge the two perspectives by constructing an explicit gravity dual to a sequence of local
conformal transformations acting on the vacuum state.

On the bulk side, the solutions associated to local conformal transformations of the vacuum are
the Bañados geometries [14]. On the boundary side, following [9], we will consider circuits orig-
inating from the action of the exponentiated holomorphic component of the energy-momentum
tensor (or equivalently the antiholomorphic one). These circuits will be taken to act on the vacuum
state. The setup can be thought of as performing a local conformal transformation in a gradual
fashion. In [9] and the subsequent works [10–13], significant insights were gained into quanti-
fying the complexity of such a process. Due to the use of conformal symmetry, these circuits are
particularly well-suited for a holographic mapping to gravity.

We perform operations in a gradual way, i.e. as a sequence of operations indexed by a circuit
parameter that determines where we are in this process. In the holographic complexity literature,
one typically thinks about the circuit parameter as an auxiliary variable. The key idea of our work
is to identify this parameter with the physical time on the asymptotic boundary and to use the
boundary geometry to trigger the gradual state preparation of interest. While we are not the first
to advocate the use of physical time as a circuit parameter (see, in particular, [5, 15]), the novel
aspect of our work is the full control we gain over both the circuit and the dual geometry.

2 A simple quantum circuit

In this section, we describe the construction of circuits implementing conformal transformations
in a gradual way. We will construct two circuits implementing this idea distinguished by the inter-
pretation of the circuit time parameter. In the first construction (case (a)), the circuit parameter
τ is an auxiliary parameter independent on the physical time coordinate t on the manifold in
which the conformal field theory lives, while in the second construction (case (b)) the physical
time coordinate and circuit parameter are identical.

We work in a two-dimensional conformal field theory in Euclidean signature on a unit-radius
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spatial circle parametrized by φ. In both constructions, the circuit starts with a reference state,
which we take to be the vacuum |0〉 and then changes the state by acting on it with an operator
formed from Virasoro algebra generators Ln,

|ψ(τ)〉= U(τ)|0〉 with U(τ) = P exp

�

−
∫ τ

0

dτ̃Q(τ̃)

�

(1)

and
Q(τ) =

∑

n

ε−n(τ)Ln. (2)

U(τ) is the analytic continuation of a unitary operator to Euclidean signature. For simplicity, we
consider only one copy of the Virasoro algebra. The circuit generator Q(τ) can be equivalently
written by smearing the holomorphic component of the energy-momentum tensor,

Q(τ) =

∫ 2π

0

dφ
2π

T (z)ε(τ, z), (3)

where ε(τ, z) =
∑

n εn(τ)enz and z = t+ iφ with t being the Euclidean time variable. Throughout
this publication we use the notation

T (z) =
∑

n

Lnenz , T̄ (z̄) =
∑

n

L̄nenz̄ , (4)

where L̄n are the generators of the second copy of the Virasoro algebra.
The circuit implements at each τ a conformal transformation z→ f (τ, z). The two construc-

tions of the circuit mentioned above are distinguished by the value of ε(τ, z). Since the conformal
transformations form a group with group action realized by composition of functions, the param-
eter ε(τ, z) is related to f (τ, z) by [9]

ε(τ, f (τ, z)) =
d

dτ
f (τ, z). (5)

If the circuit parameter τ is an auxiliary parameter independent of z (case (a)), the solution of
this equation is given by

ε(a)(τ, z) = ḟ (τ, F(τ, z)), (6)

where F(τ, z) is the inverse of f (τ, z) defined by f (τ, F(τ, z)) = z and ḟ denotes the derivative of
f w.r.t. its first argument, i.e. the τ-derivative at a fixed value of z. On the other hand, if the circuit
parameter τ is given by the physical time t then the holomorphic coordinate z that is transformed
by the conformal transformations depends on τ such that the solution of (5) is given by

ε(b)(t, z) = ḟ (t, F(t, z)) + f ′(t, F(t, z)), (7)

where f ′ denotes the derivative of f w.r.t. its second argument. The energy-momentum tensor at
circuit time τ in both constructions is given by

U†(τ)T (z)U(τ) = f ′(τ, z)2T ( f (τ, z)) +
c

12
{ f (τ, z), z}. (8)

Therefore, the action of one layer of the circuit between some τ and τ+ dτ is as follows. If τ is
treated as an independent auxiliary parameter, we get

eQ(a)(τ)dτU†(τ)T (z)U(τ)e−Q(a)(τ)dτ = f ′(τ+ dτ, z)2T ( f (τ+ dτ, z)) +
c

12
{ f (τ+ dτ, z), z}, (9)
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case (a):

|ψ(τ1)〉(a)

t

φ

|ψ(τ2)〉(a)

t

φ

τ

case (b):

|ψ(τ1)〉(b)

|ψ(τ2)〉(b)

t = τ

φ

Figure 1: Depiction of the two circuits we consider. In case (a), the circuit evolution pro-
ceeds through a sequence of states living on time slices of different spacetimes (marked
in red). There is no associated evolution with respect to physical time t. In case (b), the
states live on different time slices of the same spacetime. In holography, in case (a) we
have a sequence of independent gravity dual geometries, whereas in case (b) we arrive
at a single gravity dual geometry.

while for τ= t,

eQ(b)(t)d t U†(t)T (z)U(t)e−Q(b)(t)d t = f ′(t+d t, z+d t)2T ( f (t+d t, z+d t))+
c

12
{ f (t+d t, z+d t), z}.

(10)
Equations (9) and (10) further illustrate the difference between the two circuit constructions. In
case (a) the state |ψ(τ)〉 lives on the same time slice in physical time (say at t = 0) for all τ. The
circuit evolution in this case creates a sequence of states dual to Bañados geometries. On the other
hand, in case (b) the states |ψ(t)〉 live on different time slices of the same geometry (see Fig. 1).
Therefore, in this case time evolution also has to include evolution in the holomorphic coordinate
z. Equations (9) and (10) may also be used to derive Q(a) and Q(b) by expanding to linear order in,
respectively, dτ and d t and applying the Virasoro algebra. This recovers, respectively, (6) and (7).

What we have described so far as case (a) is the setup considered in [9], while case (b) is
the natural generalization to consider when implementing gradual conformal transformations in
a single spacetime. Of course, the sequence of states described by these circuits differs between
the two constructions since the circuit generators Q(a) and Q(b) are different. We will explore the
consequences of these differences in the following section.

Before we close this section, let us expand on why it is particularly insightful to consider con-
formal transformations in the context of holographic complexity. To this end, it is important to
emphasize that the energy-momentum tensor sector, up to the value of the central charge, is uni-
versal across all conformal field theories. Therefore, the current setup applies equally well to the
Ising model conformal field theory and to holographic theories. Had we focused on, for example,
circuits generated by a scalar operator, it would lead to a less universal setup. Furthermore, be-
cause of earlier efforts in [9–13], we know rather well what are the interesting possibilities for
assigning a cost to (1-2) and, in several cases, what are the optimal circuits. Finally, the energy-
momentum tensor couples to the metric in which a conformal field theory in question lives. This
opens a possibility of triggering the circuit by placing the conformal field theory in an appro-
priately chosen geometry, which we discuss in the next section. Finally, in the case of gravity
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in three dimensional anti-de Sitter space, the boundary metric and the expectation value of the
energy-momentum tensor allow to straightforwardly obtain the full bulk geometry. This is what
we discuss in section 4.

3 Generating the same sequence of states using sources

3.1 General discussion

In general, physical implementations of quantum operations are based on time evolution of quan-
tum systems. For the circuit from section 2, the operation is generated by the generator Q(τ)
from (2). Our idea is to use the physical Hamiltonian of a conformal field theory living in some
background metric g(0)i j ,

H(t) =

∫ 2π

0

dφ
2π

Æ

g(0) T t
t , (11)

see e.g. [16], to generate the circuit. Therefore, we demand

H(t)
!
=Q(t). (12)

This identification allows us to derive the correct background metric g(0)i j which triggers the con-

formal transformations applied at each time step of the circuit1. Therefore, this construction yields
a single bulk geometry for the entire circuit. Because the Hamiltonian (11) is the generator of time
translations in the physical time t, this construction is the natural method for deriving a bulk dual
to the circuit (b) constructed in the previous section in which the circuit parameter τ is identified
with t.

However, this method nevertheless allows us to write down a bulk dual to the circuit (a)
consisting of a sequence of states living on different time slices of the same spacetime manifold.
The two constructions in the implementation of these circuits derived in this section then differ
only in the source configuration g(0)i j as we will see below.

For the particular circuits from section 2, it turns out to be sufficient to choose a flat bound-
ary metric as source, however, the choice of coordinate system becomes important. General flat
metrics are parametrized by diffeomorphisms (w(z, z̄), w̄(z, z̄)) dependent on both z and z̄,

ds2
(0) = dwdw̄=

∂ w
∂ z
∂ w̄
∂ z

dz2 +
�

∂ w
∂ z
∂ w̄
∂ z̄
+
∂ w
∂ z̄
∂ w̄
∂ z

�

dzdz̄ +
∂ w
∂ z̄
∂ w̄
∂ z̄

dz̄2. (13)

Our conventions follow these in the previous section and entail

z = t + iφ , z̄ = t − iφ. (14)

The constant time slices with respect to which the Hamiltonian H(t) generates time evolution are
defined by z+ z̄ = const. Via (12), these are also lines of constant values of the circuit parameter.

Based on this definition for our metric, we now derive expressions for the diffeomorphisms
w(z, z̄) and w̄(z, z̄) in terms of the conformal transformations f (t, z). For this purpose we express

1See also [5] for previous work that studies holographic complexity using boundary sources.
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the Hamiltonian H(t) in terms of Virasoro generators and demand equality with the circuit gen-
erator Q(t), implementing (12). We apply the standard tensor transformation rules to obtain,

Tzz = T (w(z, z̄))
�

∂ w
∂ z

�2

+ T̄ (w̄(z, z̄))
�

∂ w̄
∂ z

�2

,

Tz̄z̄ = T (w(z, z̄))
�

∂ w
∂ z̄

�2

+ T̄ (w̄(z, z̄))
�

∂ w̄
∂ z̄

�2

,

Tzz̄ = T (w(z, z̄))
∂ w
∂ z
∂ w
∂ z̄
+ T̄ (w̄(z, z̄))

∂ w̄
∂ z
∂ w̄
∂ z̄

,

(15)

with T (z) and T̄ (z̄) defined in (4).
Note that in (15) – which is a statement about operators – we have not included the contribu-

tion from the Tww̄ component. Let us briefly comment on why this is justified. It is well-known that
classically, the trace of the energy-momentum tensor in a two-dimensional conformal field theory
vanishes. In the quantum theory, Tww̄ no longer vanishes identically. However, since our calcu-
lation is performed in flat space, Tww̄ produces only contact terms when inserted in correlation
functions. These contact terms do not contribute to correlation functions involving time-evolved
operators. This can be seen directly from the definition of the time-evolution of an operator O,

O(t) = e
∫ t

0 d t̃H( t̃)O(0)e−
∫ t

0 d t̃H( t̃). (16)

In correlation functions involving both O(0) and H( t̃), contact terms are proportional to δ( t̃).
Since t̃ = 0 lies just outside of the integration range for t̃ in (16), the contribution of the contact
terms drops out in the end. In fact, these contact term issues arise even in the ordinary treatment
of conformal field theory on flat space using the time-slicing defined by the w, w̄ coordinates. The
textbook definition of the Hamiltonian in these coordinates is given by [17,18]

H = L0 + L̄0 =

∫

dφw

2π
(T (w) + T̄ (w̄)). (17)

However, from the general expression (11), we see that even in these coordinates Tww̄ is in prin-
ciple present in the Hamiltonian,

H =

∫

dφw

2π
(T (w) + T̄ (w̄) + 2Tww̄(w, w̄)). (18)

The arguments given above show that the trace part Tww̄ produces contact terms inside correlation
functions that, however, do not contribute to time-evolution of operators. This explains why the
textbook definition (17) is correct even though it differs from the expression obtained from (11).

Coming back to the derivation of the bulk dual to our circuit, combining (11) with (15) leads
to the following expression for the Hamiltonian

H(t) =

∫

dφ
2π

�

�

�

∂ w
∂ z

�2

−
�

∂ w
∂ z̄

�2
�

T (w(z, z̄)) +

�

�

∂ w̄
∂ z̄

�2

−
�

∂ w̄
∂ z

�2
�

T̄ (w̄(z, z̄))
�

. (19)

Then, using a change of integration variable to rewrite the circuit generator as

Q(t) =

∫

dφ
2π

T (z)ε(t, z) = −i

∫

dφ
2π
∂φw(z, z̄)T (w(z, z̄))ε(t, w(z, z̄)), (20)

we can read off w(z, z̄) and w̄(z, z̄) from (12). In the remaining part of the section, we will come
back to the two cases of the circuit starting from the case (b).
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3.2 Realizing case (b)

Here, we find that the w diffeomorphism is simply given by f (t, z),

w(z, z̄) = f (t, z), (21)

where, following (14), t = (z + z̄)/2. On the other hand, the w̄ diffeomorphism trivializes,

w̄(z, z̄) = z̄. (22)

We do not implement any antiholomorphic conformal transformations, therefore the circuit only
implements the trivial transformation z̄ → z̄ which leads to (22). An example of diffeomor-
phisms (21-22) and their effect on constant time slices is shown in figure 2. These diffeomor-
phisms lead to the following energy-momentum tensor expectation values,

〈Tzz〉= −
c

24

�

∂ w
∂ z

�2

= −
c

24
1
4
( ḟ (t, z) + 2 f ′(t, z))2

〈Tzz̄〉= −
c

24

�

∂ w
∂ z

��

∂ w
∂ z̄

�

= −
c

24
1
4
( ḟ (t, z) + 2 f ′(t, z)) ḟ (t, z)

〈Tz̄z̄〉= −
c

24

�

1+
�

∂ w
∂ z̄

�2�

= −
c

24

�

1+
1
4

ḟ (t, z)2
�

(23)

in the background

ds2
(0) =

�

1
2
( ḟ (t, z) + 2 f ′(t, z))dz +

1
2

ḟ (t, z)dz̄
�

dz̄. (24)

Note that this background metric is not of the form dzdz̄, even after the circuit has reached
the target state. In this region t > tfinal, ḟ (t, z) = 0 and ds2

(0) = f ′final(z)dzdz̄. We may apply a
Weyl transformation

ds2
(0)→ e2ω(z,z̄)ds2

(0) =
1

f ′final(Ffinal( f (t, z)))
ds2
(0) (25)

on top of this background to bring the metric to the form dzdz̄ when t > tfinal. Here ffinal is the
total conformal transformation we produce after the circuit does its job and the inverse Ffinal(z) is
defined by ffinal(Ffinal(z)) = z. At earlier times the metric has a more complicated form as one can
see by comparing to (24), but it remains flat. In general, Weyl transformations change the Ricci
scalar as

R→ e−2ω(R− 2∇i∇iω) (26)

and thus lead to curved background metric. However, the Weyl transformation (25) we have
chosen preserves R= 0. This can be seen from writing (26) in w, w̄ coordinates,

e−2ω∂w∂w̄ω (27)

which vanishes for ω = ω(w) + ω̄(w̄) = ω( f (t, z)) + ω̄(z̄). The energy-momentum tensor trans-
forms under Weyl transformations as2

Ti j → Ti j +
c
6
(∂iω∂ jω−

1
2

gi j∂
kω∂kω−∇i∇ jω+ gi j∇k∇kω). (28)

2This equation can be derived as a statement for the expectation value of the energy-momentum tensor from the
Weyl anomaly equation. One may check that this also holds as a operator statement by comparing with the two-point
function of the energy-momentum tensor in a general background. We have done this perturbatively up to second
order (included) in perturbation theory around flat space.

7
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Figure 2: Flat cylinder in which the conformal field theory lives. Black curves correspond
to slices of constant time (vertical) and angle (horizontal) associated with the w, w̄
coordinates. The red curves represent constant time and angle associated with the z,
z̄ coordinates with the now infinitesimal diffeomorphism (21-22) specified by f (t, z) =
z+ε(3t2−2t3) sin(z)+O(ε2) with ε = 0.2 (see also (39) for a definition of infinitesimal
conformal transformations).

Therefore, we find as expected for t > tfinal

ds2 = dzdz̄ and 〈Tzz〉= −
c

24
f ′final(z)

2 +
c

12
{ ffinal(z), z}, 〈Tzz̄〉= 0, 〈Tz̄z̄〉= −

c
24

. (29)

The intermediate form of the energy-momentum tensor for tinitial < t < tfinal depends on the
particular Weyl-rescaling we do and can be found simply by using the transformation rule (28).

Note that the Hamiltonian is not invariant under Weyl transformations due to the energy-
momentum tensor transformation (28). However, the additional term in the Hamiltonian is pro-
portional to the identity operator and has no observable effect.

Let us briefly discuss uniqueness of the circuit we have constructed. The circuit and its bulk
dual is specified by the boundary metric and energy-momentum tensor expectation value. There-
fore, one might ask what is the correct choice of these quantities to implement the same sequence
of states as in section 2 – equations (23) and (24) on their own, or supplemented with the Weyl
rescaling (25)? The answer is that these two choices are equivalent implementations of the same
circuit. Because the Hamiltonian changes trivially under the Weyl transformation (25), this trans-
formation does not affect the sequence of states in the circuit. What changes, however, are the
expectation values of the energy-momentum tensor. This feature is special to Ti j , general tensor
fields are invariant under Weyl transformations. But because the energy-momentum tensor de-
pends directly on the background metric through Weyl anomaly and conservation equations, its
expectation values are comparable only if they are evaluated in the same background. In other
words, the Hilbert space operator defined by Ti j in the background ds2

(0) differs from the Hilbert

space operator defined by Ti j in the background e2ωds2
(0). The Weyl transformation (25) we have

chosen merely puts the metric at t > tfinal in the same form as that used in section 2 so that we

8
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can compare the expectation values 〈Ti j〉 in the circuit from section 2 and its reformulation in this
section. As expected, once we transform to the background ds2

(0) = dzdz̄, we find agreement with
the expectation values from section 2.

3.3 Another look at the circuit from case (a)

As we have discussed earlier, the natural interpretation of the circuit in case (a) is that of a se-
quence of states in different realizations of considered conformal field theory, i.e. living in different
spacetimes. However, the realization of case (b) provides us with a possibility of an alternative
perspective on case (a). In fact, as we will see, the two cases can be realized in a very similar
manner upon identifying τ= t.

An additional issue to take into account is that in case (a) we need to perform a slight reformu-
lation of the circuit in order to be able to demand equality of H(t) given by (19) and Q(t) specified
in (20). The reason for this is that for a trivial conformal transformation f (t, z) = z the circuit gen-
erator Q(a)(τ = t) from section 2 vanishes while we want the Hamiltonian H(t) to reduce to the
standard time evolution in a conformal field theory governed by H(t) = H0 = L0+ L̄0. Therefore,
we introduce a modification of Q(a)(t) by adding H0, Q(a)(t)→ Q(a)(t) + H0 before identifying it
with H(t). This modification does not change the energy-momentum tensor expectation value3

and only leads to an additional unobservable phase if the reference state is a primary state such
as the vacuum state |0〉 that we are using as reference state. Therefore, this modification does not
change the physics of the problem at hand.

Then, using (19) and (20) we find that the w̄ diffeomorphism trivializes again, w̄(z, z̄) = z̄,
while the w diffeomorphism satisfies

ẇ(t,φ) = 1+ ε(t, w(t,φ)). (30)

We may rewrite (30) by using the definition of ε in (5) and introducing inverse functions W and
F defined by

w(t, W (t,φ)) = φ , f (t, F(t, z)) = z, (31)

giving4

−
Ẇ (t,φ)
W ′(t,φ)

= 1−
Ḟ(t, t + iφ)
F ′(t, t + iφ)

. (32)

It is then easy to see that case (a) and (b) are implemented by sources g(0)i j described by closely
related diffeomorphisms w(z, z̄) differing only in a total vs. partial derivative with respect to the
physical time t in their defining equations.

Applying again the Weyl transformation (25), we find the following energy-momentum tensor
expectation values for t > tfinal,

〈Tzz〉= −
c

24
+

c
12
{ ffinal(z), z}, 〈Tzz̄〉= 0, 〈Tz̄z̄〉= −

c
24

. (33)

Compared to the well-known transformation law of the energy-momentum tensor under confor-
mal transformations,

T (z)→ f ′(z)2T (z) +
c

12
{ f (z), z}, (34)

3The modification is equivalent to the replacement f → f + const. in (9). If 〈T (z)〉 is constant, this does not change
the energy-momentum expectation value.

4Note that Ḟ(t, z) denotes a derivative of F w.r.t. its first argument and not a total derivative w.r.t. t. Likewise,
F ′(t, z) is a derivative w.r.t. the second argument of the function.

9
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we find that in this circuit the f ′(z)2 prefactor is absent in the final value of the energy-momentum
tensor expectation value. Hence, we conclude that the circuit (b) more faithfully implements
gradual conformal transformations in the sense that the final state yields the well-known energy-
momentum tensor transformation rule. Nevertheless, the circuit (a) possesses interesting features
with regard to holographic complexity proposals, as we explain in section 5 and thus deserves to
be studied in detail.

4 Mapping to gravity

The results of section 3 correspond to a path-integral prescription within quantum field theory for
defining the circuits of section 2 in terms of evolution in physical time. The key outcomes of this
analysis are that the circuits are defined in flat space and that it is a particular time foliation of
flat space that triggers, as time progresses, the transformation of interest.

The holographic dictionary associates the metric underlying the path-integral formulation with
the metric on the asymptotic boundary and the corresponding energy-momentum tensor with the
subleading fall-off of the bulk metric [19]. Usually, the boundary metric and the boundary energy-
momentum tensor, even if known over the entire boundary, do not specify the dual geometry in a
closed form. However, in three bulk dimensions, which is the situation of interest, the Fefferman-
Graham near-boundary expansion of the bulk metric truncates and the input we provide from
section 3 does specify the full bulk metric in a closed form.

To be more specific, if g(0)i j denotes the boundary metric and 〈Ti j〉 the allowed expectation
value of the energy-momentum tensor, the exact gravity dual to the corresponding time evolution
of a state in a holographic conformal field theory takes the form [19]

ds2 =
dr2

r2
+
�

1
r2

g(0)i j + g(2)i j + r2 g(4)i j

�

d x id x j , (35)

where r is the radial direction with the asymptotic boundary at r = 0 and

g(2)i j = −
1
2

R(0)g(0)i j −
6
c
〈Ti j〉 and g(4)i j =

1
4
(g(2)(g(0))−1 g(2))i j . (36)

Therefore, the gravity dual to the circuits of interest is obtained by inserting into the above ex-
pression the form of the boundary metric and the associated expectation value of the energy-
momentum tensor discussed in the previous section. Concretely, for the circuit (b) the boundary
metric is given by (25) and the energy-momentum tensor expectation value is determined from
(23) and (28) and analogously for the circuit (a). The results then basically tell us which time-
slicing of pure AdS3 one has to choose in order to implement the circuit of interest that acts on
the vacuum state.

The derived bulk metric forms a possible basis for first-principle derivations of bulk duals to
various field theory cost functions which have been proposed previously [5,9,11–13]. It can also
provide conformal field theory insights on conjectured bulk complexity measures such as “com-
plexity=volume” [20], “complexity=action” [21], “complexity=volume 2.0” [22], or the infinite
class of complexity measures recently proposed in [23].

10
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5 Lessons for holographic complexity

Having derived the bulk dual to our circuit, we now turn to the study of bulk duals of boundary
cost functions and – vice versa – boundary duals to bulk complexity measures. To be specific, we
will here concentrate on two simple examples: the “complexity=volume” proposal [20] and the
squared Fubini-Study cost and associated complexity [24] applied in this context in [12,13].

Let us make sure that all the readers are on the same page and discuss briefly what we mean
by the squared Fubini-Study cost and associated complexity. The total cost of a circuit is a non-
negative number assigned in a systematic way to each of its layers and integrated over the circuit
parameter. The discussion of costs in the high-energy physics literature is based on [24–26]. The
Fubini-Study cost is the one that originates from the distance that the circuit traverses in the
Hilbert space when acting on a given state. The associated complexity arises from minimization
of the total cost (distance). In the notation that we adopted in section 2 and following [12, 13],
the complexity is given by

CFS =min

∫

dτ FFS(τ)
2, (37)

where
FFS(τ) =

q

〈0|U†(τ)Q†(τ)Q(τ)U(τ)|0〉 − |〈0|U†(τ)Q(τ)U(τ)|0〉|2. (38)

Note especially the inclusion of the square in equation (37). This means that compared to the
problem of geodesic motion in curved spaces, the functional that we are working with is more
similar to the kinetic energy than the length functional. An earlier critical investigation of this
and similar cost functionals can be found in [27]. When trying to make contact with the complex-
ity=volume proposal via a Fubini-Study-based ansatz, including the square is important because
we know that volume scales linearly in the central charge c, and so should complexity. Also,
as shown in [5, 6], the complexity (37) matches the change of volume under infinitesimal local
conformal transformations to the leading nontrivial order. We will hence further study this cost
further in this section, and allowing ourselves a little imprecision of nomenclature, we will refer
to (37) as Fubini-Study complexity.

When the conformal transformation is expressed as a perturbative series around the identity,

f (t, z) = z + ε f1(t, z) + ε2 f2(t, z) +O(ε3), (39)

the Fubini-Study complexity and the result of the “complexity=volume” calculation in the relevant
Bañados geometry are known to be related at the order ε2 [5, 6]. To be more specific, Ref. [6]
considered the gravity dual to the state corresponding to z→ ffinal(z) and in this state calculated
the “complexity=volume” proposal in the expansion in ε, which was found to be related to the
Fubini-Study complexity measure in [5]. Let us revisit this calculation but now at all time instances
in the circuit. For t > tfinal, this reduces to the setup of [6].

For the case (b), we find the following change in volume compared to the vacuum state in

11
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appendix A 5,

V(b) − Vpure AdS3
= ε2π

4

∑

n

(|n|3 − |n|) f n
1 (t) f

−n
1 (t)

+ ε3π

4

∑

n

(|n|3 − |n|)
�

2 f n
1 (t) f

−n
2 (t)− i

∑

m

mf n
1 (t) f

m
1 (t) f

−n−m
1 (t)

�

+O(ε4).

(40)
On the other hand, for case (a) we cannot give a general answer for the volume of extremal
slices because (30) cannot be solved for arbitrary time dependence. The most interesting special
case is the one in which the time-dependence equals that of the optimal path in the Fubini-Study
complexity functional of [12,13]. In this case, we obtain6

V(a) − Vpure AdS3
= ε2π

4

∑

n

(|n|3 − |n|)
f n
1 (t) f

−n
1 (t)

n2
+O(ε3), (41)

See appendix A for details, including the third and the fourth order contributions to (41). We can
think about the difference V(a,b)−Vpure AdS3

as a notion of complexity of formation, i.e. in our case
a way of assigning a cost of transforming the vacuum state into the state at tfinal. Such a notion
was considered earlier in the case of thermofield double states in [28].

It is instructive to compare the above results to the Fubini-Study complexity of [12, 13]. We
derive general expressions for this complexity functional to fourth order in perturbation theory in
appendix B. Interestingly, the volume change (40) in the circuit (b) matches7 as far as the third
order in ε,

⇒ CFS = ε
2
∑

n

c
24
(|n|3 − |n|) f n

1 (t) f
−n

1 (t)

+ ε3
∑

n

c
24
(|n|3 − |n|)

�

2 f n
1 (t) f

−n
2 (t)− i

∑

m

mf n
1 (t) f

m
1 (t) f

−n−m
1 (t)

�

+O(ε4).
(42)

but disagrees in the fourth order (see (70) and (85)). The Fubini-Study complexities in the circuits
(a) and (b) are equal to each other up to the third order in perturbation theory, therefore (42)
holds for both circuits. These results show that the Fubini-Study distance is not directly related to
volume changes. This rules out this possibility put forward in [5]. Note that generalizations of CFS
obtained by counting the cost in the circuit as some power of the Fubini-Study metric (a procedure
that does not change the optimal path in the circuit) cannot match the volume change8 since also
in this case, the change in the maximal volume disagrees with the Fubini-Study complexity (see
appendix B).

The bulk dual to the circuits we have derived in secs. 3 and 4 allows – at least in principle – a
derivation of bulk duals to cost functions such as the Fubini-Study metric from first principles. The
Fubini-Study metric is related to a connected two-point function of the Hamiltonian. In general,

5The results in appendix A are given in terms of parameters Cn
1 , Cn

2 , etc. which are the n-th Fourier modes
parametrizing the location of the time slice on the boundary in w, w̄ coordinates expanded in perturbation theory.
Thus, these parameters are obtained directly from (30), taking into account that the Cn

1 , Cn
2 parameters are Fourier

modes w.r.t. φw = (w − w̄)/(2i). Note also that the calculation in appendix A is performed in Lorentzian signature.
Finally, note that the Fourier modes of f1, f2 satisfy ( f n

1,2)
∗ = f −n

1,2 such that the final expression for the volume is real
despite the presence of the imaginary unit in (40).

6See section B for the derivation of the optimal path.
7Up to a prefactor which is undetermined in the complexity functional anyway.
8We would like to thank Alex Belin for bringing this possibility to our attention.

12



SciPost Physics Submission

connected two-point functions of the energy-momentum tensor are obtained from the boundary
perspective by applying variations w.r.t. the boundary metric onto the one-point function,

〈Ti j Tkl〉=
2

p

g(0)

δ

δg i j
(0)

〈Tkl〉. (43)

In this way, the two-point function of the Hamiltonian entering the Fubini-Study complexity def-
inition (73) can be derived. The important point is now, that using the relation between the
energy-momentum tensor one-point function and the bulk metric in (36), we may translate this
into a bulk calculation giving the same two-point function. This allows in principle writing down
the gravity dual to the Fubini-Study cost function used in [12,13]. Of course, similar derivations
work for other cost functions. Our method allows for deriving bulk duals to any cost function
defined from energy-momentum tensor correlators or vice versa boundary duals to bulk cost func-
tions defined as functionals of the bulk metric. It may of course be the case that the bulk duals for
such cost functions does not reduce to a simple geometric quantity in the bulk. Indeed, in general
energy-momentum tensor correlators are derived by applying variations which necessarily change
the bulk metric (although of course only slightly) and lead us to different bulk geometry. There-
fore, we expect to find simple geometric duals only for certain special cases in which the effect of
the variation of the background drops out in the end. This is also reminiscent to the situation with
entanglement entropy, represented as a property of a given bulk geometry [29–32], and general
Renyi entropies requiring backreaction [33]. We leave this topic for further research.

6 Summary and outlook

We have derived gravity duals to circuits generating conformal transformations in the boundary
conformal field theory. Our construction was based on identifying the circuit generator Q(τ) with
the physical Hamiltonian H(t) generating time evolution in a specific background metric g(0)i j on
the boundary. Therefore, we identify the auxiliary circuit parameter τ with the physical time t.
This is the main new feature of our construction compared to previous work on holographic com-
plexity. Furthermore, the identification of the circuit parameter with the physical time also allows
us to derive a bulk dual to the entire circuit using the Fefferman-Graham expansion [34]. Finally,
we studied relations between “complexity=volume” [20] and the Fubini-Study complexity mea-
sure proposed in [12,13]. As a byproduct of this analysis, we managed to rule out the possibility
that this complexity measure and the “complexity=volume” proposal are directly related [5].

The construction of precise gravity duals to quantum circuits presented in this paper provides a
new setting to study field theory cost functions directly in the bulk or conversely to derive the dual
boundary quantities associated to bulk observables like the change in the volume of an extremal
time slice under time evolution. Furthermore, another interesting question is whether any of the
previously studied cost functions in [9–13] can be mapped to geometric quantities in the bulk.
For instance, in [8] it was demonstrated that the Fubini-Study distance on the space of circuits
starting from scalar primary states is encoded in the maximal and minimal perpendicular distances
between infinitesimally close timelike geodesics in AdS. Conversely, it would be interesting to
understand better bulk candidates for costs considered in [35–38]. To make further progress in
this direction, cost functions on the boundary have to be determined in terms of the bulk metric
or conversely bulk observables in terms of conformal field theory quantities like the boundary
energy-momentum tensor. Our construction allows such derivations using directly the holographic
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dictionary. One interesting clue that one can use in this quest is that the costs associated with our
circuits should be UV-finite and, therefore, should not directly stem from bulk objects extending
all the way to the asymptotic boundary. The reason for the finiteness is that we do not need to
alter the entanglement structure of the reference state at arbitrarily short scales, but only in the
IR.

Furthermore, the approach presented here may be generalized in a number of ways. A simple
generalization is to allow Virasoro generators from the two copies of the Virasoro algebra to act
simultaneously in the circuit. Because both copies decouple, this is an obvious generalization of
our results from section 3. Another, more interesting generalization is possible by allowing the
boundary metric to be curved. This allows for a circuit construction where the reference and
target state remain the same as here, while the sequence of states interpolating between them
changes. In general, such constructions are more difficult to interpret in terms of gates acting on
states, and hence the precise sequence of states between the reference and target state is harder
to derive. One possibility to construct such a geometry is to consider a general Weyl-rescaled
geometry without restricting the Weyl factor to allow only flat boundary metrics, as we did here.
For such a circuit, it is possible to construct a one-norm cost function similar to that considered
in [9]. We will discuss such circuits in more detail in an upcoming work.

Finally, it would be very interesting to make further contact with the approach to gravity duals
of circuits pioneered in [5]. In particular, both approaches use non-trivial boundary metrics to
define circuits. It would be certainly interesting to understand possible relations between them
with a hope to advance in this way the field of gravity duals to cost functions and complexity from
a quantitative perspective underlying the present work.
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A Maximal volume slices

In this section, we compute the volume of extremal slices in bulk geometries obtained from diffeo-
morphisms of pure AdS3. In other words, we calculate the proposed bulk dual to complexity in the
“complexity=volume” approach [20] in these geometries. The extremal slices we consider asymp-
tote to a constant time slice on the boundary in z, z̄ coordinates. Equivalently, in w, w̄ coordinates
the bulk metric is the standard pure AdS3 metric while the slice asymptotes to a diffeomorphism
of the constant time slice in z, z̄ coordinates. The calculation is done perturbatively to fourth order
in the perturbation parameter.
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We start with the global AdS3 metric in coordinates

ds2 = − cosh2ρd t2 + dρ2 + sinh2ρdφ2. (44)

The embedding of the maximal volume slice is determined by t(φ,ρ). The induced metric on the
maximal volume slice is given by

ds2
ind. =

�

1− cosh2ρ

�

∂ t
∂ ρ

�2
�

dρ2 − 2cosh2ρ
∂ t
∂ ρ

∂ t
∂ φ

dρdφ +

�

sinh2ρ − cosh2ρ

�

∂ t
∂ φ

�2
�

dφ2.

(45)
For the zeroth order in perturbation theory the boundary conditions are t(φ,ρ → ∞) = t0 =
const. and the maximal volume slice is a constant time slice t(φ,ρ) = t0. The volume is given as
the square root of the determinant γ of the induced metric, giving a UV divergent result

V(0) =

∫ 1/εUV

0

dρ

∫ 2π

0

dφ
p
γ=

∫ 1/εUV

0

dρ

∫ 2π

0

dφ sinhρ = 2π
�

1
εUV
− 1

�

. (46)

First and second order: We now expand around the zeroth order solution with expansion pa-
rameter ε,

t(φ,ρ) = t0 + εt1(φ,ρ) + ε2 t2(φ,ρ) + ... (47)

Up to second order the square root of the determinant of the induced metric is given by

p
γ= −

�

cosh2ρ sinh2ρ ṫ2
1 + cosh2ρt ′21

�

ε2

2 sinhρ
+ sinhρ. (48)

where ṫ1 =
∂
∂ ρ t1 (ρ,φ) and t ′1 =

∂
∂ φ t1 (ρ,φ). Note that the first order term O(ε) in

p
γ vanishes

and hence the volume of the extremal slice to first order is equal to the zeroth order result. To
determine the location of the extremal volume slice to first order, we perform a variation with
respect to t1, giving

−
�

3 cosh3ρ − 2 coshρ
�

sinhρ ṫ1 − cosh2ρ t ′′1 − cosh2ρ sinh2ρ ẗ1 = 0. (49)

Decomposing t1 in a Fourier series, t1 =
∑

n tn
1(ρ)e

inφ , yields

n2 cosh2ρ tn
1 (ρ)−

�

3 cosh3ρ − 2 coshρ
�

sinhρ
∂

∂ ρ
tn
1 (ρ)− cosh2ρ sinh2ρ

∂ 2

(∂ ρ)2
tn
1 (ρ) = 0.

(50)
The general solution is given as a sum of two linearly independent solutions

tn
1(ρ) = Cn,+ tn

1,+(ρ) + Cn,− tn
1,−(ρ) (51)

where

tn
1,±(ρ) =

�

cosh (ρ)− 1
cosh (ρ) + 1

�±|n|/2 cosh(ρ)± |n|
cosh(ρ)

. (52)

However, limρ→0 tn
1,− =∞ which is not consistent with the perturbative expansion. Therefore,

the solution is restricted to

tn
1(ρ) = Cn

1

�

cosh (ρ)− 1
cosh (ρ) + 1

�|n|/2 cosh(ρ) + |n|
cosh(ρ)

. (53)
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The constant Cn
1 is determined from the boundary conditions. Inserting this into (48) yields the

following volume of the extremal slice to second order in the perturbation expansion,

V =

∫ 1/εUV

0

dρ

∫ 2π

0

dφ
p
γ

= V(0) − ε2π

∫ 1/εUV

0

dρ
cosh2ρ

sinhρ

∑

n

(n2 tn
1 t−n

1 + sinh2ρ
∂ tn

1

∂ ρ

∂ t−n
1

∂ ρ
)

= V(0) + ε
2π
∑

n

�

−
n2

εUV
+ |n|3 − |n|

�

Cn
1 C−n

1 .

(54)

Taking into account that the cutoff surface ρ = 1/εUV also changes under the diffeomorphism
w(z, z̄), the non-universal cutoff dependent terms in second order in the perturbation parameter
ε cancel. Therefore, we finally obtain a finite result for the change in volume of the extremal slice
compared to pure AdS3,

V(2) = V |O(ε2) = π
∑

n

�

|n|3 − |n|
�

Cn
1 C−n

1 . (55)

Third order: The third order term V(3) is derived in the same way as the second order one. To
third order in ε, the determinant of the induced metric reads

p
γ|O(ε3) = −

cosh2ρ sinh2ρ ṫ1 ṫ2 + cosh2ρt ′1 t ′2
sinhρ

(56)

The equation of motion for t2 is the same as the one for t1. Thus, the (UV cutoff independent)
change in volume to third order is given by

V(3) = 2π
∑

n

�

|n|3 − |n|
�

Cn
1 C−n

2 . (57)

Fourth order: In this order, the determinant of the induced metric is given by

p
γ|O(ε4) = −

1

8 sinh3ρ

�

cosh4ρ sinh4ρ ṫ4
1 + 2 cosh4ρ sinh2ρ ṫ2

1 t ′21 + cosh4ρt ′41

+ 4cosh2ρ sinh4ρ ṫ2
2 + 4 cosh2ρ sinh2ρt ′22

+ 8cosh2ρ sinh4ρ ṫ1 ṫ3 + 8cosh2ρ sinh2ρt ′1 t ′3

�

.

(58)

This gives the following equation of motion for t3,

cosh4ρ sinh2ρ ṫ2
1 t ′′1 + 3cosh4ρt ′21 t ′′1 +

�

cosh5ρ sinh3ρ + 4 cosh3ρ sinh5ρ
�

ṫ3
1

+ 4cosh4ρ sinh2ρ ṫ ′1 t ′1 ṫ1 −
�

cosh5ρ sinhρ − 4cosh3ρ sinh3ρ
�

t ′21 ṫ1

+ 3cosh4ρ sinh4ρ ṫ2
1 ẗ1 + cosh4ρ sinh2ρt ′21 ẗ1

+ 2cosh2ρ sinh4ρ ẗ3 + 2cosh2ρ sinh2ρt ′′3 + 2
�

cosh3ρ sinh3ρ + 2coshρ sinh5ρ
�

ṫ3 = 0.

(59)

This can be slightly simplified by inserting the equation of motion for t1,

cosh4ρt ′21 t ′′1 + cosh3ρ sinh5ρ ṫ3
1 + 2cosh4ρ sinh2ρ ṫ ′1 t ′1 ṫ1 − cosh3ρ sinhρt ′21 ṫ1 + cosh4ρ sinh4ρ ṫ2

1 ẗ1

+ sinh2ρ
�

cosh2ρ sinh2ρ ẗ3 + cosh2ρt ′′3 + sinhρ coshρ(3cosh2ρ − 2) ṫ3

�

= 0.
(60)

16



SciPost Physics Submission

Decomposing t3 in a Fourier series gives

cosh2ρ sinh2ρ ẗn
3 + sinhρ coshρ(3 cosh2ρ − 2) ṫn

3 − n2 cosh2ρtn
3 = gn(ρ), (61)

where we have put all the t1-dependent parts into the function gn(ρ). The solution to this in-
homogenous differential equation is given by a sum of a special inhomogenous solution and the
solution of the homogenous equation with gn(ρ) = 0. Since the homogenous equation is equiva-
lent to the e.o.m. for tm

1 and tm
2 , the solution is already known. The inhomogenous solution can

be obtained by a Greens function ansatz:

− n2 cosh2ρG(ρ,ρ0) + coshρ sinhρ(3 cosh2ρ − 2)
∂

∂ ρ
G(ρ,ρ0) + cosh2ρ sinh2ρ

∂ 2

∂ ρ2
G(ρ,ρ0)

= δ(ρ −ρ0). (62)

It is clear that the solution of (62) is equal to the solution of (50) when ρ 6= ρ0, therefore we
make the ansatz

G(ρ,ρ0) =

�

C+ tn
1,+ + C− tn

1,− , ρ < ρ0

Ĉ+ tn
1,+ + Ĉ− tn

1,− , ρ > ρ0
(63)

Requiring continuity of G(ρ,ρ0) at ρ = ρ0 and the proper discontinuity of its derivative to repro-
duce the right hand side of (62) fixes the coefficients C± and Ĉ±. Integrating over ρ0 we obtain

tn
3,inhom.(ρ) =

tn
1,+(ρ)

2|n|(|n|2 − 1)

�

−
∫ ∞

0

dρ0
(coshρ0 + |n|) tanh(ρ0/2)|n|

sinhρ0 coshρ0
gn(ρ0)

+

∫ ∞

ρ

dρ0
(coshρ0 − |n|) tanh(ρ0/2)−|n|

sinhρ0 coshρ0
gn(ρ0)

�

+
tn
1,−(ρ)

2|n|(|n|2 − 1)

∫ ρ

0

dρ0
(coshρ0 + |n|) tanh(ρ0/2)|n|

sinhρ0 coshρ0
gn(ρ0).

(64)

The inhomogenous part tn
3,inhom. of the solution vanishes at ρ = 0,∞:

lim
ρ→∞

tn
3,inhom.(ρ) =

�∫ ∞

0

dρ0

tn
1,+(ρ0)gn(ρ0)

2|n|(|n|2 − 1) sinhρ0

�

(tn
1,+(ρ→∞)− tn

1,−(ρ→∞)) = 0,

lim
ρ→0

tn
3,inhom.(ρ) =

�∫ ∞

0

dρ0

(tn
1,−(ρ0)− tn

1,+(ρ0))gn(ρ0)

2|n|(|n|2 − 1) sinhρ0

�

tn
1,+(ρ→ 0) = 0.

(65)

Therefore, to impose the boundary conditions obeyed by t3 we only need to consider the ho-
mogenous part of the solution as before. Furthermore, it can be shown that the inhomogenous
part tn

3,inhom. does not contribute to the volume change. The contribution of tn
3,inhom. to V(4) is

proportional to
∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
3,inhom.(ρ) + n2 tn

1,+(ρ)t
−n
3,inhom.(ρ))

=−
∫ ∞

0

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
1,+(ρ) + n2 tn

1,+(ρ)t
−n
1,+(ρ))

∫ ∞

0

dρ0

t−n
1,+(ρ0)g−n(ρ0)

sinhρ0

+

∫ ∞

0

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
1,+(ρ) + n2 tn

1,+(ρ)t
−n
1,+(ρ))

∫ ∞

ρ

dρ0

t−n
1,−(ρ0)g−n(ρ0)

sinhρ0

+

∫ ∞

0

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
1,−(ρ) + n2 tn

1,+(ρ)t
−n
1,−(ρ))

∫ ρ

0

dρ0

t−n
1,+(ρ0)g−n(ρ0)

sinhρ0
.

(66)
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Using that
∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+ ṫ−n
1,− + n2 tn

1,+ t−n
1,−) = |n|

2
�

1
|n|
− |n|+ coshρ +

1
coshρ

�

(tanh(ρ/2))2|n|

(67)
and

∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+ ṫ−n
1,− + n2 tn

1,+ t−n
1,−) = |n|

2
�

coshρ −
1

coshρ

�

, (68)

and applying partial integration in the last two terms of (66), we get a vanishing contribution of
tn
3,inhom. to V(4):

∫

dρ
cosh2ρ

sinhρ
(sinh2ρ ṫn

1,+(ρ) ṫ
−n
3,inhom.(ρ) + n2 tn

1,+(ρ)t
−n
3,inhom.(ρ))

= |n|2
∫ ∞

0

dρ
t−n
1,+(ρ)g−n(ρ)

sinhρ

�

−
1
|n|
+ |n|+

�

1
|n|
+ |n|+ coshρ +

1
coshρ

�

coshρ − |n|
coshρ + |n|

− coshρ +
1

coshρ

�

= 0.

(69)

From the remaining contribution of the homogenous term in the solution of the equation of mo-
tion, we obtain in total

V(4) = −
∫

dρdφ
�

cosh2ρ

sinhρ

�

sinh2ρ ṫ1 ṫ3 + t ′1 t ′3 +
sinh2ρ ṫ2 ṫ2 + t ′2 t ′2

2

�

+
cosh4ρ

8 sinh3ρ

�

sinh2ρ ṫ1 ṫ1 + t ′1 t ′1
�2
�

= 2π
∑

n

(|n|3 − |n|)
�

Cn
1 C−n

3 +
1
2

Cn
2 C−n

2

�

+
π

4

∑

n,m,r

|n||m||n+ r||m− r|C1
n C1

mC1
r−mC1

−n−r

×
�

α
n,m,r
1

� k
∑

i=1

(−1)k−i

i
+ (−1)k log2

�

+αn,m,r
2

�

(70)

where we have used the shorthand notation k = |n|+ |m|+ |r −m|+ | − n− r| and

α
n,m,r
1 =

1
3
(|m|3 − |m|+ |n|3 − |n|+ |r −m|3 − |r −m|+ |n+ r|3 − |n+ r|)

+ 2m|n|(n− 1/n) + 2n|m|(m− 1/m),
(71)
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12αn,m,r
2 =4(1− k2)− 3(−1)k/2(k− k3)

+ (9(−1)k/2k− 12)(2mn− |m− r||n+ r| − (|n|+ |m|)(|n+ r|+ |m− r|)− |m||n|)

+
1

4k− k3

�

−120+ 28k2 − 4k4

+ (72− 12k2)(2mn− |m− r||n+ r| − (|n|+ |m|)(|n+ r|+ |m− r|)− |m||n|)

+ 12
|m||n||m− r||n+ r|
mn(m− r)(n+ r)

�

6− 7k2 + k4

+ (2− k2)(|n||m|+ (|n|+ |m|)(|m− r|+ |n+ r|) + |m− r||n+ r|)

− (4− 2k2)(m− r)(n+ r)− k|n||m|(|m− r|+ |n+ r|)
�

+ (9(−1)k/2(4k− 4k3)− 12(4− k2)− 12k)
�

−2m|n|/n− 2n|m|/m

+ (|n|+ |m|)|m− r||n+ r| − (2mn− |m||n|)(|m− r|+ |n+ r|)
�

+ 12
|m||n|

mn

�

2k(|m− r|+ |n+ r|) + k(|n|+ |m|)(2|m− r||n+ r| − (m− r)(n+ r))

+ 4+ 2(2|n||m| −mn)|m− r||n+ r|+ 4(|n|+ |m|)(|n+ r|+ |m− r|)

− 2|m||n|(m− r)(n+ r)
��

.

(72)

B Fubini-Study complexity

To compare our gravity results for the “complexity=volume” proposal with the Fubini-Study com-
plexity of [12,13], we now extend the calculation of the complexity in [12,13] to general pertur-
bative conformal transformations up to fourth order in perturbation theory.

The complexity functional of [12,13] is given by

CFS =

∫

ds
�

〈Q(s)2〉 − 〈Q(s)〉2
�

(73)

with the circuit generator Q from (2). Let us treat the circuit (a) first. In this case Q =Q(a) and

CFS =

∫

ds

∫

d xd y
4π2

Π(x , y)
ḟ (s, x)
f ′(s, x)

ḟ (s, y)
f ′(s, y)

(74)

where

Π(x , y) = 〈T (x)T (y)〉 − 〈T (x)〉〈T (y)〉=
c

32 sin4((x − y)/2)
−

h
2 sin((x − y)/2)2

. (75)

The corresponding complexity is determined by minimising (73). Thus we need to solve the
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equations of motion
∫

d x
��

−
f̈ (s, x)

f ′(s, x) f ′(s, y)
+

ḟ (s, x) ḟ ′(s, x)
f ′(s, x)2 f ′(s, y)

+ 2
ḟ (s, x) ḟ ′(s, y)

f ′(s, x) f ′(s, y)2

− 2
ḟ (s, y) ḟ (s, x) f ′′(s, y)

f ′(s, x) f ′(s, y)3

�

Π(x , y) +
ḟ (s, x) ḟ (s, y)

f ′(s, y)2 f ′(s, x)
∂yΠ(x , y)

�

= 0.

(76)

This is achieved perturbatively. We expand

f (s, x) = x + ε f1(s, x) + ε2 f2(s, x) +O(ε3) (77)

and determine the solution of (76) order by order in ε. Without loss of generality we take s ∈ [0, 1]
and impose the boundary conditions

f (0, x) = 0 , f (1, x) = f (x), (78)

where the final transformation f (1, x) is the conformal transformation that yields the Bañados
geometry in the dual bulk picture. Note that in agreement with the gravity result, the first order
contribution (in ε) to the complexity vanishes.

Second order In this case, the solution of the equations of motion is given by a linearly increasing
function in the circuit time parameter s,

∫

d x f̈1(s, x)Π(x , y) = 0 ⇒ f1(s, x) = s f1(x). (79)

Hence we obtain the following complexity9

C(2) = CFS|O(ε2) =

∫

ds

∫

d xd y
4π2

Π(x , y) ḟ 1(s, x) ḟ 1(s, y)

=
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

f n
1 f −n

1

(80)

where f n
1 is the n-th Fourier mode of f1. For h = 0 and f n

1 = Cn
1 , (80) is proportional to the

“complexity=volume” result (54) from the gravity theory.

Third order To this order, we get a solution that is quadratic in s,
∫

d x f̈2(s, x)Π(x , y) =

∫

d x
�

ḟ1(s, x)( ḟ ′1(s, x) + 2 f ′1(s, y))Π(x , y) + ḟ1(s, x) ḟ1(s, y)∂yΠ(x , y)
�

=

∫

d x
�

f1(x) f1(y)∂yΠ(x , y) + f1(x)( f
′

1(x) + 2 f ′1(y))Π(x , y)
�

⇒ f2(s, x) =
1
2

A2(x)s
2 + B2(x)s+ C2(x)

(81)

9Note that to evaluate the x and y integrals in (73), a regularisation procedure is necessary [12, 13]. Concretely,
we use differential regularisation to write the 1/ sin((x− y)/2) terms in (75) as derivatives of log[sin((x− y)/2)2] and
shift these derivatives onto the prefactor of the Π(x , y) term in (73) by partial integration (see [12,13] for details).
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The boundary conditions f2(0, x) = 0, f2(1, x) = f2(x) fix C2(x) = 0, 1
2A2(x)+B2(x) = f2(x). We

then obtain for the complexity to second order

C(3) = CFS|O(ε3) =

∫

ds

∫

d xd y
4π2

Π(x , y)(2 ḟ1(s, x) ḟ2(s, y)− ḟ1(s, x) ḟ1(s, y)( f ′1(s, x) + f ′1(s, y)))

= 2
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

f n
1 f −n

2 − i
∑

n,m

m
� c

24
(|n|3 − |n|) + h|n|

�

f n
1 f m

1 f −n−m
1 .

(82)
Again, for h = 0 and Cn

2 = f n
2 − i

∑

m mf m
1 f n−m

1 this is proportional to the gravity result (57).
Both the field theory complexity functional and the gravity result are invariant under replaing the
transformation f (x) by its inverse F(x) (for C(2) and C(3) this amounts to replacing f1(x)→− f1(x)
and f2(x)→− f2(x) + f ′1(x) f1(x)).

Fourth order The equation of motion leads to a solution of f (s, x) to third order with a third
order polynomial in s,

f3(s, x) =
1
6

A3(x)s
3 +

1
2

B3(x)s
2 + sC3(x) + D3(x). (83)

The boundary conditions f3(0, x) = 0, f3(1, x) = f3(x) determine enough of f3(s, x) to be able
to compute C(4). However, for C(4) we also need to solve the second order e.o.m. (81). This is
readily accomplished by using the Fourier decomposition of A2(x). Then (81) is equivalent to
∫

dzd xΠ(x , z)A2(x)e
−inz = (2π)2

� c
24
(|n|3 − |n|) + h|n|

�

An
2

=

∫

dzd x[in f1(x) f1(z) + f1(x)( f
′

1(x) + f ′1(z))]Π(x , z)e−inz

⇒An
2 =

−i
c

24(|n|3 − |n|) + h|n|

�

∑

r

f r
1 f n−r

1

� c
24
(|r|(2n− n3 − r + r3 + 2nr(n− r)) + |n|(1− n2)(n− r))

− h(|r|(2n− r) + |n|(n− r))
�

�

(84)
The complexity is then given by

C(4) = CFS|O(ε4) = CA
(4) + CB

(4) + CC
(4) (85)

where

CC
(4) =

∫

d xd y
4π2

Π(x , y)[ f1(x) f3(y) + f3(x) f1(y)]

= 2
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

f n
1 f −n

3 ,
(86)

CB
(4) =

∫

d xd y
4π2

Π(x , y)
�

f2(x) f2(y)−
1
2

f1(x) f1(y)( f
′

2(x) + f ′2(y))

−
1
2
( f1(x) f2(y) + f2(x) f1(y))( f

′
1(x) + f ′1(y))

�

=
∑

n

� c
24
(|n|3 − |n|) + h|n|

�

[ f n
2 f −n

2 −
∑

m

im( f n
1 f m

2 f −n−m
1 + f n

1 f m
1 f −n−m

2 + f n
2 f m

1 f −n−m
1 )],

(87)
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and

CA
(4) =

∫

d xd y
4π2

Π(x , y)
�

1
12

A2(x)A2(y)−
1
12
(A2(x) f1(y) + f1(x)A2(y))( f

′
1(x) + f ′1(y))

+
1
12

f1(x) f1(y)(A
′
2(x) + A′2(y)) +

1
3

f1(x) f1(y)( f
′

1(x) + f ′1(y))
2
�

=
∑

m,n,r

c
24

f m
1 f n

1 f m−r
1 f −n−r

1

�

−
1

12
1

|r|3 − |r|
�

|n|(n3 − n+ r3 + 2nr(n+ r)− 2r) + (n+ r)|r|(r2 − 1)
�

�

|m|(m3 −m− r3 + 2mr(r −m) + 2r) + (m− r)|r|(r2 − 1)
�

−
1

12

�

(m+ 2n)|m|(m2 − 1) + (n+ 2m)|n|(n2 − 1) + (m+ n)|m+ n|((m+ n)2 − 1)
�

1
|m+ n|3 − |m+ n|

�

(n+ r)|m+ n|((m+ n)2 − 1)

+ |m− r|
�

r((n+ r)2 − 1) + n((m+ n)2 − 1)

− (m+ n) + (n2 −mr)(r −m)
�

�

+
1
3
(m− r)(n+ r)(|m|(m2 − 1) + |n|(n2 − 1) + |r|(r2 − 1))

�

+ terms proportional to h.

(88)

Comparison with (70) clearly shows that the field theory complexity functional (73) does not
match with the “complexity=volume” result from the gravity theory for general conformal trans-
formations to fourth order in perturbation theory.

To derive the Fubini-Study complexity for the circuit (b), we simply replace Q(a) by Q(b). An
analogous calculation to the one above for the circuit (a) shows that although this replacement
changes the optimal path in the circuit as expected, the value of the Fubini-Study complexity
functional is unchanged up to the third order.

Finally, let us note that the Fubini-Study complexity functional (73) is not unique in the sense
that any complexity functional defined as a time-integral of a function of the Fubini-Study metric
has the same optimal path as (73),

CFS,generalized =

∫

dsα
�Æ

〈Q(s)2〉 − 〈Q(s)〉2
�

. (89)

Here α is a positive function. Equation (73) is therefore only one particular member of a more
general family obtained by choosing α(x) = x2. Our analysis can also exclude that other member
of this family match with the volume change in the “complexity=volume” prescription. To see
this, expand the function α(x) in a power series in x . The only term in this expansion that gives
an O(ε4) contribution to the complexity but no O(ε3) and O(ε2) contributions is the x4 term.
However by explicit calculation it is easy to see that this term together with theO(ε4) contributions
from x2 or x3 terms cannot give a result equal to the fourth order term (70) in the perturbation
series in ε of the volume change.
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